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Chern classes of linear submanifolds with application to spaces
of k-differentials and ball quotients

Matteo Costantini, Martin Möller, and Johannes Schwab

Abstract. We provide formulas for the Chern classes of linear submanifolds of the moduli
spaces of Abelian differentials and hence for their Euler characteristic. This includes as spe-
cial case the moduli spaces of k-differentials, for which we set up the full intersection theory
package and implement it in the SageMath package diffstrata. As an application, we give
an algebraic proof of the theorems of Deligne–Mostow and Thurston that suitable compact-
ifications of moduli spaces of k-differentials on the 5-punctured projective line with weights
satisfying the INT-condition are quotients of the complex two-ball.
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1. Introduction

Linear submanifolds are the most interesting and well-studied subvarieties of mod-
uli spaces of Abelian differentials �Mg;n.�/ and their classification seems far from
complete at present. They are defined as the normalization of algebraic substacks
of�Mg;n.�/ that are locally a union of linear subspaces in period coordinates. In the
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holomorphic case, linear submanifolds defined by real linear equations are precisely
the closures of GLC2 .R/-orbits by the fundamental theorems of Eskin–Mirzakhani–
Mohammadi [21, 22]. These orbit closures are automatically algebraic subvarieties
by Filip’s theorem [23]. Our results require algebraicity, but they work as well for
meromorphic differentials and for subvarieties whose equations are only C-linear.

Linear submanifolds include:

• spaces of quadratic differentials;

• Teichmüller curves;

• eigenform loci and Prym loci;

• the recent sporadic examples from [45] and [20]; but also

• spaces defined by covering constructions; and

• in the meromorphic case, spaces defined by residue conditions.

These examples are R-linear. Spaces of k-differentials for k � 2, and in particular the
ball quotients in Section 8 are prominent examples that are only C-linear.

Our primary goal is a formula for the Chern classes of the cotangent bundle of
any linear submanifold or rather of its compactification. The Euler characteristic is
an intrinsic compactification-independent application. Knowing the Chern classes is
a prerequisite for understanding the birational geometry of linear submanifolds, such
as computations of the Kodaira dimension, see [9].

This goal was achieved in [13] for the full projectivized strata of Abelian differen-
tials P�Mg;n.�/ themselves, taking the modular smooth normal crossing compacti-
fication P„ xMg;n.�/ of multi-scale differentials from [5] as point of departure. In the
inextricable zoo of linear manifolds we are not aware of any intrinsic way to construct
a smooth compactification with modular properties. Working with the normalization
of the closure in some ambient compactification is usually unsuitable for intersec-
tion theory computations. Here, however, thanks to the work of Benirschke–Dozier–
Grushevsky [7] and some minor upgrades we are able to work with this closure.

We now introduce more notation to state the general results and then apply them
to specific linear submanifolds. Let �H ! �Mg;n.�/ be a linear submanifold.
Let moreover H ! P�Mg;n.�/ be its projectivization and let xH ! P„ xMg;n.�/

denote the normalization of its closure into the space of multi-scale differentials. The
boundary strata D� of P„ xMg;n.�/ are indexed by level graphs � as we recall in
Section 3.2. By [7, Theorem 1.5] the boundary of xH is divisorial and consists two
types of divisors: First there are the divisors DH

h of curves whose level graphs have
only horizontal edges (i.e., joining vertices of the same level). Second there are the
divisorsDH

� parametrized by level graphs � 2 LG1.H / that have one level below the
zero level and no horizontal edges and such that the intersection of xH with the inte-
rior of the boundary divisor D� is non-empty. Those boundary divisors DH

� come



Chern classes of linear submanifolds 3

with the integer `� , the least common multiple of the prongs �e along the edges. The
interior of D� can intersect the linear submanifold xH in finitely many irreducible
components, whose number we denote by n�. xH /. We denote by LGC1 .H / the set of
pairs �C D .�; i/, where � 2 LG1.H / and i 2 ¹1; : : : ; n�. xH /º is the index set of
irreducible components of Dı� \ xH . We refer to �C D .�; i/ as a refined level graph
and set `.�;i/ WD `� . This extra notational complexity is necessary since a priori it
is possible that a linear submanifold intersects a boundary component in irreducible
components with different level dimensions. This is clearly possible since for exam-
ple we do not require our linear manifolds to be irreducible, which is convenient in
order to include entire strata of k-differentials, but it could be possible also in the case
of irreducible linear submanifolds. We let � D c1.O.�1// be the first Chern class of
the tautological bundle on xH .

Theorem 1.1. The first Chern class of the logarithmic cotangent bundle of a projec-
tivized compactified linear submanifold xH is

c1
�
�1xH .log @H /

�
D N � � C

X
�C2LGC

1
.H/

.N �N>
�C
/`�C ŒD

H
�C
� 2 CH1. xH /;

where N WD dim.�H /, and N>
�C
WD dim.DH ;>

�C
/ C 1 is the dimension of the un-

projectivized top level stratum in DH
�C

.

To state a formula for the full Chern character we need to recall a procedure that
also determines adjacency of boundary strata. It is given by undegeneration maps ıi
that contract all the edges except those that cross from level �i C 1 to level �i , see
Section 3.2. This construction can obviously be generalized so that a larger subset
of levels remains. For example, the undegeneration map ı{i contracts only the edges
crossing from level �i C 1 to level �i . For any element � of the set LGL.H / of
graphs with L levels below zero and without horizontal edges, we can now define
the boundary component DH

� of codimension L and the quantity `� D
QL
iD1 `ıi .�/.

We also extend the undegeneration maps at the level of refined level graphs, i.e., for
elements in LGCL .H /, which we define analogously to LGC1 .H /, and we still denote
them by the same letter.

Theorem 1.2. The Chern character of the logarithmic cotangent bundle is

ch
�
�1xH .log @H /

�
D e� �

N�1X
LD0

X
�C2LGC

L
.H/

`�C
�
N �N>

ıL.�C/

�
i�C�

�

LY
iD1

td
�
N
˝�`

ıi .�
C/

�C=ı{
i
.�C/

��1
;
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where N
�C=ı{

i
.�C/

denotes the normal bundle of DH
�C

in DH

ı{
i
.�C/

, and where td is
the Todd class and i�C WD

H
�C

,! xH is the inclusion map.

So far the results have been stated to parallel exactly those in [13]. The ambient
spaces can be mildly singular (see Section 3), but the maps i�C are regular embed-
dings (see Section 4.3) which allows us to work tacitly with operational Chow groups
just as in the case of the smooth DM stack in [13]. We start explaining the difference in
evaluating this along with the next result, a closed formula for the Euler characteristic.

Theorem 1.3. Let H! P�Mg;n.�/ be a projectivized linear submanifold. The orb-
ifold Euler characteristic of H is given by

�.H / D .�1/d
dX

LD0

X
�C2LGC

L
.H/

KH
�C
�N>

�C

jAutH .�C/j
�

�LY
iD0

Z
H
Œi�

�C

�
d
Œi�

�C

H
Œi�

�C

;

where the integrals are over the normalization of the closure xH ! P„ xMg;n.�/

inside the moduli space of multi-scale differentials and similar integrals over bound-
ary strata, where

• H
Œi�

�C
are the linear submanifolds at level i of �C as defined in Section 3.5;

• d
Œi�

�C
WD dim.H Œi�

�C
/ is the projectivized dimension;

• KH
�C

is the product of the number of prong-matchings on each edge of � that are
actually contained in DH

�C
;

• AutH .�C/ is the set of automorphism of the graph � whose induced action on a
neighborhood of DH

�C
preserves xH ;

• d WD dim.H / is the projectivized dimension.

The number of reachable prong matchings KH
�C

and the number jAutH .�C/j,
as defined in the theorem, are in general non-trivial to determine. Also the description
of H

Œi�

�C
requires specific investigation. For example, for strata of k-differentials, these

H
Œi�

�C
are again some strata of k-differentials, but the markings of the edges have to

be counted correctly.
The most important obstacle to evaluate this formula however is to compute the

fundamental classes of linear submanifolds, or to use tricks to avoid this. For strata
of Abelian differentials, this step was provided by the recent advances in relating
fundamental classes to Pixton’s formula [1, 34]. Whenever we have the fundamental
classes at our disposal, we can evaluate expressions in the tautological ring, as we
briefly summarize in Section 4.

Applications: Teichmüller curves in genus two. As an example where fundamental
class considerations can be avoided, we give in Section 6 an alternative quick proof of
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one of the first computations of Euler characteristics of Teichmüller curves, initially
proven in [2], see also [46] for a proof via theta derivatives.

Theorem 1.4 (Bainbridge). The orbifold Euler characteristic of the Teichmüller curve
WD � P�M2;1.2/ in the eigenform locus for real multiplication by a non-square dis-
criminantD is �.WD/D�9�.�1/, where � D �Q.

p
D/

is the Dedekind zeta function.

Strata of k-differentials. The space of quadratic differentials is the cotangent space
to moduli space of curves and thus fundamental in Teichmüller dynamics. We give
formulas for Chern classes, Euler characteristics and for the intersection theory in
these spaces. In fact, our formulas work uniformly for spaces of k-differentials for
all k � 1. Having the quadratic case in mind, we write

xQ D P„k xMg;n.�/

for the space of multi-scale k-differentials defined in [15]. The space xQ is the dis-
joint union over all divisors d of k of the subspaces parametrizing powers of k=d -
differentials. We write

xQpr D P„kpr
xMg;n.�/

for the (still possibly disconnected) subspace of primitive multi-scale k-differentials,
the closure of the components corresponding to d D 1. The space xQ coincides (up
to explicit isotropy groups, see Lemma 7.2) with the compactification as above of the
linear submanifolds associated to its connected components obtained via the canoni-
cal covering construction.

The formulas in Theorem 1.2 apply to the connected components of xQ viewed as
linear submanifolds in some higher genus stratum Myg;yn.y�/. However the fundamen-
tal class of these submanifolds is not known, conceivably it is not even a tautological
class. The main challenge here is to convert these formulas into formulas that can
be evaluated on xQ viewed as a submanifold in xMg;n where the fundamental class is
given by Pixton’s formula.

While the boundary strata of the moduli space P„ xMg;n.�/ are indexed by level
graphs, the boundary strata of the moduli space of multi-scale k-differentials xQ are
indexed by k-coverings of level graphs � W y�mp! � , where the legs of y�mp are marked
only partially, see Section 7 or also [15, Section 2] for the definitions of these objects
and the labeling conventions of those covers. The k-coverings appearing in the bound-
ary of xQpr are precisely those with y� connected. Each edge e 2 � has an associated
k-enhancement �e given by j orde ! C kj, where ! is the k-differential on a generic
point of the associated boundary stratum D� . We let � D c1.O.�1// be the first
Chern class of the tautological bundle on xQ. Via the canonical cover construction,
Theorem 1.3 implies the following formula for the Euler characteristic of strata of
k-differentials. Note that if Hk is the linear submanifold associated to a connected
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component of a stratum of k-differentials, the information of � is enough to uniquely
determine the relevant information of the irreducible componentsD�C ofD� , i.e., the
level strata dimensions d Œi�

�C
, the number of reachable prong-matchings KHk

�C
and

jAutHk .�
C/j. So in the applications of the formulas of Theorem 1.2 and Theorem 1.3

to strata of k-differentials, we can group together all irreducible components of D� .

Corollary 1.5. The orbifold Euler characteristic of a projectivized stratum of k-
differentials P�kMg;n.�/ is given by

�
�
P�kprMg;n.�/

�
D

�
�1

k

�d dX
LD0

X
.�Wy�mp!�/2LGL.Qpr/

S.�/ �
N>� �

Q
e2E.�/ �e

jAut.�/j

�

�LY
iD0

Z
Q
Œi�
�

�
d
Œi�
�

Q
Œi�
�

;

where S.�/ is the normalized size of a stabilizer of a totally labeled version of the
graph y�mp and Q

Œi�
� are the strata of k-differentials of D� at level i .

The full definition of S.�/ is presented in (29). It equals one for many � , e.g., if
all vertices in � have only one preimage in y�mp. See Remark 7.6 for values of this
combinatorial constant.

k 1 2 3 4 5 6 7 8 9

�.P�kprM2;1.2k// �
1
40

0 1
3

3
2

21
5

9 18 30 51

Table 1. Euler characteristics of some minimal strata of primitive k-differentials. Note that in the
case of k D 2 the stratum of primitive minimal k-differentials is empty, see [41, Theorem 2(c)].

Table 1 gives the Euler characteristics of some strata of primitive quadratic differ-
entials, for more examples and cross-checks see Section 7.5.

All the formulas for evaluations in the tautological ring of strata of k-differentials
have been coded in an extension of the SageMath package diffstrata (an exten-
sion of admcycles by [16]) that initially had this functionality for Abelian differen-
tials only (see [13, 14]). See Section 4 for generalities on tautological ring computa-
tions, and in particular Section 7, for the application to k-differentials. The program
diffstrata has been used to verify the Hodge-DR-conjecture from [10] in low
genus. Moreover, diffstrata confirms that the values of the tables in [28] can be
obtained via intersection theory computations.

Proposition 1.6. A conjecture of Chen–Möller–Sauvaget [11, Conjecture 1.1], which
expresses Masur–Veech volumes for strata of quadratic differentials as intersection
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numbers, holds true for strata of projectivized dimension up to six. For example,
Q.12/ D 5614=6075 � �6.

Ball quotients. Deligne–Mostow [17] and Thurston [54] constructed compactifica-
tions of strata of k-differentials on M0;n for very specific choices of � and showed
that these compactified strata are quotients of the complex .n � 3/-ball. These results
were celebrated as they give a list of non-arithmetic ball quotients, of which there are
still only finitely many sporadic examples today, see [19] and [18] for recent progress.
The compactifications are given as GIT quotients (in [17]) or in the language of cone
manifolds (in [54]) and the proof of the discreteness of the monodromy representation
requires delicate arguments for extension of the period at the boundary, resp. surgeries
for the cone manifold completion.

As application of our Chern class formulas we give a purely algebraic proof that
these compactifications are ball quotients, based on the fact that the equality case in
the Bogomolov–Miyaoka–Yau inequality implies a ball quotient structure, see Propo-
sition 8.1. Since this is a proof of concept, we restrict to the case n D 5, i.e., to
quotients of the complex two-ball, and to the condition INT in (1), leaving the analog
for Mostow’s generalized †INT-condition [47] for the reader.

The computation of the hyperbolic volume of these ball quotients had been open
for a long time. A solution has been given by McMullen in [44] and Koziarz–Nguyen
in [39], see also [35]. Since computing the hyperbolic volume is equivalent to comput-
ing the Euler characteristic by Gauss–Bonnet, our results provide alternative approach
to this question, too.

For spaces xQ of multi-scale k-differentials in g D 0, n D 5 with these conditions,
there are only four kinds of boundary divisors:

• the divisors �ij where two points with ai C aj < k collide;

• the divisors Lij where two points with ai C aj > k collide;

• the ‘horizontal’ boundary divisor Dhor consisting of all components where two
points with ai C aj D k collide;

• the ‘cherry’ boundary divisors ijƒkl .

Theorem 1.7. Suppose that � D .�a1; : : : ;�a5/ is a tuple with ai � 0 and with the
condition �

1 �
ai

k
�
aj

k

��1
2 Z if ai C ak < k .INT/ (1)

for all i ¤ j . Then there exists a birational contraction morphism xQ ! xB onto a
smooth proper DM-stack xB that contracts precisely all the divisors Lij and ijƒkl .
The target xB satisfies the Bogomolov–Miyaoka–Yau equality for �1

xB
.logDhor/.

As a consequence B D xB nDhor is a ball quotient.
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The signature of the intersection form on the eigenspace that k-differentials are
modeled on has been computed by Veech [57]. The only other case where the sig-
nature is .1; 2/ are strata in M1;3. As observed by Ghazouani–Pirio in [26] (see
also [27]), there are only few cases where the metric completion of the strata can
be a ball quotient. However, they also find additional cases where the monodromy of
the stratum is discrete. This implies that the period map descends to a map from the
compactified stratum to a ball quotient. It would be interesting to investigate if there
are more such cases, possibly with non-arithmetic monodromy.

2. Logarithmic differential forms and toric varieties

This section connects the Euler characteristic to integrals of characteristic classes of
the sheaf of logarithmic differential forms. We work on a possibly singular but normal,
proper and irreducible variety xH of dimension d , whose singularities are toric and
contained in some boundary divisor @H . We are interested in the Euler characteristic
of the (Zariski) open subvariety H D xH n @H given by the complement of @H , in the
situation where the inclusion H ,! xH is a toroidal embedding. In particular, in this
case, the boundary divisor @H is locally on open subsets U˛ a torus-invariant divisor.

In this situation we define locally �1U˛ .log/ to be the sheaf generated by .C�/d -
invariant meromorphic differential forms. These glue to sheaf �1

xH
.log @H /, that is

called logarithmic differential sheaf. This terminology is justified by the following
idea from [49, Section 4], the details and definitions being given in [36]. For any
‘allowable’ smooth modification pW xW ! xH that maps a normal crossing boundary
divisor @W � xW onto @H , we have

p��1xH .log @H / D �1xW .log @W /

for the usual definition of the logarithmic sheaf on xW . Moreover, such an ‘allowable’
smooth modification always exists. The previous situation can be generalized verba-
tim to the case where xH is a Deligne–Mumford stack and this is the setup we are
interested in.

