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Domain branching in micromagnetism:
Scaling law for the global and local energies

Tobias Ried and Carlos Román

Abstract. We study the occurrence of domain branching in a class of .d C 1/-
dimensional sharp interface models featuring the competition between an interfacial
energy and a non-local field energy. Our motivation comes from branching in uni-
axial ferromagnets corresponding to d D 2, but our result also covers twinning in
shape-memory alloys near an austenite-twinned-martensite interface (corresponding
to d D 1, thereby recovering a result of Conti [Comm. Pure Appl. Math. 53 (2000),
1448-1474]).

We prove that the energy density of a minimising configuration in a large cuboid
domain QL;T D Œ�L; L�d � Œ0; T � scales like T�2=3 (irrespective of the dimen-
sion d ) if L � T 2=3. While this already provides a lot of insight into the nature
of minimisers, it does not characterise their behaviour close to the top and bottom
boundaries of the sample, i.e., in the region where the branching is concentrated.
More significantly, we show that minimisers exhibit a self-similar behaviour near the
top and bottom boundaries in a statistical sense through local energy bounds: for any
minimiser in QL;T , the energy density in a small cuboid Q`;t centred at the top
or bottom boundaries of the sample, with side lengths `� t2=3, satisfies the same
scaling law, that is, it is of order t�2=3.

1. Introduction

In this article, we revisit the mathematical study of domain branching in ferromagnets.
We will do so working within the framework of micromagnetism, a powerful continuum
theory which successfully explains observations of phenomena in ferromagnetic materials
on many length scales, ranging from nanometres to microns. All of these scales are large
enough to neglect the description of the atomic structure of the material, hence allowing
for the use of continuum physics.

A ferromagnet, like iron, is a material having a high susceptibility to magnetisation,
that is, they are noticeably attracted to the magnetic fields generated by magnets. The
strength of the magnetisation depends on that of the applied field, and may persist even if
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the external field is removed. At the atomic level, this is explained by parallel magnetic
alignment of neighbouring atoms.

The main quantity of interest in this theory is the magnetisation density M. It is defined
as the magnetic dipole moment – which may be thought of as a measure of a dipole’s
ability to turn itself into alignment with a given applied field – per unit volume. Denoting
by � � R3 the material sample, it is defined as a vector field in �, which, far below the
Curie temperature TC , has constant length, that is,

jMj DMs in �:

Here,Ms denotes the saturation magnetisation, a material constant (at fixed temperature).
We will next consider the rescaled and extended magnetisation mWR3 ! R3, defined

as m DM=Ms in � and zero elsewhere, so that

jmj2 D
²
1 in �;
0 elsewhere:

The magnetisation m induces a stray field (demagnetisation field) hWR3 ! R3, which is
obtained by solving the (normalised) Maxwell equations of magnetostatics

curl h D 0 and div.hCm/ D 0 in R3:

Hence, h is the Helmholtz projection of (the extended) m. These equations have to be
understood in the sense of distributions, the latter equation thus means thatZ

R3

h � r� dx D �
Z
�

m � r� dx; 8� 2 C1c .R
3/:

In particular, there are two sources for h, corresponding to the two components of the
divergence of m. For a (sufficiently) smooth m, the densities of these components are
given by div m at points of � and �m � � at points of the boundary @�, where � denotes
the outer unit normal to @�. By an analogy with electrostatics, these are called (magnetic)
volume and surface charges.

Landau and Lifschitz in [20] introduced the so-called Landau–Lifschitz energy for
micromagnetism, which has successfully predicted the behaviour of ferromagnets in a
vast range of situations. In normalised form, in absence of an applied magnetic field and
at fixed temperature (far below TC ), is given by

E.m/ D d2
Z
�

jrmj2 dx CQ
Z
�

'.m/ dx C
Z

R3

jhj2 dx:

Here,
(a) The first term is the exchange energy. It favours the alignment of the magnetisation

along a common direction, that is, a uniform m in �. It is of quantum mechanical origin
and models a short range attraction between the spins. The material parameter d , called
the exchange length, is its intrinsic length scale.

(b) The second term is the anisotropy energy. It comes from the interaction of the
magnetisation m with the lattice structure of the material.
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The non-negative function 'W S2 ! R enforces a preference for the direction of the
magnetisation. We will be interested in the uniaxial case

'.m/ D jm0j2; where m0 D
�

m1

m2

�
;

which favours the third axis and thus the directions˙.0; 0; 1/.
The dimensionless material parameterQ is called the quality factor. It separates ferro-

magnetic materials into two broad classes: soft materials, for which Q < 1, and hard
materials, for which Q > 1. We will be interested in strongly uniaxial materials, for
which Q is a large parameter.

From now on, we will be interested in the case of an idealised ferromagnet in the form
of an infinite slab of thickness t that is normal to the easy axis, i.e., R2 � Œ0; t �. In order to
deal with the unboundedness of the domain, we will impose some artificial periodicity 2`
in the first two space coordinates, that is, � D Œ�`; `/2 � Œ0; t � and

m.x/ D m.x1 C 2`; x2; x3/ D m.x1; x2 C 2`; x3/; 8x2 R3:

(c) The third term is the non-local stray field energy. It favours magnetisations whose
induced stray field is reduced as much as possible. One has thatZ
Œ�`;`/2�R

jhj2 dx

D min
° Z

Œ�`;̀ /2�R
jzhj2dx W zh WR3!R3 is Œ�`; `/2-periodic in .x1;x2/;r�.zhCm/D0

±
D

Z
Œ�`;`/2�R

ˇ̌
jrj
�1
r �m

ˇ̌2
dx;

see the Appendix of [22] for more details on the stray field energy. Hence, instead of min-
imising the non-local energy E.m/, we can also include the field h in the minimisation,
which makes the problem more local,1 and is similar to the localisation of the fractional
Laplacian via extension, see [3].

We next heuristically explain why and when the parameters of the model allow for
domain branching to occur. For a detailed explanation, we refer the reader to [13, 17]
and references therein. Also, in these references, the variety of microstructures that can
be observed in ferromagnets is discussed, including more about the physics background
of the model. The expert reader may want to skip this discussion and move on to the
statement of the main results in Section 1.1.

Observe that the anisotropy and exchange energies favour the uniform magnetisations
mD˙.0; 0; 1/. Nevertheless, the distributional divergence of˙.0; 0; 1/ consist of surface
charges of density ˙1 and �1, respectively at the top (x3 D t ) and bottom (x3 D 0)
boundaries, which generate a constant stray field h D �1 in �. This leads to a stray field
energy (and thus a Landau–Lifschitz energy) of t per area in the cross section x1x2.

1This is actually the point of view that we will take in the remainder of the article.
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However, the stray field energy can be reduced if the third component of the magnet-
isation (and therefore the surface charges) alternates between ˙1 and �1 at the top and
bottom boundaries. This corresponds to screening, the main driving principle in electro-
statics: the minimising charge distribution has the property that, on mesoscopic scales, the
charges try to arrange themselves in such a way that the macroscopic part of their induced
stray field is reduced as much as possible.

Indeed, for a magnetisation that only depends on x0 D .x1; x2/ and horizontally altern-
ates between ˙.0; 0; 1/ and �.0; 0; 1/ with a period ! � t , the induced stray field
concentrates in a neighbourhood (in the x3-direction) of the top and bottom boundaries of
size !, which leads to a stray field energy of order ! per area in the cross section x1x2.

The exchange energy of course prevents that m jumps, which leads to the formation
of domains, i.e., (large) regions where m is nearly constant and equal to˙.0; 0; 1/, separ-
ated by walls, i.e., (small) smooth transition layers between ˙.0; 0; 1/ and �.0; 0; 1/. In
strongly uniaxial materials (i.e., when Q is large), the latter are the so-called Bloch walls.
In this case, m smoothly rotates in the x2x3 plane as one crosses the transition layer in the
normal x1 direction.

For a magnetisation that only depends on x1, by balancing the exchange and aniso-
tropy energies, one finds that the width of the walls !wall must be of order dQ�1=2,
and that the specific wall energy is of order dQ1=2. Letting !domain denote the domain
width, this leads to a wall energy contribution, per area in the cross section x1x2, of
order dQ1=2!�1domaint . Hence, combining with the stray field energy, we obtain a Landau–
Lifschitz energy, per area in the cross section x1x2, of order dQ1=2!�1domaint C !domain,
leading to an optimal domain width !domain and energy per area of order .dQ1=2t /1=2.

Let us observe that for this to be consistent, i.e., for !wall � !domain � t to hold,
the condition dQ1=2 � t is needed. Thus, in this regime, the uniform magnetisation is
energetically beaten. It would then seem natural to think that the minimiser behaves as
described above. Nevertheless, by varying the domain width in the x3-direction, one can
further reduce the energy. Intuitively, it is convenient to have a very small domain width
near the top and bottom boundaries to reduce the stray field energy, but away from these
surfaces, it is better to have a large domain width to reduce the wall energy.

This is achieved by domain branching, see Figure 1, firstly introduced by Lifschitz [21]
(see also [16, 17]). It is worth mentioning that a similar branching phenomenon, related
on a mathematical level to optimal transportation, occurs in type-I superconductors; see
[4, 7, 11, 12].

The branching though comes at a price, due to the fact that the inter-facial layers
between ˙.0; 0; 1/ and �.0; 0; 1/ are now tilted. They thus carry charges in the bulk,
which generate a stray field. Letting !bulk denote the domain width in the bulk, arguing
similarly as above, one finds that the total (bulk) energy per area in the cross section x1x2
is of order dQ1=2!�1bulk t C !

2
bulk t

�1, leading to an optimal !bulk of order .dQ1=2 t2/1=3

and energy per area in the cross section x1x2 of order ..dQ1=2/2 t /1=3. We immediately
see that, provided dQ1=2 � t , the branched configuration is energetically advantageous,
and that we have consistency, i.e.,

!wall � !domain � !bulk � t

holds.
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Figure 1. Branched domain structure.

