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Chern classes of linear submanifolds with application to spaces
of k-differentials and ball quotients

Matteo Costantini, Martin Moller, and Johannes Schwab

Abstract. We provide formulas for the Chern classes of linear submanifolds of the moduli
spaces of Abelian differentials and hence for their Euler characteristic. This includes as spe-
cial case the moduli spaces of k-differentials, for which we set up the full intersection theory
package and implement it in the SageMath package diffstrata. As an application, we give
an algebraic proof of the theorems of Deligne-Mostow and Thurston that suitable compact-
ifications of moduli spaces of k-differentials on the 5-punctured projective line with weights
satisfying the INT-condition are quotients of the complex two-ball.
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1. Introduction

Linear submanifolds are the most interesting and well-studied subvarieties of mod-
uli spaces of Abelian differentials Q.M , (1) and their classification seems far from
complete at present. They are defined as the normalization of algebraic substacks
of QM (1) that are locally a union of linear subspaces in period coordinates. In the
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holomorphic case, linear submanifolds defined by real linear equations are precisely

the closures of GL;r (R)-orbits by the fundamental theorems of Eskin—Mirzakhani—

Mohammadi [21, 22]. These orbit closures are automatically algebraic subvarieties

by Filip’s theorem [23]. Our results require algebraicity, but they work as well for

meromorphic differentials and for subvarieties whose equations are only C-linear.
Linear submanifolds include:

* spaces of quadratic differentials;

e Teichmiiller curves;

* eigenform loci and Prym loci;

» the recent sporadic examples from [45] and [20]; but also

* spaces defined by covering constructions; and

* in the meromorphic case, spaces defined by residue conditions.

These examples are R-linear. Spaces of k-differentials for k > 2, and in particular the
ball quotients in Section 8 are prominent examples that are only C-linear.

Our primary goal is a formula for the Chern classes of the cotangent bundle of
any linear submanifold or rather of its compactification. The Euler characteristic is
an intrinsic compactification-independent application. Knowing the Chern classes is
a prerequisite for understanding the birational geometry of linear submanifolds, such
as computations of the Kodaira dimension, see [9].

This goal was achieved in [13] for the full projectivized strata of Abelian differen-
tials PQMg , (1) themselves, taking the modular smooth normal crossing compacti-
fication P 8 .M ¢.n (1) of multi-scale differentials from [5] as point of departure. In the
inextricable zoo of linear manifolds we are not aware of any intrinsic way to construct
a smooth compactification with modular properties. Working with the normalization
of the closure in some ambient compactification is usually unsuitable for intersec-
tion theory computations. Here, however, thanks to the work of Benirschke-Dozier—
Grushevsky [7] and some minor upgrades we are able to work with this closure.

We now introduce more notation to state the general results and then apply them
to specific linear submanifolds. Let QH — QM. (1) be a linear submanifold.
Let moreover # — PQM, (1) be its projectivization and let H —>P Eﬂg,n ()
denote the normalization of its closure into the space of multi-scale differentials. The
boundary strata Dr of }P’Ea\zg’n (n) are indexed by level graphs I' as we recall in
Section 3.2. By [7, Theorem 1.5] the boundary of # is divisorial and consists two
types of divisors: First there are the divisors Dﬁ% of curves whose level graphs have
only horizontal edges (i.e., joining vertices of the same level). Second there are the
divisors Dgg parametrized by level graphs I' € LG (#) that have one level below the
zero level and no horizontal edges and such that the intersection of H with the inte-
rior of the boundary divisor Dr is non-empty. Those boundary divisors Dgg come
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with the integer £, the least common multiple of the prongs «,. along the edges. The
interior of Dr can intersect the linear submanifold # in finitely many irreducible
components, whose number we denote by nr (J). We denote by LG}L (#) the set of
pairs It = (T, i), where I € LG(#) and i € {1,...,np(#)} is the index set of
irreducible components of Dp. N H.Wereferto 't = (F, i) as a refined level graph
and set {(r;) := {r. This extra notational complexity is necessary since a priori it
is possible that a linear submanifold intersects a boundary component in irreducible
components with different level dimensions. This is clearly possible since for exam-
ple we do not require our linear manifolds to be irreducible, which is convenient in
order to include entire strata of k-differentials, but it could be possible also in the case
of irreducible linear submanifolds. We let £ = ¢1(@(—1)) be the first Chern class of
the tautological bundle on K.

Theorem 1.1. The first Chern class of the logarithmic cotangent bundle of a projec-
tivized compactified linear submanifold ¥ is

(R (ogdd)) =N-&+ ) (N—NI)r+[Df%] € CH'(JO),
I+eLG) (%)

where N := dim(QHK), and NIT = dlm(D ) + 1 is the dimension of the un-
projectivized top level stratum in D

To state a formula for the full Chern character we need to recall a procedure that
also determines adjacency of boundary strata. It is given by undegeneration maps &;
that contract all the edges except those that cross from level —i + 1 to level —i, see
Section 3.2. This construction can obviously be generalized so that a larger subset
of levels remains. For example, the undegeneration map SE contracts only the edges
crossing from level —i + 1 to level —i. For any element ' of the set LG, (#) of
graphs with L levels below zero and without horizontal edges, we can now define
the boundary component D of codimension L and the quantity {1 = ]_[,L 145,
We also extend the undegeneration maps at the level of refined level graphs, i.e., for
elements in LGI’JL (J), which we define analogously to LG (#), and we still denote
them by the same letter.

Theorem 1.2. The Chern character of the logarithmic cotangent bundle is

N—-1
ch(QL(logddt)) =e®- > Y Lpr(N =Ny 1y))ir+s
L=0 r+eLc} (3)

l_[ ( s(r+)) 1
_ r+/ta+)/
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where N. T+ /50
the Todd class and i ip+: DF L H is the inclusion map.

denotes the normal bundle of D'% in D'% sy and where td is

So far the results have been stated to parallel exactly those in [13]. The ambient
spaces can be mildly singular (see Section 3), but the maps ip+ are regular embed-
dings (see Section 4.3) which allows us to work tacitly with operational Chow groups
just as in the case of the smooth DM stack in [13]. We start explaining the difference in
evaluating this along with the next result, a closed formula for the Euler characteristic.

Theorem 1.3. Let # — PQM, (1) be a projectivized linear submanifold. The orb-
ifold Euler characteristic of ¥ is given by

d KJC’ N d[l]
FESEEE SIS |Aﬂ;g(rr++)| 1‘[ /x ) £

L=0 r+eLG} (%)

where the integrals are over the normalization of the closure H — ]P’Ed\jtg’n ()
inside the moduli space of multi-scale differentials and similar integrals over bound-
ary strata, where

. Jfl[fl are the linear submanifolds at level i of T'" as defined in Section 3.5;
. dl[fl = dim(J(’l[fl) is the projectivized dimension;

Y 4 '% is the product of the number of prong-matchings on each edge of U that are

actually contained in DF 1N

o Autg(T'") is the set of automorphism of the graph T whose induced action on a
neighborhood of D " preserves H;

o d := dim(H) is the projectivized dimension.

The number of reachable prong matchings KI"’:‘; and the number | Autg (I'T)|,
as defined in the theorem, are in general non-trivial to determine. Also the description
of Jeli! r+ requires specific investigation. For example, for strata of k-differentials, these
Jelil -+ are again some strata of k-differentials, but the markings of the edges have to
be counted correctly.

The most important obstacle to evaluate this formula however is to compute the
fundamental classes of linear submanifolds, or to use tricks to avoid this. For strata
of Abelian differentials, this step was provided by the recent advances in relating
fundamental classes to Pixton’s formula [1, 34]. Whenever we have the fundamental
classes at our disposal, we can evaluate expressions in the tautological ring, as we
briefly summarize in Section 4.

Applications: Teichmiiller curves in genus two. As an example where fundamental
class considerations can be avoided, we give in Section 6 an alternative quick proof of
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one of the first computations of Euler characteristics of Teichmiiller curves, initially
proven in [2], see also [46] for a proof via theta derivatives.

Theorem 1.4 (Bainbridge). The orbifold Euler characteristic of the Teichmiiller curve
Wp CPQM;,1(2) in the eigenform locus for real multiplication by a non-square dis-
criminant D is y(Wp) = —9¢(—1), where { = {Q( D) i the Dedekind zeta function.

Strata of k-differentials. The space of quadratic differentials is the cotangent space
to moduli space of curves and thus fundamental in Teichmiiller dynamics. We give
formulas for Chern classes, Euler characteristics and for the intersection theory in
these spaces. In fact, our formulas work uniformly for spaces of k-differentials for
all k > 1. Having the quadratic case in mind, we write

Q= IP)Eke/‘zg,n(ﬂ)

for the space of multi-scale k-differentials defined in [15]. The space @Q is the dis-
joint union over all divisors d of k of the subspaces parametrizing powers of k/d -
differentials. We write

Qpr = PEp Mg n (1)

for the (still possibly disconnected) subspace of primitive multi-scale k-differentials,
the closure of the components corresponding to d = 1. The space @ coincides (up
to explicit isotropy groups, see Lemma 7.2) with the compactification as above of the
linear submanifolds associated to its connected components obtained via the canoni-
cal covering construction.

The formulas in Theorem 1.2 apply to the connected components of @Q viewed as
linear submanifolds in some higher genus stratum M 7 (fi). However the fundamen-
tal class of these submanifolds is not known, conceivably it is not even a tautological
class. The main challenge here is to convert these formulas into formulas that can
be evaluated on @ viewed as a submanifold in Mg, where the fundamental class is
given by Pixton’s formula.

While the boundary strata of the moduli space P & .M ¢.n (1) are indexed by level
graphs, the boundary strata of the moduli space of multi-scale k-differentials @ are
indexed by k-coverings of level graphs 7: f‘mp — I, where the legs of f‘mp are marked
only partially, see Section 7 or also [15, Section 2] for the definitions of these objects
and the labeling conventions of those covers. The k-coverings appearing in the bound-
ary of (,72pr are precisely those with [’ connected. Each edge e € T" has an associated
k-enhancement k., given by |ord, @ + k|, where w is the k-differential on a generic
point of the associated boundary stratum D,. We let { = ¢1(@(—1)) be the first
Chern class of the tautological bundle on @. Via the canonical cover construction,
Theorem 1.3 implies the following formula for the Euler characteristic of strata of
k-differentials. Note that if J¢; is the linear submanifold associated to a connected
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component of a stratum of k-differentials, the information of 7 is enough to uniquely
determine the relevant information of the irreducible components D+ of Dy, i.e., the

level strata dimensions !, the number of reachable prong-matchings Kﬁg + and

r+:
| Autge, (TF)|. So in the applications of the formulas of Theorem 1.2 and Theorem 1.3

to strata of k-differentials, we can group together all irreducible components of D,.

Corollary 1.5. The orbifold Euler characteristic of a projectivized stratum of k-
differentials IP’QkCMg,n () is given by

—1\d & Nx Tlecra ke
((PREMenw) = () D T

L=0 (7:F,,—>T)eLGL (Qp)

[/,
. . [i1»
i—pJai @

where S(r) is the normalized size of a stabilizer of a totally labeled version of the
graph Uy, and C‘Z,[ﬁ] are the strata of k-differentials of Dy at level i.

The full definition of S(rr) is presented in (29). It equals one for many =, e.g., if
all vertices in I" have only one preimage in I',,. See Remark 7.6 for values of this
combinatorial constant.

k 1 2 3 4 5 6 7 8 9
A(PQUEM1(2k)  —55 0 3 : 2 9 18 30 51

Table 1. Euler characteristics of some minimal strata of primitive k-differentials. Note that in the
case of k = 2 the stratum of primitive minimal k-differentials is empty, see [41, Theorem 2(c)].

Table 1 gives the Euler characteristics of some strata of primitive quadratic differ-
entials, for more examples and cross-checks see Section 7.5.

All the formulas for evaluations in the tautological ring of strata of k-differentials
have been coded in an extension of the SageMath package diffstrata (an exten-
sion of admcycles by [16]) that initially had this functionality for Abelian differen-
tials only (see [13, 14]). See Section 4 for generalities on tautological ring computa-
tions, and in particular Section 7, for the application to k-differentials. The program
diffstrata has been used to verify the Hodge-DR-conjecture from [10] in low
genus. Moreover, diffstrata confirms that the values of the tables in [28] can be
obtained via intersection theory computations.

Proposition 1.6. A conjecture of Chen—Moller—Sauvaget [11, Conjecture 1.1], which
expresses Masur—Veech volumes for strata of quadratic differentials as intersection
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numbers, holds true for strata of projectivized dimension up to six. For example,
Q(12) = 5614/6075 - 5.

Ball quotients. Deligne-Mostow [17] and Thurston [54] constructed compactifica-
tions of strata of k-differentials on My, for very specific choices of p and showed
that these compactified strata are quotients of the complex (n — 3)-ball. These results
were celebrated as they give a list of non-arithmetic ball quotients, of which there are
still only finitely many sporadic examples today, see [19] and [18] for recent progress.
The compactifications are given as GIT quotients (in [17]) or in the language of cone
manifolds (in [54]) and the proof of the discreteness of the monodromy representation
requires delicate arguments for extension of the period at the boundary, resp. surgeries
for the cone manifold completion.

As application of our Chern class formulas we give a purely algebraic proof that
these compactifications are ball quotients, based on the fact that the equality case in
the Bogomolov—Miyaoka—Yau inequality implies a ball quotient structure, see Propo-
sition 8.1. Since this is a proof of concept, we restrict to the case n = 5, i.e., to
quotients of the complex two-ball, and to the condition INT in (1), leaving the analog
for Mostow’s generalized XINT-condition [47] for the reader.

The computation of the hyperbolic volume of these ball quotients had been open
for a long time. A solution has been given by McMullen in [44] and Koziarz—-Nguyen
in [39], see also [35]. Since computing the hyperbolic volume is equivalent to comput-
ing the Euler characteristic by Gauss—Bonnet, our results provide alternative approach
to this question, too.

For spaces @ of multi-scale k-differentials in g = 0, n = 5 with these conditions,
there are only four kinds of boundary divisors:

* the divisors I';; where two points with a; 4+ a; < k collide;
 the divisors L;; where two points with a; + a; > k collide;

* the ‘horizontal’ boundary divisor Dy, consisting of all components where two
points with a; + a; = k collide;

 the ‘cherry’ boundary divisors ;; Ag;.

Theorem 1.7. Suppose that @ = (—a, ..., —as) is a tuple with a; > 0 and with the
condition
a; aj -1 .
(1—?—?) €Zifai +ap <k  (INT) (1)

for all i # j. Then there exists a birational contraction morphism Q — B onto a
smooth proper DM-stack B that contracts precisely all the divisors L;; and ;; Ag;.
The target B satisfies the Bogomolov—Miyaoka—Yau equality for Q%(log Dhor).

As a consequence 5 = B\ Dy is a ball quotient.
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The signature of the intersection form on the eigenspace that k-differentials are
modeled on has been computed by Veech [57]. The only other case where the sig-
nature is (1,2) are strata in M; 3. As observed by Ghazouani—Pirio in [26] (see
also [27]), there are only few cases where the metric completion of the strata can
be a ball quotient. However, they also find additional cases where the monodromy of
the stratum is discrete. This implies that the period map descends to a map from the
compactified stratum to a ball quotient. It would be interesting to investigate if there
are more such cases, possibly with non-arithmetic monodromy.

2. Logarithmic differential forms and toric varieties

This section connects the Euler characteristic to integrals of characteristic classes of
the sheaf of logarithmic differential forms. We work on a possibly singular but normal,
proper and irreducible variety H of dimension d, whose singularities are toric and
contained in some boundary divisor d. We are interested in the Euler characteristic
of the (Zariski) open subvariety # = # \ ¥ given by the complement of 3., in the
situation where the inclusion # <> J is a toroidal embedding. In particular, in this
case, the boundary divisor 0 is locally on open subsets U,, a torus-invariant divisor.