Proposition 2.1. Let xH be a proper irreducible Deligne–Mumford stack of dimen-
sion d with toric singularities. Assume moreover that the coarse moduli space of xH
is projective. Let H ,! xH be a toroidal embedding and @H D xH nH . Then the Euler
characteristic of H can be computed as the integral

�.H / D .�1/d
Z
xH

cd
�
�1xH .log @H /

�
over the top Chern class of the logarithmic differential sheaf.
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Proof. If xH is a smooth Deligne–Mumford stack and @H D ;, this is well known
(see, e.g., [55, Corollary 4.16]). In the case where xH is still smooth but @H is not
empty, a self-contained proof of the statement was given in [13, Proposition 2.1] (the
proof was given in the case where xH is a smooth variety, but it works verbatim for
the more general case of smooth DM stack).

In general, we use an allowable modification. By definition this restricts to an
isomorphism W !H , hence does not change the left-hand side. The right-hand side
also stays the same by push-pull and the pullback formula along an allowable smooth
modification.

3. The closure of linear submanifolds

The compactification of a linear submanifold we work with has (currently) no intrinsic
definition. Rather we consider the normalization of the closure of a linear submanifold
inside the moduli space of multi-scale differentials„ xMg;n.�/. We recall from [7] the
basic properties of such closures. The goal of this section is to make precise and to
explain the following two slogans:

(i) Near boundary points without horizontal edges, the closure is determined as
for the ambient Abelian stratum by the combinatorics of the level graph and it is
smooth. The ghost automorphisms, the stack structure at the boundary that stems
from twist groups, agrees with the ghost automorphisms of the ambient stratum and
the intersection pattern is essentially determined by the profiles of the level graph, a
subset of the profiles of the ambient stratum.

(ii) In the presence of horizontal edges there are toric singularities. Working with
the appropriate definition of the logarithmic cotangent sheaf these singularities do not
matter. This sheaf decomposes into summands from horizontal nodes, from the level
structure, and the deformation of the differentials at the various levels, just as in the
ambient stratum.

3.1. Linear submanifolds in generalized strata

Let�Mg;n.�/ denote the moduli space of Abelian differentials of possibly meromor-
phic signature �. Despite calling them ‘moduli space’ or ‘strata’, we always think of
them as quotient stacks or orbifolds and intersection numbers etc. are always under-
stood in that sense. These strata come with a linear structure given by period coordi-
nates (see, e.g., [58] for an introduction). A linear submanifold �H of �Mg;n.�/ is
an algebraic stack with a map �H ! �Mg;n.�/ which is the normalization of its
image and whose image is locally given as a finite union of linear subspaces in period
coordinate charts. See [24, Example 4.1.10] for an example that illustrates why we
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need to pass to the normalization for �H to be a smooth stack. In the context of
holomorphic signatures and GL2.R/-orbit closures, the linear manifolds obtained in
this way can locally be defined by equations with R-coefficients [21, 22]. We refer to
them as R-linear submanifolds. In this context, the algebraicity follows from being
closed by the result of Filip [23], but in general algebraicity is an extra hypothesis.

To set up for clutching morphisms and a recursive description of the boundary
of compactified linear submanifolds, we now define generalized strata, compare [13,
Section 4]. For a tuple g D .g1; : : : ; gk/ of genera and a tuple n D .n1; : : : ; nk/,
together with a collection of types � D .�1; : : : ; �k/ with j�i j D ni , we first define
the disconnected stratum

�Mg;n.�/ D

kY
iD1

�Mgi ;ni .�i /:

Then, for a linear subspace R inside the space of the residues at all poles of � we
define the generalized stratum �MR

g;n.�/ to be the subvariety with residues lying
in R. Generalized strata obviously come with period coordinates and we thus define
a generalized linear submanifold �H to be an algebraic stack together with a map to
�MR

g;n.�/, whose image is locally linear in period coordinates, and where�H is the
normalization of its image.

Rescaling the differential gives an action of C� on strata and the quotient are
projectivized strata P�Mg;n.�/. The image of a linear submanifold in P�Mg;n.�/

is called projectivized linear manifold H , but we usually omit the ‘projectivized’.
We refer with an index B to quantities of the ambient projectivized stratum, such

as its dimension dB and the unprojectivized dimensionNB D dB C 1. The same letters
without additional index are used for the linear submanifold, e.g., N D d C 1, and
we write dH and NH only if ambiguities may arise.

3.2. Multi-scale differentials: Boundary combinatorics

We will work within the moduli stack of multi-scale differentials xB WD P„ xMg;n.�/,
which provides a compactification of the stratum B WD P�Mg;n.�/ and was con-
structed in [5]. We recall some of its key properties, as detailed in [5] and further
discussed in [13, Section 3]. Everything carries over with obvious modifications to
the compactification P„ xMR

g;n.�/ of generalized strata, see [13, Proposition 4.1].
Each boundary stratum of P„ xMg;n.�/ has its associated level graph � , a stable

graph of the underlying pointed stable curve together with a weak total order on the
vertices, usually given by a level function normalized to have top level zero, and an
enhancement �e � 0 associated to the edges. Edges are called horizontal, if they start
and end at the same level, and vertical otherwise. Moreover, �e D 0 if and only if
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the edge is horizontal. We denote the closure of the boundary stratum of points with
level graph � by DB

� and, for any level graph � that is a degeneration of � , we let
D
B;ı
�;� � D

B
� be the open subset parametrizing multi-scale differentials compatible

with an undegeneration of �. In particular, the points of DB;ı
� WD D

B;ı
�;� represent

multi-scale differentials with level graph exactly � . These DB
� are in general not

connected, and might be empty (e.g., for unsuitably large �e).
We let LGL.B/ be the set of all enhanced .LC 1/-level graphs without horizontal

edges. The structure of the normal crossing boundary of P„ xMg;n.�/ is encoded by
undegenerations. For any subset I D ¹i1; : : : ; inº � ¹1; : : : ; Lº, there are undegener-
ation map

ıi1;:::;in WLGL.B/! LGn.B/;

that preserves the level passage given as a horizontal line just above level �i and
contracts the remaining level passages. We define ı{I D ıI{ .

The boundary strata DB
� for � 2 LGL.B/ are commensurable to a product of

generalized strata B Œi�� D P„ xMRi
gi ;ni .�i / defined via the following diagram:

c�1� .D
B;ı
�;�/ D

B;s
�

Bs�;�

Q0
iD�L B

Œi�
� DW B� B�;� D

B;ı
�;� DB

� :

q�

�

p� c�

p�
�

c�
�

� �

(2)

Here gi ; ni and �i are the tuples of the genera, marked points and signatures of the
components at level i of the level graph and Ri is the global residue condition induced
by the levels above. The covering space DB;s

� and the moduli stack Bs�;� of simple
multi-scale differentials compatible with an undegeneration of � were constructed
in [13, Section 4.2].

3.3. Multi-scale differentials: Prong-matchings and stack structure

The notion of a multi-scale differential is based on the following construction. Given
a pointed stable curve .X; z/, a twisted differential is a collection of differentials �v
on each component Xv of X , that is compatible with a level structure on the dual
graph � of X , i.e., vanishes as prescribed by � at the marked points z, satisfies the
matching order condition at vertical nodes, the matching residue condition at hori-
zontal nodes and global residue condition of [3]. A multi-scale differential of type �
on a stable curve .X; z/ consists of an enhanced level structure .�; `; ¹�eº/ on the
dual graph � of X , a twisted differential ! of type � compatible with the enhanced
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level structure, and a prong-matching for each node of X joining components of non-
equal level. Here a prong-matching � is a cyclic order-reversing identification of the
horizontal (outgoing resp. incoming) real tangent vectors at a zero resp. a pole corre-
sponding to each vertical edge of � . Multi-scale differentials are equivalences classes
of .X; z; �; � / up to the action of the level rotation torus that rescales differentials on
lower levels and rotates prong-matchings at the same time.

To an enhanced two-level graph we associate the quantity

`� D lcm
�
�eW e 2 E.�/

�
;

which appears in several important places of the construction of P„ xMg;n.�/:

(i) It is the size of the orbit of prong-matchings when rotating the lower level
differential.

Closely related:

(ii) The local equations of a node are xy D t`�=�e1 , where t1 is a local parameter
(a level parameter) transverse to the boundary. As a consequence a family of
differential forms that tends to a generator on top level scales with t`�1 on the
bottom level of � .

For graphs with L level passages we define `i D `�;i D `ıi .�/ to be the lcm of the
edges crossing the i -th level passage and `� D

QL
iD1 `�;i .

There are two sources of automorphisms of multi-scale differentials: on the one
hand, there are automorphism of pointed stable curves that respect the additional
structure (differential, prong-matching). On the other hand, there are ghost auto-
morphisms, whose group we denote by Gh� D Tw�=Tws� , that stem from the toric
geometry of the compactification. We emphasize that the twist group Tw� and the
simple twist group Tws� , hence also the ghost group Gh� , depend only on the data
of the enhanced level graph and will be inherited by linear submanifolds below. The
local isotropy group Iso.X;!/ of „ xMg;n.�/ sits in an exact sequence

0! Gh� ! Iso.X;!/! Aut.X;!/! 0

and locally near .X; z; �; � / the stack of multi-scale differentials is the quotient stack
ŒU= Iso.X;!/� for some open U � CNB , see [9, Remark 2.1]. The same holds for
P„ xMg;n.�/ where the automorphism group is potentially larger since ! is only
required to be fixed projectively.

3.4. Decomposition of the logarithmic tangent bundle

We now define a �-adapted basis, combining [7] and [13] with the goal of giving a
decomposition of the logarithmic tangent bundle that is inherited by a linear subman-
ifold, if the �-adapted basis is suitably chosen.
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We work on a neighborhood U � B of a point p D .X; Œ!�; z/ 2 DB;ı
� , where �

is an arbitrary level graph with L levels below zero. On a nearby smooth surface
. zX; z!;zz/ we let ˛Œi�j for i D 0; : : : ;�L be the vanishing cycles around the horizontal
nodes at level i . Let ˇŒi�j be a dual horizontal-crossing cycle, i.e., i is the top level (in
the sense of [7]) of this cycle, h˛Œi�j ; ˇ

Œi�
j i D 1 and ˇŒi�j does not have non-zero inter-

section with any other horizontal vanishing cycle at level i . Let h.i/ be the number of
those horizontal vanishing cycles at level i .

We complement the cycles ˇŒi�j by a collection of relative cycles 
 Œi�j such that
for any fixed level i their top level restrictions form a basis of the cohomology at
level i with punctures at the poles and at horizontal nodes and relative to the zeros
of ! quotiented by the subspace of global residue conditions. In particular, the span
of the 
 Œi�j contains the ˛Œi�j , and moreover the union

0[
jD�L

®
ˇ
Œj �
1 ; : : : ; ˇ

Œj �

h.j /
; 

Œj �
1 ; : : : ; 


Œj �

s.j /

¯
is a basis of H1. zX n zP ; zZ;C/,

where zZ [ zP D z is the set of zeros and poles of z!". Next, we define the !-periods
of these cycles and exponentiate to kill the monodromy around the vanishing cycles.
The functions

a
Œi�
j D

Z
˛
Œi�

j

!; b
Œi�
j D

Z
ˇ
Œi�

j

!; q
Œi�
j D exp

�
2�Ib

Œi�
j =a

Œi�
j

�
; c

Œi�
j D

Z


Œi�

j

!

are however still not defined on U (only on sectors of the boundary complement) due
to monodromy around the vertical nodes.

Coordinates on U are given by perturbed period coordinates ([5]), which are
related to the periods above as follows. For each level passage there is a level param-
eter ti that stem from the construction of the moduli space via plumbing. On the
bottom level passage L we may take tL D c

Œ�L�
1 as a period. For the higher level pas-

sage, the ti are closely related to the periods of a cycle with top level �i , but the latter
are in general not monodromy invariant. It will be convenient to write

tdie D

iY
jD1

t j̀j ; i 2 N:

There are perturbed periods zcŒ�i�j obtained by integrating !=tdie against a cycle with
top level �i over the part of level �i to points nearby the nodes, cutting off the lower
level part. By construction, on each sector of the boundary complement we have

zc
Œ�i�
j �

c
Œ�i�
j

tdie
D

X
s>i

tdse

tdie
E
Œ�s�
j;i (3)
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for some linear (‘error’) forms EŒ�s�j;i depending on the variables cŒ�s�j on the lower
level �s. Similarly, we can exponentiate the ratio over aŒ�i�j of the similarly perturbed
zb
Œ�i�
j and obtain perturbed exponentiated periods zqŒ�i�j , such that on each sector

log zqŒ�i�j � log qŒ�i�j D

X
s>i

tdse

tdie
E
0Œ�s�
j;i (4)

for some linear forms E 0Œ�s�j;i . In these coordinates the boundary is given by zqŒ�i�j D 0

and ti D 0. If we let

�hor
i;B.log/ D hd zqŒi�1 =zq

Œi�
1 ; : : : ; d zq

Œi�

h.i/
=zq
Œi�

h.i/
i; �lev

i;B.log/ D hdt�i=t�i i;

�rel
i;B D hd zc

Œi�
2 : : : ; d zc

Œi�

N.i/�h.i/
i;

with �lev
0;B.log/ D 0 by convention, we thus obtain a decomposition

�1xB.log @B/jU D
0M

iD�L

�
�hor
i;B.log/˚�lev

i;B.log/˚�rel
i;B

�
: (5)

3.5. The closure of linear submanifolds

For a linear submanifold H we denote by xH the normalization of the closure of the
image of H as a substack of„ xMg;n.�/. We denote byD� DDH

� the preimage of the
boundary divisor DB

� in xH . Again, a ı denotes the complement of more degenerate
boundary strata, i.e., DH ;ı

� is the preimage of DB;ı
� in xH .

We will now give several propositions that explain that xH is a compactification
of H almost as nice as the compactification P„ xMg;n.�/ of strata. The first statement
explains the ‘almost’.

Proposition 3.1. Let � be a level graph with only horizontal nodes, i.e., with one
level only. Then DH ;ı

� has at worst toric singularities.

More precisely, the linear submanifold is cut out by linear and binomial equations,
see (8) below.

Second, the intersection with non-horizontal boundary components is transversal
in the strong sense that each level actually causes dimension drop.

Proposition 3.2. Let � 2 LGL.B/ be a level graph without horizontal nodes. Each
point inDH ;ı

� is smooth andDH ;ı
� is a normal crossing divisor given as the intersec-

tion of L different divisors DH
ıi .�/

. In particular, DH
� has codimension L in xH .
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Fix now an enumeration of two level graphs, i.e., a bijection between LG1.B/ and
¹1; : : : ; jLG1.B/jº, and define

Di1;:::;iL �

L\
jD1

D�ij

to be the subset of all Dƒ, with ƒ 2 LGL.B/, such that ıj .ƒ/ D �ij for all j D
1; : : : ; L. The previous proposition allows to show, via the same argument as the
proof of [13, Proposition 5.1], the key result in order to argue inductively.

Corollary 3.3. If
TL
jD1D

H
�ij

is not empty, there is a unique ordering � 2 SymL on
the set of indices I D ¹i1; : : : ; iLº such that

D�.I/ D

L\
jD1

DH
�ij
:

Moreover, if ik D ik0 for a pair of indices k 6D k0, then Di1;:::;iL D ;.

The next statement is crucial to inductively apply the formulas in this paper.
We now need to refine our analysis by looking at irreducible components of DH

� .
Recall that LGC1 .H / is the set of pairs �C D .�; i/, where � 2 LG1.H / and i 2
¹1; : : : ; n�. xH /º is the index set of irreducible components of DH ;ı

� . We denote
by DH

�C
the irreducible component of DH

� corresponding to �C. Recall that p�
and c� are the projection and clutching morphisms of the diagram (2).

Proposition 3.4. There are generalized linear submanifolds�H
Œi�

�C
!�M

Ri
gi ;ni .�i /

of dimension di with projectivization H
Œi�;ı

�C
, such that

0X
iD�L

di D dH � L

and such that the normalizations H
Œi�

�C
! B

Œi�
� of closures of H

Œi�;ı

�C
together give a

product decomposition

H�C D

0Y
iD�L

H
Œi�

�C

of the normalization of the p� -image of the c� -preimage of Im.DH
�C
/�P„ xMg;n.�/.

We will call H
Œi�

�C
! B

Œi�

�C
the i -th level linear manifold. Our ultimate goal here

is to show the following decomposition. The terminology is explained along with the
definition of coordinates.
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Proposition 3.5. Let � be an arbitrary level graph with L levels below zero. In a
small neighborhood U of a point in DH

� there is a direct sum decomposition

�1xH .log @H /jU D

0M
iD�L

�
�hor
i .log/˚�lev

i .log/˚�rel
i

�
(6)

for certain subsheaves such that the natural restriction map induces surjections

�hor
i;B.log/j xH � �hor

i .log/; �lev
i;B.log/j xH ' �lev

i .log/ and �rel
i;B j xH � �rel

i :

Moreover, the statements in items (i) and (ii) of Section 3.3 hold verbatim for the
linear submanifold with the same `� .

As a consequence we may use the symbols `� and `�i ambiguously for strata and
their linear submanifolds.

We summarize the relevant parts of [7]. Equations of H are interpreted as homol-
ogy classes and we say that a horizontal node is crossed by an equation, if the
corresponding vanishing cycle has non-trivial intersection with the equation. The
horizontal nodes are partitioned into H -cross-equivalence classes by simultaneous
appearance in equations for H . A main observation is that !-periods of the van-
ishing cycles in an H -cross-equivalence class are proportional. Similarly, for each
equation and for any level passage the intersection numbers of the equation with the
nodes crossing that level add up to zero when weighted appropriately with the residue
times `�=�e ([7, Proposition 3.11]).