Choksi, Kohn, and Otto [6] were the first to mathematically prove that the above con-
siderations are correct. More precisely, they proved that there exist universal constants
c0; C0 > 0 such that

(1.1) c0..dQ
1=2/2 t /1=3 �

1

`2
min

m
E.m/ � C0..dQ1=2/2 t /1=3

in the regime

(1.2) Q� 1; dQ1=2
� t; and `� ..dQ1=2/t2/1=3:

Notice that the last condition ensures that the artificially imposed period 2` is larger
than !bulk, i.e., there is enough room for bulk domains to occur. Actually, the model con-
sidered in [6] is a sharp-interface reduction of micromagnetics, hence slightly simpler.
The exchange energy is replaced by the term d2

R
�
jrmj, which has to be understood as

the total variation in� of the measure rm. This part of the energy essentially captures the
total area of the domain walls (up to the factor 2d2). Later, in [13], an argument to obtain
the lower bound for the minimal micromagnetics energy (instead of the sharp-interface
model) with the same energy scaling was provided.

Moreover, in [6], it is proved that if the domain structure is restricted to be independ-
ent of x3, then the scaling law of the minimum is different, precisely as `2.dQ1=2t /1=2.
This coincides with the above discussion and strongly suggests that domain branching is
required for energy minimisation.

This work extended previous results by Choksi and Kohn [5], where analogous result
for the 2D version of the same problem were obtained, to three dimensions. Both articles
were motivated by the highly influential work by Kohn and Müller [18, 19] concerning
branching of twins near an austenite-twinned-martensite interface. In these papers, the
authors identified the scaling law of the minimum energy for a certain non-convex and
non-local variational problem regularised by small surface energy. Conti [9] was able to
go beyond the scaling law of the minimum energy. Notice that even though the bounds
on the minimum energy provide insight about the shape of minimisers, they do not give
precise information about the local behaviour of minimisers near the interfaces where
branching is expected to occur. The purpose of Conti’s work was to address this question,
introducing new ideas which allowed for proving that minimisers are self-similar in a
statistical sense (a more precise description is given later).
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Conti’s result was extended to 3D by Viehmann in his Ph.D. thesis [25].2 In order to
get to it, let us start by describing a �-type convergence established by Otto–Viehmann
in [22], in which the limiting energy turns out to be the 3D generalisation of the 2D
functional proposed by Kohn–Müller [18, 19].

Given any �; T > 0, we let


 0 WD
.�T 2/1=3

.dQ1=2 t2/1=3
and 
3 WD

T

t
�

We then perform the change of variables

Ox0 D 
 0x0; Ox3 D 
3x3;

and define

" WD
�T
�

�1=3�dQ1=2

t

�1=3
D

3


 0
, ı WD

�T
�

�2=3 dQ�1=2

.dQ1=2 t2/1=3
D
dQ�1=2

�

 0;

L WD
.�T 2/1=3

.dQ1=2 t2/1=3
` D 
 0`:

Notice in particular that ı"�2DQ�1. Denoting OxD . Ox0; Ox3/ and hD .h0;h3/, by rescaling
the stray field as

Oh0. Ox/ D
1

"
h0.x/ and Oh3. Ox/ D h3.x/;

we see that cdiv Oh D 
�13 div h, where cdiv denotes the divergence with respect to the Ox
coordinates. We also set Om. Ox/ D m.x/. Finally, we let

OE. Om/ D
1

2

L4

`4
t

T
E.m/ D

1

2


 04


3
E.m/:

A direct computation then shows that

OE. Om/ D
�2ı

2

Z
.�L;L/2�.0;T /

ˇ̌̌̌�
Or 0

" @
@ Ox3

�
Om
ˇ̌̌̌2

d Ox C
1

2ı

Z
.�L;L/2�.0;T /

j Om0j2 d Ox

C
1

2

Z
.�L;L/2�R

ˇ̌̌̌�
Oh0
1
"
Oh3

�ˇ̌̌̌2
d Ox

and that in the sense of distributions, there holds

Or
0
�

�
OhC

1

"
Om0
�
C

@

@ Ox3
. Oh3 C Om3/ D 0 in R3:

Here, Or 0 denotes the gradient with respect to the first two spaces variables in the Ox coordin-
ates.

2In fact, our initial motivation was to understand some of the results contained in the Ph.D. thesis of
Viehmann.



Domain branching in micromagnetism 407

Let us observe that the regime (1.2) is characterised in the parameters ", ı, L, � and T
by the (equivalent) conditions

ı"�2 � 1;
�

T
"3 � 1 and

L

.�T 2/1=3
� 1;

which, for fixed � and T , can be conveniently written as ı � "2 � 1� L.
A main result in [22] is to establish a �-type convergence3 for the energy func-

tional OE. Om/. More precisely, for any L � .�T 2/1=3, as ı"�2 ! 0 and " ! 0 (where
no order of the limits has to be imposed), the functional OE. Om/ converges to the sharp
interface micromagnetics functional, in the case d D 2,

QE.m/ WD �

Z
QL;T

jr
0mj C

1

2

Z
Œ�L;L�d�R

jhj2 dx:

Here, m 2 ¹�1; 1º a.e. in QL;T WD Œ�L; L�d � Œ0; T � denotes the magnetisation. It is
2L-periodic in the first d space coordinates, and equal to 0 elsewhere (i.e., for xdC1 � 0
and xdC1 � T ). With r 0 we denote the gradient with respect to the first d space coordin-
ates, and the stray field hWRdC1 ! Rd induced by m satisfies

(1.3) r
0
� hC @dC1m D 0 and r

0
� h D 0 in RdC1

in the sense of distributions, where r 0 � h and r 0 � h denote the in-plane divergence and
the in-plane curl of the vector field h, respectively. This energy functional comes supple-
mented with the (weak) boundary condition m D 0 on ¹xdC1 D 0º and ¹xdC1 D T º in
the sense that

m. � ; xdC1/
�
* 0 weakly-* in L1.Rd / as xdC1 ! 0; T;

that is, infinite branching. Let us emphasise that this condition ensures finiteness of the
anisotropic stray field energy. Moreover, it implies that the generated stray field h vanishes
outside QL;T .

Since the magnetisation inQL;T takes only the values˙1, the first contribution in the
energy has to be understood in the sense of BV functions,Z
QL;T

jr
0mj dx

D sup
° Z
QL;T

mr 0 � � dx W � 2C1.RdC1;Rd /; � is Œ�L;L/d -periodic in x0; j�j�1 in QL;T
±
;

and can be interpreted as the slice-wise measure of the set where m changes sign. More
precisely, Z

QL;T

jr
0mj D 2

Z T

0

H1
�
@¹m. � ; xdC1/ D 1º

�
dxdC1;

where H1.@¹m. � ; xdC1/ D 1º/ denotes the Hausdorff measure of the set where m takes
the value 1 on the slice xdC1 D constant in QL;T , corresponding to the usual geometric
interpretation of the gradient of the characteristic function of a set as perimeter.

The constant � represents the interface energy per cross section area. In particular, this
constant ensures that both terms in the energy have the same units.

3For some technical reasons, their result does not provide a full �-convergence result, see Theorem 2 in [22].
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1.1. Main results

We consider the energy functional

(1.4) EQL;T .m; h/ WD �

Z
QL;T

jr
0mj C

1

2

Z
QL;T

jhj2 dx

on the set

A
per
QL;T

WD
®
.m; h/ W m2L1xdC1.Œ0; T �IBVx0.Q0LI ¹˙1º//; h 2 L

2.QL;T IR
d /; such that

r
0
� hC @dC1m D 0 distributionally in RdC1; m

�
* 0 as xdC1 ! 0; T;

and periodic lateral boundary conditions
¯
;(1.5)

of admissible periodic configurations, where Q0L WD Œ�L; L�d . Note that the stray field
energy can also be expressed as4

(1.6) min
.m;h/2A

per
QL;T

EQL;T .m; h/

D min
m

�
�

Z
QL;T

jr
0mj

Cmin
°1
2

Z
QL;T

jhj2 dx W h is Œ�`; `/2-periodic in x0; r 0 � hC @dC1m D 0
±�

D min
m

�
�

Z
QL;T

jr
0mj C

1

2

Z
QL;T

jjr
0
j
�1@dC1mj

2 dx
�
I

see the Appendix of [22] for more details. This is an important ingredient in the derivation
of an ansatz-free lower bound on the minimal energy based on interpolation between BV
and PH�1 with respect to the horizontal variables x0, see Section 4.1 based on [8].

We will also consider the case of zero-flux boundary conditions

A0
QL;T

WD
®
.m; h/ W m2L1xdC1.Œ0; T �IBVx0.Q0LI ¹˙1º//; h 2 L

2.QL;T IR
d /; such that

r
0
�hC@dC1mD0 distributionally in QL;T ; m

�
*0 as xdC1!0; T;

h � �0 D 0 on �L;T
¯
;(1.7)

where �L;T D @Q0L � Œ0; T � and the equation and boundary conditions are understood
in a weak sense (as described more precisely in (2.1)). Let us remark that even though
the reduced functional was derived using periodic lateral boundary conditions, from a
physics point of view, the zero-flux lateral boundary conditions are the most natural to
impose in this context, since they account for the situation of a finite sample where the
stray field generated by the magnetisation naturally vanishes outside the sample (recall
that m

�
* 0 as xdC1 ! 0; T ).

The energy functional E has the following important scaling property: for � > 0, let

m�.x/ WD m.�
2=3x0; �xdC1/ and h�.x/ WD �

1=3 h.�2=3x0; �xdC1/:

4The curl-free condition on h is enforced by the minimisation, see Remark 2.2.
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Then .m�; h�/ 2 A
per=0
Q
��2=3L;��1T

and

EQ
��2=3L;��1T

.m�; h�/ D �
�d��1=3EQL;T .m; h/:(1.8)

We finally have all the ingredients to present our first result, which provides global
scaling laws for this functional.5

Theorem 1.1 (Global scaling laws). There exist universal constants6 CLT < 1 and
0 < cS � CS <1 such that, if L � CLT �1=3T 2=3, then the minimal energy with respect
to periodic or zero-flux boundary conditions satisfies

cS �
2=3LdT 1=3 � min

.m;h/2A
per=0
QL;T

EQL;T .m; h/ � CS �
2=3LdT 1=3:

Note that this is in perfect agreement with (1.1) in the case d D 2, and therefore with
the heuristic computations performed when branching is expected to occur. The lower
bound follows almost directly from an interpolation inequality, see Lemma 13 in [25] and
Theorem 1.1 in [8], while the upper bound is obtained via an explicit construction, which
is inspired by [25] (in the case d D 2).