In this situation we define locally Qba (log) to be the sheaf generated by (C*)?-
invariant meromorphic differential forms. These glue to sheaf Q};—e(log dJt), that is
called logarithmic differential sheaf. This terminology is justified by the following
idea from [49, Section 4], the details and definitions being given in [36]. For any
‘allowable’ smooth modification p: W — J that maps a normal crossing boundary
divisor 9W C W onto d#, we have

p*QL(logdH) = Qi (log aW)

for the usual definition of the logarithmic sheaf on W. Moreover, such an ‘allowable’
smooth modification always exists. The previous situation can be generalized verba-
tim to the case where J is a Deligne-Mumford stack and this is the setup we are
interested in.

Proposition 2.1. Let # be a proper irreducible Deligne—Mumford stack of dimen-
sion d with toric singularities. Assume moreover that the coarse moduli space of H
is projective. Let ¥ < H be a toroidal embedding and dH = H \ H. Then the Euler
characteristic of # can be computed as the integral

100 = 1 [ ca(@bptiogas0)

over the top Chern class of the logarithmic differential sheaf.
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Proof. If # is a smooth Deligne—Mumford stack and d# = @, this is well known
(see, e.g., [55, Corollary 4.16]). In the case where J¢ is still smooth but dJ is not
empty, a self-contained proof of the statement was given in [13, Proposition 2.1] (the
proof was given in the case where H is a smooth variety, but it works verbatim for
the more general case of smooth DM stack).

In general, we use an allowable modification. By definition this restricts to an
isomorphism W — J, hence does not change the left-hand side. The right-hand side
also stays the same by push-pull and the pullback formula along an allowable smooth
modification. ]

3. The closure of linear submanifolds

The compactification of a linear submanifold we work with has (currently) no intrinsic
definition. Rather we consider the normalization of the closure of a linear submanifold
inside the moduli space of multi-scale differentials & M e (i). We recall from [7] the
basic properties of such closures. The goal of this section is to make precise and to
explain the following two slogans:

(1) Near boundary points without horizontal edges, the closure is determined as
for the ambient Abelian stratum by the combinatorics of the level graph and it is
smooth. The ghost automorphisms, the stack structure at the boundary that stems
from twist groups, agrees with the ghost automorphisms of the ambient stratum and
the intersection pattern is essentially determined by the profiles of the level graph, a
subset of the profiles of the ambient stratum.

(i1) In the presence of horizontal edges there are toric singularities. Working with
the appropriate definition of the logarithmic cotangent sheaf these singularities do not
matter. This sheaf decomposes into summands from horizontal nodes, from the level
structure, and the deformation of the differentials at the various levels, just as in the
ambient stratum.

3.1. Linear submanifolds in generalized strata

Let QM , (1) denote the moduli space of Abelian differentials of possibly meromor-
phic signature . Despite calling them ‘moduli space’ or ‘strata’, we always think of
them as quotient stacks or orbifolds and intersection numbers etc. are always under-
stood in that sense. These strata come with a linear structure given by period coordi-
nates (see, e.g., [58] for an introduction). A linear submanifold Q¥ of QMg (1) is
an algebraic stack with a map QH — QMg , (1) which is the normalization of its
image and whose image is locally given as a finite union of linear subspaces in period
coordinate charts. See [24, Example 4.1.10] for an example that illustrates why we
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need to pass to the normalization for QJ to be a smooth stack. In the context of
holomorphic signatures and GL, (R)-orbit closures, the linear manifolds obtained in
this way can locally be defined by equations with R-coefficients [21,22]. We refer to
them as R-linear submanifolds. In this context, the algebraicity follows from being
closed by the result of Filip [23], but in general algebraicity is an extra hypothesis.

To set up for clutching morphisms and a recursive description of the boundary
of compactified linear submanifolds, we now define generalized strata, compare [13,
Section 4]. For a tuple g = (g1, ..., gx) of genera and a tuple n = (nq, ..., ng),
together with a collection of types 0 = (i1, ..., i) With |u;| = n;, we first define
the disconnected stratum

k
QMgn(p) = [ ] Q@Mg; n, (113).

i=1

Then, for a linear subspace N inside the space of the residues at all poles of u we
define the generalized stratum Qa\lgfn(u) to be the subvariety with residues lying
in . Generalized strata obviously come with period coordinates and we thus define
a generalized linear submanifold Q J to be an algebraic stack together with a map to
QeMgfn (p), whose image is locally linear in period coordinates, and where Q J# is the
normalization of its image.

Rescaling the differential gives an action of C* on strata and the quotient are
projectivized strata PQ Mg ,, (11). The image of a linear submanifold in PQM ,, (1)
is called projectivized linear manifold ¥, but we usually omit the ‘projectivized’.

We refer with an index B to quantities of the ambient projectivized stratum, such
as its dimension dp and the unprojectivized dimension Ng = dp + 1. The same letters
without additional index are used for the linear submanifold, e.g., N = d + 1, and
we write dg and Ny only if ambiguities may arise.

3.2. Multi-scale differentials: Boundary combinatorics

We will work within the moduli stack of multi-scale differentials B := P E.M gn (L)
which provides a compactification of the stratum B := PQM, (1) and was con-
structed in [5]. We recall some of its key properties, as detailed in [5] and further
discussed in [13, Section 3]. Everything carries over with obvious modifications to
the compactification P 2 ﬂgfn () 0£ generalized strata, see [13, Proposition 4.1].
Each boundary stratum of P E.M, , (1) has its associated level graph I', a stable
graph of the underlying pointed stable curve together with a weak total order on the
vertices, usually given by a level function normalized to have top level zero, and an
enhancement «, > 0 associated to the edges. Edges are called horizontal, if they start
and end at the same level, and vertical otherwise. Moreover, k., = 0 if and only if
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the edge is horizontal. We denote the closure of the boundary stratum of points with
level graph I by Df? and, for any level graph A that is a degeneration of I', we let
Dﬁ ’Z - Df? be the open subset parametrizing multi-scale differentials compatible
with an undegeneration of A. In particular, the points of DIE ° = Dg 13 represent
multi-scale differentials with level graph exactly I". These DIE are in general not
connected, and might be empty (e.g., for unsuitably large «,).

We let LGy (B) be the set of all enhanced (L + 1)-level graphs without horizontal
edges. The structure of the normal crossing boundary of P E M ¢.n (1) is encoded by
undegenerations. For any subset I = {i1,...,i,} € {l,..., L}, there are undegener-
ation map

8iy,..in: LGL(B) — LG, (B),

that preserves the level passage given as a horizontal line just above level —i and
contracts the remaining level passages. We define SE =4,c.

The boundary strata Dllf for I' € LG (B) are commensurable to a product of
generalized strata Bl[f l=pg ﬂg} 'n; (;) defined via the following diagram:

-1 B,o C B,s
cr (Dra) » Dr

qan
o B er @

A
pR Cr\/‘

[T—_ BL' =: Br +—=— Bra DEy <+ DE.

Here g;, n; and u; are the tuples of the genera, marked points and signatures of the
components at level i of the level graph and 3; is the global residue condition induced
by the levels above. The covering space Dﬁ ** and the moduli stack Bfl, A of simple
multi-scale differentials compatible with an undegeneration of A were constructed
in [13, Section 4.2].

3.3. Multi-scale differentials: Prong-matchings and stack structure

The notion of a multi-scale differential is based on the following construction. Given
a pointed stable curve (X, z), a twisted differential is a collection of differentials 7,
on each component X, of X, that is compatible with a level structure on the dual
graph I of X, i.e., vanishes as prescribed by w at the marked points z, satisfies the
matching order condition at vertical nodes, the matching residue condition at hori-
zontal nodes and global residue condition of [3]. A multi-scale differential of type |
on a stable curve (X, z) consists of an enhanced level structure (T, £, {k.}) on the
dual graph I' of X, a twisted differential @ of type p compatible with the enhanced
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level structure, and a prong-matching for each node of X joining components of non-
equal level. Here a prong-matching o is a cyclic order-reversing identification of the
horizontal (outgoing resp. incoming) real tangent vectors at a zero resp. a pole corre-
sponding to each vertical edge of I". Multi-scale differentials are equivalences classes
of (X, z,T",d) up to the action of the level rotation torus that rescales differentials on
lower levels and rotates prong-matchings at the same time.

To an enhanced two-level graph we associate the quantity

{r =lem(k.:e € E(I)),

which appears in several important places of the construction of PE M, , (1):

(i) It is the size of the orbit of prong-matchings when rotating the lower level
differential.

Closely related:

(i1) The local equations of a node are xy = tf r/ “e where t; is a local parameter

(a level parameter) transverse to the boundary. As a consequence a family of
differential forms that tends to a generator on top level scales with tf " on the
bottom level of I".

For graphs with L level passages we define {; = {r; = {5,(r) to be the lcm of the
edges crossing the i -th level passage and {p = ]_[iL=1 Lr;.

There are two sources of automorphisms of multi-scale differentials: on the one
hand, there are automorphism of pointed stable curves that respect the additional
structure (differential, prong-matching). On the other hand, there are ghost auto-
morphisms, whose group we denote by Ghr = Twr /Twy,, that stem from the toric
geometry of the compactification. We emphasize that the twist group Twr and the
simple twist group Twy,, hence also the ghost group Ghr, depend only on the data
of the enhanced level graph and will be inherited by linear submanifolds below. The
local isotropy group Iso(X, ) of M g.n (1) sits in an exact sequence

0 — Ghr — Iso(X,w) — Aut(X,@w) — 0

and locally near (X, z, I, o) the stack of multi-scale differentials is the quotient stack
[U/Iso(X,®)] for some open U C CVB, see [9, Remark 2.1]. The same holds for
PEM, , (1) where the automorphism group is potentially larger since @ is only
required to be fixed projectively.

3.4. Decomposition of the logarithmic tangent bundle

We now define a I'-adapted basis, combining [7] and [13] with the goal of giving a
decomposition of the logarithmic tangent bundle that is inherited by a linear subman-
ifold, if the I"-adapted basis is suitably chosen.
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We work on a neighborhood U C B of a point p = (X, [@],z) € DB’° where I'
is an arbitrary level graph with L levels below zero. On a nearby smooth surface
(X ®,Z) we let a[ il forz =0, ..., —L be the vanishing cycles around the horizontal
nodes at level i. Let ,3 be a dual horizontal-crossing cycle, i.e., i is the top level (in
the sense of [7]) of thls cycle, (aj[-i], ﬁ][.i]) =1 and ﬂj[-i] does not have non-zero inter-
section with any other horizontal vanishing cycle at level i. Let & (i) be the number of
those horizontal vanishing cycles at level i.

We complement the cycles ,BJ[.i] by a collection of relative cycles y}i] such that
for any fixed level i their top level restrictions form a basis of the cohomology at
level i with punctures at the poles and at horizontal nodes and relative to the zeros

of w quotiented by the subspace of global residue conditions. In particular, the span
[i] [i]

of the Y contains the o; ¥ , and moreover the union
[7] []] [7] (7] : : °\ P 7
U {ﬂ .. h(]),yl s Ys() isabasis of H1 (X \ P, Z,C),

Jj==

where Z U P = z is the set of zeros and poles of @". Next, we define the w-periods
of these cycles and exponentiate to kill the monodromy around the vanishing cycles.
The functions

il _ il _ il _ i1, [i] il _
a;" = /a[_i]w, b = /ﬁ[j]a), q;" = exp(Znij /aj ), ¢’ = /y[."] )
J J J

are however still not defined on U (only on sectors of the boundary complement) due
to monodromy around the vertical nodes.

Coordinates on U are given by perturbed period coordinates ([5]), which are
related to the periods above as follows. For each level passage there is a level param-
eter t; that stem from the construction of the moduli space via plumbing. On the
bottom level passage L we may take t;, = cE_L] as a period. For the higher level pas-
sage, the #; are closely related to the periods of a cycle with top level —i, but the latter

are in general not monodromy invariant. It will be convenient to write
i L
l‘|'i]=l_[l‘-j, i eN
Jj=1

There are perturbed periods ¢’ c 1 obtained by integrating w/ ;1 against a cycle with
top level —i over the part of level —I to points nearby the nodes, cutting off the lower
level part. By construction, on each sector of the boundary complement we have

(-]

-1 € ITs] o[~s]
e B N LAY 3)
! i1 ;fm 7



M. Costantini, M. Moller, and J. Schwab 14

for some linear (‘error’) forms E [=s] depending on the variables c][._s]
level —s. Similarly, we can exponentlate the ratio over aj[_’]

—i]

on the lower
of the similarly perturbed

b[ il and obtain perturbed exponentiated periods ¢ q ; , such that on each sector

~[—i t _
log7, ! ~logqy =Y FEL] 0

§>1 fil

[

for some linear forms E s In these coordinates the boundary is given by q[ L

and t; = 0. If we let

QMg (log) = (dgV )G\, ... Thy). Qg (og) = (di_i/1),

1 _ ~[l ~[i]
Qg =(dcy ... dChiy_piy)

with Qle "p(log) = 0 by convention, we thus obtain a decomposition

0

QLogdB)|lu = P (@I (log) & QI (log) & Q%%). )
i=—L

3.5. The closure of linear submanifolds

For a linear submanifold # we denote by # the normalization of the closure of the
image of # as a substack of Z .M ¢.n(11). We denote by Dp = DI‘Z" the preimage of the
boundary divisor Df? in #. Again, a o denotes the complement of more degenerate
boundary strata, i.e., Dgg ® is the preimage of D1§ in K.

We will now give several propositions that explain that H is a compactification
of # almost as nice as the compactification IP & M ¢.n () of strata. The first statement
explains the ‘almost’.

Proposition 3.1. Let I' be a level graph with only horizontal nodes, i.e., with one
level only. Then Dﬁe *° has at worst toric singularities.

More precisely, the linear submanifold is cut out by linear and binomial equations,
see (8) below.

Second, the intersection with non-horizontal boundary components is transversal
in the strong sense that each level actually causes dimension drop.

Proposition 3.2. Let I' € LG, (B) be a level graph without horizontal nodes. Each

. . o .
pointin D" is smooth and D *° is a normal crossing divisor given as the intersec-

tion of L dlﬁ”erent divisors D(S )" In particular, Dgf has codimension L in ¥ .
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Fix now an enumeration of two level graphs, i.e., a bijection between LG; (B) and
{L,...,|LG1(B)|}, and define

to be the subset of all Dy, with A € LGL(B), such that §;(A) = T, for all j =
1,..., L. The previous proposition allows to show, via the same argument as the
proof of [13, Proposition 5.1], the key result in order to argue inductively.

Corollary 3.3. If ﬂ;‘:l Dgf _is not empty, there is a unique ordering o € Sym; on
the set of indices I = {iy, . .{, ir} such that

L
I
Do(ry = ﬂ Dy -
j=1

Moreover, if iy = iy for a pair of indices k # k', then D;, .. ;, = 0.

The next statement is crucial to inductively apply the formulas in this paper.
We now need to refine our analysis by looking at irreducible components of D#g .
Recall that LGT(J() is the set of pairs '™ = (I",i), where I' € LG{(H#) and i €
{1,....np(H#)} is the index set of irreducible components of Dﬁe *°. We denote
by D 7+ the irreducible component of Dgf corresponding to I't. Recall that pr
and cr are the projection and clutching morphisms of the diagram (2).

Proposition 3.4. There are generalized linear submanifolds Q. JH, [L] — QMgf n; (i)

I[fl , such that

0
Y di=dyx—L

i=—L

of dimension d; with projectivization H#

and such that the normalizations Jfl[f — B of closures of J(’ ° together give a
product decomposition

Hrt = ]_[ w1
i=—L

of the normalization of the pr-image of the cr-preimage of Im(D ) CPE Mg 2 ().