Next, in [7] they sort the equations by level and then write them in reduced row
echelon from. One may order the periods so that the distinguished cŒi�1 (whose period
is close to the level parameter t�i ) is among the pivots of the echelon form for each i .
The second main observation is that each defining equation of H can be split into
a sum of defining equations, denoted by F Œi�

k
, with the following properties. The

upper index i indicate the highest level, whose periods are involved in the equation.
Moreover, either F Œi�

k
has non-trivial intersection with some (vanishing cycles of a)

horizontal node at level i and then no intersection with a horizontal node at lower
level, or else no intersection with a horizontal node at all.

As a result, H is cut out by two sets of equations, see [7, equations (4.2)–(4.4)].
First, there are the equations GŒi�

k
that are td�ie-rescalings of linear functions

G
Œi�

k
D L

Œi�

k

�
zc
2�ı

Œi�

i;0

; : : : ; zc
Œi�

N.i/�h.i/

�
(7)

in the periods at level i . (To get this form from the version in [7] absorb the terms
from lower level periods into the function cŒi�j , where j D j.k; i/ is the pivot of the
equation F Œi�

k
. This does not affect the truth of (3)).
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Second, there are multiplicative monomial equations among the exponentiated
periods, that can be written as bi-monomial equations with positive exponents

H
Œi�

k
D .zqŒi�/J1;k � .zqŒi�/J2;k ; (8)

where zqŒi� is the tuple of the variables zqŒi�j and J1;k; J2;k are tuples of non-negative
integers. (In the multiplicative part, Benirschke–Dozier–Grushevsky [7] already inc-
orporated the lower level blurring into the pivot variable.)

Proof of Proposition 3.1. This follows directly from the form of the binomial equa-
tions (8), see [7, Theorem 1.6].

Proof of Proposition 3.2. Smoothness and normal crossing is contained in [7, Corol-
lary 1.8]. The transversality claimed there contains the dimension drop claimed in
the proposition. The more precise statement in [7, Theorem 1.5] says that after each
intersection of xH with a vertical boundary divisor the result is empty or contained in
the open boundary divisor DB;ı

� .

Proof of Proposition 3.4. This is the main result of [6] or the restatement in [7, Propo-
sition 3.3], and this together with Proposition 3.2 implies the dimension statement.

Proof of Proposition 3.5. Immediate from (7) and (8), which are equations among
the respective set of generators of the decomposition in (5). The additional claim in
item (ii) follows from the isomorphism of level parameters and transversality. Item (i)
is a consequence of this.

3.6. Push-pull comparison for linear submanifolds

For recursive computations, we will transfer classes from H
Œi�

�C
, which were defined

via Proposition 3.4, toDH
�C

essentially via p�C-pullback and c�C-pushforward. More
precisely, taking the normalizations into account, we have to use the maps c�C;H and
p�C;H defined on the normalization H s

�C
of the c�C-preimage of the image of DH

�C

in DB
�C

. To compute degrees we use the analog of the inner triangle in (2) and give a
concrete description of H s

�C
.

Recall from the introduction that KH
�C

is the product of the number of prong-
matchings on each edge of � that are actually contained in DH

�C
:

.�H ı
�C
/pm H

s;ı

�C

Bs�;�

�H ı
�C

H ı
�C

B�;� D
B;ı
� D

H ;ı

�C
:

p
�C;H

c
�C;H

p�
�

c�
�

(9)
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Consider �H ı
�C
WD

Q
�H

Œi�

�C
as a moduli space of differentials subject to some

(linear) conditions imposed on its periods. Consider, moreover, the moduli space

.�H ı
�C
/pm
WD

�Y
�H

Œi�

�C

�pm
;

where we add the additional datum of one of the KH
�C

prong-matchings reachable
from the interior. The torus .C�/LC1 acts on �H ı

�C
with quotient H ı

�C
D
Q

H
Œi�;ı

�C
.

On the other hand, if we take the quotient of .�H ı
�C
/pm by

.C�/LC1 D .C�/ �
�
CL=Tws�

�
;

we obtain a space H
s;ı

�C
, which is naturally the normalization of a subspace of U s

�C
,

since it covers DH ;ı

�C
with marked (legs and) edges and whose generic isotropy group

does not stem from Gh� (it might be non-trivial, e.g., if a level of �C consists of
a hyperelliptic stratum), while the generic isotropy group of DH ;ı

�C
is an extension

of Gh� by possibly some group of graph automorphisms and possibly isotropy groups
of the level strata.

Lemma 3.6. The ratio of the degrees the maps in (9) on H s
�C

is

deg.p�C;H /
deg.c�C;H /

D
KH
�C

jAutH .�C/j`�C
;

where AutH .�C/ is the subgroup of Aut.�/ whose induced action on a neighborhood
of DH

�C
preserves xH and `�C D `� .

Proof. We claim that deg.p�C;H / D KH
�C
=ŒR� W Tws� �, where R� Š ZL � CL is

the level rotation group. In fact, this follows since in the left quadrilateral in (9) the
left vertical arrow has degree KH

�C
while the bottom arrow is the quotient by .C�/ �

..C�/L=R�/ and the top arrow is quotient by .C�/ � .C�/L=Tws� .
On the other side under the map c�� of the ambient stratum two points have the

same image only if they differ by an automorphism of � . However, only the subgroup
AutH .�C/ � Aut.�/ acts on c�C;H .H

s;ı

�C
/ and its normalization and contributes to

the local isotropy group of the normalization. Thus only this subgroup contributes to
the degree of c�C;H . The claimed equality now follows because ŒR� W Tws� �D `� .

Consider �C D .�; j / 2 LGCL .H / and�C 2 LGC1 .H
Œi�

�C
/ defining an irreducible

component of a divisor in H
Œi�

�C
. We aim to compute its pullback toDs

�C
and the push

forward to D�C and to xH . For this purpose we need extend the commensurability
diagram (9) to include degenerations of the boundary strata. This works by copying
verbatim the construction that lead in [13] to the commensurability diagram (2). We
will indicate with subscripts H to the morphisms that we work in this adapted setting.
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Recall from this construction that in Bs�;� (and hence in H
s;ı

�C
) the edges of � have

been labeled once and for all (we write �� for this labeled graph) and that the level
strata H

Œi�

�C
inherit these labels. Consequently, there is a unique irreducible compo-

nent Dz��
C

associated to a level graph z�� which is a degeneration of �� and such that
the products of the levels i and i � 1 ofDz��

C

equals H ı
�C

. The resulting refined unla-
beled graph will simply be denoted by z�C. For a fixed labeled graph �� we denote by
J.��; z�C/ the set of �C 2 LGC1 .H

Œi�

�C
/ such that z�C is the result of that procedure.

Obviously the graphs in J.��; z�C/ differ only by the labeling of their half-edges and
the following lemma computes its cardinality.

Lemma 3.7. The cardinality of J.��; z�C/ is determined by

jJ.��; z�C/j � jAutH .z�C/j D jAut
H
Œi�

�C

.�C/j � jAutH .�C/j:

Proof. The proof is analogous to the one of [13, Lemma 4.6], where one considers
the kernel and cokernel of the map

'WAutH .z�C/! AutH .�C/

given by undegeneration.

We now determine the multiplicities of the push-pull procedure. Recall from Sec-
tion 3.3 the definition of `�;j D `ıj .�/ for j 2 Z�1.

Proposition 3.8. For a fixed �C 2 LGC1 .H
Œi�
� /, the divisor classes of DH

z�C
and the

clutching of DH
�C

are related by

jAutH .z�C/j
jAut

H
Œi�

�C

.�C/jjAutH .�C/j
� c�
�C;H

ŒDH
z�C
� D

`�

`z�;�iC1
� p

Œi�;�

�C;H
ŒDH

�C
� (10)

in CH1.H s
�C
/, and consequently by

jAutH .z�C/j
jAutH .�C/j

� `z�;�iC1 � ŒD
H
z�C
� D

jAut
H
Œi�

�C

.�C/j

deg.c�C;H /
� `� � c�C;H ;�

�
p
Œi�;�

�;H
ŒDH

�C
�
�

(11)
in CH1.D�C/.

Here (10) is used later for the proofs of the main theorems while (11) is imple-
mented in diffstrata for the special case of k-differentials to compute the pullback
of tautological classes from DH

�C
to DH

z�C
, see also Section 7.

Proof. The proof is similar to the one of [13, Proposition 4.7] and works by com-
paring the ramification orders of the maps c z�

C

�C;H
and p z�

C

�C;H
. The main difference
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to the original proof is only that the automorphism factors appearing in the clutching
morphisms are the ones fixing irreducible components of H .

The final part of this section is to compare various natural vector bundles under
pullback along the maps c�C;H and p�C;H . The first bundle we consider is E>

�C
, a

vector bundle of rank N>
�C
� 1 on DH

�C
that should be thought of as the top level

version of the logarithmic cotangent bundle. Formally, let U � DH
�C

be an open set
centered at a degeneration of the top level of �C into k level passages. Then we define

E>
�C jU

D

0M
iD�k

�lev
i .log/

jU ˚�
hor
i .log/jU ˚�rel

i jU : (12)

Let, moreover, � Œi�
�C;H

be the first Chern class of the line bundle on DH
�C

generated
by the multi-scale component at level i and L

Œi�

�C
be the line bundle whose divisor is

given by the degenerations of the i -th level of �C, as defined more formally in (16)
below.

We have the following compatibilities.

Lemma 3.9. The first Chern classes of the tautological bundles on the levels of a
boundary divisor are related by

c�
�C;H

�
Œi�

�C;H
D p

Œi�;�

�C;H
�

H
Œi�

�C

in CH1.H s
�C
/:

It is also true that

p
Œi��

�C;H
L

H
Œi�

�C

D c�
�C;H

L
Œi�

�C
; where L

H
Œi�

�C

D O
H
Œi�

�C

� X
�2LG1.H

Œi�

�C
/

`�D�

�
:

Similarly for the logarithmic cotangent bundles, we have

p
Œ0�;�

�C;H
�1

H
Œ0�

�C

�
logD

H
Œ0�

�C

�
D c�

�C;H
E>
�C;H

:

Proof. The first claim is just the global compatibility of the definitions of the bundles
O.�1/ on various spaces, compare [13, Proposition 4.9].

The second claim is a formal consequence of Lemma 3.7 and Proposition 3.8, just
as in [13, Lemma 7.4].

The last claim follows as in [13, Lemma 9.6] by considering local generators,
which are given in equation (12) and have for linear submanifolds the same shape as
for strata.

In the final formulas we will use these compatibilities together with the following
restatement of Lemma 3.6.
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Lemma 3.10. Suppose that ˛�C 2 CH0.DH
�C
/ is a top degree class and that

c�
�C;H

˛�C D

�L.�C/Y
iD0

p
Œi�;�

�C;H
˛i

for some ˛i . ThenZ
DH

�C

˛�C D
KH
�C

jAutH .�C/j`�C

�L.�C/Y
iD0

Z
H
Œi�

�C

˛i :

4. Evaluation of tautological classes

This section serves two purposes. First, we briefly sketch a definition of the tautolog-
ical ring of linear submanifolds and how the results of the previous section can be
used to evaluate expressions in the tautological ring, provided the classes of the linear
manifold are known. Second, we provide formulas to compute the first Chern class of
the normal bundle N H

� D N
DH
�

to a boundary divisor DH
� of a projectivized linear

submanifold xH . This is needed both for the evaluation algorithm and as an ingredient
to prove our main theorems.

4.1. Vertical tautological ring

We denote by  i 2 CH1. xH / the pullbacks of the classes  i 2 CH1. xMg;n/ to a linear
submanifold xH . The clutching maps are defined as cl�C;H D i�C;H ı c�C;H , where
i�C;H WD

H
�C
! xH is the inclusion map of an irreducible components of the boundary

divisor. We define the refined (vertical) tautological ring R�v. xH / of xH to be the ring
with additive generators

cl�C;H ;�

� �LY
iD0

p
Œi�;�

�C;H
˛i

�
; (13)

where �C runs over all irreducible components of boundary components associated
to level graphs without horizontal edges for all boundary strata of H , including the
trivial graph, and where ˛i is a monomial in the  -classes supported on level i of
the graph �C. That this is indeed a ring follows from the excess intersection for-
mula [13, Proposition 8.1] that works exactly the same for linear submanifolds, and
the normal bundle formula Proposition 4.4 which allows together with Proposition 4.1
to rewrite products in terms of our standard generators. We do not claim that push-
forward R�v. xH / ! CH�. xMg;n/ maps to the tautological ring R�. xMg;n/, since the
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fundamental classes of linear submanifolds, e.g., loci of double covers of elliptic
curves, may be non-tautological in xMg;n (see, e.g., [29]).

If ˛ 2 CH0. xH / is a top-degree class which is also an additive generator of the
tautological ring, i.e., it is has an expression as in (13), we can apply Lemma 3.10 to
obtainZ

xH

˛ D

Z
xH

cl�C;H ;�

� �LY
iD0

p
Œi�;�

�C;H
˛i

�
D

KH
�C

jAutH .�C/j`�C

�L.�C/Y
iD0

Z
H
Œi�

�C

˛i :

To evaluate this expression, one needs to determine the fundamental classes of the
level linear submanifolds H

Œi�

�C
in their corresponding generalized strata, which is in

general a non-trivial task.
In the case where ˛ 2 CH0. xH / is a special top-degree class supported on a full

boundary stratumD� , and not only on one of its componentsD�C , there is a possibly
different way to evaluate it. Indeed, note first that

˛ D cl�;H ;�

� �LY
iD0

p
Œi�;�

�;H

� l.i/Y
jD1

 
pj
j

��
D  

p1
1 � � � 

pn
n � ŒD

H
� �

since the  classes are compatible under clutchings and projections.
If one knows the class Œ xH � 2 CHdim.H/.P„Mg;n.�// and this class happens to

be tautological, one may evaluateZ
xH

˛ D

Z
P„Mg;n.�/

 
p1
1 � � � 

pn
n � ŒD� � � Œ

xH �

using the methods described in [13]. This has the advantage of not requiring the com-
putation of the classes of all the level linear submanifolds H

Œi�
� .

4.2. Evaluation of �H

If we want to evaluate a top-degree class in CH0. xH / that is not just a product of  -
classes and a boundary stratum, but also involves the �H -class, we can reduce to the
previous case by applying the following proposition.

Proposition 4.1. The class �H on the closure of a projectivized linear submanifold xH
can be expressed as

�H D .mi C 1/ i �
X

�2
i
LG1.H/

`� ŒD
H
� �;

where iLG1.H / are two-level graphs with the leg i on the lower level.
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Proof. The formula is obtained by pulling-back the formula in [13, Proposition 8.1]
to xH and thereby using the transversality statement from Proposition 3.2.

We remark here that in some cases it is possible to directly evaluate the top �H -
powers by using that we can represent the powers of the �H -class via an explicit
closed current.

Let P�Mg;n.�/ be a holomorphic stratum, i.e., a stratum of flat surfaces of finite
area or equivalently all the entries of � are non-negative. Then there is a canonical
hermitian metric on the tautological bundle OP�Mg;n.�/.�1/ given by the flat area
form

h.X; !; z/ D areaX .!/ D
i

2

Z
X

! ^ x!;

which extends to a singular hermitian metric of the tautological bundle on the space
P„ xMg;n.�/. If xH ! P„ xMg;n.�/ is the compactification of a linear submanifold of
such a holomorphic stratum, then the area metric induces a singular hermitian metric,
which we denote again by h, on the pullback O xH .�1/ of the tautological bundle
to xH . Recall from Proposition 3.1 (combined with the level-wise decomposition in
Proposition 3.4) that the singularities of xH are toric. Let xH tor ! xH be a resolution
of singularities which is locally toric.

Proposition 4.2. Let xH tor ! P„ xMg;n.�/ be a resolution of a compactified linear
submanifold of a holomorphic stratum. The curvature form i

2�
ŒFh� of the pull metric h

to xH tor is a closed current that represents the first Chern class c1.O xH tor.�1//. More
generally, the d -th wedge power of the curvature form represents c1.O xH tor.�1//

d for
any d � 1.

Proof. In [15, Proposition 4.3] it was shown that on the neighborhood U of a bound-
ary point of P„ xMg;n.�/ in the interior of the stratum D� the metric h has the form

h.X; q/ D

LX
iD0

jtdiej
2
�
htck
.�i/ C h

ver
.�i/ C h

hor
.�i/

�
; (14)

where htck
.�i/

(coming from the ‘thick’ part) are smooth positive functions bounded
away from zero and

hver
.�i/ WD �

iX
pD1

Rver
.�i/;p log jtpj; hhor

.�i/ WD �

Eh
.�i/X
jD1

Rhor
.�i/;j log jqŒi�j j; (15)

where Rver
.�i/;p

is a smooth non-negative function and Rhor
.�i/;j

is a smooth positive
function bounded away from zero, both involving only perturbed period coordinates
on levels �i and below.
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The statement of the proposition in loc. cit. follows by formal computations from
the shape of (14) and the properties of its coefficients, see [15, Propositions 4.4
and 4.5]. We thus only need to show that in local coordinates of a point in xH tor (map-
ping to the given stratum D� ) the metric has the same shape (14). For this purpose,
recall that by Proposition 3.4, the level parameters ti are among the coordinates. On
the other hand, a toric resolution of the toric singularities arising from (8) is given
by fan subdivision and thus by a collection of variables yŒi�j for each level i , each of
which is a product of integral powers of the qŒi�j at that level i . Conversely, the map
xH tor! P„ xMg;n.�/ is given locally by qŒi�j D

Q
k.y

Œi�

k
/bi;j;k for some bi;j;k 2 Z�0,

not all of the bi;j;k D 0 for fixed .i; j /. Plugging this into (14) and (15) gives an
expression of the same shape and with coefficients satisfying the same smoothness
and positivity properties. Mimicking the proof in loc. cit. thus implies the claim.