Our main result, which has partially been obtained by T. Viehmann in his (unpub-
lished) PhD thesis [25], goes beyond the global scaling law, capturing the self-similar
behaviour of minimisers near the top and bottom boundaries. It shows that the energy
within any cuboid

Q`;t .a/ WD Q`;t C a; for a 2 RdC1,

sitting at the top or bottom boundaries, for lengths `� L and t � T which respect the
relation `� .� t2/1=3, satisfies the same scaling laws, i.e., it is of order �2=3 `d t1=3.

Theorem 1.2 (Local scaling laws). There exists a universal constant C`t <1 such that
the following holds: if L � C`t �1=3T 2=3 and ` � C`t �1=3 t2=3, then there exist universal
constants7 0 < cs � Cs <1 such that any .m; h/ minimising (1.4) in QL;T with respect
to periodic or zero-flux boundary conditions satisfies

cs �
2=3 `d t1=3 � EQ`;t .a/.m; h/ � Cs �

2=3 `d t1=3

for any cuboidQ`;t .a/ with a 2Rd � ¹0º or a 2Rd � ¹T � tº such thatQ`;t .a/�QL;T .

Remark 1.3. Our results in particular show that the energy density

eQ`;t .m; h/ WD
1

jQ`;t j
EQ`;t .m; h/

of any minimising configuration .m;h/ scales like .� t�1/2=3 and is therefore independent
of the dimension d . The minimal energy density min.m;h/ eQL;T .m; h/ has a thermody-
namic limit as L ! 1, as shown by Otto and Viehmann [22] (for d D 2), therefore
proving that the energy scaling is asymptotically exact.

5In the case d D 2 with periodic boundary conditions, this can already be found in [25], while an analogous
statement for d D 1 is contained in the classic work [19].

6By a universal constant we always mean a constant that only depends on the dimension d , but not on any
system parameter (like L or T ).

7To be precise, the constant cs only depends on the dimension d , while Cs depends on d and C`t .
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Remark 1.4. In the following, we will set � D 1 for simplicity; the general case can then
be recovered by a simple scaling argument.

Remark 1.5. The main results can be extended to almost-minimisers in the following
sense: .malmost; halmost/ 2 A

per=0
QL;T

is an almost-minimiser at scale .L; T / if halmost is curl-
free (hence a gradient field) and there exists a constant C <1 such thatZ

QL;T

jr
0malmostj C

1

2

Z
QL;T

h2almost dx �
Z
QL;T

jr
0mj C

1

2

Z
QL;T

h2 dx C CLdT 1=3

for all competitors .m; h/2A
per=0
QL;T

.

Theorem 1.1 also holds for almost-minimisers at scale .L; T / for L � T 2=3. In
this sense, almost-minimisers are “low-energy configurations” [6] because their energy
is within a certain factor of the minimum energy.

The extension of Theorem 1.2 requires .malmost; halmost/ to be almost-minimising at
any scale ` � L, t � T with `� t2=3.

For d D 1, Theorem 1.2 was first proved in the seminal work by Conti [9] in the con-
text of twinning in shape-memory alloys, and was recently extended by Conti, Diermeier,
Koser, and Zwicknagl [10] in several directions, including the case in which there are two
phases with different volume fractions, i.e., u 2 ¹��; 2 � �º, where �=2 2 .0; 1=2� rep-
resents the volume fraction of the minority phase8, in both the regime where the energy
scales like �2=3 and the regime where it scales like �1=2.

In his unpublished Ph.D. thesis, Viehmann [25] extended Conti’s result to d D 2. In
the process of understanding it, we realised that we could obtain the same local energy
bounds via a simplified proof, that we will present in a structured way. While at the mac-
roscopic level, our proof follows the one of Viehmann, it differs substantially in its details.
Moreover, it has the advantage of working in any dimension and therefore also reproduces
the result contained in [9]. Moreover, our approach, which is inspired by [1, 2], makes a
clear distinction between the detailed study of convex relaxation(s) of the problem and
constructions to transfer properties of the relaxed problems to the non-convex one. In par-
ticular, we break down the rather complicated proof in [25] into its basic building blocks.
On that level the intricacies of several of the constructions are clearly revealed. Finally, the
Campanato-type iterations used to transfer the global scaling law to small cuboids at the
sample boundaries allow for some flexibility, e.g. the extension to almost-minimisers (at
every scale) and the treatment of both periodic and zero-flux lateral boundary conditions.

Let us give a rough idea of our proof. We start by introducing the convex relaxation of
the minimisation problem, that is, we minimise among functionsm that satisfym 2 Œ�1;1�
instead of m 2 ¹�1; 1º. This is what we call relaxed problem, which is of course simpler
due to its convexity. Moreover, we consider an over-relaxation, which corresponds to an
xdC1-averaged problem, that is trivial to solve. From the over-relaxed problem, we are
able to construct a competitor for the relaxed one, via an explicit boundary layer construc-
tion. Finally, from the competitor for the relaxed problem, we construct a competitor for
the non-convex problem, via a re-distribution of mass, which is compatible with the hard

8Notice that when � D 1 we recover the case analysed in this paper.
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constraintm2 ¹�1;1º. Of course, in this process, we have to modify the stray field accord-
ingly to satisfy the differential constraint relating them.

These constructions are an essential ingredient for the core argument of our proof:
regularity theory in the form of a Campanato type iteration, that allows us to transfer
the global scaling law to a local one. More precisely, we do two iterations9: an initial
one (which is rather standard for this kind of problems) to reduce to the case for which
LD cLT T

2=3, where cLT is a coupling constant that has to be chosen large enough. Then,
by monitoring two quantities at the same time, we are able to approach the top or bottom
boundary both horizontally and vertically in one go, which is a major advantage and one
of the main novelties of our iteration scheme. The competitor construction plays a key
role in proving a one-step improvement, which is then fed into a Campanato iteration, to
obtain the local scaling law.

A different approach, based on duality estimates, inspired by the highly influential
work of Alberti, Choksi, and Otto [1], will be presented in a forthcoming article [24].
In our view, the ideas introduced in [1] to analyse a sharp interface limit of a model
of microphase separation in diblock copolymers, are more robust in proving screening
properties. In fact, they have been successfully used to treat problems where screening is
a driving principle; see for instance [2, 15].

In a similar model related to domain branching in type-I superconductors derived
in [11], which is actually of branched transport type, it has recently been proved in [23]
that optimal local energy estimates characterise the conjectured Hausdorff dimension of
the irrigated measure in the cross-over regime between uniform and non-uniform branch-
ing. The irrigation problem from a Dirac mass to Lebesgue measure in a two-dimensional
analogue of the energy functional derived in [11] has been solved by Goldman [14], who
proves that the minimiser is a self-similar tree.

The rest of the article is organised as follows. In Section 2, we introduce the relaxed
and over-relaxed problems and construct a competitor of the former from the (unique)
solution to the latter. In Section 3, we construct a competitor for the non-convex problem
based on a building block construction. In Section 4, we provide a proof for Theorem 1.1.
In Section 5, we give the proof of Theorem 1.2. Finally, in Appendix A, we establish an
elliptic estimate which is needed for the building block construction of Section 3.

2. Relaxed and over-relaxed problems

In the study of minimisers of (1.4), it is beneficial to study its convex relaxation and
allow for general lateral flux boundary conditions g 2 L2.�L;T /, as well as general top
and bottom magnetisations mT; mB 2L1.Q0LI Œ�1; 1�/ defined on Q0L D Œ�L;L�

d . We
therefore consider the following relaxed minimisation problem:

E rel
QL;T

.gImB;T / WD inf
h2 zArel

QL;T
.gImB;T /

1

2

Z
QL;T

jhj2 dx;

9In the case of zero-flux boundary conditions, an extra iteration for cuboids centred at the boundary �L;T
is needed.
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where the set of admissible functions zArel
QL;T

.gImB;T / consists of those functions h in

L2.QL;T IRd / satisfying, for all test functions ' 2C1.QL;T /, that10

(2.1)
Z
QL;T

.h � r 0' Cm@dC1'/dx D
Z
�L;T

g' C

Z
Q0L

.mT '.x0; T /�mB'.x0; 0//dx0;

for some m 2 L2.QL;T I Œ�1; 1�/. We will write

Arel
QL;T

.gImB;T /´
®
.m; h/2L2.QL;T I Œ�1; 1�/ � L

2.QL;T IR
d / W

(2.1) holds for all ' 2C1.QL;T /
¯

and remark that

E rel
QL;T

.gImB;T / D inf
.h;m/2Arel

QL;T
.gImB;T /

1

2

Z
QL;T

jhj2 dx:

Note that the set of admissible functions Arel
QL;T

.gImB;T / is non-empty only if the bound-
ary conditions are compatible, i.e., if

(2.2)
Z
�L;T

g dHd�1
D

Z
Q0L

.mB �mT / dx0;

which we shall assume henceforth. In particular, j
R
�L;T

g dHd�1j � 2Ld .

Since (2.1) implies that the vector field .h;m/2L2.QL;T IRdC1/ is divergence-free in
QL;T , h � �0 has a well-defined lateral trace11 h � �0j�`;t .a/ and top/bottom tracem. � ; adC1/
and m. � ; adC1 C t / in almost any sub-cube Q`;t .a/ D Q`;t C a contained in QL;T . By
Fubini’s theorem, h � �0j�`;t .a/ 2L

2.�`;t .a// for almost every `2 .0; L/ and t 2 .0; T /.