We will call J(’#’l — BI[i the i-th level linear manifold. Our ultimate goal here

is to show the following decomposition. The terminology is explained along with the
definition of coordinates.
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Proposition 3.5. Let I' be an arbitrary level graph with L levels below zero. In a
small neighborhood U of a point in Dgg there is a direct sum decomposition

0
QY (logd30)|u = P (2 (log) ® [ (log) & Q) 6)

i=—
for certain subsheaves such that the natural restriction map induces surjections
Q?"Ir} (log)| 7 — QMr(log), 521°VB (log)| 7 =~ Qv (log) and Q“"l 7 —> Qe

Moreover, the statements in items (i) and (ii) of Section 3.3 hold verbatim for the
linear submanifold with the same {r.

As a consequence we may use the symbols {1 and £r; ambiguously for strata and
their linear submanifolds.

We summarize the relevant parts of [7]. Equations of # are interpreted as homol-
ogy classes and we say that a horizontal node is crossed by an equation, if the
corresponding vanishing cycle has non-trivial intersection with the equation. The
horizontal nodes are partitioned into J-cross-equivalence classes by simultaneous
appearance in equations for #. A main observation is that w-periods of the van-
ishing cycles in an # -cross-equivalence class are proportional. Similarly, for each
equation and for any level passage the intersection numbers of the equation with the
nodes crossing that level add up to zero when weighted appropriately with the residue
times {1 /k. ([7, Proposition 3.11]).

Next, in [7] they sort the equations by level and then write them in reduced row
echelon from. One may order the periods so that the distinguished cgi] (whose period
is close to the level parameter 7_;) is among the pivots of the echelon form for each i.
The second main observation is that each defining equation of # can be split into
a sum of defining equations, denoted by F, [i]
upper index i indicate the highest level, whose periods are involved in the equation.
Moreover, either F ,Ei] has non-trivial intersection with some (vanishing cycles of a)

, with the following properties. The

horizontal node at level i and then no intersection with a horizontal node at lower
level, or else no intersection with a horizontal node at all.
As a result, J is cut out by two sets of equations, see [7, equations (4.2)—(4.4)].
First, there are the equations G ,E’  that are tr—;1-rescalings of linear functions
Gl _ 70l ~li]
G = Ly (Cpgtiys - Nyt 0
in the periods at level i. (To get this form from the version in [7] absorb the terms

from lower level periods into the function c where j = j(k,i) is the pivot of the
equation F [] This does not affect the truth of 3)).
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Second, there are multiplicative monomial equations among the exponentiated
periods, that can be written as bi-monomial equations with positive exponents

H}Ei] _ (q[i])-ll.k _ (q[i])Jz.k’ (8)

where q[’] is the tuple of the variables q[ il

and Jy , J» k are tuples of non-negative
integers. (In the multiplicative part, Benlrschke—Dozier—Grushevsky [7] already inc-

orporated the lower level blurring into the pivot variable.)

Proof of Proposition 3.1. This follows directly from the form of the binomial equa-
tions (8), see [7, Theorem 1.6]. ]

Proof of Proposition 3.2. Smoothness and normal crossing is contained in [7, Corol-

lary 1.8]. The transversality claimed there contains the dimension drop claimed in

the proposition. The more precise statement in [7, Theorem 1.5] says that after each

intersection of ¢ with a vertical boundary divisor the result is empty or contained in
.. B.o

the open boundary divisor D"". |

Proof of Proposition 3.4. This is the main result of [6] or the restatement in [7, Propo-
sition 3.3], and this together with Proposition 3.2 implies the dimension statement. =

Proof of Proposition 3.5. Immediate from (7) and (8), which are equations among
the respective set of generators of the decomposition in (5). The additional claim in
item (ii) follows from the isomorphism of level parameters and transversality. Item (i)
is a consequence of this. u

3.6. Push-pull comparison for linear submanifolds

For recursive computations, we will transfer classes from J(’l[fl which were defined
via Proposition 3.4, to Dﬁ‘; essentially via pp+-pullback and cp+-pushforward. More
precisely, taking the normalizations into account, we have to use the maps cp+ g and
pr+,g defined on the normalization Jfrs, 4 of the cp+-preimage of the image of Dg‘] gl
in Dllf - To compute degrees we use the analog of the inner triangle in (2) and give a
concrete description of Jf

Recall from the 1ntr0duct10n that KI‘ . is the product of the number of prong-
matchings on each edge of I that are actually contained in DIJ,( il

(2, )P s Jegﬁ

% Blﬂr \

Q:%IC:JF e Jfr+ — B[‘r‘
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Consider QHL, =[] QJfl[fl as a moduli space of differentials subject to some
(linear) conditions imposed on its periods. Consider, moreover, the moduli space

@z = ([Toxl)".

where we add the additional datum of one of the Kﬁ‘; prong-matchings reachable
from the interior. The torus (C*)Z+! acts on QJ2 . with quotient J2, =[] J€I[i°
On the other hand, if we take the quotient of (2 )"™ by

(C*)L—i-l — ((C*) % ((CL/TW%),

;’i, which is naturally the normalization of a subspace of U; +

since it covers D?g f with marked (legs and) edges and whose generic isotropy group

we obtain a space H

does not stem from Ghr (it might be non-trivial, e.g., if a level of '™ consists of
a hyperelliptic stratum), while the generic isotropy group of DI‘%g ° is an extension
of Ghr by possibly some group of graph automorphisms and possibly isotropy groups

of the level strata.

Lemma 3.6. The ratio of the degrees the maps in (9) on J} is

deg(pr+.5e) _ K
deg(cr+ g)  |Autg(TH)[lp+’

where Autg (I'V) is the subgroup of Aut(T") whose induced action on a neighborhood
ofDI'Zﬂ_ preserves H# and by+ = L.

Proof. We claim that deg(pr+ g) = Kﬁi/[Rr : Twi.], where Rr =~ ZL c CL is
the level rotation group. In fact, this follows since in the left quadrilateral in (9) the
left vertical arrow has degree K g‘) -+ while the bottom arrow is the quotient by (C*) x
((C*)E/Rr) and the top arrow is quotient by (C*) x (C*)E/Tws..

On the other side under the map cll: of the ambient stratum two points have the
same image only if they differ by an automorphism of I'. However, only the subgroup
Autge (T*) C Aut(T") acts on cp+ g (#,}) and its normalization and contributes to
the local isotropy group of the normalization. Thus only this subgroup contributes to
the degree of ¢+ . The claimed equality now follows because [Rr : Twp] =4{r. =

Consider 't = (T, j) € LGiL (#)and AT € LG} (Jfl[fl) defining an irreducible
component of a divisor in _J(’l[f l We aim to compute its pullback to Df, + and the push
forward to Dp+ and to J. For this purpose we need extend the commensurability
diagram (9) to include degenerations of the boundary strata. This works by copying
verbatim the construction that lead in [13] to the commensurability diagram (2). We
will indicate with subscripts J to the morphisms that we work in this adapted setting.
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Recall from this construction that in By, Ir (and hence in J¢2 +) the edges of I" have
been labeled once and for all (we write T'F for this labeled graph) and that the level
strata Jf[’l inherit these labels. Consequently, there is a unique irreducible compo-
nent D~T associated to a level graph At which is a degeneration of I'T and such that
the products of the levelsi and i — 1 of D+ equals J€ + . The resulting refined unla-
beled graph will simply be denoted by At. 4For a fixed labeled graph I'T we denote by
J(TF, A*) the set of A* € LG} (Hr L1 1) such that A¥ is the result of that procedure.

Obviously the graphs in J(I'T, A+) differ only by the labeling of their half-edges and
the following lemma computes its cardinality.

Lemma 3.7. The cardinality of J(T'T, Z*’) is determined by

(T A - Autge (AT)] = [ Autygin (AT)]- | Autge ().

Proof. The proof is analogous to the one of [13, Lemma 4.6], where one considers
the kernel and cokernel of the map

@: Autg (AT) = Autg(T'H)
given by undegeneration. u

We now determine the multiplicities of the push-pull procedure. Recall from Sec-
tion 3.3 the definition of £r,; = £5,(r) for j € Z>;.

Proposition 3.8. For a fixed AT € LG+ (H [’]) the divisor classes of D~ and the
clutching of D . are related by

|AUt3€(Z+)| * [ ]
- C
| Aut i (AT)[[Autge (D) T
T+

P IDE] 10y
A—t-‘rl

in CH! (H{4), and consequently by

~ . +
| Autge (A1) |Aut‘7€1[~']|- (AT
T Boin PR = g o e (R PE)
’ (1n
in CH (Dp+).

Here (10) is used later for the proofs of the main theorems while (11) is imple-
mented in diffstrata for the special case of k-differentials to compute the pullback

of tautological classes from D 4 to D X4 See also Section 7.

Proof. The proof is similar to the one of [13, Proposition 4.7] and works by com-
paring the ramification orders of the maps clé: 4 and plé: 4+ The main difference
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to the original proof is only that the automorphism factors appearing in the clutching
morphisms are the ones fixing irreducible components of #. ]

The final part of this section is to compare various natural vector bundles under
pullback along the maps cp+ g and pr+ z. The first bundle we consider is 8;,'— 4
vector bundle of rank NIT L. —1on Dﬁ‘; that should be thought of as the top level
version of the logarithmic cotangent bundle. Formally, let U C Di" - be an open set

centered at a degeneration of the top level of I'" into k level passages. Then we define

0

81:'—+‘U = P Qilog)y ® Q" (log)w & . (12)
i=—k

I[i 4 be the first Chern class of the line bundle on Dgg - generated

by the multi-scale component at level i and J‘igﬁl be the line bundle whose divisor is

given by the degenerations of the i-th level of I'", as defined more formally in (16)

Let, moreover, £

below.
We have the following compatibilities.

Lemma 3.9. The first Chern classes of the tautological bundles on the levels of a
boundary divisor are related by

Cre g él['fl‘,,%’ = pl[“l]J;TJeSJe;’flr in CH' (H7.).

It is also true that

[i] [i]
i]* $ $r1‘+’

Pr+ g where £

=0

i LaDnp ).
J€1E]+( > A)

*

i =c
gl = ‘ot "
AeLGy ()

[7]
'%I‘+

Similarly for the logarithmic cotangent bundles, we have

p{Pw]:TJZQ;e[FOJF (log D,;telﬂ) = CF+,3681T+,,7€'

Proof. The first claim is just the global compatibility of the definitions of the bundles
O (—1) on various spaces, compare [13, Proposition 4.9].

The second claim is a formal consequence of Lemma 3.7 and Proposition 3.8, just
asin [13, Lemma 7.4].

The last claim follows as in [13, Lemma 9.6] by considering local generators,
which are given in equation (12) and have for linear submanifolds the same shape as
for strata. ]

In the final formulas we will use these compatibilities together with the following
restatement of Lemma 3.6.
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Lemma 3.10. Suppose that o+ € CHy (DIJ,( ) is a top degree class and that

—L(F+)
g0+ = [1 P¥]+ ¥
i=0
for some o;. Then
KJ( —L(I71)

_ r+
/Dizg = [Rute s L /ﬂm

4. Evaluation of tautological classes

This section serves two purposes. First, we briefly sketch a definition of the tautolog-
ical ring of linear submanifolds and how the results of the previous section can be
used to evaluate expressions in the tautological ring, provided the classes of the linear
manifold are known. Second, we provide formulas to compute the first Chern class of
the normal bundle N p 0a boundary divisor D of a projectivized linear
submanifold #. This is needed both for the evaluation algorlthm and as an ingredient
to prove our main theorems.

4.1. Vertical tautological ring

We denote by v; € CH! (#) the pullbacks of the classes y; € CH' (M ¢,n) to alinear
submanifold J. The clutching maps are defined as Clp+ g = ip+ g © cr+ g, Where
ip+ g DI'Z" > J is the inclusion map of an irreducible components c_>f the boundary
divisor. We define the refined (vertical) tautological ring R (F) of K to be the ring
with additive generators

clr+ e, (]_[ g ) (13)

where T'" runs over all irreducible components of boundary components associated
to level graphs without horizontal edges for all boundary strata of J, including the
trivial graph, and where «; is a monomial in the y-classes supported on level i of
the graph T'". That this is indeed a ring follows from the excess intersection for-
mula [13, Proposition 8.1] that works exactly the same for linear submanifolds, and
the normal bundle formula Proposition 4.4 which allows together with Proposition 4.1
to rewrite products in terms of our standard generators. We do not claim that push-
forward R%(H) — CH®*(M, ,) maps to the tautological ring R*(My ), since the
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fundamental classes of linear submanifolds, e.g., loci of double covers of elliptic
curves, may be non-tautological in M 2.0 (see, e.g., [29]).

If « € CHy(H#) is a top-degree class which is also an additive generator of the
tautological ring, i.e., it is has an expression as in (13), we can apply Lemma 3.10 to
obtain

0. KJ(’+ -L(TT)
i],* _ r
/ o _/ clp+ e (l_[pF+J€ ) ~ | Autge (D) o+ ll_[ /J(,[,]

To evaluate this expression, one needs to determine the fundamental classes of the

level linear submanifolds J¢!'! -+ in their corresponding generalized strata, which is in
general a non-trivial task.

In the case where o € CHo(K) is a special top-degree class supported on a full
boundary stratum Dr, and not only on one of its components D+, there is a possibly
different way to evaluate it. Indeed, note first that

1G)
o = clr g (nprﬂ(nwm)) =yl yPr D

since the Y classes are compatible under clutchings and projections.
If one knows the class [#] € CHgim(ge) (P E M » (1)) and this class happens to
be tautological, one may evaluate

o= [ bt )1

using the methods described in [13]. This has the advantage of not requiring the com-
putation of the classes of all the level linear submanifolds ](’l[f I

4.2. Evaluation of & 4

If we want to evaluate a top-degree class in CHo(H) that is not just a product of /-
classes and a boundary stratum, but also involves the £g-class, we can reduce to the
previous case by applying the following proposition.

Proposition 4.1. The class &z on the closure of a projectivized linear submanifold H
can be expressed as

g =(mi+yi— Y, (r[DY],

e, LG (J)

where ;LG (H) are two-level graphs with the leg i on the lower level.
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Proof. The formula is obtained by pulling-back the formula in [13, Proposition 8.1]
to J and thereby using the transversality statement from Proposition 3.2. ]

We remark here that in some cases it is possible to directly evaluate the top £gz-
powers by using that we can represent the powers of the £g-class via an explicit
closed current.

Let PQMg ,, (1) be a holomorphic stratum, i.e., a stratum of flat surfaces of finite
area or equivalently all the entries of u are non-negative. Then there is a canonical
hermitian metric on the tautological bundle Opgq., , () (—1) given by the flat area
form

h(X,w,z) = areay (w) = l—/ w A,
2 Jx

which extends to a singular hermitian metric of the tautological bundle on the space
PEM, , (). If H —>PEM ¢.n (1) is the compactification of a linear submanifold of
such a holomorphic stratum, then the area metric induces a singular hermitian metric,
which we denote again by 4, on the pullback @ z(—1) of the tautological bundle
to . Recall from Proposition 3.1 (combined with the level-wise decomposition in
Proposition 3.4) that the singularities of JH are toric. Let X' — H be a resolution
of singularities which is locally toric.

Proposition 4.2. Let #'" — P Eﬂgjn (i) be a resolution of a compactified linear
submanifold of a holomorphic stratum. The curvature form 2’—]1 [F7] of the pull metric h
to H'" is a closed current that represents the first Chern class c1(O o (—1)). More
generally, the d-th wedge power of the curvature form represents c1(0Q J;m,.(—l))d for
any d > 1.