For a linear submanifold H consider the vector space given in local period coordi-
nates by the intersection of the tangent space of the unprojectivized linear submanifold
with the span of relative periods. We call this space the REL space of H and we denote
by RH its dimension.

Using Proposition 4.2 we can now generalize the result about vanishing of top
�-powers on non-minimal strata of differentials to linear submanifolds with non-zero
REL (see [50, Proposition 3.3] for the holomorphic Abelian strata case).

Corollary 4.3. Let xH ! P„ xMg;n.�/ be a linear submanifold of a holomorphic
stratum. Then Z

xH

� ixH˛ D 0 for i � dH �RH C 1,

where dH is the dimension of H and RH is the dimension of the REL space and
where ˛ is any class of dimension dH � i .

Proof. Since the area is given by an expression in absolute periods, the pullback of �
to xH tor is represented by Proposition 4.2 by a .1; 1/-form involving only absolute
periods (see [50, Lemma 2.1] for the explicit expression in the case of strata). Taking
a wedge power that exceeds the dimension of the space of absolute periods gives
zero.

4.3. Normal bundles

Finally, we state the normal bundle formula, which is necessary to evaluate self-
intersections, which is for example needed to evaluate powers of �H . More generally,
we provide formulas for the normal bundle of an inclusion

j�C;…C WD
H
�C

,! DH
…C
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between irreducible components of non-horizontal boundary strata of relative codi-
mension one, say defined by the L-level graph … and one of its .LC 1/-level graph
degenerations � . This generalization is needed for recursive evaluations. Such an
inclusion is obtained by splitting one of the levels of …C, say, for example, the level
i 2 ¹0;�1; : : : ;�Lº. Here we use the structure of the equations cutting out the linear
manifold in Section 3.4 to observe that j is a regular embedding, in fact with ideal
sheaf locally generated by the parameter ti , to talk about normal bundles (as opposed
to merely normal sheaves). In particular, these regular embeddings j and thus also
their compositions i come with classes in operational Chow groups (see [25, Sec-
tion 17] for background and, e.g., [1, Section 2] for the extension to stacks). This is
the language that justifies all the intersection theory we need working on the (sin-
gular) stack xH . We do not reflect this in our notation of Chow groups since for the
morphisms we consider, all formulas of the classical setting carry over. We define

L
Œi�

�C
D O

DH

�C

� X
�C

Œi�
 z�C

`z�C;�iC1D
H
z�C

�
for any i 2 ¹0;�1; : : : ;�Lº; (16)

where the sum is over all refined graphs z�C 2 LGCLC2.H / that yield divisors inDH
�C

by splitting the i -th level, which in terms of undegenerations means ı{
�iC1.

z�C/D�C.
The following result contains the formula for the normal bundle as the special case
where … is the trivial graph.

Proposition 4.4. For …C
Œi�
 �C (or equivalently for ı{

�iC1.�
C/ D …C), the Chern

class of the normal bundle N H
�C;…C

WD N
DH

�C
=DH

…C
is given by

c1
�
N H
�C;…C

�
D

1

`�;.�iC1/

�
��

Œi�

�C;H
� c1

�
L
Œi�

�C;H

�
C �

Œi�1�

�C;H

�
in CH1.DH

�C
/:

Proof. We use the transversality statement Proposition 3.2 of H with a boundary
stratum DB

�C
in order to have that the transversal parameter is given by ti . Then the

proof is the same as the one in the case of Abelian strata, see [13, Proposition 7.5].

Since in Section 8 we will need to compute the normal bundle to horizontal divi-
sors for strata of k-differentials, we provide here the general formula for the case of
smooth horizontal degenerations of linear submanifolds.

Proposition 4.5. LetDH
h
�DH be a divisor in a boundary componentDH obtained

by horizontal degeneration. Suppose that the linear submanifold is smooth alongDH
h

and let e be one of the new horizontal edges in the level graph of DH
h

. Then the first
Chern class of the normal bundle N H

Dh
is given by

c1.N
H
Dh
/ D � eC �  e� 2 CH1.DH /;

where eC and e� are the half-edges associated to the two ends of e.
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Proof. Similarly to the proof of [13, Proposition 7.2], consider the divisorDe in xMg;n

corresponding to the single edge e and denote by Ne its normal bundle. The forgetful
map f WDh ! De induces an isomorphism N H

Dh
! f �NDe (compare local gener-

ators!) and the formula follows from the well-known expression of NDe in terms of
 -classes.

We will need the following result about pullbacks of normal bundles to apply the
same arguments as in [13] recursively over inclusions of boundary divisors. The proof
is the same as in [13, Corollary 7.7], since it follows from Proposition 4.4 that we can
j-pullback properties of � and L

Œi�
� that hold on the whole stratum and hence on linear

submanifolds.

Lemma 4.6. Let �C 2 LGCL .H / and let z�C be a codimension one degeneration of
the .�i C 1/-th level of �C, i.e., such that �C D ı{i .z�

C/ for some i 2 ¹1; : : : ;LC 1º.
Then

j�
z�C;�C

�
`�;j c1

�
N H

�C=ı{
j
.�C/

��
D

8̂<̂
:
`z�;j c1

�
N H

z�C=ı{
j
.z�C/

�
for j < i;

`z�C;jC1 c1
�
N H

z�C=ı{
.jC1/

.z�C/

�
otherwise:

5. Chern classes of the cotangent bundle via the Euler sequence

The core of the computation of the Chern classes is given by two exact sequences
that are the direct counterparts of the corresponding theorems for Abelian strata. The
proof should be read in parallel with [13, Section 6 and 9] and we mainly highlight the
differences and where the structure theorems of the compactification from Section 3.5
are needed.

Theorem 5.1. There is a vector bundle K on xH that fits into an exact sequence

0!K
 
�! . xH1

rel/
_
˝O xH .�1/

ev
�! O xH ! 0;

where xH1
rel is the Deligne extension of the local subsystem that defines the tangent

space to �H inside the relative cohomology xH1
rel;B j xH , such that the restriction of K

to the interior H is the cotangent bundle �1
H

and for U as in Proposition 3.5, we
have

KjU D

0M
iD�L

td�ie �
�
�hor
i .log/˚�lev

i .log/˚�rel
i

�
:

The definition of the evaluation map and the notion of Deligne extension on a
stack with toric singularities requires justification given in the proof. For the next



Chern classes of linear submanifolds 27

result we define the abbreviations

EH D �
1
xH
.log x@H / and LH D O xH

� X
�2LG1.B/

`�D
H
�

�
that are consistent with the level-wise definitions in (12) and (16).

Theorem 5.2. There is a short exact sequence of quasi-coherent O xH -modules

0! EH ˝L�1H !K ! C ! 0; (17)

where C D
L
�2LG1.H/C� is a coherent sheaf supported on the non-horizontal boun-

dary divisors, whose precise form is given in Proposition 5.4 below.

Proof of Theorem 5.1. We start with the definition of the maps in the Euler sequence
for the ambient stratum, see the middle row in the commutative diagram below. It uses
the evaluation map

evB W . xH1
rel;B/

_
˝O xB.�1/! O xB ; 
 ˝ ! 7!

Z



!;

restricted to xH . The first map in the sequence is

dci 7!
�

i �

ci

ck
˛k

�
˝ !; i D 1; : : : ; yk; : : : ; N; (18)

as usual in the Euler sequence, on a chart of H where ck is non-zero. The exactness
of the middle row is the content of [13, Theorem 6.1].

We next define the sheaf Eq. In the interior, Eq is the local system of equations
cutting out �H , and thus the quotient .H1

rel/
_ D .H1

rel;B/
_=Eq is the relative homol-

ogy local system, by definition of a linear manifold. The proof in [13, Section 6.1]
concerning the restriction of the sequence to the interior H uses that H has a linear
structure with tangent space modeled on the local system H1

rel. In particular, it gives
the claim about KjH .

As an interlude, we introduce notation for the Deligne extension of .H1
rel;B/

_.
For each 
 Œi�j , we let y
 Œi�j be it extension, the sum of the original cycles and van-
ishing cycles times logarithms of the coordinates of the boundary divisors to kill
monodromies. The functions

yc
Œi�
j D

1

td�ie

Z
y

Œi�

j

!

are called log periods in [7].
We now define Eq at the boundary, say locally near a point p 2D� , to be the sub-

sheaf of . xH1
rel;B/

_ generated by the defining equations F Œi�
k

constructed in Section 3.5,
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but with each variable replaced by its Deligne extension. It requires justification that
this definition near the boundary agrees with the previous definition in the interior.
We can verify this for the distinguished basis consisting of the F Œi�

k
. Equations that do

not intersect horizontal nodes agree with their Deligne extension. This cancellation
of the compensation terms is [7, Proposition 3.11] (see also the expression for F Œi�

k

after [7, Proposition 4.1]) which displays the !-integrals of the terms to be compared.
For equations F Œi�

k
that do intersect horizontal nodes (thus only at level i by con-

struction) the difference F Œi�
k
.c
Œs�
j ; all .j; s// � F Œi�

k
.yc
Œs�
j ; all .j; s// vanishes thanks to

the proportionality of the periods of horizontal nodes in an H -equivalence class and
since on xH the equation H Œi�

k
holds.

By the very definition of defining equation its periods evaluate to zero, explaining
the right arrow in the top row of the following diagram and showing that ev is well
defined on the quotient:

0 KEq Eq˝O xH .�1/ 0

0
LL
iD0 td�ie ��

Œi�
B j xH . xH1

rel;B/
_ ˝O xH .�1/ O xH 0

0
LL
iD0 td�ie ��

Œi� . xH1
rel/
_ ˝O xH .�1/ O xH 0:

 

q�

evB

ev

Here we used the abbreviations

�
Œi�
B D �

hor
i;B.log/˚�lev

i;B.log/˚�rel
i;B ; �Œi� D �hor

i .log/˚�lev
i .log/˚�rel

i :

The surjectivity of q� follows from the definition of the summands in (6). It
requires justification that the image is not larger, since the derivatives of the local
equations of H do not respect the direct sum decomposition (5). More precisely we
claim that KEq is generated by two kinds of equations. Before analyzing them, note
that the log periods satisfy by construction an estimate of the form

zc
Œ�i�
j � yc

Œ�i�
j D

X
s>i

tdse

tdie
yE
Œ�s�
j;i (19)

with some error term yEŒ�k�j;i depending on the variables cŒ�s�j on the lower level �s as
in (3).

For each of the equations (7) the corresponding linear function LŒi�
k

in the vari-
ables cŒi�j is an element in Eq. We use the comparisons (19) and (3) to compute its
 -preimage in KEq via (18). It is td�ie times the corresponding expression in the ycŒi�j
plus a linear combination of the terms td�se yE

Œs�
j;i . The quotient by such a relation does

not yield any quotient class beyond those in
Li
iD0 td�ie ��

Œi�.
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We write the other equations (8) as .qŒi�/J1;k�J2;k D 1 since we are interested
in torus-invariant differential forms and can compute on the boundary complement.
Consider d log of this equation. Under the first map  of the Euler sequence

dq
Œi�
j =q

Œi�
j D d log.qŒi�j / D d

�
2�I

b
Œi�
j

a
Œi�
j

�
7!

2�I

a
Œi�
j

�
ˇ
Œi�
j �

b
Œi�
j

a
Œi�
j

˛
Œi�
j

�
˝ !:

Recall from summary of [7] in Section 3.5 that the functions aŒi�j for all j , where
.v1; : : : ; vN.i/�h.i// WD J1;k � J2;k is non-zero, are rational multiples of each other.
Note moreover that

ˇ
Œi�
j �

b
Œi�
j

a
Œi�
j

˛
Œi�
j D ˇ

Œi�
j �

1

2�I
log.qŒi�j /˛

Œi�
j

is the Deligne extension of ˇŒi�j across all the boundary divisors that stem from hori-
zontal nodes at level i . For the full Deligne extension y̌Œi�j the correction terms for the
lower level nodes have to be added. Together with (4) we deduce that the  -image of

h.i/X
mD1

vma
Œi�
m

d zq
Œi�
m

zq
Œi�
m

D

h.i/X
mD1

vj c
Œi�

j.m/

d zq
Œi�
m

zq
Œi�
m

differs from the element in Eq responsible for the equation H Œi�

k
only by terms from

lower level s, which come with a factor td�se. In this equation, we used that aŒi�m Dc
Œi�

j.m/

for an appropriate j.m/. Since cŒi�
j.m/

is close to td�iezc
Œi�

j.m/
, compare with (3) this ele-

ment indeed belongs to the kernel of  as claimed in the commutative diagram. The
quotient by such a relation does not yield any quotient class beyond those above either.
Since the (8) and (7) correspond to a basis (in fact, in reduced row echelon form)
of Eq, this completes the proof.

Proof of Theorem 5.2. Uses that the summands of KjU are, up to t -powers, the de-
composition of the logarithmic tangent sheaf by Proposition 3.5.

Corollary 5.3. The Chern character and the Chern polynomial of the kernel K of
the Euler sequence are given by

ch.K/ D Ne�H � 1 and c.K/ D

N�1X
iD0

�
N

i

�
� iH :

Proof. As a Deligne extension of a local system, . xH1
rel;B/

_j xH has trivial Chern classes
except for c0. By construction, the pullback of the sheaf Eq to an allowable modifica-
tion (toric resolution with normal crossing boundary, see the proof of Proposition 2.1)
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is the Deligne extension of a local system. It follows that all Chern classes but c0 of
this pullback vanish and by push-pull this holds for Eq, too. The Chern class vanishing
for .H1

rel/
_ and the corollary follows.

To start with the computation of C , we will also need an infinitesimal thickening
of the boundary divisorDH

� , that is, we defineDH
�;� to be its `� -th thickening, the non-

reduced substack of xH defined by the ideal 	
`�

DH
�

. We will factor the above inclusion
using the notation

i� D i�;� ı j�;�WD
H
�

j�;�
,! DH

�;�

i�;�
,! xH :

We will denote by L>�;� D .j�;�/�.L
>
� / and E>�;� D .j�;�/�.E

>
� / the push-forward to

the thickening of the vector bundles defined in (16) and (12).

Proposition 5.4. The cokernel of (17) is given by

C D
M

�2LG1.B/

C� ; where C� D .i�;�/�
�
E>�;� ˝ .L

>
�;�/
�1
�
:

Moreover, there is an equality of Chern characters

ch
�
.i�;�/�

�
E>�;� ˝ .L

>
�;�/
�1
��
D ch

�
.i�/�

� `��1M
jD0

N
˝�j
� ˝ E>� ˝ .L

>
� /
�1

��
:

Proof. The second part of the statement is justified by the original argument in [15,
Lemma 9.3].

The first part of the statement follows since, from Theorem 5.1, we know that

KjU D

0M
iD�L

�iY
jD1

t j̀j �
�
�hor
i .log/˚�lev

i .log/˚�rel
i

�
;

and from Proposition 3.5 we also know that

.EH ˝L�1H /jU D

0M
iD�L

LY
jD1

t j̀j �
�
�hor
i .log/˚�lev

i .log/˚�rel
i

�
;

where � is an arbitrary level graph with L levels below zero and U is a small neigh-
borhood of a point in DH ;ı

� .

We can finally compute the following result.
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Proposition 5.5. The Chern character of the twisted logarithmic cotangent bundle
EH ˝L�1

H
can be expressed in terms of the twisted logarithmic cotangent bundles of

the top levels of non-horizontal divisors as

ch.EH ˝L�1H /DNe� � 1�
X

�2LG1.B/

i��

�
ch.E>� / � ch.L>� /

�1
�
.1 � e�`� c1.N� //

c1.N�/

�
:

Proof. The proof of [15, Proposition 9.5] works in the same way, since the only
tool that was used is the Grothendieck–Riemann–Roch theorem applied to the map
f D i� , which is still a regular embedding.

Proof of Theorem 1.1 and Theorem 1.2. The final formulas of the full twisted Chern
character, Chern polynomials and Euler characteristic follow from the arguments
used for Abelian strata in [15, Section 9], since they were purely formal starting
from the previous proposition. Here we need a more refined sum distinguishing irre-
ducible components, but this works since the relevant inputs needed are the compati-
bility statement of Lemma 3.9, the formula for pulling back normal bundles given in
Lemma 4.6 and Corollary 3.3 which work in this more refined setting.

Proof of Theorem 1.3. A formal consequence of Theorem 1.2 and the rewriting in [13,
Theorem 9.10] (with the reference to [13, Proposition 4.9] replaced by Lemma 3.9) is

�.H / D .�1/d
dX

LD0

X
�C2LGC

L
.H/

N>
�C
� `�C �

Z
DH

�C

0Y
iD�L

�
�
Œi�

�C;H

�d Œi�
�C : (20)

We now use Lemma 3.10 to convert integrals on a boundary component into the prod-
uct of integrals of its the level strata.