Lemma 2.1. Let .m; h/ 2Arel
QL;T

.gImB;T / be a minimiser of E rel
QL;T

.gImB;T /. Then h
is a gradient field, i.e., there exists a potential u 2 H 1.QL;T / such that h D �r 0u. This
potential is a solution of ²

��0u D �@dC1m in QL;T ;
�r 0u � � D g on �L;T :

(2.3)

While this is rather standard, we give a proof of Lemma 2.1 for the convenience of the
reader.

Proof. Let .m; h/ 2Arel
QL;T

.gImB;T / be a minimiser of E rel
QL;T

.gImB;T / and let u 2
H 1.QL;T / be a solution of (2.3). ThenZ

QL;T

h2 dx D
Z
QL;T

jr
0uj2 dx C

Z
QL;T

jhCr 0uj2 dx � 2
Z
QL;T

.hCr 0u/ � r 0u dx

(2.1); (2.3)
D

Z
QL;T

jr
0uj2 dx C

Z
QL;T

jhCr 0uj2 dx �
Z
QL;T

jr
0uj2 dx:

10That is, they satisfy in the sense of distributions @dC1mCr 0 � h D 0 in QL;T , with lateral flux boundary

conditions h � � D g on �L;T and top/bottom boundary conditions m. � ; xdC1/
�
* mB;T as xdC1 ! 0; T .

11With �0 2 Rd we will always denote the outer unit normal to �L;T (respectively, �`;t .a/).
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Since .m;�r 0u/2Arel
QL;T

.gImB;T / by (2.3), minimality of h implies thatZ
QL;T

h2 dx �
Z
QL;T

jr
0uj2 dx;

hence h D �r 0u.

Remark 2.2. The same argument shows that if the pair .m; h/ minimises the non-convex
energy (1.4) over A

per=0
QL;T

, then h is a gradient field.

Remark 2.3. Note that any minimiser .m; h/ 2 Arel
QL;T

.gImB;T / of E rel
QL;T

.gImB;T / in a
cube QL;T is locally minimising in any sub-cube Q`;t .a/ � QL;T , i.e., minimising given
its own boundary conditions.

Indeed, let

zg WD h � �0
ˇ̌
�`;t .a/

; zmB WD m. � ; adC1/; zmT WD m. � ; adC1 C t /;

and
. zm; Qh/ 2 Arel

Q`;t
.zgI zmB;T /:

Then

.bm;bh/ WD . zm1Q`;t Cm1QL;T nQ`;t ; Qh1Q`;t C h1QL;T nQ`;t /2Arel
QL;T

.gImB;T /;

and we have that

E rel
QL;T

.gImB;T / D
1

2

Z
QL;T

jhj2 dx

�
1

2

Z
QL;T

jbhj2 dx D
1

2

Z
QL;T nQ`;t

jhj2 dx C
1

2

Z
Q`;t

j Qhj2 dx;

hence

1

2

Z
Q`;t

jhj2 dx �
1

2

Z
Q`;t

j Qhj2 dx

for any . Qh; zm/ 2 Arel
Q`;t

.zgI zmB;T /.

Further, given top and bottom magnetisations mB;T 2L1.Q0L/, we define the (curl-
free) fields generating them via

HB;T
WD �r

0uB;T ;

where the potentials uB;T solve

��0uB;T D �mB;T in Q0L.

By (2.2), they have to satisfy the boundary condition

.HT
�HB/ � �0 D

Z T

0

g dxdC1 DW T gT on @Q0L.
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2.1. Over-relaxed problem

We will also look at the xdC1-averaged problem corresponding to the linear interpolation

m0.x/ WD
xdC1

T
mT C

�
1 �

xdC1

T

�
mB

between mT and mB , which can be thought of as an over-relaxed problem given by the
energy functional

E0QL;T .gIm
B;T / D

1

2

Z
QL;T

jr
0v0j

2dx D
T

2

Z
Q0L

jr
0v0j

2 dx0;

where v0 is the unique solution12 of²
��0v0 D �.m

T �mB/=T in QL;T ;
�r 0v0 � � D gT on �L;T ;

with
R
QL;T

v0 dx D 0. Let us stress that v0 is constant with respect to xdC1.

It is easy to see that if .m; h/ is a minimiser of the relaxed problem E rel
QL;T

.gImB;T /,
then the height average

hT WD

« T

0

h dxdC1

is a solution of the over-relaxed problem, i.e., hT D �r 0v0 and we have

E0QL;T .gIm
B;T / D

1

2

Z
QL;T

jhT j
2 dx:

More generally, we have the following.

Lemma 2.4. Let .m; h/2Arel
QL;T

.g;mB;T / and assume that h is a gradient field. ThenZ T

0

h dxdC1 D HT
�HB on Q0L:

Proof. Let h D �r 0u for some u 2 H 1.QL;T /. Then, by admissibility,

H D �r 0U WD

Z T

0

�r
0u dxdC1

is a weak solution of8̂<̂
:
��0U D mB �mT in Q0L;

�r 0U � �0 D

Z T

0

h � �0 dxdC1 D
Z T

0

g dxdC1 on @Q0L:

By definition ofHB;T D�r 0uB;T , the function uT � uB satisfies the same PDE (includ-
ing boundary conditions). By uniqueness, we must have H D HT �HB .

12Note that the equation is solvable by (2.2).



Domain branching in micromagnetism 415

Lemma 2.5 (Orthogonality). Let h 2 L2.Q`;t /. Then

1

2

Z
Q`;t

jh � ht j
2 dx D

1

2

Z
Q`;t

jhj2 dx �
1

2

Z
Q`;t

jht j
2 dx:

Proof. Let h 2 L2.Q`;t /. Then

1

2

Z
Q`;t

jh � ht j
2 dx D

1

2

Z
Q`;t

jhj2 dx �
1

2

Z
Q`;t

jht j
2 dx C

Z
Q`;t

ht � .ht � h/ dx;

and since Z
Q`;t

ht � .ht � h/ dx D
Z
Q0
`

ht �

Z t

0

.ht � h/ dxdC1 dx0 D 0;

the claim follows.

2.2. A competitor for the relaxed problem

Given the minimiser of the over-relaxed problem, we can use it to construct a competitor
for the relaxed problem by correcting the boundary data. This will be done in a boundary
layer of size r > 0.

For r > 0, we define the set

Ar .QL;T /´ Q0L nQ
0
L�r � Œ0; T �:

Let Xr .QL;T / be the set of all .m;h/2L1.Ar .QL;T /I Œ�1;1�/�L2.Ar .QL;T /IRd / sat-
isfying @dC1mCr 0 � hD 0 inAr .QL;T /with boundary conditionsm. � ;0/Dm. � ;T /D 0
and h � � D g � gT on @Q0L � Œ0; T �, h � � D 0 on @Q0L�r � Œ0; T �.

Proposition 2.6. Let g 2L2.�L;T / andmB;T 2L1.Q0LI Œ�1;1�/ be such that (2.2) holds.
There exists a universal constant C <1 such that if 13

(2.4)
r

L
� C max

°�T 2
L2

«
�L;T

.g � gT /
2
�1=.dC1/

;
T

L
sup
Q0L

ˇ̌̌ « T

0

h dxdC1
ˇ̌̌
;
1

L
sup
Q0L

jHB
j

±
;

then there exists .mr ; hr /2Xr .L; T / with the following properties:14

T 2

L2
1

LdT

Z
AL;T .r/

jhr j
2 .

r

L

T 2

L2

«
�L;T

.g � gT /
2;(2.5)

T k@dC1mrk
2
L2xdC1L

1

x0
.AL;T .r//

.
� r
L

��.dC1/T 2
L2

«
�L;T

.g � gT /
2:(2.6)

13The assumption may appear asymmetric in terms ofHB andHT . However, in view of Lemma 2.4, control
on HB and the cumulated field implies control on HT as well.

14Hereafter, we use the symbol . to indicate that the inequality holds up to a dimensional constant.



T. Ried and C. Román 416

Remark 2.7. Assumption (2.4) in particular implies the following estimate (in a weak
topology)

sup
P 0r

ˇ̌̌ «
P 0r

m0 dx0
ˇ̌̌
�
1

2
for all xdC1 2 Œ0; T �;

on the linearly interpolated magnetisation m0. � ; xdC1/ D
xdC1
T
mT C .1 �

xdC1
T
/mB ,

where the supremum is taken over all plaquettes P 0r of size r in Q0L nQ
0
L�r .

Indeed, since @xdC1m0 D .m
T �mB/=T D �0v0, we have that«

P 0r

m0 dx0 D
«
P 0r

mB dx0 C
«
P 0r

Z xdC1

0

@xdC1m0.x
0; �dC1/ d�dC1 dx0

D

«
P 0r

r
0
�HB dx0 C

Z xdC1

0

«
P 0r

�0v0 dx0 d�dC1

D
1

jP 0r j

Z
@P 0r

HB
� �0 dHd�1

C
1

jP 0r j

Z xdC1

0

Z
@P 0r

r
0v0 � �

0 dHd�1 d�dC1

D
1

jP 0r j

Z
@P 0r

HB
� �0 dHd�1

C
1

jP 0r j
xdC1

Z
@P 0r

r
0v0 � �

0 dHd�1:

Note that since mB ; mT 2L1.Q0L/, and therefore @xdC1m0 2 L
1.Q0L/, the functions

HB D �r 0uB and �r 0v0 are continuous by elliptic regularity15, hence we may boundˇ̌̌ «
P 0r

m0 dx0
ˇ̌̌
�
j@P 0r j

jP 0r j
sup
P 0r

jHB
j C
j@P 0r j

jP 0r j
T sup

P 0r

jr
0v0j

.
L

r

� 1
L

sup
Q0L

jHB
j C

T

L
sup
Q0L

ˇ̌̌ « T

0

h dxdC1
ˇ̌̌� (2.4)

.
1

C
,

where in the last step we also used that

�r
0v0 D hT D

« T

0

h dxdC1:

In particular, we can ensure that j
ª
P 0r
m0 dx0j � 1=2 if C is chosen large enough.