Proof. In [15, Proposition 4.3] it was shown that on the neighborhood U of a bound-
ary point of PEM, , (1) in the interior of the stratum Dr the metric / has the form

L
— 2 (ptck h
h(X,q) = Yl P (R + B + 1), (14)
i=0
where ht(‘f‘l.) (coming from the ‘thick’ part) are smooth positive functions bounded
away from zero and

( i)
Ver . ZRverl)plongl’ hl(lgrl . Z Rh01'l)]10g|q[l]| (15)

where Ri®,) s a smooth non-negative function and Rl(“’r) . is a smooth positive
function bounded away from zero, both involving only perturbed period coordinates
on levels —i and below.
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The statement of the proposition in loc. cit. follows by formal computations from
the shape of (14) and the properties of its coefficients, see [15, Propositions 4.4
and 4.5]. We thus only need to show that in local coordinates of a point in #'°" (map-
ping to the given stratum Dr) the metric has the same shape (14). For this purpose,
recall that by Proposition 3.4, the level parameters #; are among the coordinates. On
the other hand, a toric resolution of the toric singularities arising from (8) is given

by fan subdivision and thus by a collection of variables y[-i] for each level i, each of

which is a product of integral powers of the qj[-i] at that level i. Conversely, the map
H'" — PEM, , (1) is given locally by qj[.l] = ]_[k(y,[:])bfvﬁk for some b; jx € Zxo,
not all of the b; ; x = 0 for fixed (i, j). Plugging this into (14) and (15) gives an
expression of the same shape and with coefficients satisfying the same smoothness

and positivity properties. Mimicking the proof in loc. cit. thus implies the claim. =

For a linear submanifold # consider the vector space given in local period coordi-
nates by the intersection of the tangent space of the unprojectivized linear submanifold
with the span of relative periods. We call this space the REL space of # and we denote
by Ry its dimension.

Using Proposition 4.2 we can now generalize the result about vanishing of top
&-powers on non-minimal strata of differentials to linear submanifolds with non-zero
REL (see [50, Proposition 3.3] for the holomorphic Abelian strata case).

Corollary 4.3. Let # — PEM ¢.n () be a linear submanifold of a holomorphic
stratum. Then

/g;_(,azo fori >dyx — Ry + 1,
g

where dge is the dimension of # and Ry is the dimension of the REL space and
where « is any class of dimension dg —i.

Proof. Since the area is given by an expression in absolute periods, the pullback of &
to J'°" is represented by Proposition 4.2 by a (1, 1)-form involving only absolute
periods (see [50, Lemma 2.1] for the explicit expression in the case of strata). Taking
a wedge power that exceeds the dimension of the space of absolute periods gives
Zero. ]

4.3. Normal bundles

Finally, we state the normal bundle formula, which is necessary to evaluate self-
intersections, which is for example needed to evaluate powers of £z . More generally,
we provide formulas for the normal bundle of an inclusion

: . nH H
Ir+,mo+: DF+ — Dn+
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between irreducible components of non-horizontal boundary strata of relative codi-
mension one, say defined by the L-level graph IT and one of its (L + 1)-level graph
degenerations I'. This generalization is needed for recursive evaluations. Such an
inclusion is obtained by splitting one of the levels of TIT, say, for example, the level
i €{0,—1,...,—L}. Here we use the structure of the equations cutting out the linear
manifold in Section 3.4 to observe that j is a regular embedding, in fact with ideal
sheaf locally generated by the parameter ¢;, to talk about normal bundles (as opposed
to merely normal sheaves). In particular, these regular embeddings j and thus also
their compositions i come with classes in operational Chow groups (see [25, Sec-
tion 17] for background and, e.g., [1, Section 2] for the extension to stacks). This is
the language that justifies all the intersection theory we need working on the (sin-
gular) stack #. We do not reflect this in our notation of Chow groups since for the
morphisms we consider, all formulas of the classical setting carry over. We define

£l = Opi, ( > Ezt_iHD%‘;) foranyi € {0,—1,...,—L}, (16)
r+d A+
where the sum is over all refined graphs At e LGZ 4o (J0) that yield divisors in Dg‘] 2
by splitting the i -th level, which in terms of undegenerations means SEi 41( EJF) =TT,
The following result contains the formula for the normal bundle as the special case
where IT is the trivial graph.

Proposition 4.4. For M+t (or equivalently for SEHI(F“L) = "), the Chern
class of the normal bundle ‘NFJi,H‘F = ND1{€+ /D§+ is given by

1 i ~ i—1 .
cl("vf?fL,n+) - m(_gl[ﬂr,;e - Cl(:ﬁ?]Jr,Je) + g1["l+,.;€) n CHI(D#r)‘
L (—i
Proof. We use the transversality statement Proposition 3.2 of # with a boundary
stratum DIE . in order to have that the transversal parameter is given by f;. Then the
proof is the same as the one in the case of Abelian strata, see [13, Proposition 7.5]. m

Since in Section 8 we will need to compute the normal bundle to horizontal divi-
sors for strata of k-differentials, we provide here the general formula for the case of
smooth horizontal degenerations of linear submanifolds.

Proposition 4.5. Let Dig C D% be a divisor in a boundary component D* obtained
by horizontal degeneration. Suppose that the linear submanifold is smooth along Dh‘%
and let e be one of the new horizontal edges in the level graph of DZC. Then the first
Chern class of the normal bundle N l‘);i is given by

c1(NJE) = =Y+ — Yo € CH'(DH),

where et and e~ are the half-edges associated to the two ends of e.
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Proof. Similarly to the proof of [13, Proposition 7.2], consider the divisor D, in M a.n
corresponding to the single edge e and denote by N, its normal bundle. The forgetful
map f: Dy — D, induces an isomorphism NV, g‘;’ — f*Np, (compare local gener-
ators!) and the formula follows from the well-known expression of Np, in terms of
¥-classes. |

We will need the following result about pullbacks of normal bundles to apply the
same arguments as in [13] recursively over inclusions of boundary divisors. The proof
is the same as in [13, Corollary 7.7], since it follows from Proposition 4.4 that we can
j-pullback properties of & and éC[Il;] that hold on the whole stratum and hence on linear
submanifolds.

Lemma 4.6. Let 't € LGZ (#) and let At be a codimension one degeneration of
the (—i + 1)-th level of T'T, i.e., such that T+ = SE(Z’L)forsomei e{l,...,.L+1}.
Then

) 7 .

iy o (O e (M ) ZA""CI('NE/S,’;(B)) forJ <t

1% r,j C1 =

A+ r+\tThJ r+/64r+) 054 j41C1 (‘Ngi/gt (Z+)) otherwise.
U+

5. Chern classes of the cotangent bundle via the Euler sequence

The core of the computation of the Chern classes is given by two exact sequences
that are the direct counterparts of the corresponding theorems for Abelian strata. The
proof should be read in parallel with [ 13, Section 6 and 9] and we mainly highlight the
differences and where the structure theorems of the compactification from Section 3.5
are needed.

Theorem 5.1. There is a vector bundle X on ¥ that fits into an exact sequence
0> KL (B @05(-1) S 04 -0,

where J?rlel is the Deligne extension of the local subsystem that defines the tangent
space to QH inside the relative cohomology H

Ie.

\.Bl7z» such that the restriction of X
to the interior ¥ is the cotangent bundle Q}%, and for U as in Proposition 3.5, we
have

0
Ky = € 11-i1- (24" (log) & Q' (log) & Q).
i=—L
The definition of the evaluation map and the notion of Deligne extension on a
stack with toric singularities requires justification given in the proof. For the next
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result we define the abbreviations

€y = Q(logdH) and i,g:@ﬁ( > ew#")

T'elG; (B)
that are consistent with the level-wise definitions in (12) and (16).

Theorem 5.2. There is a short exact sequence of quasi-coherent O z-modules
0> Ex Ly — K —€—0, 17

where € = @re; g, () Cr is a coherent sheaf supported on the non-horizontal boun-
dary divisors, whose precise form is given in Proposition 5.4 below.

Proof of Theorem 5.1. We start with the definition of the maps in the Euler sequence
for the ambient stratum, see the middle row in the commutative diagram below. It uses
the evaluation map

evp: (Ha ) ®Op(—1) > 05, yQw / w,
v

restricted to #. The first map in the sequence is
dc,-l—)(yi—ﬁak)@)a), i=1,.... k.. ..N (18)
Ck

as usual in the Euler sequence, on a chart of # where ¢y is non-zero. The exactness
of the middle row is the content of [13, Theorem 6.1].

We next define the sheaf Eq. In the interior, Eq is the local system of equations
cutting out QJ, and thus the quotient (#1))¥ = (%ril, )" /Eq is the relative homol-

ogy local system, by definition of a linear manifold. The proof in [13, Section 6.1]

concerning the restriction of the sequence to the interior # uses that # has a linear

1

structure with tangent space modeled on the local system H_,.

In particular, it gives
the claim about K | .

As an interlude, we introduce notation for the Deligne extension of (H r}el B)V.
For each y[i], we let ?}i] be it extension, the sum of the original cycles and van-

ishing cycles times logarithms of the coordinates of the boundary divisors to kill

ol = ! f ®
T - S

J

monodromies. The functions

are called log periods in [7].
We now define Eq at the boundary, say locally near a point p € Dr, to be the sub-
sheaf of (Jfrizl )" generated by the defining equations F, k[l] constructed in Section 3.5,
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but with each variable replaced by its Deligne extension. It requires justification that
this definition near the boundary agrees with the previous definition in the interior.
We can verify this for the distinguished basis consisting of the F’ k[i]. Equations that do
not intersect horizontal nodes agree with their Deligne extension. This cancellation
of the compensation terms is [7, Proposition 3.11] (see also the expression for F, k[i]
after [7, Proposition 4.1]) which displays the w-integrals of the terms to be compared.
For equations Fk[i] that do intersect horizontal nodes (thus only at level i by con-
struction) the difference F, [i](c[s] all (j,s)) — Fy [i] (A[s] all (j, s)) vanishes thanks to
the proportionality of the perlods of horizontal nodes in an J¢-equivalence class and
since on K the equation H}/ ] holds.

By the very definition of defining equation its periods evaluate to zero, explaining
the right arrow in the top row of the following diagram and showing that ev is well
defined on the quotient:

0 > KEq »EQq® O5(=1) ——— 0
L ] \V4 _ evp N J/_ R
0 @i=0 Ir—i- |J€ —> ( relB) b 03@(_1) ? Jé’ > 0
lm l l
0 —— Pyttt QI ——— (XY@ 0z(-1) —2—= 0 s 0.

Here we used the abbreviations
[i1 _ hor lev rel [i] _ ohor lev rel
Qp = Q;p(log) ® 2 p(log) & Q°p, Q= Q" (log) & 2, (log) & ;7.

The surjectivity of gq follows from the definition of the summands in (6). It
requires justification that the image is not larger, since the derivatives of the local
equations of & do not respect the direct sum decomposition (5). More precisely we
claim that K, is generated by two kinds of equations. Before analyzing them, note
that the log periods satisfy by construction an estimate of the form

=i Al-i] 51 Al-s]
G ¢ —Z,_.Ej,i (19)

§>1 fil

s1 on the lower level —s as

with some error term Ej[:k] depending on the variables cj[._
in (3).
For each of the equations (7) the corresponding linear function L[ in the vari-

ables c[ i is an element in Eq. We use the comparisons (19) and (3) to compute its

V- prelmage in Kgq via (18). Itis 777 times the corresponding expression in the ¢; ol
plus a linear combination of the terms #;_g E Els ] . The quotient by such a relation does

not yield any quotient class beyond those in @l —ol[=i1" Qli,
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We write the other equations (8) as (q)/1.47/2k = 1 since we are interested
in torus-invariant differential forms and can compute on the boundary complement.
Consider d log of this equation. Under the first map ¥ of the Euler sequence

i, 0] i b\ 2wl (L

dqg;"/q;" =dlog(q;") =d 2nlﬂ = 5 :
a’

7

Recall from summary of [7] in Section 3.5 that the functions a I for all j, where
(V1. ...  UNG@)—RG)) = J1,k — J2,k 1s non-zero, are rational multlples of each other.
Note moreover that

b[.’]
ﬂ][z] 2 alll = il 1og(q[’])a[’]

is the Deligne extension of ,B[ i1 across all the boundary divisors that stem from hori-
zontal nodes at level i. For the full Deligne extension ,3[ the correction terms for the
lower level nodes have to be added. Together with (4) we deduce that the y-image of

h(@) d~[i] h( ~[i]
Z v [l] [l]

md Vi€jam) ~[z]
m=1 q

m=1 m

differs from the element in Eq responsible for the equation H ,£ only by terms from

lower level s, which come with a factor #;_gq. In this equatlon we used that ak,] = c[’(ln)

for an appropriate j(m). Since cj[(] ) is close to 77— i1C; (]m),
ment indeed belongs to the kernel of i as claimed in the commutative diagram. The
quotient by such a relation does not yield any quotient class beyond those above either.

Since the (8) and (7) correspond to a basis (in fact, in reduced row echelon form)

compare with (3) this ele-

of Eq, this completes the proof. u

Proof of Theorem 5.2. Uses that the summands of K|y are, up to ¢-powers, the de-
composition of the logarithmic tangent sheaf by Proposition 3.5. ]

Corollary 5.3. The Chern character and the Chern polynomial of the kernel K of
the Euler sequence are given by

N-1

ch(X) = Ne¥* —1 and o(XK) = Z(]lv)gf%

i=0

Proof. As aDeligne extension of a local system, (J?rih )" | j has trivial Chern classes
except for ¢g. By construction, the pullback of the sheaf Eq to an allowable modifica-
tion (toric resolution with normal crossing boundary, see the proof of Proposition 2.1)
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is the Deligne extension of a local system. It follows that all Chern classes but ¢ of
this pullback vanish and by push-pull this holds for Eq, too. The Chern class vanishing
for (#!,)" and the corollary follows. L]

To start with the computation of €, we will also need an infinitesimal thickening
of the boundary divisor D‘%, that is, we define D‘% to be its £-th thickening, the non-
reduced substack of # defined by the ideal I F . We will factor the above inclusion
using the notation

JT.e ire —
ir =ire o jre: Dgg Dgf.;)e}(.

We will denote by SCE. = (jp,.)*(éﬁlf) and 8;. = (jr,.)*(é“IT) the push-forward to
the thickening of the vector bundles defined in (16) and (12).

Proposition 5.4. The cokernel of (17) is given by

€= @ tr. wheretr = (ir.)«(6f, ® (£1.)7").

T'elG (B)

Moreover, there is an equality of Chern characters

lr—1

ch((ire)«(Ef. ® (£L)7")) = ch((ip)*( b NI @6Er ® (;ﬁ;)—l)).

J=0

Proof. The second part of the statement is justified by the original argument in [15,
Lemma 9.3].
The first part of the statement follows since, from Theorem 5.1, we know that

K|U — @ l—[t Qhor(log) ® QleV(log) ® Qrel)
i=—L j=1

and from Proposition 3.5 we also know that
(Ex ® £3)lu = @ 1‘[r (2 (log) ® 2 (log) @ Q).
i=—L j=1

where I is an arbitrary level graph with L levels below zero and U is a small neigh-
borhood of a point in Dgg . n

We can finally compute the following result.
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Proposition 5.5. The Chern character of the twisted logarithmic cotangent bundle
Ex ® QC;(} can be expressed in terms of the twisted logarithmic cotangent bundles of
the top levels of non-horizontal divisors as

(1—etr Cl(dVr)))

ch(Ex ® £3) = Nef —1— Z 11“*(Ch(8r) Ch(cf )L )

T'eLG; (B)

Proof. The proof of [15, Proposition 9.5] works in the same way, since the only
tool that was used is the Grothendieck—Riemann—Roch theorem applied to the map
f = ir, which is still a regular embedding. |

Proof of Theorem 1.1 and Theorem 1.2. The final formulas of the full twisted Chern
character, Chern polynomials and Euler characteristic follow from the arguments
used for Abelian strata in [15, Section 9], since they were purely formal starting
from the previous proposition. Here we need a more refined sum distinguishing irre-
ducible components, but this works since the relevant inputs needed are the compati-
bility statement of Lemma 3.9, the formula for pulling back normal bundles given in
Lemma 4.6 and Corollary 3.3 which work in this more refined setting. |

Proof of Theorem 1.3. A formal consequence of Theorem 1.2 and the rewriting in [13,
Theorem 9.10] (with the reference to [13, Proposition 4.9] replaced by Lemma 3.9) is

d .
all
0=y Y Nt [ ITEL )% eo
L=0 r+eLG} (%) "

We now use Lemma 3.10 to convert integrals on a boundary component into the prod-
uct of integrals of its the level strata. ]

6. Example: Euler characteristic of the eigenform locus

For a non-square D € N with D = 0 or 1(mod 4), let
QEp(1.1) € QMan(1, 1) and QWp € QMs,1(2)

be the eigenform loci for real multiplication by @ p in the given stratum; see [8,42,43]
for the first proofs that these loci are linear submanifolds and some background. We
define Ep :=PQEp(1,1) and Weierstrass curve Wp := PQWp as the projectivized
eigenform loci. Associating with the curve its Jacobian, the projectivized eigenform
loci map to the Hilbert modular surface

Xp = H x H/SL(Op & O%).
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Inside Xp let Pp € Xp denote the product locus, i.e., the curve consisting of those
surfaces which are polarized products of elliptic curves. The images of Ep and Wp
are contained in the complement Xp \ Pp.