6. Example: Euler characteristic of the eigenform locus

For a non-square D 2 N with D � 0 or 1.mod 4/, let

�ED.1; 1/ � �M2;2.1; 1/ and �WD � �M2;1.2/

be the eigenform loci for real multiplication by OD in the given stratum; see [8,42,43]
for the first proofs that these loci are linear submanifolds and some background. We
defineED WD P�ED.1; 1/ and Weierstrass curveWD WD P�WD as the projectivized
eigenform loci. Associating with the curve its Jacobian, the projectivized eigenform
loci map to the Hilbert modular surface

XD D H �H=SL.OD ˚O_D/:
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Inside XD let PD � XD denote the product locus, i.e., the curve consisting of those
surfaces which are polarized products of elliptic curves. The images of ED and WD
are contained in the complement XD n PD .

The goal of this section is to provide a new short proof of Theorem 1.4.

Proof of Theorem 1.4. The Hilbert modular surface XD is the disjoint union of the
symmetrization of the eigenform locus ED � �M2;1.1; 1/, the product locus PD of
reducible Jacobians and the Teichmüller curve WD . This gives

�.PD/C �.WD/C
1

2
�.ED/ D �.XD/: (21)

The numerical input is

�.XD/ D 2�.�1/ and �.PD/ D �
5

2
�.XD/ D �5�.�1/; (22)

where �D�Q.
p
D/

is the Dedekind zeta function. The first formula is due to Siegel [53]
(see also [56, Theorem IV.1.1]), the second is given in [2, Theorem 2.22] viewing PD
as the vanishing locus of the product of odd theta functions.

We are left to compute �.ED/, which we will do using the formula for the Euler
characteristic provided in Theorem 1.3. We first need to list the vertical boundary
strata of the linear submanifold xED � P„M2;2.1; 1/. This list consists of two divi-
sorial strata only, given in Figure 1.

Hence, in this situation, the formula of Theorem 1.3 gives

�.ED/ D 3

Z
ED

�2ED C 2
K
ED
�P

jAutED .�P /j

Z
D>
�P

�D>
�P

Z
D?
�P

1

C 2
K
ED
�W

jAutED .�W /j

Z
D>
�W

�D>
�W

Z
D?
�W

1:

Firstly, note that the top-�-integral on ED vanishes by Corollary 4.3, since ED is
a linear submanifold with REL non-zero.

Secondly, the full automorphism groups of the graphs �P and �W are trivial and
all three prong-matchings for �W are reachable since they belong to one orbit of the
prong rotation group. Hence, we obtain

K
ED
�P

jAutED .�P /j
D 1;

K
ED
�W

jAutED .�W /j
D 3:

Thirdly, we can identify the top levels D>�P and D>�W with PD and WD respec-
tively. Hence, again by applying Theorem 1.3 to the top level strata, we get

2

Z
D>
�P

�D>
�P

D ��.PD/; 2

Z
D>
�W

�D>
�W

D ��.WD/:
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1 1

�2

0

�2

0

11

2

�4

2

11

�P �W

Figure 1. The boundary divisors of the eigenform locus E.

Finally, is it clear thatZ
D?
�P

1 D 1 and
Z
D?
�W

1 D 1;

since there is unique differential up to scale of type .1; 1;�2;�2/ on P1 with vanish-
ing residues and D?�W ŠM0;3.

From the previous computations, we hence obtain that

�.ED/ D ��.PD/ � 3�.WD/:

This, together with (21) and the numerical inputs (22), yields the desired result

�.WD/ D �2�.XD/C �.PD/

D �9�.�1/:

7. Strata of k-differentials

Our goal here is to prove Corollary 1.5 that gives a formula for the Euler character-
istic of strata P�kMg;n.�/ of k-differentials. Those strata can be viewed as linear
submanifolds of strata of Abelian differentials P�Myg;yn.y�/ via the canonical cover-
ing construction and thus Theorem 1.3 applies. This is however of little practical use
as we do not know the classes of k-differential strata in P�Myg;yn.y�/. However, we
do know their classes in xMg;n via Pixton’s formulas for the DR-cycle ([1, 34]). As a
consequence the formula in Corollary 1.5 can be implemented, and the diffstrata
package does provide such an implementation. In this section we thus recall the basic
definitions of the compactification and collect all the statements to perform evaluation
of expressions in the tautological rings on strata of k-differentials.

7.1. Compactification of strata of k-differentials

We want to work on the multi-scale compactification xQ WD xQk WD P„k xMg;n.�/

of the space of k-differentials. As topological space this compactification was given
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in [15], reviewing the plumbing construction from [5], but without giving the stack
structure. Here we consider a priori the compactification of Section 3. We give some
details, describing auxiliary stacks usually by giving C-valued points and morphisms,
from which the reader can easily deduce the notion of families following the pro-
cedure in [5]. From this description it should become clear that the two compact-
ifications, the one of Section 3 and [15], agree up to explicit isotropy groups (see
Lemma 7.2). In particular, the compactification xQk is smooth. This follows also
directly from the definition of Section 3, since the only potential singularities are at
the horizontal nodes. There however the local equations (8) simply compare monomi-
als (with exponent one), the various q-parameters of the k preimages of a horizontal
node.

We start by recalling notation for the canonical k-cover in the primitive case.
Let X be a Riemann surface of genus g and let q be a primitive meromorphic k-
differential of type � D .m1; : : : ; mn/, i.e., not the d -th power of a k=d -differential
for any d > 1. This datum defines (see, e.g., [4, Section 2.1]) a connected k-fold
cover � W yX ! X such that ��q D !k is the k-power of an Abelian differential. This
differential ! is of type

y� WD
�
ym1; : : : ; ym1„ ƒ‚ …
g1WDgcd.k;m1/

; ym2; : : : ; ym2„ ƒ‚ …
g2WDgcd.k;m2/

; : : : ; ymn; : : : ; ymn„ ƒ‚ …
gnWDgcd.k;mn/

�
;

where ymi WD .kCmi /=gcd.k;mi /� 1. (Here and throughout marked points of order
zero may occur.) We let yg D g. yX/ and yn D

P
i gcd.k;mi /. The type of the covering

determines a natural subgroup Sy� � Syn of the symmetric group that allows only the
permutations of each the gcd.k; mi / points corresponding to a preimage of the i -th
point. In the group Sy�, we fix the element

�0 D .1 2 � � � g1/.g1 C 1 g1 C 2 � � � g1 C g2/ � � �

�
1C

n�1X
iD1

gi � � �

nX
iD1

gn

�
;

i.e., the product of cycles shifting the gi points in the �-preimage of each point in z.
We fix a primitive k-th root of unity �k throughout.

We consider the stack �Hk WD �Hk.y�/ whose points are®
. yX;yz; !; �/ W � 2 Aut. yX/; ord.�/ D k; ��! D �k!; � jyz D �0

¯
: (23)

Families are defined in the obvious way. Morphisms are morphisms of the underlying
pointed curves that commute with � . Since the marked points determine the differ-
ential up to scale, the differentials are identified by the pullback of morphisms up to
scale. Commuting with � guarantees that morphisms descend to the quotient curves
by h�i (for a morphism f to descend, a priori f �f �1 D �a for some a would be
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sufficient, but the action on ! implies that in fact a D 1). It will be convenient to label
the tuple of points yz by tuples .i; j / with i D 1; : : : ; n and j D 1; : : : ; gcd.k; mi /.
There is a natural forgetful map �Hk ! �Myg;yn and period coordinates (say, after
providing both sides locally with a Teichmüller marking) show that this map is the
normalization of its image and the image is cut out by linear equations, i.e., that�Hk

is a linear submanifold as defined in Section 3.1.
The subgroup

G D

�
.1 2 � � � g1/;

�
g1C 1 g1C 2 � � � g1C g2

�
; : : : ;

�
1C

n�1X
iD1

gi � � �

nX
iD1

gn

��
� Sy�

(24)
generated by the cycles that �0 is made from acts on �Hk and on the projectiviza-
tion Hk . We denote the quotient of the latter by H

mp
k
WD Hk=G, where the upper

index is an abbreviation of marked (only) partially.
Since � has ! as eigendifferential, its k-th power naturally descends to (projec-

tivized) k-differential Œq� on the quotient X D yX=h�i, which is decorated by the
marked points z, the images of yz.

We denote by Q the stack given by the rigidification of H
mp
k

by the action of h�i,
i.e., the stack with the same underlying set as H

mp
k

, but where morphisms are given by
the morphisms of .X=h�i;z; Œq�/ in P�kMg;n.�/. Written out on curves, a morphism
in Q is a map f W yX=h�i ! yX 0=h� 0i, such that there exists a commutative diagram

yX yX 0

X D yX=h�i X 0 D yX 0=h� 0i:

zf

f

If two such maps zf exist, they differ by pre- or postcomposition with an automor-
phism of yX resp. yX 0. Via the canonical cover construction, the stack Q is isomorphic
to P�kMg;n.�/. The non-uniqueness of zf exhibits H

mp
k
D Q=h�i as the quotient

stack by a group of order k, acting trivially.
As in Section 3, we denote by

�Hk WD �Hk.�/

the normalization of the closure of �Hk in „ xMyg;yn.�/, and let xHk WD
xHk.�/ be the

corresponding projectivizations. We next describe the boundary strata of xHk . These
are indexed by enhanced level graphs y� together with an h�i-action on them. We
will leave the group action implicit in our notation. The following lemma describes
the objects parametrized by the boundary components DHk

y�
(using the notation from

Section 3) of the compactification xHk .
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Lemma 7.1. A point in the interior of the boundary stratum D
Hk
y�

is given by a tuple®
. yX; y�;yz; Œ!�; � ; �/ W � 2 Aut. yX/; ord.�/ D k; ��! D �k!; � jyz D �0

¯
;

where . yX; y�;yz; Œ!�; � / 2 P„ xM
yg;yn
.y�/ is a multi-scale differential, and where more-

over the prong-matching � is equivariant with respect to the action of h�i.

The equivariance of prong-matching requires an explanation: Suppose xi and yi
are standard coordinates near the node corresponding to an edge e of � , so that the
prong-matching at e is given by

�e D
@

@xi
˝�

@

@yi

(compare [5, Section 5] for the relevant definitions). Then ��xi and ��yi are stan-
dard coordinates near �.e/. We say that a global prong-matching � D ¹�eºe2E.y�/ is
equivariant if

��.e/ D
@

@��xi
˝�

@

@��yi

for each edge e.

Proof. The necessity of the conditions on the boundary points is obvious from the
definition in (23), except for the prong-matching equivariance. This follows from the
construction of the induced prong-matching in a degenerating family in [5, Proposi-
tion 8.4] and applying � to it.

Conversely, given . yX; y�; yz; Œ!�; � ; h�i/ as above with equivariant prong-match-
ings, we need to show that it is in the boundary of Hk . This is achieved precisely by
the equivariant plumbing construction given in [4].

The group G still acts on the compactification �Hk and on its projectiviza-
tion xHk . As above we denote the quotient by xH mp

k
D xHk=G to indicate that the

points yz are now marked only partially. By Lemma 7.1 we may construct xQ just as in
the uncompactified case.

The map xH mp
k
! xQ is in general non-representable due to the existence of addi-

tional automorphisms of objects in xH mp
k

. This resembles the situation common for
Hurwitz spaces, where the target map is in general non-representable, too. We denote
by sW xHk !

xH
mp
k
! Q the composition of the maps.

7.2. Generalized strata of k-differentials

Our notion of generalized strata is designed for recursion purposes so that the extrac-
tion of levels of a boundary stratum of xQ is an instance of a generalized stratum (of
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k-differentials). This involves incorporating disconnected strata, differentials that are
non-primitive on some components, and residue conditions. Moreover, we aim for a
definition of a space of k-fold covers on which the group G acts, to match with the
previous setup. The key is to record which of the marked points is adjacent to which
component of the canonical cover, an information that is obviously trivial in the case
of primitive k-differentials.

A map AW yz! �0. yX/ that records which marked point is adjacent to which com-
ponent of yX is called an adjacency datum. Such an adjacency datum is equivalent to
specifying a one-level graph of a generalized stratum, which is indeed the information
we get when we extract level strata. Note in particular that from the adjacency datum
it is possible to reconstruct the unique u such that the Abelian differentials on . yX;yz/
are u-th power of primitive k=u differentials.

More abstractly, an adjacency datum is given by a set �0 with a transitive action
of Z=kZ together with a map AW yz ! �0 that is equivariant with respect to the
action of Z=kZ. We say that . yX;yz/ has adjacency A if there is a Z=kZ-equivariant
bijection �0 Š �0. yX/ such that A records the adjacency of the markings yz in the
components of yX . The subgroup G from (24) acts on the triples . yX;yz;A/ of pointed
stable curves with adjacency map by acting simultaneously on yz and on A by precom-
position. For a fixed adjacency datum A we consider the stack � zHk.y�;A/ whose
points are®

. yX;yz; !; �/ W . yX;yz/ have adjacency A,

� 2 Aut. yX/, ord.�/ D k, ��! D �k!, � jyz D �0
¯
:

We denote by �Hk.y�; ŒA�/ WD G �� zHk.y�;A/ the G-orbit of this space.
A residue condition is given by a � -invariant partition �R of a subset of the set

Hp � ¹1; : : : ; ynº of marked points such that ymi <�1. We often also call the associated
linear subspace

R WD

²
.ri /i2Hp 2 CHp W

X
i2�

ri D 0 for all � 2 �R

³
the residue condition. The linear subspace R is obviously not G-invariant in general.

We denote by �H R
k
.y�;A/ � �Hk.y�;A/ the subset where for each R 2 R the

residues of y! at all the points zi 2 R add up to zero. If . yX; yz; !; �/ is contained in
�H R

k
.y�;A/, then g � . yX;yz; !; �/ is contained in �H

g �R
k

.y�; g �A/ for any g 2 G.
That is, the G-action simultaneously changes the residue condition and the adjacency
datum. We denote by ŒR;A� the G-orbit of this pair and use the abbreviation

�H
ŒR;A�
k

WD G ��H R
k .y�;A/

for the G-orbit of the spaces, y� being tacitly fixed throughout.
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As above, we denote the projectivization of �H
ŒR;A�
k

by H
ŒR;A�
k

and the G-
quotient by H

R;mp
k

WD H
ŒR;A�
k

=G, dropping the information about adjacency and the
connected components to ease notation. Finally, we denote by QR the stack with the
same underlying set as H

R;mp
k

and with morphisms defined in the same way as above
for Q. Recall that the curves in QR may be disconnected. We call such a stratum
with possibly disconnected curves and residue conditions a generalized stratum of k-
differentials. Since H

ŒR;A�
k

is a linear submanifold, we can still compactify them as
before and a version of Lemma 7.1 with adjacency data still holds.

We will now compute the degree of the map s from the linear submanifolds to the
strata of k-differential. Our definition of generalized strata of k-differentials makes
the degree of this map the same in the usual and in the generalized case.

Lemma 7.2. The map sW xH ŒR;A�
k

! xQR is proper, quasi-finite, unramified and of
degree

deg.s/ D
1

k

Y
mi2�

gcd.mi ; k/:

Proof. The composition of the map s with the quotient map xQR ! xH
ŒR;A�
k

by the
trivial action of Z=kZ is the quotient by a group of order jGj D

Q
mi2�

gcd.mi ; k/.
Since degrees are multiplicative under compositions, the claimed formula for deg.s/
follows.

The map is unramified as both quotient maps are unramified.

7.3. Decomposing boundary strata

Having constructed strata of k-differentials, we now want to decompose their bound-
ary strata again as a product of generalized strata of k-differentials and argue recur-
sively. In fact, the initial stratum should be a generalized stratum xQR, thus coming
with its own residue condition, but we suppress this in our notation, focusing on the
new residue condition that arise when decomposing boundary strata. Here ‘decom-
position’ of the boundary strata should be read as a construction of a space finitely
covering both of them, as given by the following diagram:

D
ı;Hk ;s
�

Hk.�/ WD
Q�L
iD0 Hk.�Œi�/ Im.p�/ D

ı;Hk
�

Q.�/ WD
Q�L
iD0 Q.�Œi�/ D

ı;Q
� ;

p� c�

s�

�

d�

(25)
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whose notation we now start to explain. Note that the diagram is for the open boundary
strata throughout, since we mainly need the degree all these maps as in Lemma 3.6
(the existence of a similar diagram over the completions follows as at the beginning
of Section 3.2).

We denote by y� the level graphs indexing the boundary strata of P„ xM
yg;yn
.y�/,

and thus of xHk . Following our general convention for strata their legs are labeled, but
not the edges. In xH mp

k
the leg-marking is only well defined up to the action of G. A

graph with such a marking is said to be marked (only) partially and denoted by y�mp.
Even though curves in xHk are marked (and not only marked up to the action of G),
the boundary strata of xHk are naturally indexed by partially marked graphs as well:
If y� is the dual graph of one stable curve in the boundary of xHk , then for all g 2 G
the graph g � y� is the dual graph of another stable curve in the boundary of xHk .
The existence of � implies that level graphs y� at the boundary of xHk come with the
quotient map by this action. To each boundary stratum of xQ we may thus associate a
k-cyclic covering of graphs � W y�mp! � (see [15, Section 2] for the definitions of such
covers). We denote the corresponding (open) boundary strata by Dı;Q� � xQ and the
(open) boundary strata corresponding to such a G-orbit of graphs by Dı;Hk� � xHk .
The map d� WD

ı;Hk
� ! D

ı;Q
� is the restriction of the map sW xHk !

xQ.
Next we construct the commensurability roof just as in (9), though for each y� in

the G-orbit separately, so that Dı;Hk ;s� is the disjoint union of a G-orbit of the roofs
in (9).