The proof of Proposition 2.6, inspired by [25], proceeds via localisation of the problem
in small boundary plaquettes P 0r of size r and a splitting of the boundary flux f ´ g � gT
into two components:

(1) the oscillatory part of the boundary data f . � ; xdC1/ �
ª
@P 0r\@Q

0
L
f . � ; xdC1/, giving

rise to a divergence-free field h1 (carrying no “charges”, therefore not influencing
the magnetisation), and

(2) the average boundary flux
ª
@P 0r\@Q

0
L
f . � ; xdC1/, giving rise to a bounded field h2

compatible with the magnetisation mr .

15This follows from maximal Lp regularity, which implies that HB ;�r 0v0 2W
1;p.Q0

L
/ for any p <1,

and therefore HB ;�r 0v0 2C
0;˛.Q0

L
/ for any ˛ 2 .0; 1/ by Morrey’s inequality.
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Remark 2.8. Here one would be tempted to do a standard boundary layer construction
based on screening properties, like, for instance, the one performed in Lemma 2.4 of [15]
for optimal transportation. Nevertheless, such a strategy has a major problem in our situ-
ation: one needs that m0 C mboundary-layer 2 Œ�1; 1�, which is a hard constraint that is not
accounted for in such a type of construction. We overcome this difficulty by the passage to
a convex combination, which essentially converts boundedness by one in L1 to requiring
smallness in a weaker topology, see Remark 2.7.

Proof of Proposition 2.6. The construction is done locally in each boundary plaquette P 0r .
We first take out the oscillatory part with a divergence-free field h1 D �r 0v1 by solving
the elliptic PDE8<: ��

0v1 D 0 in P 0r � ¹xdC1º;
�r 0v1 � � D f �

ª
@P 0r\@Q

0
L
f . � ; xdC1/ on .@P 0r \ @Q

0
L/ � ¹xdC1º;

�r 0v1 � � D 0 on .@P 0r n @Q
0
L/ � ¹xdC1º:

Note that the solvability condition is fulfilled, and by elliptic regularity, we have the fol-
lowing bound:16Z

P 0r�¹xdC1º

jh1j
2 . r

Z
@P 0r\@Q

0
L

�
f . � ; xdC1/ �

«
@P 0r\@Q

0
L

f . � ; xdC1/
�2

. r

Z
@P 0r\@Q

0
L

f 2. � ; xdC1/:

In particular, summing over all the boundary plaquettes and integrating over Œ0; T �, we get

1

LdT

Z
AL;T .r/

jh1j
2 dx D

1

LdT

Z T

0

X
P 0r

Z
P 0r

jh1j
2 dx0 dxdC1 .

r

L

«
�L;T

f 2:(2.7)

Recall the linearly interpolated magnetisation

m0. � ; xdC1/ D
xdC1

T
mT C

�
1 �

xdC1

T

�
mB :

For the averaged boundary flux, we make the ansatz thatmr D �.m�m0/ for some well-
chosen m taking values in Œ�1; 1�, and we allow � � �P 0r .xdC1/ 2 Œ0; 1=2� to depend
on xdC1 in the given plaquette P 0r . Then mr .x/2 Œ�1; 1� for all x2 P 0r � Œ0; T �, and thus

m0 Cmr D �mC .1 � �/m0 2 Œ�1; 1� on QL;T :

This magnetisation gives rise to a field h2 D �r 0v2, which is defined slice-wise (for
fixed xdC1) as the solution to8̂̂̂<̂

ˆ̂:
��0v2 D �@dC1mr in P 0r � ¹xdC1º;

�r 0v2 � � D

«
@P 0r\@Q

0
L

f . � ; xdC1/ on .@P 0r \ @Q
0
L/ � ¹xdC1º;

�r 0v2 � � D 0 on .@P 0r n @Q
0
L/ � ¹xdC1º:

16In the following estimates on theL2 norm of the fields, it is important to keep the right-hand sides localised
to a plaquette, because we have to sum over all boundary plaquettes in the end, in order to not pick up a term
that cancels the small factor in the final estimate.
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Note that this elliptic PDE has a solution if

�

Z
@P 0r\@Q

0
L

f D

Z
P 0r

@dC1mr D @dC1

h
�
� Z

P 0r

m dx0 �
Z
P 0r

m0 dx0
�i
;

which is ensured by the choice

�.xdC1/ D
�

1
jP 0r j

R xdC1
0

R
@P 0r\@Q

0
L
fª

P 0r
m dx0 �

ª
P 0r
m0 dx0

�

Note that �.0/ D �.T / D 0, since
R T
0
f dxdC1 D 0 for almost every x0 2 @Q0L. Since we

need to ensure that �2 Œ0; 1=2�, we select m 2 Œ�1; 1� in such a way that for a given sign
of the enumerator the denominator is the largest possible, i.e.,17

m.x/´ sign
�
�

1

jP 0r j

Z xdC1

0

Z
@P 0r\@Q

0
L

f
�
:

Note thatm only depends on xdC1 in P 0r � Œ0;T �. Indeed, with this choice, by Remark 2.7,
we can estimate ˇ̌̌ «

P 0r

m dx0 �
«
P 0r

m0 dx0
ˇ̌̌
� 1 � sup

P 0r

ˇ̌̌ «
P 0r

m0 dx0
ˇ̌̌
�
1

2
,

so that � � 1=2 if ˇ̌̌
�

1

jP 0r j

Z xdC1

0

Z
@P 0r\@Q

0
L

f
ˇ̌̌
�
1

4
�

We next argue that this is implied by our assumption (2.4) on the size of the boundary
layer. Indeed,ˇ̌̌

�
1

jP 0r j

Z xdC1

0

Z
@P 0r\@Q

0
L

f
ˇ̌̌

.
j@P 0r \ @Q

0
Lj
1=2

jP 0r j
T 1=2

� Z xdC1

0

Z
@P 0r\@Q

0
L

f 2
�1=2

.
� r
L

��.dC1/=2�T 2
L2

«
�L;T

f 2
�1=2 (2.4)

�
1

4
,

if the constant C in (2.4) is chosen large enough. Notice that we have the finer estimate

(2.8) � .
� r
L

��.dC1/=2�T 2
L2

1

Ld�1T

Z T

0

Z
@P 0r\@Q

0
L

f 2
�1=2

;

which will be important when summing up the estimates over all plaquettes.
Next, we show that @dC1mr 2L1 and satisfies the estimate (2.6). To this end, notice

that

@dC1mr D @dC1.�.m �m0// D �
0.m �m0/C �.@dC1m � @dC1m0/

D �0.m �m0/ � �@dC1m0;

where we used that � vanishes where m changes sign, so that �@dC1m D 0.18

17In fact, we have that m D argmin
°� 1
jP 0r j

R xdC1
0

R
@P 0r\@Q

0
L
fª

P 0r
zm dx0�

ª
P 0r
m0 dx0 W zm 2 Œ�1; 1� such that � � 0

±
.

18This argument is a bit formal, since strictly speaking m is only a function of bounded variation. However,
it can be made rigorous with little effort.
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Using that jmB;T j � 1, the latter term is easily bounded by

j�@dC1m0j��
ˇ̌̌mT �mB

T

ˇ̌̌
.
�

T

(2.8)
.

1

T

� r
L

��.dC1/=2�T 2
L2

1

Ld�1T

Z T

0

Z
@P 0r\@Q

0
L

f 2
�1=2

:

For the other term, we calculate

�0.xdC1/ D
�

1
jP 0r j

R
@P 0r\@Q

0
L
f . � ; xdC1/ª

P 0r
m dx0 �

ª
P 0r
m0 dx0

� �

ª
P 0r
@dC1m0 dx0ª

P 0r
m dx0 �

ª
P 0r
m0 dx0

�

In particular, bounding the first term in a similar way as � in (2.8) (but without the
xdC1-integral) and the second term as before, we obtain

j�0.xdC1/j .
� r
L

��.dC1/=2� 1

LdC1

Z
@P 0r\@Q

0
L

f 2. � ; xdC1/
�1=2

C

� r
L

��.dC1/=2� 1

LdC1T

Z T

0

Z
@P 0r\@Q

0
L

f 2
�1=2

:

and so, since
km. � ; xdC1/ �m0. � ; xdC1/kL1.Q0L/ � 2;

it follows that

sup
P 0r

j@dC1mr . � ; xdC1/j
2 .

� r
L

��.dC1/ 1

LdC1

Z
@P 0r\@Q

0
L

f 2. � ; xdC1/

C

� r
L

��.dC1/ 1

LdC1T

Z T

0

Z
@P 0r\@Q

0
L

f 2:

By standard elliptic regularity19, we then have the following estimate for h2 D �r 0v2:

sup
P 0r

jh2. � ; xdC1/j
2 . r2 sup

P 0r

j@dC1mr . � ; xdC1/j
2
C

«
@P 0r\@Q

0
L

f 2. � ; xdC1/

.
� r
L

��.d�1/ 1

Ld�1

Z
@P 0r\@Q

0
L

f 2. � ; xdC1/

C

� r
L

��.d�1/ 1

Ld�1T

Z T

0

Z
@P 0r\@Q

0
L

f 2:

In particular, we get that

1

LdT

Z T

0

Z
P 0r

jh2j
2 dx .