The goal of this section is to provide a new short proof of Theorem 1.4.

Proof of Theorem 1.4. The Hilbert modular surface Xp is the disjoint union of the
symmetrization of the eigenform locus Ep C QM5 1(1, 1), the product locus Pp of
reducible Jacobians and the Teichmiiller curve Wp. This gives

K(Po) + x(Wp) + 3 1(Ep) = 1(Xp). e

The numerical input is

((Xp)=26(-1) and x(Pp) = —2y(Xp) = =SC(-1).  (@2)

where {=( Q(/D) is the Dedekind zeta function. The first formula is due to Siegel [53]
(see also [56, Theorem IV.1.1]), the second is given in [2, Theorem 2.22] viewing Pp
as the vanishing locus of the product of odd theta functions.

We are left to compute y(Ep), which we will do using the formula for the Euler
characteristic provided in Theorem 1.3. We first need to list the vertical boundary
strata of the linear submanifold Ep C PE M3 (1, 1). This list consists of two divi-
sorial strata only, given in Figure 1.

Hence, in this situation, the formula of Theorem 1.3 gives

Ep

)((ED)=3[ £2 PP V. gT[ 1
Ep P 7| Autg, (Tp)] DL, Prp D,

Ep
Tw £ / 1
DT .
| Autg, Tw)l Jpr “7rw bl

Firstly, note that the top-£-integral on Ep vanishes by Corollary 4.3, since Ep is
a linear submanifold with REL non-zero.

Secondly, the full automorphism groups of the graphs I'p and 'y are trivial and
all three prong-matchings for 'y are reachable since they belong to one orbit of the
prong rotation group. Hence, we obtain

KEP KEP

Cp T'w

ey, __Tw _3
| Autg,, (Tp)| | Autg, (T'w)|

Thirdly, we can identify the top levels DITP and DITW with Pp and Wp respec-
tively. Hence, again by applying Theorem 1.3 to the top level strata, we get

2 =—x(Pp), 2 = —x(Wp).
| oy, ==(P) | g, =)
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0 1] 2

A N
1 1 1 1

Figure 1. The boundary divisors of the eigenform locus E.

Finally, is it clear that

/ 1=1 and [ 1=1,
D#P D

i
Py
since there is unique differential up to scale of type (1,1, =2, —2) on P! with vanish-

ing residues and Df:W >~ Mo 3.
From the previous computations, we hence obtain that

x(Ep) = —x(Pp) — 3x(Wp).
This, together with (21) and the numerical inputs (22), yields the desired result

XWp) = =2x(Xp) + x(Pp)
— —or(~1). .

7. Strata of k-differentials

Our goal here is to prove Corollary 1.5 that gives a formula for the Euler character-
istic of strata IP’Qk,Mg,n (u) of k-differentials. Those strata can be viewed as linear
submanifolds of strata of Abelian differentials PQM 7 (j1) via the canonical cover-
ing construction and thus Theorem 1.3 applies. This is however of little practical use
as we do not know the classes of k-differential strata in PQMz 5 (fi). However, we
do know their classes in M ¢.n via Pixton’s formulas for the DR-cycle ([1,34]). As a
consequence the formula in Corollary 1.5 can be implemented, and the diffstrata
package does provide such an implementation. In this section we thus recall the basic
definitions of the compactification and collect all the statements to perform evaluation
of expressions in the tautological rings on strata of k-differentials.

7.1. Compactification of strata of k-differentials

We want to work on the multi-scale compactification Q= @y := }P’Ekﬂg,n ()
of the space of k-differentials. As topological space this compactification was given
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in [15], reviewing the plumbing construction from [5], but without giving the stack
structure. Here we consider a priori the compactification of Section 3. We give some
details, describing auxiliary stacks usually by giving C-valued points and morphisms,
from which the reader can easily deduce the notion of families following the pro-
cedure in [5]. From this description it should become clear that the two compact-
ifications, the one of Section 3 and [15], agree up to explicit isotropy groups (see
Lemma 7.2). In particular, the compactification @y is smooth. This follows also
directly from the definition of Section 3, since the only potential singularities are at
the horizontal nodes. There however the local equations (8) simply compare monomi-
als (with exponent one), the various g-parameters of the k preimages of a horizontal
node.

We start by recalling notation for the canonical k-cover in the primitive case.
Let X be a Riemann surface of genus g and let ¢ be a primitive meromorphic k-
differential of type u = (my,...,my), i.e., not the d-th power of a k /d -differential
for any d > 1. This datum defines (see, e.g., [4, Section 2.1]) a connected k-fold
cover 7: X — X such that n*q = w* is the k-power of an Abelian differential. This
differential w is of type

M= (ml,...,ml, ma,...,mMp,..., mn,...,mn),
—————
g1:=ged(k,my) go:=ged(k,m2) gni=ged(k,mp)

where m; := (k + m;)/ ged(k,m;) — 1. (Here and throughout marked points of order
zero may occur.) We let § = g(X) and 77 = > ;i ged(k, m;). The type of the covering
determines a natural subgroup S C S5 of the symmetric group that allows only the
permutations of each the ged(k, m;) points corresponding to a preimage of the i-th
point. In the group Sj;, we fix the element

n—1 n
To=012-g)g+1g+2- & +gz)---(1+2gi---2gn),

i=1 i=1

i.e., the product of cycles shifting the g; points in the 7 -preimage of each point in z.
We fix a primitive k-th root of unity ¢ throughout.
We consider the stack QH := QJ (i) whose points are

{(}?,i,w, 7)1 € Aut(X), ord(r) =k, 0w = Lo, Tz = To}. (23)

Families are defined in the obvious way. Morphisms are morphisms of the underlying
pointed curves that commute with 7. Since the marked points determine the differ-
ential up to scale, the differentials are identified by the pullback of morphisms up to
scale. Commuting with t guarantees that morphisms descend to the quotient curves
by () (for a morphism f to descend, a priori ftf~! = % for some a would be
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sufficient, but the action on w implies that in fact @ = 1). It will be convenient to label
the tuple of points Z by tuples (i, j) withi = 1,...,nand j = 1,..., ged(k, m;).
There is a natural forgetful map Q¢ — QM3 5 and period coordinates (say, after
providing both sides locally with a Teichmiiller marking) show that this map is the
normalization of its image and the image is cut out by linear equations, i.e., that Q #
is a linear submanifold as defined in Section 3.1.

The subgroup

n—1 n
G=<(12 gl),(g1+1g1+2 o 81 +g2),---,(1+2gi"'zgn)> C Sz

i=1 i=1
(24)
generated by the cycles that 7y is made from acts on Q4 and on the projectiviza-
tion K. We denote the quotient of the latter by J,"* := J; /G, where the upper
index is an abbreviation of marked (only) partially.

Since t has w as eigendifferential, its k-th power naturally descends to (projec-
tivized) k-differential [¢] on the quotient X = X /{t), which is decorated by the
marked points z, the images of Z.

We denote by @ the stack given by the rigidification of %;:1 P by the action of (z),
i.e., the stack with the same underlying set as J; ©, but where morphisms are given by
the morphisms of (X/(t),z, [¢]) in IP’QkEMg,n (w). Written out on curves, a morphism
in @ isamap f: X /{t) = X’ /{t’), such that there exists a commutative diagram

D (R A— » X/
| |

X =X/(0) L x' = X )(0).

If two such maps f exist, they differ by pre- or postcomposition with an automor-
phism of X resp. X'. Via the canonical cover construction, the stack @ is isomorphic
to PQ* M, ,(11). The non-uniqueness of f exhibits J€;€n P = @/(t) as the quotient
stack by a group of order k, acting trivially.

As in Section 3, we denote by

Wk = Wk (/L)

the normalization of the closure of QHy in EM g,7(1), and let Hy = Hy () be the
corresponding projectivizations. We next describe the boundary strata of #. These
are indexed by enhanced level graphs r together with an (7)-action on them. We
will leave the group action implicit in our notation. The following lemma describes
the objects parametrized by the bouEdaW components D;fk (using the notation from
Section 3) of the compactification #.
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Hi

Lemma 7.1. A point in the interior of the boundary stratum Df is given by a tuple

{(X z,[w],o0,7):T € Aut(X) ord(t) =k, 7w = {rw, T|; = ro}

where (X,T',Z, [w],0) € PE 'A'_{E +(R) is a multi-scale differential, and where more-
over the prong-matching o is equivariant with respect to the action of (t).

The equivariance of prong-matching requires an explanation: Suppose x; and y;
are standard coordinates near the node corresponding to an edge e of I, so that the
prong-matching at e is given by

0 i
= ow C aw
(compare [5, Section 5] for the relevant definitions). Then t*x; and t*y; are stan-
dard coordinates near t(e). We say that a global prong-matching o = {0,}, g @) is
equivariant if
ad 0
aT*x; ®- at*y;

Ot(e) =
for each edge e.

Proof. The necessity of the conditions on the boundary points is obvious from the
definition in (23), except for the prong-matching equivariance. This follows from the
construction of the induced prong-matching in a degenerating family in [5, Proposi-
tion 8.4] and applying 7 to it.

Conversely, given (X.T.%, [@], o, (t)) as above with equivariant prong-match-
ings, we need to show that it is in the boundary of . This is achieved precisely by
the equivariant plumbing construction given in [4]. |

The group G still acts on the compactification QJ#y and on its projectiviza-
tion J. As above we denote the quotient by Jf " = /G to indicate that the
points Z are now marked only partially. By Lemma 7.1 we may construct @ just as in
the uncompactified case.

The map J?,in P > @isin general non-representable due to the existence of addi-
tional automorphisms of objects in Jf;{n P This resembles the situation common for
Hurwitz spaces, where the target map is in general non-representable, too. We denote
by s: Hx — J,F — @ the composition of the maps.

7.2. Generalized strata of k-differentials

Our notion of generalized strata is designed for recursion purposes so that the extrac-
tion of levels of a boundary stratum of @ is an instance of a generalized stratum (of
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k-differentials). This involves incorporating disconnected strata, differentials that are
non-primitive on some components, and residue conditions. Moreover, we aim for a
definition of a space of k-fold covers on which the group G acts, to match with the
previous setup. The key is to record which of the marked points is adjacent to which
component of the canonical cover, an information that is obviously trivial in the case
of primitive k-differentials.

A map A:Z — 7 ()? ) that records which marked point is adjacent to which com-
ponent of X is called an adjacency datum. Such an adjacency datum is equivalent to
specifying a one-level graph of a generalized stratum, which is indeed the information
we get when we extract level strata. Note in particular that from the adjacency datum
it is possible to reconstruct the unique u such that the Abelian differentials on ()? ,Z)
are u-th power of primitive k /u differentials.

More abstractly, an adjacency datum is given by a set 7y with a transitive action
of Z/kZ together with a map #A:Z — mo that is equivariant with respect to the
action of Z/kZ. We say that ()? ,Z) has adjacency o if there is a Z/ k Z-equivariant
bijection my = 7o ()? ) such that + records the adjacency of the markings Z in the
components of X. The subgroup G from (24) acts on the triples ()? ,Z, #A) of pointed
stable curves with adjacency map by acting simultaneously on Z and on # by precom-
position. For a fixed adjacency datum 4 we consider the stack QH (L, A) whose
points are

{(}?,i, w,T): ()?,2) have adjacency 4,
t € Aut(X), ord(t) = k, t¥0 = Lo, T; = To}.

We denote by Q¥ (7, [A]) := G - QI (1, 4) the G-orbit of this space.

A residue condition is given by a t-invariant partition Ag of a subset of the set
H, C{1,...,n} of marked points such that /; < —1. We often also call the associated
linear subspace

= {(r,-)ier e CHr . Zr,- =0forall A € )Lm}
i€eA

the residue condition. The linear subspace R is obviously not G-invariant in general.

We denote by QJ(,ER (t, A) € QHy (1, A) the subset vihere for each R € R the
residues of @ at all the points z; € R add up to zero. If (X,Z, w, t) is contained in
QJ(,iR(ﬁ, A), then g - (X,Z, w, 7) is contained in Q%f'm(ﬁ, g-A) forany g € G.
That is, the G-action simultaneously changes the residue condition and the adjacency
datum. We denote by [, +A] the G-orbit of this pair and use the abbreviation

QM = G- A} (11, A)

for the G-orbit of the spaces, ji being tacitly fixed throughout.
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As above, we denote the projectivization of 2J; [52,A] by Jf [%:4) and the G-
quotient by J, Rmp = K, [%.41 /G | dropping the mformatlon about adJ acency and the
connected components to ease notation. Finally, we denote by @% the stack with the
same underlying set as # ]iR "™ and with morphisms defined in the same way as above
for @. Recall that the curves in @® may be disconnected. We call such a stratum
with possibly disconnected curves and residue conditions a generalized stratum of k-
differentials. Since J;’ [%.4] i5 a linear submanifold, we can still compactify them as
before and a version of Lemma 7.1 with adjacency data still holds.

We will now compute the degree of the map s from the linear submanifolds to the
strata of k-differential. Our definition of generalized strata of k-differentials makes
the degree of this map the same in the usual and in the generalized case.

Lemma 7.2. The map s: H ,ER"A’] — Q% s proper, quasi-finite, unramified and of
degree

deg(s) = % 1_[ ged(m;, k).

m;eun

Proof. The composition of the map s with the quotient map Q% - J?,ER"A] by the
trivial action of Z/kZ is the quotient by a group of order |G| = ]_[m,»e  ged(m;, k).
Since degrees are multiplicative under compositions, the claimed formula for deg(s)
follows.

The map is unramified as both quotient maps are unramified. ]

7.3. Decomposing boundary strata

Having constructed strata of k-differentials, we now want to decompose their bound-
ary strata again as a product of generalized strata of k-differentials and argue recur-
sively. In fact, the initial stratum should be a generalized stratum Q% thus coming
with its own residue condition, but we suppress this in our notation, focusing on the
new residue condition that arise when decomposing boundary strata. Here ‘decom-
position’ of the boundary strata should be read as a construction of a space finitely
covering both of them, as given by the following diagram:

D;,f%k »S

() = [T 2o Hac(mpy) 45— Im(pr) Dy (25)

o ) Jan

Q(n) := [1;4, Q) Dye,
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whose notation we now start to explain. Note that the diagram is for the open boundary
strata throughout, since we mainly need the degree all these maps as in Lemma 3.6
(the existence of a similar diagram over the completions follows as at the beginning
of Section 3.2).

We denote by [ the level graphs indexing the boundary strata of P H,M ~ A(/L)
and thus of Fy. Followmg our general convention for strata their legs are labeled but
not the edges. In P « the leg-marking is only well defined up to the action of Ci A
graph with such a marking is said to be marked (only) partially and denoted by I'y,.
Even though curves in J, are marked (and not only marked up to the action of G),
the boundary strata of # are naturally indexed by partially marked graphs as well:
If T is the dual graph of one stable curve in the boundary of #y, then for all g € G
the graph g - [ is the dual graph of another stable curve in the boundary of Hr.
The existence of 7 implies that level graphs [ at the boundary of H). come with the
quotient map by this action. To each boundary stratum of Q we may thus associate a
k-cyclic covering of graphs 7: f‘mp — I" (see [15, Section 2] for the deﬁnitions of such
covers). We denote the corresponding (open) boundary strata by D° C @ and the
(open) boundary strata corresponding to such a G-orbit of graphs by D, He Hr.
The map d: Dy > %k D22 i the restriction of the map s: H, — Q.