Next we define the spaces Hk.�Œi�/. Consider the linear submanifolds of gener-
alized strata of k-differentials with signature and adjacency datum given by the i -th
level of one marked representative y� of y�mp (the resulting strata are independent of
the choice of a representative). Their product defines the image Im.p�/. For every
level i , consider the orbit under G.Hk.�Œi�//, where G.Hk.�Œi�// is the group as
in (24) for the i -th level, of the linear submanifolds we extracted from the levels. We
define Hk.�Œi�/ to be these orbits, which in particular are then linear submanifolds
associated to generalized strata of k-differentials as we defined them above. We can
hence consider, for every level, the morphism given by the quotient by G.Hk.�Œi�//

composed with the rigidification by the action of h�i at each level and denote by
Q.�Œi�/ its image, which is called the generalized stratum of k-differentials at level i .
The map s� in diagram (25) is just a product of maps like the map s above, thus
Lemma 7.2 immediately implies the following.

Lemma 7.3. The degree of the map s� in the above diagram (25) is

deg.s�/ D
1

kLC1

nY
iD1

gcd.mi ; k/
Y

e2E.�/

gcd.�e; k/2;

where �e is the k-enhancement of the edge e.
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We recall Lemma 3.6 and compute explicitly the coefficients appearing in our
setting here. Note that the factor jAutH .�/j there should be called jAutHk .y�/j in the
notation used in this section.

Lemma 7.4. The ratio of the degrees of the topmost maps in (25) is

deg.p�/
deg.c�/

D

K
Hk
y�

jAutHk .y�/j � `y�
;

where the number of reachable prong-matchings is given by

K
Hk
y�
D

Y
e2E.�/

�e

gcd.�e; k/

and AutHk .y�/ is the subgroup of automorphisms of y� commuting with � .

We remark that the quantity `y� is intrinsic to � , for a two-level graph it is given
by `y� D lcm.�e= gcd.�e; k/ for e 2 E.�//.

Proof. The first statement is exactly the one of Lemma 3.6 since the topmost maps
in (25) are given by a disjoint union of the topmost maps in (9).

For the second statement, consider an edge e 2 E.�/. The edge e has gcd.�e; k/
preimages, each with an enhancement �e= gcd.�e; k/. The prong-matching at one of
the preimages determines the prong-matching at the other preimages by Lemma 7.1,
as they are related by the action of the automorphism.

For the third statement, we need to prove that the subgroup of Aut.y�/ fixing
setwise the linear subvariety xHk is precisely the subgroup commuting with � . If
� 2 Aut.y�/ commutes with � , then it descends to a graph automorphism of � and
gives an automorphism of families of admissible covers of stable curves, thus pre-
serving xHk . Conversely, if � fixes xHk , it induces an automorphism of families of
admissible covers of stable curves, thus of coverings of graphs. A priori this implies
only that � normalizes the subgroup generated by � . Note however that on xHk the
automorphism � acts by a fixed root of unity �k . If ����1 is a non-trivial power of � ,
this leads to another (though isomorphic) linear subvariety. We conclude that � indeed
commutes with � .

The aim of the following paragraphs is to rewrite the evaluation Lemma 3.10 in
our context in order to find the shape of the formula in Corollary 1.5. We elaborate
on basic definitions to distinguish notions of isomorphisms and automorphisms. The
underlying graph of an enhanced (k-)level graph can be written as a tuple

� D
�
V;H;L; aWH [ L! V; i WH ! H

�
;
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where V , H and L are the sets of vertices, half-edges and legs, a is the attachment
map and i is the fixpoint free involution that specifies the edges. An isomorphism of
graphs � W� ! � 0 is a pair of bijections

� D
�
�V WV ! V 0; �H WH ! H 0

�
that preserve the attachment of the half-edges and legs and the identification of the
half-edges to edges, i.e., the diagrams

H [ L V H H

H 0 [ L V 0; H 0 H 0

a

�H[idL �V

i

�H �H

a0 i 0

(26)

commute. If the graph is an enhanced level graph, we additionally ask that � preserves
the enhancements and level structure. In the presence of a deck transformation � , we
moreover ask that � commutes with � .

In the sequel we will encounter isomorphisms of graphs with the same underlying
sets of vertices and half-edges. We emphasize that in this case an isomorphism � is
an automorphism if and only if it preserves the maps a and i , i.e., if

��1V ı a ı .�H [ idL/ D a and ��1H ı i ı �H D i: (27)

We now define the group of level-wise half-edge permutations compatible with
the cycles of � , i.e., we let

G WD G� D

�LY
iD0

G
�
Hk.�Œi�/

�
;

where G.Hk.�Œi�// is the group G from (24) applied to the i -th level stratum. An
element of the group G is a permutation gWH [ L! H [ L and acts on a graph y�
via g � y� D .V;H;L; a ı g; i/.

There is a natural action of the group G on the set of all (possibly disconnected)
graphs with the same set of underlying vertices as y�mp. We denote by

StabG.y�/ WD
®
g 2 G W gy� Š y�

¯
(28)

the stabilizer. Note that this is in general not a group, as it is not the stabilizer of
an element but of an isomorphism class. We also denote by StabG.H .�// the set of
elements of G which fix the adjacency data (or equivalently the 1-level graphs) of the
level-wise linear manifolds H .�Œi�/, i.e., elements which permute vertices with the
same signature and permute legs of the same order on the same vertex.
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Lemma 7.5. We have

jAutHk .y�/j � j StabG.y�/j D jAut.�/j
Y

e2E.�/

gcd.�e; k/ � j StabG.H .�//j:

Proof. Fix a cover y� ! � . We may assume that the vertices of � are ¹1; : : : ; v�º, the
legs are ¹1; : : : ; nº and the half-edges are ¹1˙; : : : ; h˙� º with the convention that

i.h˙/ D h�:

For y� , we may assume that the preimages of vertex v are .v; 1/; : : : ; .v; pv/ such
that �..v; q// D .v; q C 1/, where equality in the second entry is to be read mod pv .
Similarly, we index the legs of y� by tuples .m; 1/; : : : ; .m;pm/ formD 1; : : : ; n, and
the half-edges by tuples .h˙; 1/; : : : ; .h˙; ph˙/ for h˙ D 1; : : : ; h˙� , again such that
.hC; q/ and .h�; q/ form an edge.

We consider the group P of pairs of permutations � D .�V ;�H / of the vertices and
half-edges of y� that are of the following form: There exists 
 D .
V ; 
H / 2 Aut.�/,
integers �v2Z=pvZ for any v2V.�/, and integers�h˙2Z=ph˙Z for any h˙2E.�/
such that

�V D
®
.v; q/ 7!

�

V .v/; q C �v

�¯
and �H D

®
.h˙; q/ 7!

�

H .h

˙/; q C �h˙
�¯
:

We let this group act on y� via � � y� D .V;H;L;��1V ı a ı .�H [ idL/; i/. An element
� 2 P acts always as an isomorphism since the diagrams (26) commute. If we denote
by e the edge given by h˙, we have ph˙ D gcd.�e; k/. Hence, the group P has
cardinality

jP j D jAut.�/j �
Y

e2E.�/

gcd.�e; k/ �
Y

v2V.�/

pv:

Recall that the group G is a product cyclic groups and thus Abelian. The stabilizer
StabG.Hk.�// has a subgroup Stabf where only half-edges and legs attached to the
same vertex are permuted (the superscript f is for fixed), i.e., the elements g 2 Stabf

are exactly those for which a ı g D a. The quotient Stabp WD StabG.Hk.�//=Stabf

can be identified with those elements of G that permute legs and half-edges in such
a way that whenever a leg or half-edge attached to a vertex v1 is moved to another
vertex v2, then all the legs and half-edges attached to v1 are moved to v2. So we may
alternatively identify Stabp with � -invariant permutations of the vertices of y� (hence
the superscript p for permutation). This yields jStabp j D

Q
v2V.�/ pv .

The group P comes with a commutative triangle

AutH .y�/ P

Aut.�/;
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where the vertical map is the forgetful map, the diagonal map is the quotient by G-
map and the horizontal map is natural injection. Since we computed above jP j, we
know that the kernel of the surjective map P ! Aut.�/ has cardinalityY

e2E.�/

gcd.�e; k/ �
Y

v2V.�/

pv:

We note now that the group Stabf acts on the set StabG.y�/ and we denote by
StabG.y�/=Stabf the space of orbits. We are done if we can identify elements of
StabG.y�/=Stabf with elements of the cosets in P=AutH .y�/.

For this identification, first consider g 2 StabG.y�/. By definition, there exists
an isomorphism �.g/W g � y� ! y� such that g � y� D �.g/.y�/. This induces a map
� W StabG.y�/ ! P . Note that Stabf is a subgroup of AutH .y�/. If we had chosen
a different representative g0 in the orbit g � Stabf , the resulting element �.g0/ 2 P

would differ by an element of AutH .y�/. Hence, � induces a well-defined map

StabG.y�/=Stabf ! P =AutH .y�/:

We now construct an inverse map for � . For any � 2 P , we need to find an element
g 2G such that �.g/D �, i.e., such that g � y� D �.y�/. This implies that g must satisfy
the equation

a ı g D ��1V ı a ı .�H [ idL/;

which determines the element g up to the action of Stabf . The resulting g does not
depend on the choice of a representative of the coset �=AutH .y�/ because of (27).

We let now

S.�/ D
jGj

jGj
�
jStabG.y�/j

jStabG.y�/j
D
jStabG=G.y�/jQ
e gcd.�e; k/2

; (29)

where the stabilizers are defined in a way analogous to (28).

Remark 7.6. We have the ratio S.�/ D 1 for many coverings of graphs � W y� ! � ,
e.g., when all vertices of � have exactly one preimage in y� . In this case G=G only
permutes half-edges adjacent to one vertex, and this always stabilizes the graph. Thus
S.�/ D 1, as jG=Gj D

Q
e gcd.�e; k/2. More generally, S.�/ D 1 if each edge of �

is adjacent to at least one vertex which has exactly one preimage in y� . In this case
it is straightforward to verify that the obvious generators of G=G are stabilizing the
graph.

If there are vertices of � with more than one preimage in y� , then S.�/ is in general
non-trivial. Consider for example the covering of graphs � depicted in Figure 2, for
which S.�/ D 1=2.
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1 1

1
�2

0

�2

0

1
�2

0

�2

0
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�
�!
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1
�4

0

�4

0

8

Figure 2. A covering of graphs � W y� ! � in „2 xM
3;1
.8/ with non-trivial S.�/.

As a consequence of the degree computation in Lemma 7.4 and Lemma 7.5, we
can write an evaluation lemma for k-differentials analogous to Lemma 3.10. We give
two versions, for Hk and Q respectively.

Lemma 7.7. Let .� W y�mp ! �/ 2 LGL.H
mp
k
/ and y� a marked version of y�mp. Sup-

pose that ˛� 2 CH0.D
Hk
� / and ˇ� 2 CH0.DQ

� / are top degree classes and that

c��˛� D p
�
�

�LY
iD0

˛i and c��d
�
�ˇ� D p

�
�s��

�LY
iD0

ˇi

for some ˛i and ˇi . ThenZ
D

Hk
�

˛� D S.�/ �

Q
e2E.�/ �e

jAut.�/j �
Q
e2E.�/ gcd.�e; k/2 � `y�

�

�LY
iD0

Z
Hk.�Œi�/

˛i

and Z
DQ
�

ˇ� D S.�/ �

Q
e2E.�/ �e

kL � jAut.�/j � `y�
�

�LY
iD0

Z
Q.�Œi�/

ˇi :

Proof. In order to show the first statement, we first apply Lemma 7.4 and note that the
map p� is not surjective in general. It is now enough to check that the number of adja-
cency data appearing in Hk.�/ is jGj=j StabG

�
Hk.�/

�
j, while the one appearing in

the image of p� is jGj=jStabG y�j. We finally use Lemma 7.5 to rewrite the prefactor.
For the second statement, we additionally apply Lemma 7.2 and Lemma 7.3.

We are finally ready to prove Corollary 1.5.

Proof of Corollary 1.5. The orbifold Euler characteristics of Q D P�kMg;n.�/ and
Hk are related by

�
�
P�kMg;n.�/

�
D

1

deg.s/
� �.Hk/:

We apply the general Euler characteristic formula in the form (20) to Hk and group
the level graphs y� 2 LGL.Hk/ by those with the same graph y�mp that is marked
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partially. Since the integrals do not depend on the marking, we obtain

�.Q/ D
k

jGj
.�1/d

dX
LD0

X
.�Wy�mp!�/2LGL.H

mp
k
/

N>� � `y� �

Z
D

Hk
�

0Y
iD�L

�
�
Œi�

y�;Hk

�d Œi�
� ;

where we used the notation that y� is a fully marked representative of y�mp. Thanks
to Lemma 3.9, we can apply Lemma 7.7 and convert the integral over DHk

� into a
�-integral over the product of Hk.�Œi�/. We hence obtain

�
�
P�kMg;n.�/

�
D

k

jGj
� .�1/d

dX
LD0

X
.�Wy�mp!�/2LGL.H

mp
k
/

S.�/

Q
e2E.�/ �e �N

>
�

jAut.�/j �
Q
e gcd.�e; k/2

�

�LY
iD0

Z
Hk.�Œi�/

�d
Œi�
�

D

�
�1

k

�d dX
LD0

X
.�Wy�mp!�/2LGL.Q/

S.�/ �

Q
e2E.�/ �e �N

>
�

jAut.�/j
�

�LY
iD0

Z
Q.�Œi�/

�d
Œi�
� :

For the second equality, we used that

s�� D k�; and hence d�� D
deg.s/
k

� (30)

for any level stratum, together with the dimension statement of Proposition 3.4. The
final result is what we claimed in Corollary 1.5.

7.4. Evaluating tautological classes

In this section we explain how to evaluate any top degree class of the form

ˇ WD �p0 
p1
1 � � � 

pn
n � � � ŒD

Q
�1
� � � � ŒDQ

�w
� 2 CH0. xQ/ (31)

for any generalized stratum xQ of k-differentials. First, we show how to transform the
previous class into the form

ˇ D
X
i

 
qi;1
1 � � � 

qi;n
1 ŒDQ

�i
�:

Then by Lemma 7.7, we can write every summand of ˇ as a product of -classes eval-
uated on generalized strata of k-differentials. We finally will explain how to evaluate
such classes.
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Let us start with the first task. The relations in the Chow ring of a general linear
submanifold we obtained in Section 4 immediately apply to the covering xHk and we
want to restate them in the Chow ring of the generalized stratum xQ of k-differentials.
Let i be the index of a marked point in xQ and .i; j / be the index of a preimage of this
point in xHk . Moreover, letmi denote the order of the k-differential at the i -th marked
point, and let ymi;j denote the order of the Abelian covering at the .i; j /-th marked
point. Then the relation

 i;j D
gcd.mi ; k/

k
� d� i (32)

holds; see, for example, [52, Lemma 3.9]. Using the relation

ymi;j C 1 D .mi C k/= gcd.mi ; k/

and applying push-pull, we obtain

. ymi;j C 1/d� i;j D
deg.d/
k

.mi C k/ i : (33)

We are now in a position to write the analog of Proposition 4.1 for the first Chern
class � 2 CH1. xQ/ of the tautological line bundle on the stratum of k-differentials.

Corollary 7.8. The class � can be expressed as

� D .mi C k/ i �
X

.�Wy�mp!�/2iLG1. xQ/

k`y�mp
ŒDQ

� �

D .mi C k/ i �
X

.�Wy�mp!�/2iLG1. xQ/

S.�/

Q
e2E.�/ �e

jAut.�/j
cl�;� p��s�� ŒQ.�/�;

where iLG1. xQ/ are covers of two-level graphs with the leg i on the lower level and
cl� D i� ı d� ı c� is the clutching morphism analogous to (13).

Proof. The first equation is obtained by pushing forward the equation in Proposi-
tion 4.1 along d and using the relations (30) and (33). The second equation is obtained
from the first by Lemma 7.7.

Remark 7.9. The expression given by the second line of Corollary 7.8 reproves the
formula of [51, Theorem 3.12] and computes explicitly the coefficients appearing in
loc. cit., which were computed only for special two-level graphs.

To state the formula for the normal bundle, let

L>� D O
DQ
�

� X
.� W y�mp!�/2LG2. xQ/

ı2.�/D�

`y�;1D
H
�

�

denote the top level correction bundle.
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Corollary 7.10. Suppose that D� is a divisor in xQ corresponding to a covering of
graphs .� W y�mp ! �/ 2 LG1. xQ/. Then the first Chern class of the normal bundle is
given by

c1.N�/ D
1

`y�

�
�
1

k
�>� � c1.L

>
� /C

1

k
�?�

�
2 CH1.DQ

� /;

where �>� , resp. �?� , is the first Chern class of the line bundle generated by the top,
resp. bottom, level multi-scale component.

Proof. We can pull back the right- and left-hand sides of the relation via d . Using the
expression (30), we see that the pulled-back relation holds since it agrees with the one
of Proposition 4.4. Since d is a quasi-finite proper unramified map, we are done. The
same argument, together with Proposition 4.5, works for the second statement about
horizontal divisors.

Using the same arguments as [13, Proposition 8.1], it is possible to show an excess
intersection formula in this context of k-differentials. We will not explicitly do this
here since the methods and the result are exactly parallel to the original ones for
Abelian differentials. Using the previous ingredients we can then reduce the compu-
tation of the class ˇ in (31) to the computation of a top-degree product of  -classes

˛ WD  
p1
1 � � � 

pn
n 2 CH0. xQ/

on a generalized stratum. If we can describe the class of a generalized stratum in its
corresponding moduli space of pointed curves, then we are done since it is possible
to compute top-degree tautological classes on the moduli space of curves, e.g., with
the SageMath package admcycles, see [16].