1

T

Z T

0

� r
L

�d
sup
P 0r

jh2j
2 dxdC1 .

r

L

1

Ld�1T

Z T

0

Z
@P 0r\@Q

0
L

f 2:

19Indeed, this follows from maximal Lp regularity for v2 using that @dC1mr . � ; xdC1/ 2 Lp.P 0r / for
a.e. xdC1 2 Œ0; T � and p � 1, combined with the Sobolev embedding h2. � ; xdC1/ D �r

0v2. � ; xdC1/

2W 1;p.P 0r / ,! L1.P 0r /.
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Summing over all the boundary plaquettes, we then obtain the bound

1

LdT

Z
AL;T .r/

jh2j
2 dx D

1

LdT

Z T

0

X
P 0r

Z
P 0r

jh2j
2 dx .

r

L

«
�L;T

f 2:(2.9)

Putting the two contributions (i.e., h1 and h2) together, we have constructed an admiss-
ible pair .mr ; hr /2Xr .L; T /, where hr D h1 C h2, which by (2.7) and (2.9) satisfies the
estimate

1

LdT

Z
AL;T .r/

jhr j
2 dx .

r

L

«
�L;T

f 2:

3. Construction: From relaxed to non-convex

In this section, we construct a competitor for the non-convex energy (1.4) from a compet-
itor for the relaxed problem. This construction will play an essential role in the proofs of
our main results, as we shall see in Section 4 and Section 5. We start with a building block
for the full branching construction.

Lemma 3.1 (Building block for the construction). Let Q D Œ0; 1�dC1. Given an admiss-
ible pair .M;H/2L1.QI Œ�1; 1�/ � L2.QIRd / such that

@dC1M Cr
0
�H D 0 and k@dC1MkL2ydC1L

1

y0
.Q/ . 1;

there exist functions zM 2 L1ydC1.Œ0; 1�IBVy0.Œ0; 1�d I˙1// and zH 2L2.QIRd / such that

@dC1 zM Cr
0 � zH D 0 in Q and zH � �0 D H � �0 on � D @Œ0; 1�d � Œ0; 1�, and satisfying

the estimates Z
Q

jr
0 zM j . 1;(3.1) Z

Q

j zH �H j2 dy . 1:(3.2)

Remark 3.2. Since the construction for d � 2will be done in such a way that it is constant
in the directions y3; : : : ; yd , for simplicity and to not overburden the reader with notation,
we will give the proof just for d D 2. The generalisation to higher dimensions is then
immediate.

Moreover, the proof can be adapted to the case d D 1 (and simplified considerably),
thus recovering a construction similar to [9].

Proof for d D 2. The construction of a ˙1-valued function zM from M is done in two
steps: a geometric refinement in the lower half of the cube and a local averaging with
respect to the refined subdomains. It is worth remarking that the geometric refinement
will be crucial when constructing a competitor for the non-convex energy, in view of the
weak boundary conditions that the magnetisation needs to satisfy on the top and bottom
boundaries of the domain sample.
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Step 1. Averaging.
Let Sij D Œ0; 1=2�2 C .i=2; j=2/ for i; j 2 ¹0; 1º, and define

M.y/ WD

8̂̂<̂
:̂
Z
Œ0;1�2

M.x0; y3/ dx0 for y3 2 Œ1=2; 1�;

.1�2y3/

«
Sij

M.x0;y3/dx0C2y3

Z
Œ0;1�2

M.x0;y3/dx0 for y32 Œ0;1=2/;y02Sij :

Let us observe that our construction refines from a single plaquette for y3 2 Œ1=2; 1� to
four identical plaquettes for y3 2 Œ0;1=2/. The main idea here is that for y3 2 ¹0;1º, in each
plaquette,M is equal to the average of the magnetisation over the corresponding plaquette.
In the upper half of the cube, i.e., for y3 2 Œ1=2; 1/, since there is only one plaquette, we
define M as the average of the magnetisation over the corresponding plaquette. Then, in
the lower half of the cube, i.e., for y3 2 .0; 1=2/, on each plaquette at height y3 we take
a convex combination between

ª
Si;j

M.y0; y3/ dy0 and
R
Œ0;1�2

M.y0; y3/ dy0, where the
coefficients of the convex combination are taken to be linear with respect to y3 and so
that M does not jump at y3 D 1=2.

We remark that the constructed M is such that M 2 Œ�1; 1� in Q andZ
Œ0;1�2

M.y0; y3/ dy0 D
Z
Œ0;1�2

M.y0; y3/ dy0 for every y3 2 Œ0; 1�,

i.e., the average per y3-slice is preserved.
Step 2. Construction of a˙1-valued magnetisation.
With the locally averaged M , we can now proceed to define a ˙1-valued magnetisa-

tion zM with the property that in each horizontal plaquette Sij � ¹y3º, there is exactly one
interface curve, by shifting the magnetisation according to the volume fraction in each
horizontal slice.

For y3 2 Œ1=2; 1�, we set

zM.y/ WD

´
C1; if y1 2 Œ0; �1.y3/� [ Œ1=2; �2.y3/�;
�1; else;

where

(3.3)
�1.y3/ WD min

�
y3
1CM.y/

2
, 1
2

�
;

�2.y3/ WD
1

2
Cmax

�
.1 � y3/

1CM.y/

2
, M.y/

2

�
;

and we recall that M.y/ D
R
Œ0;1�2

M.y/ dy0 2 Œ�1; 1� depends only on y3.
For y3 2 Œ0; 1=2/, the local averaging is refined to ensure that the construction is

compatible with the top boundary conditions of four cubes with corresponding volume
fractions: we define

zM.y/ WD

´
C1; if y0 2Sij and y1 2 Œi=2; i=2C 1

2
.1CM.y//=2�;

�1; elsewhere on Sij :

Note that the magnetisation zM is piecewise constant in y2.
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In words, the main idea here is that for y3 2 ¹0; 1º, all the “positive” mass of M
in each plaquette, that is, the Lebesgue measure of the set where M. � ; y3/ D C1 in the
corresponding plaquette, which is equal to .1 CM.y//=2, is shifted to the left in the
y1-direction, which preserves the average.

In the lower half of the cube, we do exactly the same. However, recall that for y3 2
.0;1=2/,M is not longer equal to the average ofM over the corresponding plaquette, but a
convex combination between the average over each plaquette and the average over the four
of them. This in particular ensures that for y3 D 1=2 the “positive” mass in Œ0; 1�2 � ¹1=2º
is equally distributed (and shifted to the left) in the 2 plaquettes Œ0; 1=2� � Œ0; 1� � ¹1=2º
and Œ1=2; 1� � Œ0; 1� � ¹1=2º. Hence, zM is constant in the y2-direction at y3 D 1=2.

For y3 2 .1=2; 1/, the “positive” mass in Œ0; 1�2 � ¹y3º is unequally distributed (and
shifted to the left) in the 2 plaquettes Œ0; 1=2� � Œ0; 1� � ¹y3º and Œ1=2; 1� � Œ0; 1� � ¹y3º.
More precisely, we put a fraction y3 in the first plaquette, and the remaining .1 � y3/
fraction in the latter. A key observation is that when one reaches y3 D 1, then .1 � y3/
vanishes and therefore all the “positive” mass is shifted to the left in the single plaquette
Œ0; 1�2 � ¹1º.

For the reader’s convenience, in Figure 2 and Figure 3 we depict how zM looks like in
two simple situations.

1=4 1=2 3=4 1

1=2

1

y1

y3

Figure 2. Given y2 2 Œ0; 1�, this depicts zM. � ; y2; �/ in the case when
R
Œ0;1�2M dy0 D 0 andM D 0

for every y3 2 Œ0; 1�. The set ¹ zM. � ; y2; �/ D C1º is coloured in green, whereas ¹ zM. � ; y2; �/ D �1º

is coloured in blue. Notice that in this special case, zM is constant in y2 direction.

We remark that the constructed zM is such that zM 2 Œ�1; 1� in Q andZ
Œ0;1�2

zM.y0; y3/ dy0 D
Z
Œ0;1�2

M.y0; y3/ dy0 D
Z
Œ0;1�2

M.y0; y3/ dy0

for every y3 2 Œ0; 1�, i.e., the average per slice in y3 direction is preserved.
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1=8 1=4 3=8 1=2 5=8 3=4 7=8 1

1=2

1

y1

y3

1=8 1=4 3=8 1=2 5=8 3=4 7=8 1

1=2

1

y1

y3

Figure 3. The picture on the left depicts zM. � ; y2; �/ for y2 2 Œ0; 1=2�, and the one on the right,
for y2 2 Œ1=2; 1�, in the case

R
Œ0;1�2 M dy0 D 1=4 for every y3 2 Œ0; 1�, and

ª
S0;0

M dy0 D 1,ª
S1;0

M dy0 D
ª
S0;1

M dy0 D �1=4, and
ª
S1;1

M dy0 D 1=2 for every y3 2 Œ0; 1=2�. The set

¹ zM. � ; y2; �/ D C1º is coloured in green, whereas ¹ zM. � ; y2; �/ D �1º is coloured in blue. Observe
that zM is not constant in y2 direction for y3 2 Œ0; 1=2/.

Remark 3.3. The refinement is done in such a way that the constructed ˙1-valued mag-
netisation in Corollary 3.4 is continuous in the vertical direction.

Since this construction creates at most 3 interfaces for y3 2 Œ1=2; 1� and at most 8
interfaces for y3 2 Œ0; 1=2/ (at most 6 in y1 direction and at most 2 in y2 direction), the
total surface energy created is bounded byZ

Q

jr
0 zM j . 1:

Step 3. Construction of corrector fields.
As the local rearrangement of the magnetisation creates “excess charges” @3. zM �M/,

we have to define a corrector field Hcor such that

(3.4)
²
@3. zM �M/Cr 0 �Hcor D 0 in Q;
Hcor � �

0 D 0 on �;

in order to obtain a competitor for the non-convex problem satisfying the right boundary
conditions (since the corrector field satisfies Neumann boundary conditions).

We treat the cases y3 2 Œ0; 1=2/ and y3 2 Œ1=2; 1� separately.