Next we construct the commensurability roof just as in (9), though for each [ in
the G-orbit separately, so that D, 0.
in (9).

Next we define the spaces Hy (rr[;}). Consider the linear submanifolds of gener-

is the disjoint union of a G-orbit of the roofs

alized strata of k-differentials with signature and adjacency datum given by the i-th
level of one marked representative T of f‘mp (the resulting strata are independent of
the choice of a representative). Their product defines the image Im(p ). For every
level i, consider the orbit under G(Hy (7)), where G(Hy (mrf;7)) is the group as
in (24) for the i-th level, of the linear submanifolds we extracted from the levels. We
define Hy (rrf;7) to be these orbits, which in particular are then linear submanifolds
associated to generalized strata of k-differentials as we defined them above. We can
hence consider, for every level, the morphism given by the quotient by G (Hy (7(;7))
composed with the rigidification by the action of (z) at each level and denote by
@ (rrp;p) its image, which is called the generalized stratum of k-differentials at level i.
The map s, in diagram (25) is just a product of maps like the map s above, thus
Lemma 7.2 immediately implies the following.

Lemma 7.3. The degree of the map sy in the above diagram (25) is
1 n
deg(sy) = jAs] 1_[ ged(m;, k) 1_[ ged(ke, k)2,
i=1 ecE(D)

where k. is the k-enhancement of the edge e.



M. Costantini, M. Moller, and J. Schwab 40

We recall Lemma 3.6 and compute explicitly the coefficients appearing in our
setting here. Note that the factor | Autg (I")| there should be called | Autg, (I')| in the
notation used in this section.

Lemma 7.4. The ratio of the degrees of the topmost maps in (25) is

Hx
deg(pr) i

deg(cx) | Autgy, ()] - €2

where the number of reachable prong-matchings is given by

Hie _ H _ ke
T
(D) ged(ke, k)

and Autge, (f‘) is the subgroup of automorphisms of r commuting with t.

We remark that the quantity ZI: is intrinsic to I', for a two-level graph it is given
by £p = lem(k,/ ged(ke, k) for e € E(T)).

Proof. The first statement is exactly the one of Lemma 3.6 since the topmost maps
in (25) are given by a disjoint union of the topmost maps in (9).

For the second statement, consider an edge e € E(I"). The edge e has gcd(ke, k)
preimages, each with an enhancement k. / gcd(k., k). The prong-matching at one of
the preimages determines the prong-matching at the other preimages by Lemma 7.1,
as they are related by the action of the automorphism.

For the third statement, we need to prove that the subgroup of Aut(f‘) fixing
setwise the linear subvariety H is precisely the subgroup commuting with 7. If
pE Aut(f‘) commutes with 7, then it descends to a graph automorphism of I" and
gives an automorphism of families of admissible covers of stable curves, thus pre-
serving J?k. Conversely, if p fixes J?k, it induces an automorphism of families of
admissible covers of stable curves, thus of coverings of graphs. A priori this implies
only that p normalizes the subgroup generated by t. Note however that on Hy the
automorphism 7 acts by a fixed root of unity . If prp~!
this leads to another (though isomorphic) linear subvariety. We conclude that p indeed

is a non-trivial power of 7,

commutes with . [

The aim of the following paragraphs is to rewrite the evaluation Lemma 3.10 in
our context in order to find the shape of the formula in Corollary 1.5. We elaborate
on basic definitions to distinguish notions of isomorphisms and automorphisms. The
underlying graph of an enhanced (k-)level graph can be written as a tuple

r=(V.HL aHUL—V,i:H— H),
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where V', H and L are the sets of vertices, half-edges and legs, a is the attachment
map and i is the fixpoint free involution that specifies the edges. An isomorphism of
graphs 0: T' — T is a pair of bijections

o=(oy:V -V, og:H—H)

that preserve the attachment of the half-edges and legs and the identification of the
half-edges to edges, i.e., the diagrams

HUL —%5 vV H '3 H
laHUidL lw laH laH (26)
HUL —%5 v, H — 7

commute. If the graph is an enhanced level graph, we additionally ask that o preserves
the enhancements and level structure. In the presence of a deck transformation t, we
moreover ask that o commutes with t.

In the sequel we will encounter isomorphisms of graphs with the same underlying
sets of vertices and half-edges. We emphasize that in this case an isomorphism o is
an automorphism if and only if it preserves the maps a and i, i.e., if

oyloao(og Uid) =a and of' oiooy =i. 27)

We now define the group of level-wise half-edge permutations compatible with
the cycles of 7, i.e., we let

)
G = Gy =[] G(Hu(mpp).

i=0

where G(H (m[;7)) is the group G from (24) applied to the i-th level stratum. An
element of the group G is a permutation g: H U L — H U L and acts on a graph r
ving-T'=(V,H,L,aog,i).

There is a natural action of the group G on the set of all (possibly disconnected)
graphs with the same set of underlying vertices as r mp- We denote by

StabG(f‘) = {g eG: gf‘ o~ f‘} (28)

the stabilizer. Note that this is in general not a group, as it is not the stabilizer of
an element but of an isomorphism class. We also denote by Stabg (H (7)) the set of
elements of G which fix the adjacency data (or equivalently the 1-level graphs) of the
level-wise linear manifolds %(n[i]), i.e., elements which permute vertices with the
same signature and permute legs of the same order on the same vertex.
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Lemma 7.5. We have

| Autgg, ()] - | Staba(D)] = | Aut(D)| [T ged(ke.k) - | Stabe (# (1)),
ecE(T)

Proof. Fix acover ' — I'. We may assume that the vertices of I" are {1, ..., vr}, the
legs are {1,...,n} and the half-edges are {1%, ..., thF} with the convention that

i(h*) = h¥.

For ', we may assume that the preimages of vertex v are (v, 1), ..., (v, py) such
that 7((v,q)) = (v,q + 1), where equality in the second entry is to be read mod p,.
Similarly, we index the legs of r by tuples (m,1),...,(m, py) form =1,...,n, and
the half-edges by tuples (h*,1),..., (h*, py+) for ht=1,... ,hljf, again such that
(h*,q) and (h~, q) form an edge.

We consider the group & of pairs of permutations 0 = (0 ,0x) of the vertices and
half-edges of [ that are of the following form: There exists y = (yy, yg) € Aut(I'),
integers A, €Z/pyZ for any v € V(I"), and integers 1, + € Z/p;+ Z for any h* e E(T)
such that

ov ={(.q) = (yw),qg + 1)} and op = {(h*,q) — (yu(h*).q + =)}

We let this group act on [viag-T = (V,H, L, 0;1 oao(og Uidy),i). An element
o € & acts always as an isomorphism since the diagrams (26) commute. If we denote
by e the edge given by h*, we have Pyt = ged(ke, k). Hence, the group & has
cardinality
21 = 1A [] gede.k)- [T po-
ecE(D) veV (')

Recall that the group G is a product cyclic groups and thus Abelian. The stabilizer
Stabg (#x (7)) has a subgroup Stab’ where only half-edges and legs attached to the
same vertex are permuted (the superscript f is for fixed), i.e., the elements g € Stab’
are exactly those for which @ o g = a. The quotient Stab? := Stabg (H (7))/ Stab”
can be identified with those elements of G that permute legs and half-edges in such
a way that whenever a leg or half-edge attached to a vertex v; is moved to another
vertex v, then all the legs and half-edges attached to v; are moved to v,. So we may
alternatively identify Stab” with t-invariant permutations of the vertices of T (hence
the superscript p for permutation). This yields | Stab” | = [, ey ) Po-

The group J comes with a commutative triangle

Auty (D) — P

~

Aut(T),
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where the vertical map is the forgetful map, the diagonal map is the quotient by G-
map and the horizontal map is natural injection. Since we computed above ||, we
know that the kernel of the surjective map # — Aut(I") has cardinality

l_[ ged(ke, k) - l—[ Pv-

ecE() veV(I')

We note now that the group Stab’ acts on the set Stab(;(f‘) and we denote by
Stab(;(f‘) / Stab’ the space of orbits. We are done if we can identify elements of
Stab(;(f‘) / Stab” with elements of the cosets in £/ Aut g (f)

For this identification, first consider g € Stabg(IA’ ). By definition, there exists
an isomorphism o (g): g - [' — T such that g- [ = G(g)(f). This induces a map
o: StabG(f‘) — P. Note that Stab’ is a subgroup of Autg (f‘). If we had chosen
a different representative g’ in the orbit g - Stab’, the resulting element o(g’) € P
would differ by an element of Autg (f‘). Hence, o induces a well-defined map

Stabg () / Stab” — 2/ Autge (D).

We now construct an inverse map for o. For any p € &, we need to find an element
g € Gsuchthato(g) = p,i.e., suchthat g - r= p(f‘). This implies that g must satisfy
the equation

aog =py'oaoc(pyUidr),

which determines the element g up to the action of Stab’. The resulting g does not
depend on the choice of a representative of the coset p/ Autg (I') because of (27). =

We let now

_ 1G] |Stabg(T)| _ |Stabg/(D)]

S0 = |G| |Stabg(T)| [, ged(ke. k)2’

(29)

where the stabilizers are defined in a way analogous to (28).

Remark 7.6. We have the ratio S(r) = 1 for many coverings of graphs : [>T,
e.g., when all vertices of I" have exactly one preimage in T. In this case G/G only
permutes half-edges adjacent to one vertex, and this always stabilizes the graph. Thus
S(mw) = 1,as |G/G| =[], ged(ke, k)*. More generally, S(r) = 1 if each edge of T
is adjacent to at least one vertex which has exactly one preimage in L. In this case
it is straightforward to verify that the obvious generators of G/G are stabilizing the
graph.

If there are vertices of I" with more than one preimage in T, then S (,r) is in general
non-trivial. Consider for example the covering of graphs 7 depicted in Figure 2, for
which S(z) = 1/2.
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(=}
(=}

Figure 2. A covering of graphs r: [ > Tin Ezg/\'_(&l (8) with non-trivial S(rr).

As a consequence of the degree computation in Lemma 7.4 and Lemma 7.5, we
can write an evaluation lemma for k-differentials analogous to Lemma 3.10. We give
two versions, for #; and @ respectively.

Lemma 7.7. Let (7: f‘mp —TI') € LG (Jf,inp) and T' a marked version of fmp. Sup-
pose that o, € CHy (D,‘ng) and By € CHO(D,(’?) are top degree classes and that
—L

-L
* * * 7% * %k
Colly = P ]_[oei and c.d;Br = p.s, H'Bi
i=0 i=0

for some o; and B;. Then

/ oy = S(x) ]_[eeE(l") Ke
g, T T

—L
. . o
D, K | Aut(r)l ' HeGE(F) ng(K& k)2 : Zf“ ll:!) ‘/;”fk(”[i]) l

and

S [Teer) ke -
Lg ﬂn = (JT) . kL. |Aut(F)| Zf, . il:!)/@(ﬂr[,’]) 'Bl.

Proof. In order to show the first statement, we first apply Lemma 7.4 and note that the
map p, is not surjective in general. It is now enough to check that the number of adja-
cency data appearing in # (1) is |G|/| Stabg (Jfk (7'[)) |, while the one appearing in
the image of p, is |G|/| Stabg T'|. We finally use Lemma 7.5 to rewrite the prefactor.
For the second statement, we additionally apply Lemma 7.2 and Lemma 7.3. ]

We are finally ready to prove Corollary 1.5.

Proof of Corollary 1.5. The orbifold Euler characteristics of @ = PQK M o,n(p) and
Hy are related by

x(PRE Mg n(p)) = - (He).

deg(s)
We apply the general Euler characteristic formula in the form (20) to #} and group
the level graphs [ € LG (Hy) by those with the same graph r mp that is marked
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partially. Since the integrals do not depend on the marking, we obtain

d

k T (el )4
x(@) = |G_|(_1)d Z Z N; e /;)ifk ll__[L(E’[f‘,]Jfk)d '

L=0 (z:F\,—T)eLGy (™)

where we used the notation that " is a fully marked representative of fmp. Thanks
to Lemma 3.9, we can apply Lemma 7.7 and convert the integral over Die K
§-integral over the product of J (7r[;1). We hence obtain

into a

A(PREMg (1)
d T
k [lecrr) ke Ny
== (D7) 3 S(r)
G Aut(I)] - d(k,. k)2
| | L=0 (n:lA“mp—>F)€LGL(J€,L"p) | ue( )l He £¢ (e, k)
[/ e
i=0 ¢ i (i)
d T -L
—1\4 HeeE(F) Ke - Ny 4l
= \75 S . . T
( k ) 2 A 3 0 | Aut(I")| .l_[/cz(n A)E
L=0 (z:[,,—T)eLGL(Q) i=0 L]
For the second equality, we used that
di
s*¢ = k&, and hence dy€ = ei(s)g‘ (30)

for any level stratum, together with the dimension statement of Proposition 3.4. The
final result is what we claimed in Corollary 1.5. |

7.4. Evaluating tautological classes

In this section we explain how to evaluate any top degree class of the form
B o= oyt -y [DF]--[Dg, ] € CHo(@) 31

for any generalized stratum @ of k-differentials. First, we show how to transform the
previous class into the form

B=3 vl -y Dg)

Then by Lemma 7.7, we can write every summand of § as a product of yr-classes eval-
uated on generalized strata of k-differentials. We finally will explain how to evaluate
such classes.
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Let us start with the first task. The relations in the Chow ring of a general linear
submanifold we obtained in Section 4 immediately apply to the covering #x and we
want to restate them in the Chow ring of the generalized stratum @ of k-differentials.
Let i be the index of a marked point in @ and (i, j) be the index of a preimage of this
point in J?k. Moreover, let m; denote the order of the k-differential at the i -th marked
point, and let 771; ; denote the order of the Abelian covering at the (i, j)-th marked

point. Then the relation
ged(m, k)

holds; see, for example, [52, Lemma 3.9]. Using the relation

-d™y; (32)

ffli’j + 1= (m; + k)/ ged(m;, k)

and applying push-pull, we obtain

deg(d)

ko
We are now in a position to write the analog of Proposition 4.1 for the first Chern

class £ € CH'(Q) of the tautological line bundle on the stratum of k-differentials.

(mi,j + Ddatij = (m; +k)y,;. (33)

Corollary 7.8. The class ¢ can be expressed as

¢ = (mi + k)i — > kg, [DF]

(n:f‘mp—>I‘)eiLG1((§)

= (mi +k)yi — > S(m)

(rr:fmp—>I‘)EiLG1((,‘_2)

[leerr) <e
- tesbEl) 1 * ¥ @ ,
| Aut(F)| Clz,« pnsn[ (77,')]
where ;LG ((5_2) are covers of two-level graphs with the leg i on the lower level and
cly =iy o dy o ¢y is the clutching morphism analogous to (13).

Proof. The first equation is obtained by pushing forward the equation in Proposi-
tion 4.1 along d and using the relations (30) and (33). The second equation is obtained
from the first by Lemma 7.7. ]

Remark 7.9. The expression given by the second line of Corollary 7.8 reproves the
formula of [51, Theorem 3.12] and computes explicitly the coefficients appearing in
loc. cit., which were computed only for special two-level graphs.

To state the formula for the normal bundle, let
Je
£y =(9D§( > 63’100)

(0:Amp—A)ELG2(@)
§r(0)=m

denote the top level correction bundle.
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Corollary 7.10. Suppose that D, is a divisor in Q corresponding to a covering of
graphs (r: r mp = 1) € LGy (Q). Then the first Chern class of the normal bundle is
given by
(M) = -~ —er D) + 1F) € CH' (D)
r
where é‘; , resp. é‘f; is the first Chern class of the line bundle generated by the top,
resp. bottom, level multi-scale component.