One of the advantages in comparison to the situation with general linear subman-
ifolds (as explained in Section 4) is that the fundamental classes of strata of primitive
k-differentials P„k xMg;n.�/ are known in xMg;n, see [1].

More generally, if Q parametrizes k-differentials on a curve with connected � -
quotient, which are d -th powers of primitive k0 WD k=d -differentials, then we can
compare  -classes on xQ to  -classes on the stratum of primitive k0 differentials
P„k

0
xMg;n.�=d/ via the diagram

H
mp
k
.�/ H

mp
k0
.�=d/

Q P„k
0
xMg;n.�=d/;

�

d1 d2

where the map � sends the disconnected curve� d[
iD1

yXi ;

d[
iD1

yzi ;
d[
iD1

!i ; �

�
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to . yX1; z1; !1; �d j yX1/. The map � has degree deg.�/D dn�1, since up to the action
of � there are many such ways to distribute the marked points yz onto the connected
components of yX . Using deg.d1/ D 1=k and deg.d2/ D 1=k0, we can evaluate ˛ asZ

Q

˛ D dn
Z

P„k0 xMg;n.�=d/

 
p1
1 � � � 

pn
n :

If Q parametrizes primitive differentials on disconnected curves, then
R

Q
˛ D 0,

since we go down in dimension by looking at the image of the projection to the moduli
spaces of curves.

It remains to explain how to evaluate intersection numbers in the presence of
residue conditions. In addition to the space R defined starting from a � -invariant par-
tition �R, we consider the linear subspace

R WD

²
.ri /i2Hp 2 CHp W

X
i2A�1. yX 0/

ri D 0 for all yX 0 2 �0. yX/,

ri D �
�1
k r�.i/ for all i 2 Hp

³
cut out by the residue theorem on each component and the deck transformation. Recall
that �R is � -invariant. Let �R0 denote a subset of �R obtained by removing one
element, and let R0 denote the new set of residue conditions. For ease of notation, let
for now

HR
k WD P�H

ŒR;A�
k

and H
R0
k
WD P�H

ŒR0;A�
k

:

If R \R D R \R0, then H R
k
D H

R0
k

. So assume that R \R ¤ R \R0, in which
case H R

k
¨ H

R0
k

is a divisor since removing one element from �R forces to remove
its � -orbit. For a divisor DH R

k
� � xH R

k
, we denote by R> the residue conditions

induced by R on the top-level stratum Hk.�Œ0�/. It can be simply computed by
discarding from the parts of �R all indices of legs that go to lower level in DH R

k
� .

Moreover, we denote be R> the linear subspace belonging to the top-level stratum
of � that is cut out by the residue theorem and the deck transformation.

Proposition 7.11. The class of xH R
k

compares inside the Chow ring of xH R0
k

to the
class � by the formula

Œ xH R
k � D �� �

X
.�Wy�mp!�/2LGR

1
. xH

R0
k

/

`y� ŒD
H

R0
k

� � �
X

.�Wy�mp!�/2LG1;R. xH
R0
k

/

`y� ŒD
H

R0
k

� �;

where LGR
1 .
xH

R0
k
/ are the two-level graphs with R> \R> D R> \R>0 , i.e., where

the GRC on top level induced by R does no longer introduce an extra condition,
and where LG1;R. xH

R0
k
/ are the two-level graphs where all the legs involved in the

condition forming R nR0 go to the lower level.
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Proof. The formula is obtained by intersecting the formula in [13, Proposition 8.3]
with xH R0

k
and thereby using the transversality statement from Proposition 3.2.

By pushing down this relation along d and applying relation (30), we obtain a
similar relation for a generalized stratum of k-differentials QR with residue condi-
tions R.

Corollary 7.12. The class of xQR compares inside the Chow ring of xQR0 to the class �
by the formula

Œ xQR� D �
1

k
� �

X
.�Wy�mp!�/2LGR

1
. xQR0 /

`y� ŒD
QR0

� ��
X

.�Wy�mp!�/2LG1;R. xQR0 /

`y� ŒD
QR0

� �;

where LGR
1 .
xQR0/ are the two-level graphs with R> \R> D R> \R>0 , i.e., where

the GRC on top level induced by R does no longer introduce an extra condition and
where LG1;R. xQR0/ are the two-level graphs where all the legs involved in the condi-
tion forming R nR0 go to the lower level.

The last expression allows us, in the presence of residue conditions, to reduce to
the previous situations without residue conditions when we want to evaluate ˛.

7.5. Values and cross-checks

In this section, we provide in Table 2 and Table 3 some Euler characteristics for strata
of k-differentials. We abbreviate

�k.�/ WD �
�
P�kprMg;n.�/

�
for the orbifold Euler characteristic of strata of primitive k-differentials. Moreover,
we provide several cross-checks for our values.

The second power of the projectivized Hodge bundle over M2 is the union of
the strata of quadratic differentials of type .4/, .2; 2/, .2; 12/ and .14/, if all of
them are taken with unmarked zeros. (Note that there are no quadratic differentials
of type .3; 1/.) All quadratic differentials of type .4/ are second powers of Abelian
differentials of type .2/. The stratum .2; 2/ contains both primitive quadratic dif-
ferentials and second powers of Abelian differentials of type .1; 1/. From Table 2
and [13, Table 1], we read off that

�1.2/C
1

2
�2.2; 2/C

1

2
�1.1; 1/C

1

2
�2.2; 1

2/C
1

4Š
�2.1

4/ D �
1

80
D �.P2/�.M2/:

Similarly, one checks for the third power of the projectivized Hodge bundle over M2

that the numbers in provided in Table 3 add up to�1=48D �.P4/�.M2/. In the above
checks we have used that �.M2/ D �1=240 by [32].
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� .2; 2/ .2; 12/ .14/ .5;�1/ .4; 1;�1/

�2.�/ �
1
8

1
5

�1 �
7
15

6
5

� .3; 2;�1/ .3; 12;�1/ .22; 1;�1/ .2; 13;�1/ .15;�1/

�2.�/
5
3

�5 �6 26 �147

Table 2. Euler characteristics of the strata of primitive quadratic differentials in genus 2 with at
most one simple pole.

Now consider the second power of the projectivized Hodge bundle twisted by the
universal section over M2;1. It decomposes into the unordered strata .4/, .5;�1/,
.4; 1;�1/, .3; 2;�1/, .2; 12/, .3; 12;�1/, .22; 1;�1/, .2; 13;�1/, .15;�1/, .4; 0/,
.22; 0/, .2;12; 0/, .14; 0/, the ordered stratum .22/, .2;12/ (since the zero at the unique
marked point is distinguished) and the partially ordered stratum .14/. The stratum
.2; 12/ appears two times in the list: the first time the unique marked point is the zero
of order 2, the second time it is one of the simple zeros. On the stratum .14/ one of
the simple zeros is distinguished, while the others may be interchanged. Note that

�k.m1; : : : ; mn; 0/ D .2 � 2g � n/�k.m1; : : : ; mn/:

The contributions in Table 2 and [13, Table 1] add up to 1=30 D �.P3/�.M2;1/,
where we have used that �.M2;1/ D 1=120 by [32].

We present some further cross-checks suggested by the referee.
The stratum P�2prM2;3.2; 1; 1/ is isomorphic to the space of 3-marked curves

where the markings are at a Weierstrass point and at two hyperelliptic conjugate
points (see [40, Theorem 1.2]). The latter space is isomorphic to M0;7=S5, where
the symmetric group S5 permutes the first five markings, while the last two markings
correspond to the three marked points of the genus two curve under the hyperelliptic
map. Then indeed we have �2.2; 1; 1/ D �.M0;7=S5/ D 1=5.

Similarly the stratum P�2prM2;2.2; 2/ is isomorphic to the space of 2-marked
curves where the markings are at the Weierstrass points. This space is a .Z=2Z/-
gerbe over M0;6=S4, where the Z=2Z comes from the hyperelliptic involution. Also
in this case we get the correct number �2.2; 2/ D �.M0;6=S4/=2 D �1=8.

Finally, the stratum P�2prM2;4.1; 1; 1; 1/ decomposes as the disjoint union of
three copies of the space of curves with two marked pairs of Weierstrass points (the
three possibilities arise as the way of grouping the four markings into two pairs).
Each of these copies is a double cover of M0;8=S6, leading to the correct number
�2.1; 1; 1; 1/ D 6 � �.M0; 8/=.6Š/ D �1.
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� .6/ .5; 1/ .4; 2/ .3; 3/ .4; 12/ .3; 2; 1/

�3.�/
1
3

�
4
5

�
9
8

�
4
3

16
5

4

� .23/ .3; 13/ .22; 12/ .2; 14/ .16/

�3.�/
41
10

�16 �
52
3

90 �567

Table 3. Euler characteristics of the strata of primitive holomorphic 3-differentials in genus 2.

8. Ball quotients

The goal of this section is to prove Theorem 1.7, which gives an independent proof
of the Deligne–Mostow–Thurston construction ([17, 54]) of ball quotients via cyclic
coverings. For this proof of concept we consider the special case of surfaces, i.e.,
lattices in PU.1; 2/.

We first prove a criterion for showing that a two-dimensional smooth Deligne–
Mumford stack is a ball quotient via the Bogomolov–Miyaoka–Yau equality. Such a
criterion exists in many contexts, typically for pairs of a variety and a Q-divisor with
various hypothesis on the singularities a priori allowed, see for example [30, 31]. We
anyway found no criterion for stacks in the literature. Only the inequality was proven
in [12] and only in the compact case.

We then investigate the special two-dimensional strata of k-differentials of genus
zero considered in Deligne–Mostow–Thurston, compute all the relevant intersection
numbers and construct, via a contraction of some specific divisor, the smooth surface
stack which we finally show to be a ball quotient.

8.1. Ball quotient criterion

We provide a version of the Bogomolov–Miyaoka–Yau inequality for stacks in the
surface case, based on [37]. Singularity terminology and basics about the minimal
model program can be found, e.g., in [38].

Proposition 8.1. Suppose that xB is a smooth Deligne–Mumford stack of dimension 2
with trivial isotropy group at the generic point and let D1 be a normal crossing
divisor. Moreover, suppose that K xB.log D1/

2 > 0 and that K xB.log D1/ intersects
positively any curve not contained in D1. Then the Miyaoka–Yau inequality

c21
�
K xB.log D1/

�
� 3c2

�
K xB.log D1/

�
(34)
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holds, with equality if and only if BD xB nD1 is a ball quotient, i.e., there is a cofinite
lattice � 2 .1; n/ such that B D ŒB2=�� as quotient stack, where

B2 D
®
.z1; z2/ 2 C2

W jz1j
2
C jz2j

2 < 1
¯

is the 2-ball.

Proof. Let D be the divisor defined as D1 together with the sum D2 of the divi-
sors D i

2 with non-trivial isotropy groups of order bi . Let � W xB! xB be the map to the
coarse space and let D1 D �.D1/, D2 D

P
.1 � 1=bi /�.D

i
2/ and D D D1 CD2.

We start by assuming that the pair . xB;D/ is log-canonical and the pair . xB;D2/ is
log-terminal. We will show that this assumptions holds in our situation at the end of
the proof.

Let xB 0 be a log-minimal model given by contracting all the log-exceptional curves
inD1, i.e., contracting all irreducible curves C � D1 with the properties C 2 < 0 and
.c1.K xB/C ŒD1�C ŒD2�/ � C � 0, and let D0i be the image of Di for i D 1; 2. Then

K xB.logD1/CD2 D ��
�
K xB0.logD01/CD

0
2

�
:

Moreover, the log-canonical bundle satisfies

K xB.log D1/ D �
�
�
K xB.logD1/CD2

�
: (35)

The fact that the support of the log-exceptional curves is in D1, together with (35),
implies that K xB0 CD

0
1 CD

0
2 is numerically ample. By the assumption above on the

singularities we know that . xB;D/ is log-canonical. Hence, we are in the situation of
applying [37, Theorem 12].

As a consequence of (35) we know that c21.K xB.log D1// coincides with the left-
hand side of the Miyaoka–Yau inequality of [37, Theorem 12] applied to xB 0 with
boundary divisor D01 CD

0
2.

Moreover, by the Gauss–Bonnet theorem for DM-stacks (see, e.g., [13, Propo-
sition 2.1]), we can also identify c2.K xB.log D1// with the right-hand side of the
inequality of [37, Theorem 12] applied to xB 0 with boundary divisor D01 CD

0
2, up to

non-log-terminal singularities (similarly to how it was done in [12, Section 3.2]). By
the assumption above, the pair . xB;D2/ is log-terminal and so the previous identifica-
tion of the right-hand side of [37, Theorem 12] with c2.K xB.log D// is true without
corrections.

This shows inequality (34) and that in the case of equality xB 0 nD01 Š xB nD1 is
a ball quotient, i.e., xB nD1 Š B2=� . Moreover, in this case, the divisors Di

2 are the
branch loci of � with branch indices bi .

Since xB nD1 is the coarse space associated both to xB nD1 and to ŒB2=��, this
implies that these two DM stacks have to differ by a composition of root constructions
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along divisors (see, e.g., [12, Section 3.1]). But since the branch indices of Di
2 can be

identified with the isotropy groups of the corresponding divisors in ŒB2=��, and since
they coincide with the isotropy groups of the corresponding divisor xB nD1, we can
identify xB nD1 with ŒB2=��, as non-trivial root constructions would have changed
the size of such isotropy groups.

We are finally left to show the assumption on the singularities. First, there exists
a resolution zB of xB where the proper transform zD of D is a normal crossing divisor
and the exceptional divisors Ei are log-exceptional, i.e.,

E2i < 0 and
�
c1.K zB/C Œ

zD1�
�
� Ei � 0:

Indeed, such a resolution can be obtained by blowing-up smooth points of the DM
stack, where the numerical conditions can be checked on an étale chart just as for the
usual blow-up of a smooth point of a variety.

In this situation the corresponding exceptional divisors Ei for the coarse space
resolution zB of xB are also log-exceptional, i.e.,�

c1.K zB/C Œ
zD1�C Œ zD2�

�
�Ei � 0 and E2i � 0:

Since contracting log-exceptional divisors does not change the singularity type, this
implies that to show that . xB;D1 CD2/ is log-canonical and . xB;D2/ is log-terminal,
it is enough to show that . zB; zD1 C zD2/ is log-canonical and . zB; zD2/ is log-terminal.

In order to do this, we observe that in general since . zB; zD/ is a smooth DM stack
with normal crossing divisor, then . zB; zD1 C

P
i
zDi
2/ is log-canonical. Details are

given in [9, Theorem 5.1], using [33, Proposition A.13] . Then we can use that zB has
at worst klt singularities (since it is a surface with quotient singularities and by [38,
Proposition 4.18]). It is easy to show that this implies that . zB; zD1 C

P
i ti
zDi
2/ has

log-canonical singularities and . zB;
P
i ti
zDi
2/ has log-terminal singularities, for any

0 � ti < 1. The desired statement follows then by setting ti D 1 � 1=bi .

8.2. Strata of genus zero satisfying (INT)

Let .a1; : : : ; a5/ be positive integers such that gcd.a1; : : : ; a5; k/ D 1 with

5X
iD1

ai D 2k;

and for all i ¤ j , �
1 �

ai

k
�
aj

k

��1
2 Z if ai C aj < k:

The first condition states that � D .�a1; : : : ; �a5/ is a type of a stratum of k-
differentials on 5-pointed rational lines and that the intersection form on eigenspace
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D�45 D

266664
�a1

�a3

�a2

�a5�a4

377775 ; DL12 D

266664
�a1 �a2

�a5�a4

�a3

377775 ;

D
12ƒ45 D

266664
�a3

�a2�a1 �a5�a4

377775
Figure 3. Level graphs of boundary divisors for strata �M0;5.a1; : : : ; a5/.

giving period coordinates has the desired signature .1; 2/. Imposing the gcd-condition
lets us work without loss of generality with primitive k-differentials. The last con-
dition is the condition (INT) of [17]. For Deligne–Mostow, this condition is key
to ensure that the period map extends as an étale map over all boundary divisors.
Thurston [54] uses this condition to show that his cone manifolds are indeed orb-
ifolds. Mostow completed in [48] the g D 0 picture by showing that up to the variant
†INT from [47] these are the only ball quotient surfaces uniformized by the VHS of a
cyclic cover of 5-punctured projective line. We recall from [17, Section 14] that there
are exactly 27 five-tuples satisfying INT, and all of them satisfy in fact the integrality
condition INT for all i ¤ j with ai C ak ¤ k.

For us the condition INT has the most important consequence that the enhance-
ments y�e of the Abelian covers of the level graphs are all one. This implies that ghost
groups of all strata in this section are trivial. However, the condition INT also enters at
other places of the following computations of automorphism groups and intersection
numbers.

In the sequel we will use the notation Q D �kM0;5.a1; : : : ; a5/. We now list the
boundary divisors without horizontal edges. A short case inspection shows that the
only possibilities are the level graphs � D �ij (see Figure 3, top left) and LD Lij (see
Figure 3, top right), that yield the ’dumbbell’ divisors with two or three legs on bottom
level under the condition that the ai ’s on lower level add up to less than k, and the
level graphsƒD i;jƒp;q that yield ‘cherry’ divisors (see Figure 3, bottom); V -shaped
graphs are ruled out by

P
ai D 2k. We define �i;j WD k � .ai C aj /, which is both

the k-enhancement of the single edge of �i;j and the negative of the k-enhancement
of the single edge of Li;j .
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Lemma 8.2. Each of the graphs �i;j , Li;j and i;jƒp;q is the codomain of a unique
covering of graphs � 2 LG1. xQ/ and for each such covering S.�/ D 1.