Case 1. For y3 2 Œ1=2; 1�, we have

@3 zM D 2�
0
1.y3/H1

b¹y1D�1.y3/ºC2�
0
2.y3/H1

b¹y1D�2.y3/º;

with �1;2 defined in (3.3).
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There holds

�01.y3/ D 1
¹y3

1CM.y/
2 �1=2º

�1CM.y/

2
C
y3

2
@3M.y/

�
;

�02.y3/ D 1
¹.1�y3/

1CM.y/
2 �M.y/=2º

�
�
1CM.y/

2
C
1 � y3

2
@3M.y/

�
C 1
¹.1�y3/

1CM.y/
2 <M.y/=2º

@3M.y/

2

D 1
¹y3

1CM.y/
2 �1=2º

�
�
1CM.y/

2
�
y3

2
@3M.y/

�
C
@3M

2
,

and we constructHcor as superposition of (slice-wise defined) corrector fields correspond-
ing to the decomposition20

@3. zM �M/ D 1
¹y3

1CM.y/
2 �1=2º

�
.1CM/H1

b¹y1D�1.y3/º�.1CM/H1
b¹y1D�2.y3/º

�
C 1
¹y3

1CM.y/
2 �1=2º

�
y3.@3M/H1

b¹y1D�1.y3/º�y3.@3M/H1
b¹y1D�2.y3/º

�
C
�
.@3M/H1

b¹y1D�2.y3/º�@3M
�
:

Corrector 1.1. For y3
1CM.y/

2
� 1=2, we solve

�r
0
�H .1/

cor D .1CM/H1
b¹y1D�1.y3/º�.1CM/H1

b¹y1D�2.y3/º in Œ0; 1�2 � ¹y3º;

with boundary condition H .1/
cor � �

0 D 0 on @Œ0; 1�2 � ¹y3º. A solution is easily found to be

H .1/
cor D �.1CM/e11¹y1��1º C .1CM/e11¹y1��2º D �.1CM/e11¹�1�y1��2º;

where e1 D .1; 0/ denotes the unit vector in y1 direction. For y3
1CM.y/

2
> 1=2, we set

H
.1/
cor D 0. Note that this field satisfies kH .1/

cor kL1.Œ0;1�2�¹y3º/ � 2, hence

kH .1/
cor kL2.Œ0;1�2�Œ1=2;1�/ � 2:(3.5)

Corrector 1.2. For the next correction field, we first note that

@3M D

Z
Œ0;1�2

@3M dy0;

so that as for the first corrector we can set

H .2/
cor D �y3.@3M/e11¹�1�y1��2º

for y3 .1CM.y//=2 � 1=2 and H .2/
cor D 0 otherwise, which solves

�r
0
�H .2/

cor D y3.@3M/H1
b¹y1D�1.y3/º�y3.@3M/H1

b¹y1D�2.y3/º

20Notice that M does not depend on y0 for y3 2 Œ 12 ; 1�.
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in Œ0; 1�2 � ¹y3º, with boundary condition H .1/
cor � �

0 D 0 on @Œ0; 1�2 � ¹y3º for y3
1CM.y/

2

� 1=2. We then have the bound

kH .2/
cor k

2
L2.Œ0;1�2�Œ1=2;1�/

�

Z 1

1=2

kH .2/
cor k

2
L1.Œ0;1�2�¹y3º/

dy3 �
Z 1

0

.@3M/2 dy3

� k@3Mk
2
L2y3L

1

y0
.Q/
:(3.6)

Corrector 1.3. For the remaining correction, we make the ansatz H .3/
cor D r

0v
.3/
cor ,

where v.3/cor is a solution of the elliptic PDE´
�0v

.3/
cor D @3M � .@3M/H1b¹y1D�2.y3/º in Œ0; 1�2 � ¹y3º;

r 0v
.3/
cor � �

0 D 0 on @Œ0; 1�2 � ¹y3º;

for y3 2 Œ1=2; 1�. Note that by Lemma A.1 (for d D 2), this PDE is solvable and the
solution satisfies the bound

kH .3/
cor kL2.Œ0;1�2�¹y3º/ . k@3MkL2.Œ0;1�2�¹y3º/ . k@3MkL1.Œ0;1�2�¹y3º/;

hence

kH .3/
cor kL2.Œ0;1�2�Œ1=2;1�/ . k@3MkL2y3L1y0 .Q/:(3.7)

Case 2. For y3 2 Œ0; 1=2/, where the local averaging is refined, there is a change also
in the y2 direction. This is why we do the construction of a comparison field on the four
plaquettes Si;j , i; j D 0; 1.

To this end, define

�.i;j /.y3/ D
i

2
C
1

2

1CM.y/

2
for .i; j /2 ¹0; 1º,

recalling that

M.y/ D .1 � 2y3/

«
Sij

M.x0; y3/ dx0 C 2y3

Z
Œ0;1�2

M.x0; y3/ dx0; for y0 2Sij :

Then

@3 zM D 2�
0
.0;0/.y3/H1

b¹y1D�.0;0/.y3/º\S00C2�
0
.1;0/.y3/H1

b¹y1D�.1;0/.y3/º\S10

C 2�0.0;1/.y3/H1
b¹y1D�.0;1/.y3/º\S01C2�

0
.1;1/.y3/H1

b¹y1D�.1;1/.y3/º\S11 ;

with

�0.i;j /.y3/ D
1

2

� Z
Œ0;1�2

M dy0 �
«
Sij

M dy0
�
C
y3

2

� Z
Œ0;1�2

@3M dy0 �
«
Sij

@3M dy0
�

C
1

2

«
Sij

@3M dy0:
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Corrector 2.1. We first solve
(3.8)

�r
0
�H .4/

cor D
X

i;j2¹0;1º

�Z
Œ0;1�2

M.y0; y3/dy0 �
«
Sij

M.y0; y3/dy0
�

H1
b¹y1D�.i;j /.y3/º\Sij

in Œ0; 1�2 � ¹y3º with boundary condition H .4/
cor � �

0 D 0 on @Œ0; 1�2 � ¹y3º. We proceed in
two steps. Consider the field

H .4;˛/
cor .y/ D �

1X
jD0

h� Z
Œ0;1�2

M dy0 �
«
S0j

M dy0
�

1¹y1��.0;j /.y3/º\S0j

�

� Z
Œ0;1�2

M dy0 �
«
S1j

M dy0
�

1¹y1��.1;j /.y3/º\S1j
i
e1;

which has zero normal flux through the boundary. Its horizontal divergence has an extra
contribution from surface charges at the interface ¹y1 D 1=2º, given by

1X
jD0

�
2

Z
Œ0;1�2

M dy0 �
«
S0;j

M dy0 �
«
S1;j

M dy0
�

H1
b¹y1D1=2º\.S0;j[S1;j /;

which we correct with the field

H .4;ˇ/
cor .y/

D

8̂̂̂̂
<̂
ˆ̂̂:
�

�
2

Z
Œ0;1�2

M dy0 �
«
S0;0

M dy0 �
«
S1;0

M dy0
�
.e1Ce2/ in S10\¹y2 � y1� 12º;

�

�
2

Z
Œ0;1�2

M dy0 �
«
S0;1

M dy0 �
«
S1;1

M dy0
�
.e1�e2/ in S11\¹y2 � 3

2
� y1º;

0 otherwise:

Note that H .4;ˇ/
cor is continuous in y2 across the sector boundary between S10 and S11

because

4

Z
Œ0;1�2

M dy0 D
X

i;j 2¹0;1º

«
Sij

M dy0;(3.9)

and that H .4;ˇ/
cor � �0 D 0 on @Œ0; 1�2 � ¹y3º.

Hence, H .4/
cor D H

.4;˛/
cor CH

.4;ˇ/
cor is a solution of (3.8) with the right boundary condi-

tions. By construction, it satisfies kH .4/
cor kL1.Œ0;1�2�¹y3º/ . 1 for y3 2 Œ0; 1=2/, hence

kH .4/
cor kL1.Œ0;1�2�Œ0;1=2// . 1:(3.10)

Corrector 2.2. Next, we solve

�r
0
�H .5/

cor D
X

i;j 2¹0;1º

y3

� Z
Œ0;1�2

@3M dy0 �
«
Sij

@3M dy0
�

H1
b¹y1D�.i;j /.y3/º\Sij

in Œ0; 1�2 with boundary condition H .5/
cor � �

0 D 0 on @Œ0; 1�2 in an analogous way.
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More precisely, we set H .5/
cor D H

.5;˛/
cor CH

.5;ˇ/
cor , with

H .5;˛/
cor .y/ D �

X
jD0;1

y3

h� Z
Œ0;1�2

@3M dy0 �
«
S0j

@3M dy0
�

1¹y1��.0;j /.y3/º\S0j

�

� Z
Œ0;1�2

@3M dy0 �
«
S1j

@3M dy0
�

1¹y1��.1;j /.y3/º\S1j
i
e1;

and a corresponding correction for the discontinuities at the interface ¹y1 D 1=2º given by

H
.5;ˇ/
cor .y/

D

8̂̂̂̂
<̂
ˆ̂̂:
�y3

�
2

Z
Œ0;1�2

@3Mdy0 �
«
S0;0

@3Mdy0 �
«
S1;0

@3Mdy0
�
.e1Ce2/ in S10\¹y2�y1� 12 º;

�y3

�
2

Z
Œ0;1�2

@3Mdy0 �
«
S0;1

@3Mdy0 �
«
S1;1

@3Mdy0
�
.e1�e2/ in S11\¹y2� 32 �y1º;

0 otherwise:

In particular, we have the bound

kH .5/
cor kL1.Œ0;1�2�¹y3º/ . k@3MkL1.Œ0;1�2�¹y3º/ for y3 2 Œ0; 1=2/,

hence

kH .5/
cor kL2.Œ0;1�2�Œ0;1=2// . k@3MkL2y3L1y0 .Q/:(3.11)

Corrector 2.3. Finally, we solve the elliptic PDE8̂<̂
:�

0v.6/cor D @3M �
X

i;j2¹0;1º

�1
2

«
Sij

@3Mdy0
�

H1
b¹y1D�.i;j /.y3/º\Sij in Œ0; 1�2 � ¹y3º;

r
0v.6/cor � �

0
D 0 on @Œ0; 1�2 � ¹y3º:

Note that by (3.9),Z
Œ0;1�2

@3M dy0 �
1

2

X
i;j2¹0;1º

�1
2

«
Sij

@3M dy0
�

D @3

� Z
Œ0;1�2

M dy0 �
1

4

X
i;j2¹0;1º

«
Sij

M dy0
�
D 0:

Hence the equation is solvable, and with Lemma A.1 (for d D 2), we obtain a correction
field H .6/

cor D r
0v
.6/
cor satisfying

kH .6/
cor kL2.Œ0;1�2�¹y3º/ . k@3MkL2.Œ0;1�2�¹y3º/ . k@3MkL1.Œ0;1�2�¹y3º/;

which gives the bound

kH .6/
cor kL2.Œ0;1�2�Œ0;1=2// . k@3MkL2y3L1y0 .Q/:(3.12)
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Putting together the different parts of the corrector field, i.e.,

Hcor D

´
H
.1/
cor CH

.2/
cor CH

.3/
cor for y3 2 Œ1=2; 1�;

H
.4/
cor CH

.5/
cor CH

.6/
cor for y3 2 Œ0; 1=2/;

we obtain a field that solves (3.4).
Step 4. Bound on the energy of the corrector field.
Combining the estimates (3.5), (3.6), (3.7), (3.10), (3.11), and (3.12), we get, by the

assumption k@3MkL2y3L1y0 .Q/ . 1, thatZ
Q

jHcorj
2 dy . 1C k@3MkL2y3L

1

y0
.Q/ . 1:

With the building block at hand, we can now proceed with the construction of a com-
petitor for the non-convex problem.