Proof. We can pull back the right- and left-hand sides of the relation via d. Using the
expression (30), we see that the pulled-back relation holds since it agrees with the one
of Proposition 4.4. Since d is a quasi-finite proper unramified map, we are done. The
same argument, together with Proposition 4.5, works for the second statement about
horizontal divisors. ]

Using the same arguments as [ 13, Proposition 8.1], it is possible to show an excess
intersection formula in this context of k-differentials. We will not explicitly do this
here since the methods and the result are exactly parallel to the original ones for
Abelian differentials. Using the previous ingredients we can then reduce the compu-
tation of the class 8 in (31) to the computation of a top-degree product of -classes

o=yl yPr e CHy(Q)

on a generalized stratum. If we can describe the class of a generalized stratum in its
corresponding moduli space of pointed curves, then we are done since it is possible
to compute top-degree tautological classes on the moduli space of curves, e.g., with
the SageMath package admcycles, see [16].

One of the advantages in comparison to the situation with general linear subman-
ifolds (as explained in Section 4) is that the fundamental classes of strata of primitive
k-differentials P Ekﬂg’n (u) are known in ,/\/_(g,n, see [1].

More generally, if @ parametrizes k-differentials on a curve with connected t-
quotient, which are d-th powers of primitive k' := k/d-differentials, then we can
compare Y-classes on Q to Y-classes on the stratum of primitive k’ differentials
P Ekle/\/_{g,n (u/d) via the diagram

I () —— HP (1) d)

ld] le
=k’ pr
Q PEX M, ,(1/d),

where the map ¢ sends the disconnected curve

d

(5. 0n )

i=1 i=1 i=1
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to ()?1, 71, w1, ¢ |}?1)' The map ¢ has degree deg(¢p) = d"~!, since up to the action
of 7 there are many such ways to distribute the marked points Z onto the connected
components of X . Using deg(d;) = 1/k and deg(d,) = 1/k’, we can evaluate « as

/a:d”[ B wlpl... ’f".
Q PEX Mg n(n/d)

If @ parametrizes primitive differentials on disconnected curves, then [y o = 0,
since we go down in dimension by looking at the image of the projection to the moduli
spaces of curves.

It remains to explain how to evaluate intersection numbers in the presence of
residue conditions. In addition to the space 3t defined starting from a t-invariant par-
tition Ag, we consider the linear subspace

R := {(r,-),-eH,, eCHr . Z r; = 0forall X' € mo(X),
ieA=1(X")

ri = §k_1rr(,-) foralli € Hp}

cut out by the residue theorem on each component and the deck transformation. Recall
that Ag is r-invariant. Let Ag, denote a subset of Ay obtained by removing one
element, and let N denote the new set of residue conditions. For ease of notation, let
for now

HY = Pa™M and HI .= pQaefor,

If RNA = RN Ry, then Jr’(’,?t = Jf,iﬁo. So assume that R N R # R N Ry, in which
case ,iR cH ,iR 9 is a divisor since removing one element from Ag forces to remove
its t-orbit. For a divisor D,{e kC J?]?t, we denote by RT the residue conditions
induced by R on the top-level stratum Hj (7ro]). It can be simply computed by
discarding from the parts of Ag all indices of legs that go to lower level in D, * .
Moreover, we denote be R the linear subspace belonging to the top-level stratum
of mr that is cut out by the residue theorem and the deck transformation.

Proposition 7.11. The class of J?,iﬁ compares inside the Chow ring of Jr’?,iﬁ % 10 the
class & by the formula

— w0 w0
[J] = —& — > ta[Dr* ] - > t:[Dz" ],

(n:fmpeF)eLG?‘(J_f’,?}o) (ﬂ:fmpeF)ELGlsm(J_f,?{O)

where LG?[t (J?,iﬁo) are the two-level graphs with RT NRT = RT N ER(—,'—, i.e., where
the GRC on top level induced by R does no longer introduce an extra condition,
and where LGL‘%(J?;R 9 are the two-level graphs where all the legs involved in the
condition forming R \ Ro go to the lower level.
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Proof. The formula is obtained by intersecting the formula in [13, Proposition 8.3]
with J(’IER 0 and thereby using the transversality statement from Proposition 3.2. ]

By pushing down this relation along d and applying relation (30), we obtain a
similar relation for a generalized stratum of k-differentials @% with residue condi-
tions N.

Corollary 7.12. The class of Q% compares inside the Chow ring of Q%0 10 the class e
by the formula

(@)= —f - > e b (102",

(w:Timp—>T)eLGT (@%0) (70:Cimp—T)€ELG| 51 (@%0)

where LGEIR (@Q%0) are the two-level graphs with RT N RT = RT N fﬁg—, i.e., where
the GRC on top level induced by R does no longer introduce an extra condition and
where LGy % (@Q%0) are the two-level graphs where all the legs involved in the condi-
tion forming R \ R go to the lower level.

The last expression allows us, in the presence of residue conditions, to reduce to
the previous situations without residue conditions when we want to evaluate o.

7.5. Values and cross-checks

In this section, we provide in Table 2 and Table 3 some Euler characteristics for strata
of k-differentials. We abbreviate

1) == X (PQEMg 0 (1)

for the orbifold Euler characteristic of strata of primitive k-differentials. Moreover,
we provide several cross-checks for our values.

The second power of the projectivized Hodge bundle over M5 is the union of
the strata of quadratic differentials of type (4), (2,2), (2,1?) and (1%), if all of
them are taken with unmarked zeros. (Note that there are no quadratic differentials
of type (3, 1).) All quadratic differentials of type (4) are second powers of Abelian
differentials of type (2). The stratum (2, 2) contains both primitive quadratic dif-
ferentials and second powers of Abelian differentials of type (1, 1). From Table 2
and [13, Table 1], we read off that

1 1 1 S B B
x11(2) + 2)(2(272)4‘ 2)(1(1’1)4‘ 2)(2(2,1 )+ 4!)(2(1 ) = 20 = x(P%) x(M>).

Similarly, one checks for the third power of the projectivized Hodge bundle over M,
that the numbers in provided in Table 3 add up to —1/48 = y(IP*) y(M5). In the above
checks we have used that y(M>) = —1/240 by [32].
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5 (2,2) 2.1 (1% 6.-1) @ 1,-1
x2(1t) -3 3 ~1 —i& s
" (3,2,-1) (3,12,-1) (22,1,-1) (2,13,-1) (15 -1
x2(1) 2 -5 —6 26 —147

Table 2. Euler characteristics of the strata of primitive quadratic differentials in genus 2 with at
most one simple pole.

Now consider the second power of the projectivized Hodge bundle twisted by the
universal section over M5 ;. It decomposes into the unordered strata (4), (5, —1),
(4,1,-1), (3,2,-1), (2,1%), (3,12, —1), (22,1, 1), (2, 13, =1), (1°, =1), (4,0),
(22,0), (2,12,0), (1#,0), the ordered stratum (22), (2, 1?) (since the zero at the unique
marked point is distinguished) and the partially ordered stratum (14). The stratum
(2, 12) appears two times in the list: the first time the unique marked point is the zero
of order 2, the second time it is one of the simple zeros. On the stratum (14) one of
the simple zeros is distinguished, while the others may be interchanged. Note that

xe(my,...,my,0) = 2—=2g —n)yr(my,...,my).

The contributions in Table 2 and [13, Table 1] add up to 1/30 = y(P3)y(M3.1),
where we have used that y(M>,1) = 1/120 by [32].

We present some further cross-checks suggested by the referee.

The stratum PQ%IM2,3(2, 1, 1) is isomorphic to the space of 3-marked curves
where the markings are at a Weierstrass point and at two hyperelliptic conjugate
points (see [40, Theorem 1.2]). The latter space is isomorphic to Mo 7/S5, where
the symmetric group S5 permutes the first five markings, while the last two markings
correspond to the three marked points of the genus two curve under the hyperelliptic
map. Then indeed we have y2(2,1,1) = y(Mo,7/S5) = 1/5.

Similarly the stratum ]P’Qgr,Mz,z(l 2) is isomorphic to the space of 2-marked
curves where the markings are at the Weierstrass points. This space is a (Z/27Z)-
gerbe over Mo ¢/ S4, where the Z /27 comes from the hyperelliptic involution. Also
in this case we get the correct number x2(2,2) = x(Mo,6/S4)/2 = —1/8.

Finally, the stratum PQng2,4(l, 1,1, 1) decomposes as the disjoint union of
three copies of the space of curves with two marked pairs of Weierstrass points (the
three possibilities arise as the way of grouping the four markings into two pairs).
Each of these copies is a double cover of My s/Se, leading to the correct number

12(1,1,1,1) =6+ x(Mo,8)/(6!) = —1.
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W © 1) 42 (33 1) (321
x3(1) 3 -3 -2 ~4 16 4
W 2 6.1 @17 (2,14 (1%)
) B —16 —22 90 —567

Table 3. Euler characteristics of the strata of primitive holomorphic 3-differentials in genus 2.

8. Ball quotients

The goal of this section is to prove Theorem 1.7, which gives an independent proof
of the Deligne-Mostow—Thurston construction ([17, 54]) of ball quotients via cyclic
coverings. For this proof of concept we consider the special case of surfaces, i.e.,
lattices in PU(1, 2).

We first prove a criterion for showing that a two-dimensional smooth Deligne—
Mumford stack is a ball quotient via the Bogomolov—Miyaoka—Yau equality. Such a
criterion exists in many contexts, typically for pairs of a variety and a Q-divisor with
various hypothesis on the singularities a priori allowed, see for example [30,31]. We
anyway found no criterion for stacks in the literature. Only the inequality was proven
in [12] and only in the compact case.

We then investigate the special two-dimensional strata of k-differentials of genus
zero considered in Deligne-Mostow—Thurston, compute all the relevant intersection
numbers and construct, via a contraction of some specific divisor, the smooth surface
stack which we finally show to be a ball quotient.

8.1. Ball quotient criterion

We provide a version of the Bogomolov—Miyaoka—Yau inequality for stacks in the
surface case, based on [37]. Singularity terminology and basics about the minimal
model program can be found, e.g., in [38].

Proposition 8.1. Suppose that B is a smooth Deligne—Mumford stack of dimension 2
with trivial isotropy group at the generic point and let D, be a normal crossing
divisor. Moreover, suppose that Kg(log D1)? > 0 and that Kg(log D) intersects
positively any curve not contained in D1. Then the Miyaoka—Yau inequality

cf(K%(log i)])) < 302(K%(10g 501)) (34)
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holds, with equality if and only if B =B\ Dy is a ball quotient, i.e., there is a cofinite
lattice T € (1,n) such that 8 = [B?/T'] as quotient stack, where

B> = {(21722) €C?: |z + |z < 1}
is the 2-ball.

Proof. Let O be the divisor defined as £, together with the sum D, of the divi-
sors JD% with non-trivial isotropy groups of order b;. Let 7: B — B be the map to the
coarse space and let D1 = (D7), D2 = > (1 —1/b;)7(DL) and D = Dy + D».

We start by assuming that the pair (B, D) is log-canonical and the pair (B, D5) is
log-terminal. We will show that this assumptions holds in our situation at the end of
the proof.

Let B’ be a log-minimal model given by contracting all the log-exceptional curves
in D1, i.e., contracting all irreducible curves C € D1 with the properties C? < 0 and
(c1(Kg) + [D1] + [D2]) - C <0, and let D; be the image of D; fori = 1,2. Then

Kz(log Dy) + D> = n* (K (log DY) + D3).
Moreover, the log-canonical bundle satisfies
Kg(log D1) = n*(Kg(log D1) + Dy). (35)

The fact that the support of the log-exceptional curves is in D;, together with (35),
implies that Kz, + D} + D/ is numerically ample. By the assumption above on the
singularities we know that (B, D) is log-canonical. Hence, we are in the situation of
applying [37, Theorem 12].

As a consequence of (35) we know that c%(K% (log OD1)) coincides with the left-
hand side of the Miyaoka—Yau inequality of [37, Theorem 12] applied to B’ with
boundary divisor D} + DJ.

Moreover, by the Gauss—Bonnet theorem for DM-stacks (see, e.g., [13, Propo-
sition 2.1]), we can also identify ¢>(Kg(log 1)) with the right-hand side of the
inequality of [37, Theorem 12] applied to B’ with boundary divisor D} + D}, up to
non-log-terminal singularities (similarly to how it was done in [12, Section 3.2]). By
the assumption above, the pair (B, D>) is log-terminal and so the previous identifica-
tion of the right-hand side of [37, Theorem 12] with ¢2(Kg(log D)) is true without
corrections.

This shows inequality (34) and that in the case of equality B’ \ D! =~ B\ D, is
a ball quotient, i.e., B \ D; = B?/T. Moreover, in this case, the divisors Dé are the
branch loci of 7 with branch indices b;.

Since B \ D; is the coarse space associated both to B \ D; and to [B2/ T, this
implies that these two DM stacks have to differ by a composition of root constructions
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along divisors (see, e.g., [12, Section 3.1]). But since the branch indices of D; can be
identified with the isotropy groups of the corresponding divisors in [B2/ '], and since
they coincide with the isotropy groups of the corresponding divisor B \ D;, we can
identify B \ D; with [B2/T], as non-trivial root constructions would have changed
the size of such isotropy groups.

We are finally left to show the assumption on the singularities. First, there exists
a resolution B of B where the proper transform D of D is a normal crossing divisor
and the exceptional divisors &; are log-exceptional, i.e.,

8,2 <0 and (cl(K%) + [0{51]) - <0.

Indeed, such a resolution can be obtained by blowing-up smooth points of the DM
stack, where the numerical conditions can be checked on an étale chart just as for the
usual blow-up of a smooth point of a variety.

In this situation the corresponding exceptional divisors E; for the coarse space
resolution B of B are also log-exceptional, i.e.,

(c1(Kz) + [Di]+[Da])- Es <0 and E? <0.

Since contracting log-exceptional divisors does not change the singularity type, this
implies that to show that (B, D + D) is log-canonical and (B, D,) is log-terminal,
it is enough to show that (B, Dy + D) is log-canonical and (B, D) is log-terminal.

In order to do this, we observe that in general since (%, 13) 1s a smooth DM stack
with normal crossing divisor, then (E Dy + D 5’2) is log-canonical. Details are
given in [9, Theorem 5.1], using [33, Proposition A.13] . Then we can use that B has
at worst klt singularities (since it is a surface with quotient singularities and by [38,
Proposition 4.18]). It is easy to show that this implies that (E , 51 +>t 5’2) has
log-canonical singularities and (B, it 5;) has log-terminal singularities, for any
0 <t; < 1. The desired statement follows then by setting t; = 1 — 1/b;. ]

8.2. Strata of genus zero satisfying (INT)

Let (a1, - ..,as) be positive integers such that gcd(a,...,as, k) = 1 with

5
Zai = 2k,

i=1

and for alli # j,
. N =1
(1—“-’—“-’) €Z ifa;+a; <k.

The first condition states that u = (—aj, ..., —as) is a type of a stratum of k-
differentials on 5-pointed rational lines and that the intersection form on eigenspace
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—ai —az —dai —das
> a3
Dr,s = ) Dy, = —as )
—dayg —das —d4 —ds
—as
Diyays =

—a] —dz—d4 —ds

Figure 3. Level graphs of boundary divisors for strata QMo 5(aq,...,as).

giving period coordinates has the desired signature (1, 2). Imposing the gcd-condition
lets us work without loss of generality with primitive k-differentials. The last con-
dition is the condition (INT) of [17]. For Deligne-Mostow, this condition is key
to ensure that the period map extends as an étale map over all boundary divisors.
Thurston [54] uses this condition to show that his cone manifolds are indeed orb-
ifolds. Mostow completed in [48] the g = O picture by showing that up to the variant
YINT from [47] these are the only ball quotient surfaces uniformized by the VHS of a
cyclic cover of 5-punctured projective line. We recall from [17, Section 14] that there
are exactly 27 five-tuples satisfying INT, and all of them satisfy in fact the integrality
condition INT for all i # j with a; + ax # k.