Proof. We will give the argument for �1;2, the argument for the other graphs is sim-
ilar. The number of preimages of the vertices of �1;2 is gcd.k; a1; a2/ for the bottom
level and gcd.k; a3; a4; a5/ for the top level, while the edge has �1;2 preimages.

We claim that for any cover of graphs � W y�mp ! �1;2, the domain is connected.
In fact, suppose there are k0 components. This subdivides both the top level and
the bottom level into subsets of equal size. This implies that k0 j gcd.k; a1; a2/ and
k0 j gcd.k; a3; a4; a5/, and hence k0 D 1 because gcd.k; a1; : : : ; a5/ D 1.

To construct such a cover of graphs it suffices to prescribe one edge of y�mp, the
other edges are then forced, since � -acts transitively on edges. Since the vertices on
top and bottom level are indistinguishable (forming each one orbit � -orbit) the result-
ing graph is independent of the choice of the first edge. In particular, y�mp is unique
and S.�/ D 1.

Next we compute (self)-intersection numbers of boundary divisors.

Lemma 8.3. The self-intersection numbers of the boundary divisors of xQ are

ŒDQ
� �
2
D �

�2i;j

k2
�

X
p<q; apCaq<k
p;q…¹i;j º

�i;j �p;q

k2
;

ŒDQ
L �
2
D �

�2i;j

k2
and ŒDQ

ƒ �
2
D �

�i;j �p;q

k2
:

The mutual intersection numbers are

ŒDQ
� � � ŒD

Q
L � D

´
j�i;j �p;qj=k

2 if � \ L ¤ ;;

0 otherwise;

ŒDQ
� � � ŒD

Q
ƒ � D

´
�i;j �p;q=k

2 if � \ƒ ¤ ;;

0 otherwise:

Proof. For the self-intersection numbers consider the formula in Corollary 7.10. As
remarked above, the condition (INT) implies that all enhancements of the Abelian
coverings are 1 and hence the same is true for the ỳ-factor in the corollary. Let �p;qi;j
denote the slanted cherry with points i; j on bottom level and points p; q on middle
level. Together with Corollary 7.8 and Corollary 7.10, we obtain

ŒDQ
�i ;j

�2 D
�1

k
�> � c1.L

>/ D �
�2i;j

k2

Z
xM0;4

 1 �
X

p<q; apCaq<k
p;q…¹i;j º

ŒDQ

�
p;q

i;j

�:
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The degree of the slanted cherry isZ
xQ

ŒDQ

�
p;q

i;j

� D
�i;j �p;q

k2

by applying the second formula in Lemma 7.7 and Lemma 8.2. The other numbers
are obtained similarly.

8.3. The contracted spaces

We want to construct the compactified ball quotient candidate xB from xQ by contract-
ing the all the divisors DQ

L and DQ
ƒ . This is in fact possible.

Lemma 8.4. The divisors DQ
L and DQ

ƒ of xQ are contractible. The DM-stack xB
obtained from xQ by contracting those divisors is smooth. If DB

zL
and DB

zƒ
denote the

points in B obtained by contracting the corresponding divisors in Q, thenZ
xB

ŒDB
zL
� D

�2i;j

k2
and

Z
xB

ŒDB
zƒ
� D

�i;j �p;q

k2
:

Proof. For each of the two types of boundary divisors DQ
L and DQ

ƒ , we will write a
neighborhood U as quotient stack Œ zU=G� with zU smooth, and show that the preimage
of the boundary divisor in zU is a P1 with self-intersection number �1. Castelnuovo’s
criterion then implies that this curve is smoothly contractible. The order of G will
be k2=�2i;j for DQ

L and k2=�i;j �p;q for DQ
ƒ . After contracting the covering P1, the

quotient is a point with isotropy group G and the claim on the degrees follows.
We first consider a cherry divisor DQ

ƒ . We let DH
mp
k

ƒ denote its preimage in H
mp
k

.
Since all of the Abelian enhancements of the cover of i;jƒp;q are one, then the divi-
sor DH

mp
k

ƒ is irreducible, in fact isomorphic to P1 with coordinates the scales of the
differential forms on the cherries.

We compute the order of the automorphism group of any point . yX; y!/ in DH
mp
k

ƒ .
Suppose first that . yX; y!/ is generic. The irreducible components of yX group into
three � -orbits: The components yX> corresponding to the top-level vertex of i;jƒp;q ,
the components yX?i;j corresponding to the vertex with marked points i; j , and the
components yX?p;q corresponding to the vertex with marked points p; q. Observe that
there are �i;j edges between yX> and yX?i;j and �p;q edges between yX> and yX?p;q .
The restriction of � to each of the three (not necessarily connected) curves yX>, yX?i;j ,
and yX?p;q has order k. Given an automorphism of the complete curve yX , its restrictions
to yX> and yX?i;j need to agree on the �i;j nodes, and the analog argument applies
to yX?p;q . Hence, after fixing the automorphism on the top-level curve yX>, there are
k2=�i;j �p;q possible choices for the automorphism on the two bottom-level curves
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left. Together with the k choices for the top-level automorphism, we obtain

jAut. yX; y!/j D
k3

�i;j �p;q
:

As the non-representable map H
mp
k
! Q has degree 1=k, this yields that the generic

point of DQ
ƒ has an isotropy group of size r WD k2=�i;j �p;q . Exactly the same argu-

ment also applies to the two boundary points of DQ
ƒ corresponding to the slanted

cherries.
The automorphism group is thus generated by multiplying the transversal t -par-

ameter (compare Section 3.4) by an r-th root of unity in local charts covering all
of i;jƒp;q . We may thus take for U any tubular neighborhood ofDQ

ƒ and take a global
cover zU of degree k2=�i;j �p;q . Comparing with the degree of the normal bundle in
Lemma 8.3 shows that preimage of DQ

ƒ in zU is a .�1/-curve.
We now consider a dumbbell divisor DQ

L . As above one checks that the isotropy
group at the generic point of DQ

L is of order k=j�i;j j and that the isotropy groups
of the boundary points of the divisor have a quotient group of that order. Consider a
tubular neighborhood of DQ

L and a degree k=j�i;j j cover that trivializes the isotropy
group at the generic point. Let zDQ

L be the preimage of the boundary divisor in this
cover.

Let p; q; r denote the three marked points on the bottom level of a point in Li;j .
By applying the above line of arguments again, the three boundary points of zDQ

L have
cyclic isotropy groups of sizes k=�p;q , k=�p;r , and k=�q;r respectively. The triangle
group

T D T
� k

�p;q
;
k

�p;r
;
k

�q;r

�
is always spherical, because ai C aj > k implies ap C aq C ar < k, and hence

2 �
�
1 �

�p;q

k

�
�

�
1 �

�p;r

k

�
�

�
1 �

�q;r

k

�
D 2 � 2

ap C aq C ar

k
> 0:

This implies that the T -cover of zDQ
L ramified to order k=�p;q along the divisor where

¹p; qº have come together etc., trivializes the isotropy groups on the boundary divi-
sor zDQ

L and the preimage of zDQ
L is a P1. More precisely, the isotropy groups of

order k=�p;q do not fix isolated points on the boundary divisor, but have one-dimen-
sional stabilizer, the boundary divisors intersecting zDQ

L . This implies that the above
T -cover actually provides a chart of a full tubular neighborhood.

It remains to show that jT j D k=j�i;j j in order to conclude with the normal bundle
degree from Lemma 8.3 that this P1 is a .�1/-curve. To show this, recall that as T is
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spherical, there are only the cases� k

�p;q
;
k

�p;r
;
k

�q;r

�
D .2; 2; n/ for n 2 N�2;� k

�p;q
;
k

�p;r
;
k

�q;r

�
D .2; 3; n/ for n 2 ¹3; 4; 5º

to consider. In the first case, the order of T .2; 2; n/ is 2n, and assuming that

k

�p;q
D

k

�p;r
D 2;

one easily checks that

2
k

�q;r
D

k

j�i;j j

by using
P
i ai D 2k. In the second case, the order of T .2; 3; n/ is 2 lcm.6; n/, and

the claimed equality follows with a similar argument.

We will now compute the Chern classes of xB. Let cW xQ! xB denote the contraction
map. Let

� WD
®
.i; j / W i < j; ai C aj < k

¯
;

L WD
®
.i; j / W i < j; ai C aj > k

¯
be the pairs of integers appearing as indices of the �i;j and Li;j . Let I D Ipqij denote
the common degeneration of �ij and Lpq , i.e., the three-level graph with points p; q
on bottom level, i; j on top level and the remaining point on the middle level. Accord-
ingly, we write

ƒ WD
®
.i; j; p; q/ W i < j; i < p < q; j … ¹p; qº; ai C aj < k; ap C aq < k

¯
;

I WD
®
.i; j; p; q/ W i < j; i < p < q; j … ¹p; qº; ai C aj > k; ap C aq < k

¯
for the quadruples of possible indices. Recall that Dhor is the union of all bound-
ary divisors DHij whose level graph has a horizontal edge, i.e., corresponding to
pairs .i; j / with ai C aj D k. We write

H WD
®
.i; j / W i < j; ai C aj D k

¯
:

We summarize the intersections of the boundary divisors: The cherry DQ

i;jƒp;q

intersects precisely DQ
�ij

and �Q
pq . The divisor DLij intersects precisely the three

divisors DQ
�ab

for any pair .a; b/ disjoint from ¹i; j º. For the divisor DQ
�ij

consider
any pair .p; q/ of the three remaining points as ¹p; q; rº. This gives an intersection
with a cherry if ap C aq < k, with a horizontal divisor if ap C aq D k and with
an L-divisor if ap C aq > k. Consequently, the divisor DQ

Hij
intersects precisely the

three divisors DQ
�ab

for any pair .a; b/ disjoint from ¹i; j º.
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Lemma 8.5. The self-intersection numbers of the boundary divisors of xB are

ŒDB
�i;j

�2 D �
�2i;j

k2
C

X
p<q; apCaq>k
p;q…¹i;j º

�2i;j

k2
and ŒDB

Hi;j
�2 D �1:

The mutual intersection numbers are for ¹i; j º \ ¹p; qº D ; given by

ŒDB
�i;j

� � ŒDB
�p;q

� D
�i;j �p;q

k2
and ŒDB

�i;j
� � ŒDB

Hp;q
� D

�i;j

k

and for j¹i; j; pºj D 3 by

ŒDB
�i;j

� � ŒDB
�i;p

� D

´
�i;j �i;p=k

2 if ai C aj C ap < k;

0 otherwise:

Proof. We claim that the pullback of ŒDB
�i;j

� is given by

c�ŒDB
�i;j

� D ŒDQ
�i;j

�C
X

p<q; apCaq>k
p;q…¹i;j º

�i;j

j�p;qj
ŒDQ
Lp;q

�C
X

p<q; apCaq<k
p;q…¹i;j º

ŒDQ

i;jƒp;q
�:

To determine the coefficients in the above expression, one may intersect the equation

c�ŒDB
�i;j

� D ŒDQ
�i;j

�C
X
p;q

lp;qŒD
Q
Lp;q

�C
X
p;q

�p;qŒD
Q

i;jƒp;q
�

with unknown coefficients with each of the divisors ŒDQ
Lp;q

� and ŒDQ

i;jƒp;q
� in turn.

The left-hand side vanishes by push-pull, and the intersection numbers on the right-
hand side are given by Lemma 8.3. The claimed intersection numbers involving only
�-divisors follow again by Lemma 8.3.

The pullback of the horizontal divisor is given by c�ŒDB
Hi;j

�D ŒDQ
Hi;j

�. The inter-
section number

ŒDB
�i;j

� � ŒDB
Hp;q

� D ŒDQ
�i;j

� � ŒDQ
Hp;q

�

follows from Lemma 7.7 and Lemma 8.2. Finally, by Proposition 4.5 and (32), the
normal bundle of ŒDQ

Hi;j
� is given by � e in CH.DQ

Hi;j
/, where  e is the  -class

supported on the half edge of Hi;j that is adjacent to the vertex with three adjacent
marked points.

Proposition 8.6. The log canonical bundle on xB has first Chern class

c1
�
�1xB.logDhor/

�
D

X
i;j2�

� k

2�i;j
� 1

�
ŒDB

�i;j
�C

1

2
ŒDB

hor� in CH1.B/: (36)
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Its square and the second Chern class are given by

c1
�
�1xB.logDhor/

�2
D 6 � 3

X
i;j2�

�i;j

k
C 3

X
i;j2L

�2i;j

k2
C 3

X
i;j;p;q2ƒ

�i;j �p;q

k2
(37)

and

c2
�
�1xB.logDhor/

�
D 2 �

X
i;j2�

�i;j

k
C

X
i;j2L

�2i;j

k2
C

X
i;j;p;q2ƒ

�i;j �p;q

k2
;

respectively.

Proof. To derive (36) from Theorem 1.1, we insert into

c1
�
�1Q.logDhor/

�
D
3

k
� � C

X
L

ŒDQ
L �C

X
ƒ

ŒDQ
ƒ �

that 5� �
P
.mi C k/ i is a sum of boundary terms by the relation (7.8). Consider

Keel’s relation
 i D

1

6

X
c<d;
i 62¹c;dº

�cd C
1

2

X
a¤i

�ia;

where�ij is the boundary divisor in xM0;5 where the points .i; j / have come together.
We pull back this relation via the forgetful map � WP„k xM0;5.�/!

xM0;5. Since this
map is a root-stack construction and the isotropy groups of the divisors were computed
in the proof of Lemma 8.4, we obtain

���ab D

8̂̂̂<̂
ˆ̂:

1
j�ab j

ŒDQ
Lab � if aC b < �k;

ŒDHab � if aC b D �k;
1
�ab
ŒDQ

�ab
�C

P
i<j; aiCaj<k

i;j…¹a;bº

1
�ab
ŒDQ

i;jƒa;b
� if aC b > �k:

Putting everything together, we find in CH1.Q/ that

c1
�
�1Q.logDhor/

�
D

X
i;j2�

� k

2�i;j
� 1

�
ŒDQ

�i;j
�C

X
i;j2L

� k

2j�i;j j
� 1

�
ŒDQ

Li;j �

C

X
i;j;p;q2ƒ

� k

2�i;j
C

k

2�p;q
� 1

�
ŒDQ

i;jƒp;q
�C

1

2
ŒDQ

hor�;

and since the divisorsDQ
Li;j andDQ

i;jƒp;q
are smoothly contractible, we deduce (36).
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To derive (37), we first note that �1
4
j� j C 1

2
jƒj C 5

4
jHj C 5

4
jLj D 5 and that for

.i; j / 2 L the relation

1C
X

p2¹1;:::;5ºn¹i;j º
¹q;rºD¹1;:::;5ºn¹i;j;pº

�
�
�p;q C �p;r

k
C 2

�p;q�p;r

k2
C
�2q;r

k2

�
D 4

�2i;j

k2

holds because
P
i ai D 2k. Using those relations and the intersection numbers in

Lemma 8.5, squaring (36) yields

c1
�
�1xB.logDhor/

�2
D 5 �

X
i;j2�

�
2
�i;j

k
C
�2i;j

k2

�
C 2

X
i;j;p;q2ƒ

�i;j �p;q

k2
C 4

X
i;j2L

�2i;j

k2

and (37) follows because
P
i ai D 2k implies

1C
X
i;j2�

�
�
�i;j

k
C
�2i;j

k2

�
C

X
i;j;p;q2ƒ

�i;j �p;q

k2
�

X
i;j2L

�2i;j

k2
D 0:

The second Chern class can be computed as

c2
�
�1xB.logDhor/

�
D �.M0;5/C

X
i;j2�

�
�
D

B;ı
�i;j

�
C

X
i;j2L

�
�
DB
zLi;j

�
C

X
i;j;p;q2ƒ

�
�
DB

i;j
zƒp;q

�
;

where �.DB;ı
�i;j

/ D �.D
Q;ı
�i;j

/ D �i;j =k by Lemma 7.7 and Lemma 8.2 and the Euler
characteristics of the points are given in Lemma 8.4.

8.4. The ball quotient certificate

We can finally put together the previous intersection numbers and use our ball quotient
criterion to show that the contracted spaces are ball quotients.

Proof of Theorem 1.7. We apply Proposition 8.1 and check that first that the only log-
exceptional curves for c1.�1xB.logDhor// are the components ofDhor. In fact, since the
expression (36) is an effective divisor and since xB nD ŠM0;5 is affine, we only have
to check positivity of c21 and the intersection with DHab and DB

�i;j
. For the DB

�i;j
-

intersections this follows from the intersection numbers in Lemma 8.5. In fact, the
self-intersection number of DB

�i;j
is negative only if ap C aq � k for any pair ¹p; qº

disjoint from ¹i; j º. Using Lemma 8.3, we compute in this case that

ŒDB
�i;j

� � c1
�
�1xB.logDhor/

�
D
�ij

k

�
2ap C 2aq C 2ar � ai � aj

k
� 1

�
;
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where ¹a1; a2; a3; a4; a5º D ¹ai ; aj ; ap; aq; aqº. Since ai C aj < k, this expression
is positive. Moreover, one directly computes

ŒDHa;b � � c1
�
�1xB.logDhor/

�
D 0:

That c1.�1xB.logDhor//
2 > 0 is a consequence of the above, since c1.�1xB.logDhor//

is a linear combination of the divisors DB
�i;j

and DB
hor with positive coefficients, by

equation (36).
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