For us the condition INT has the most important consequence that the enhance-
ments K, of the Abelian covers of the level graphs are all one. This implies that ghost
groups of all strata in this section are trivial. However, the condition INT also enters at
other places of the following computations of automorphism groups and intersection
numbers.

In the sequel we will use the notation @ = leMo,:; (ay,...,as). We now list the
boundary divisors without horizontal edges. A short case inspection shows that the
only possibilities are the level graphs I' = I';; (see Figure 3, top left) and L = L;; (see
Figure 3, top right), that yield the ’dumbbell’ divisors with two or three legs on bottom
level under the condition that the a;’s on lower level add up to less than k, and the
level graphs A =; ; A, 4 that yield ‘cherry’ divisors (see Figure 3, bottom); V' -shaped
graphs are ruled out by ) a; = 2k. We define «; ; := k — (a; + a;), which is both
the k-enhancement of the single edge of I'; ; and the negative of the k-enhancement
of the single edge of L; ;.
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Lemma 8.2. Each of the graphs I'; ;, L; j and ; jAp 4 is the codomain of a unique
covering of graphs m € LG1(Q) and for each such covering S(m) = 1.

Proof. We will give the argument for I'| », the argument for the other graphs is sim-
ilar. The number of preimages of the vertices of I'y » is ged(k, ay, a») for the bottom
level and ged(k, as, as, as) for the top level, while the edge has «; » preimages.

We claim that for any cover of graphs m: r mp — I'1,2, the domain is connected.
In fact, suppose there are k’ components. This subdivides both the top level and
the bottom level into subsets of equal size. This implies that &’ | ged(k, a1, a») and
k' | ged(k,as,aq,as), and hence k' = 1 because ged(k,ay,...,as) = 1.

To construct such a cover of graphs it suffices to prescribe one edge of f‘mp, the
other edges are then forced, since t-acts transitively on edges. Since the vertices on
top and bottom level are indistinguishable (forming each one orbit r-orbit) the result-
ing graph is independent of the choice of the first edge. In particular, f‘mp is unique
and S(w) = 1. [

Next we compute (self)-intersection numbers of boundary divisors.

Lemma 8.3. The self-intersection numbers of the boundary divisors of Q are

2

(De] = ko 3 Ki,jKp.q
r k2 k2
p<q,ap+aq<k
p.q¢{i,j}
a2 K a2 Ki,jKp,q
[Dr]” =— 2 and [Dy]" = T2

The mutual intersection numbers are

ki jkpgl/k? if T ML # 0,

D?]- D8] =
[ F] L] {0 otherwise,

(D8] (DY) = {"””’"’”4/ ©orna £

0 otherwise.
Proof. For the self-intersection numbers consider the formula in Corollary 7.10. As
remarked above, the condition (INT) implies that all enhancements of the Abelian
coverings are 1 and hence the same is true for the {-factor in the corollary. Let Afi ’jq
denote the slanted cherry with points i, j on bottom level and points p, g on middle
level. Together with Corollary 7.8 and Corollary 7.10, we obtain

—1 /c.z.
PR =T aeh = [ vi- X i
0.4 p<q,ap+aqg<k ’
pa#li,j}
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The degree of the slanted cherry is

_ Ki.jKp.g
/Q[DA” ]l = 2

by applying the second formula in Lemma 7.7 and Lemma 8.2. The other numbers
are obtained similarly. ]

8.3. The contracted spaces

We want to construct the compactified ball quotient candidate B from @ by contract-
ing the all the divisors sz and Diz. This is in fact possible.

Lemma 8.4. The divisors D and Df\z of @ are contractible. The DM-stack B
obtained from @ by contracting those divisors is smooth. If DE% and Dlg\3 denote the
points in B obtained by contracting the corresponding divisors in @, then

2

Ki Ki jK
B _ LJ B1 _ “L,i%p.q
fﬁ_g[Di] =5 and /_[DK] = —bI°Pd

Proof. For each of the two types of boundary divisors Dfl and D, we will write a
neighborhood U as quotient stack [ / G] with U smooth, and show that the preimage
of the boundary divisor in U is a P! with self-intersection number —1. Castelnuovo’s
criterion then implies that this curve is smoothly contractible. The order of G will
be k?/ K2 for D and k2 /k; jkp 4 for Dé2 After contracting the covering P!, the
quotient 1s a point with isotropy group G and the claim on the degrees follows.

We first consider a cherry divisor D@ We let D'% denote its preimage in ,in P,
Since all of the Abelian enhancements of the cover of ; j Ap 4 are one, then the divi-
sor D‘fk is irreducible, in fact isomorphic to P! with coordinates the scales of the
differential forms on the cherries.

We compute the order of the automorphism group of any point (X a)) in D, e
Suppose first that (X @) is genenc The irreducible components of X group into
three t-orbits: The components X XT corresponding to the top-level vertex of ; ; Ap 4,
the components X , corresponding to the vertex with marked points i, j, and the
components X, YL corresponding to the vertex with marked points p, g. Observe that
there are «;_; edges between X | and X; Jﬂ and kp 4 edges between X XT and X J‘
The restriction of t to each of the three (not necessarily connected) curves X XT , X; J‘

i,j°
and X zi_q has order k. Given an automorphism of the complete curve X, its restrictions
to X7 and X; L. need to agree on the k; ; nodes, and the analog argument applies
to X, J‘ Hence after fixing the automorphism on the top-level curve X XT, there are

k> /Kl, jkp.q possible choices for the automorphism on the two bottom-level curves
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left. Together with the k choices for the top-level automorphism, we obtain

3

| Aut(X, )| = .
Ki,jKp.q

As the non-representable map #,© — @ has degree 1/k, this yields that the generic
point of Df;z has an isotropy group of size r := k?/k;, jKkp,q- Exactly the same argu-
ment also applies to the two boundary points of ch\z corresponding to the slanted
cherries.

The automorphism group is thus generated by multiplying the transversal ¢-par-
ameter (compare Section 3.4) by an r-th root of unity in local charts covering all
of ;,j Ap,q. We may thus take for U any tubular neighborhood of Df{l and take a global
cover U of degree k?/k;, jKp,q- Comparing with the degree of the normal bundle in
Lemma 8.3 shows that preimage of D[(’:l in U is a (—1)-curve.

We now consider a dumbbell divisor DI(:Q. As above one checks that the isotropy
group at the generic point of D{’Q is of order k/|k; j| and that the isotropy groups
of the boundary points of the divisor have a quotient group of that order. Consider a
tubular neighborhood of sz and a degree k/|k; ;| cover that trivializes the isotropy
group at the generic point. Let 59 be the preimage of the boundary divisor in this
cover.

Let p, g, r denote the three marked points on the bottom level of a point in L; ;.
By applying the above line of arguments again, the three boundary points of 552 have
cyclic isotropy groups of sizes k/kp 4, k/kp,r, and k /i, , respectively. The triangle

group

k k k
T = T(_’ 5 )
Kp,q Kpr Kqr

is always spherical, because a; + a; > k implies a, + a4 + a, < k, and hence

2 (1-5) - (1-52)- (1- ) st

This implies that the T'-cover of 5{’9 ramified to order k /) 4 along the divisor where
{p, q} have come together etc., trivializes the isotropy groups on the boundary divi-
sor 552 and the preimage of 59 is a P1. More precisely, the isotropy groups of
order k /kp 4 do not fix isolated points on the boundary divisor, but have one-dimen-
sional stabilizer, the boundary divisors intersecting 5{3. This implies that the above
T -cover actually provides a chart of a full tubular neighborhood.

It remains to show that |7'| = k /|«;, ;| in order to conclude with the normal bundle
degree from Lemma 8.3 that this P! is a (—1)-curve. To show this, recall that as T is
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spherical, there are only the cases

<k k k

i ):(2,2,n) forn € Nas,
Kp,q Kpr Kqr

<L k Kk

b 9
Kp,q Kpr Kqr

) —(2,3,n) forn € {3,4,5)

to consider. In the first case, the order of T'(2, 2, n) is 2n, and assuming that

k k
_— = = 2,
Kpa  Kpr
one easily checks that
k k
o) =
Kq,r |Ki,j |
by using ) ; a; = 2k. In the second case, the order of T'(2, 3, n) is 2lem(6, n), and
the claimed equality follows with a similar argument. |

We will now compute the Chern classes of B. Let ¢: @ — B denote the contraction
map. Let

T:={G.j):i<j, ai +aj <k},
L:={G.j):i<j, ai+a; >k}

be the pairs of integers appearing as indices of the I'; ; and L; ;. LetI = If’jq denote
the common degeneration of I';; and L, i.e., the three-level graph with points p, g
on bottom level, 7, j on top level and the remaining point on the middle level. Accord-
ingly, we write

A={G.j.p.q):i<j i<p<q, jéip.q} ai+a;j <k, ap+ay <k},
Li={G,j.p.q):i <] i<p<gq j¢ip.q), ai +a; >k, ap+a, <kj

for the quadruples of possible indices. Recall that Dy, is the union of all bound-
ary divisors Dp,;; whose level graph has a horizontal edge, i.e., corresponding to
pairs (i, j) with a; + a; = k. We write

H:={(,j):i </, ai +a; =k}.

We summarize the intersections of the boundary divisors: The cherry Di@j Apa
intersects precisely DIC‘ZU» and Fl%. The divisor Dy, intersects precisely the three
divisors Df’?ab for any pair (a, b) disjoint from {i, j }. For the divisor Df%j consider
any pair (p, ¢q) of the three remaining points as {p, ¢, r}. This gives an intersection
with a cherry if a, + a4 < k, with a horizontal divisor if a, + a; = k and with
an L-divisor if a, + a4 > k. Consequently, the divisor D& intersects precisely the

D q H;j
three divisors Df’?ab for any pair (a, b) disjoint from {i, j }.
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Lemma 8.5. The self-intersection numbers of the boundary divisors of B are

2 2

K K .
B 2 i,j i,j B 12 _
b P=-%+ X 5 ad Dy P=-1

p<q,ap+aqg>k
PqEli,j}

The mutual intersection numbers are for {i, j} N {p,q} = @ given by
Ki,j

k

B B Ki,jKp, B B
[DF 1+ 1D, )= =52 and [DF ]-[DF, ] =

and for |{i, j, p}| = 3 by

[D ] [D% ] {Ki,jlci,p/kz ifa; +a; +ap < k,
i Tip

0 otherwise.

Proof. We claim that the pullback of [Dlgi j] is given by

C*[Dl?i.j] = [Df‘?zj] + Z ,] [ Lﬁ q] + Z [D?jAp.q]'

p<q,ap+aq>k p<q,ap+ag<k
p.a#{i,j} P.a#{i,j}

To determine the coefficients in the above expression, one may intersect the equation

C*[Di?i.j] - [Dg/] + le,q [DLQp,q] + ka’q[Dic.szp.q]
p.q p.q

with unknown coefficients with each of the divisors [D(’rz ] and [D"‘2 Apg ] in turn.
The left-hand side vanishes by push-pull, and the 1ntersect10n numbers on the right-
hand side are given by Lemma 8.3. The claimed intersection numbers involving only
I"-divisors follow again by Lemma 8.3.
The pullback of the horizontal divisor is given by ¢* [Dgi,j] = [Dgi,j ]. The inter-
section number
[DF, 1+ 1Dg, ] =D, ,1- [P, ]

follows from Lemma 7.7 and Lemma 8.2. Finally, by Proposition 4.5 and (32), the
normal bundle of [D(’rz ] is given by —y, in CH(D H, ) where ¥, is the ¥-class
supported on the half edge of H; ; that is adjacent to the vertex with three adjacent
marked points. |

Proposition 8.6. The log canonical bundle on B has first Chern class

c1(R(1og Dyor)) = Z( k . —1)[01%31,.],] + %[D{;ﬁr] inCH{(B).  (36)
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Its square and the second Chern class are given by

¢1(QK (log Dyor)” = 6 - 3 Z I 43 Z "””‘” 37)
i,jer zjeL i,j,P.4€A
and
1 Kij z 1 Kz,JKp a
(QglogDrr)) =2= 3 =+ D 5+ )
i,jel i,jeL i,j,0,q€EA
respectively.

Proof. To derive (36) from Theorem 1.1, we insert into
( a(log Dhor) =7 é' + Z[DQ + Z[DA
that 5& — > (m; + k)v; is a sum of boundary terms by the relation (7.8). Consider

Keel’s relation .

Z Acag + E Z Ajg,

c<d, a#i

i¢{c,d}

where A;; is the boundary divisor in c/\'_{0,5 where the points (i, j ) have come together.
We pull back this relation via the forgetful map 7: P 8% Mgy s() — Mo,s. Since this
map is a root-stack construction and the isotropy groups of the divisors were computed
in the proof of Lemma 8.4, we obtain

|K;b| [Dl(ib] ifa+b < —k,
H*Aabz [Dﬂab] 1fa+b=—k,
e IDE 1+ Yicjiai+a <k gy IDE A, ] ifa+b>—k.

i,j¢{a,b}

Putting everything together, we find in CH; (@) that
1 k Q k Q
e1(2flog Do) = Y (50— —1)IDE 1+ Y (50— —1)IDE)
£ Ki,j i.j L 2|Ki,j| i,j
i,jer i,jEL

k (»2
+ Z (2K 2K ) lep q] _[Dhor]
i,j,P.q€EA i,j p.q

and since the divisors Dfi ; and Di@j Ay AT€ smoothly contractible, we deduce (36).
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To derive (37), we first note that —%|I‘| + %|A| + %|H| + %|L| = 5 and that for
(i, j) € L the relation

Kp,g + Kp,r Kp.qKp,r K«?r Kizj
I+ Z (_ k +2 k2 + k’z ) ~ k2
pe{l,....51\{i,j}
{g.r}={1,....5}\{i,j,p}

holds because ), a; = 2k. Using those relations and the intersection numbers in
Lemma 8.5, squaring (36) yields

2
1 2 _ Kij | Kij ,J Kp g
c(@plog D)’ =5- X (2524 ) 42 Lay
i,jell i,j,p,q€EA ,]EL
and (37) follows because ) _; a; = 2k implies

1+ Z(—K’—’Jr < )+ 3 —K"’-;C';””’ -y K]i’ —0.

i,jer i,j,p.g€A i,j€L

The second Chern class can be computed as

Cz(Q%(lOg Dhor)) = X(MOJS) + Z X(Drﬂ?t’j)
i,jel

T Z X(Dl%gi,j) + Z X(D'%'T\p.q)’

L.]
i,j€L i,j,p,d€A

where )((D(’B °) = )((D(’(2 °) = k;,j/k by Lemma 7.7 and Lemma 8.2 and the Euler
characterlsncs of the pomts are given in Lemma 8.4. |

8.4. The ball quotient certificate

We can finally put together the previous intersection numbers and use our ball quotient
criterion to show that the contracted spaces are ball quotients.

Proof of Theorem 1.7. We apply Proposition 8.1 and check that first that the only log-
exceptional curves for ¢y (Ql (log D)) are the components of Dy,. In fact, since the
expression (36) is an effectlve divisor and since B \ D = Mo, is affine, we only have
to check positivity of c1 and the intersection with Dy , and DQB . For the DSB -
intersections this follows from the intersection numbers in Lemma 8.5. In fact, the
self-intersection number of D29 _ is negative only if a, + a4 < k for any pair {p. q}
disjoint from {7, j }. Using Lemrfla 8.3, we compute in this case that

Q(Zap—l-Zaq +2a, —a; —aj _1)

B 1 —
[Dl"i,j] : cl(Qg(log Dhor)) - k k
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where {a;,a»,as,as,as} = {a;,a;,a,,a4,a4}. Since a; + a; < k, this expression
is positive. Moreover, one directly computes

[DHu!b] *C1 (Q%(lOg Dhor)) = 0.

That ¢; (2 %(log Dhor))? > 0 is a consequence of the above, since ¢ (2 %(log Dior))
is a linear combination of the divisors D?j ; and Dﬁr with positive coefficients, by

equation (36). ]
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