Corollary 3.4 (Competitor for the non-convex problem). Let .mrel;hrel/2Arel
QL;T

.g;mB;T /

and assume that k@dC1mrelk
2
L2xdC1L

1

x0
.QL;T /

. T �1. Then for any N 2 N there exist func-

tions zm 2 L1xdC1.Œ0; T �IBVx0.Q0LI ¹˙1º// and Qh2L2.QL;T IRd / such that

@dC1 zmCr
0
� Qh D 0 in QL;T , Qh � �0 D g on �L;T , zm

�
* mB;T as xdC1 ! 0; T ,

and with the property that «
QL;T

jr
0
zmj .

�L
N

��1
;(3.13) «

QL;T

j Qh � hrelj
2 dx .

L2

N 2

1

T 2
�(3.14)

Remark 3.5. At this stage, including the additional parameter N 2 N seems artificial.
However, it will play an important role in balancing the two energy terms. Indeed, the
right-hand sides of (3.13) and (3.14) are of the same order if and only if

N

L
�
L2

N 2

1

T 2
, that is, N �

L

T 2=3
,

in which case «
QL;T

jr
0
zmj C

«
QL;T

j Qh � hrelj
2 dx . T �2=3:

Of course, since N has to be an integer, this is only possible if L & T 2=3.

Proof. We proceed in several steps.

Step 1. Decomposition of QL;T .
We divide the cuboid QL;T into smaller cuboids, where in order to treat the top and

bottom boundary condition m** mB;T we do this in such a way that the xdC1-scale gets
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finer and finer towards the boundaries xdC1 D 0; T . To this end, we dyadically decom-
pose QL;T , taking into account the natural anisotropic scaling between horizontal and
vertical directions. More precisely, fix an integer N 2 N, let k 2N, and split

QL;T D
[
k2N

[
i1;:::;id 2¹�2

kN;:::;2kN�1º

Qk
i1;:::;id

;

where Qk
i1;:::;id

´ P ki1;:::;id � Ik with dyadic horizontal plaquettes

P ki1;:::;id D�
d
nD1 Œin 2

�kL=N; .in C 1/ 2
�kL=N �;

and dyadic vertical intervals Ik D I 0k [ I
T
k

, with

I 0k D
�
.23=2/�k T

2
; .23=2/�.k�1/ T

2

�
and ITk D

�
T � .23=2/�.k�1/ T

2
; T � .23=2/�k T

2

�
:

Note that
S
k2N I

0
k
D Œ0; T=2� and

S
k2N I

T
k
D ŒT=2; T �, so we are refining towards the

top and bottom boundaries.

Step 2. Reduction to building blocks.
According to the decomposition of QL;T , we decompose

m D
X
k

X
i1;:::;id

mki1:::id and hrel D
X
k

X
i1;:::;id

hki1:::id ;

where mki1:::id D m1Qki1:::id
and hki1:::id D h1Qki1:::id

.

We then rescale each of the cubes Qk
i1;:::;id

with the matrix

Sk D diag.� 0; : : : ; � 0; �dC1/; with � 0 D 2�k L
N
; �dC1 D .2

3=2/�k T
2
.23=2 � 1/;

and shift by the vectors b D bi1:::id D .i1; : : : ; id ; .2
3=2 � 1/�1/ 2 RdC1, to obtain

Qk
i1:::id

D Sk.Œ0; 1�
dC1
C b/:

Based on this transformation, we define the new variables y D .Sk/�1x � b 2 Œ0; 1�dC1

and the transformed functions

M k
i1:::id

.y/ D mki1:::id .Sk.y C b//; and H k
i1:::id

.y/ D
�dC1

� 0
hki1:::id .Sk.y C b//:

Note that M k
i1:::id

2L1.QI Œ�1; 1�/, H k
i1:::id

2L2.QIRd /, and that

@dC1M
k
i1:::id

Cr
0
�H k

i1:::id
D 0:

Furthermore,

k@dC1M
k
i1:::id
k
2
L2ydC1L

1

y0
.Q/
D �dC1k@dC1m

k
i1:::id
k
2

L2xdC1L
1

x0

�
Qki1:::id

�:(3.15)
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Step 3. Putting together the building blocks.

Appealing to Lemma 3.1, we have that there exist functions zM k
i1:::id

2 BV.QI˙1/ and
zH k
i1:::id

2L2.QIRd / such that´
@dC1 zM

k
i1:::id

Cr 0 � zH k
i1:::id

D 0 in Q;
zH k
i1:::id

� �0 D H k
i1:::id

� �0 on �;

such that Z
Q

jr
0 zM k

i1:::id
j . 1;Z

Q

j zH k
i1:::id

�H k
i1:::id
j
2 dx . 1C k@dC1M

k
i1:::id
k
2
L2xdC1L

1

x0
.Q/
:

Define

zm D
X
k

X
i1:::id

zmki1:::id 1Qki1:::id
; with zmki1:::id .x/ D

zM k
i1:::id

..Sk/
�1x � b/;

Qh D
X
k

X
i1:::id

Qhki1:::id 1Qki1:::id
; with Qhki1:::id .x/ D

� 0

�dC1
zH k
i1:::id

..Sk/
�1x � b/:

Then zm2BV.QL;T I˙1/, Qh2L2.QL;T IRd /,

@dC1 zmCr
0
� Qh D 0;

and @dC1 zm2L2xdC1L
1
x0 since the constructed zm is continuous across the top and bottom

boundaries of Qk
i1:::id

by construction, see Remark 3.3.

Step 4. Estimate on the energies.
For the energies, we haveZ
QL;T

jhrel � Qhj
2 dx D

X
k

X
i1;:::;id

Z
Qki1:::id

jhki1:::id .x/ �
Qhki1:::id .x/j

2 dx

D

X
k

X
i1;:::;id

.� 0/d �dC1

Z
Q

jhki1:::id .Sk.y C b// �
Qhki1:::id .Sk.y C b//j

2 dy

D

X
k

X
i1;:::;id

.� 0/dC2

�dC1

Z
Q

jH k
i1:::id

.y/ � zH k
i1:::id

.y/j2 dy:

It follows, from k@dC1mk2L2xdC1L
1

x0
.QL;T /

. 1=T and (3.15), that

k@dC1M
k
i1:::id
k
2
L2ydC1L

1

y0
.Q/

.
�dC1

T
. 1 for any k 2N,
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hence by (3.2),Z
QL;T

jhrel � Qhj
2 dx .

X
k

X
i1;:::;id

.� 0/dC2

�dC1
.
X
k

.2kN/d
�
2�k

L

N

�dC2 .2k/3=2
T

.
�L
N

�2 Ld
T

X
k

� 1
p
2

�k
.
�L
N

�2 Ld
T
�

For the surface energy created in the construction of zm, we obtainZ
QL;T

jr
0
zmj �

X
k

X
i1:::id

.� 0/d�1 �dC1

� Z
Q

jr
0 zM k

i1:::id
j C 8

�
;

where the additional constant term accounts for the jumps between neighbouring building
blocks. Hence, by (3.1), it follows thatZ

QL;T

jr
0
zmj .

X
k

X
i1:::id

.� 0/d�1 �dC1 .
X
k

.2kN/d
�
2�k

L

N

�d�1
.2�k/3=2 T

.
�L
N

��1
LdT

X
k

2�k=2 .
�L
N

��1
LdT:

4. Global energy bounds: Proof of Theorem 1.1

4.1. Lower bound on the global energy

The lower bound on the global scaling of the energy of a periodic minimising configura-
tion has been proved in [8] based on the interpolation inequality

(4.1) kukL4=3 . kr 0uk1=2
L1
kjr
0
j
�1uk

1=2

L2
;

for any periodic function uW Œ0;ƒ�d ! R with
R
Œ0;ƒ�d

u dx0 D 0, with an implicit constant
that only depends on d . A similar proof based on a weak-L4=3 interpolation inequality
can also be found in [25].

Proof of Theorem 1.1 (Lower bound). Note that if .m;h/2A
per=0
QL;T

, in particularmB;T �0,
then

R
Q0L
m.x0; xdC1/ dx0 D 0 for any xdC1 2 Œ0; T �. Indeed, by the first equation in (1.3)

and integration by parts (using periodic boundary conditions or h � �0 D 0 on @Q0L), it
follows thatZ
Q0L

m.x0; xdC1/ dx0 D
Z
Q0L

Z xdC1

0

@xdC1m.x
0; ydC1/ dydC1 dx0

D �

Z xdC1

0

Z
Q0L

r
0
� h dx0 dydC1 D �

Z xdC1

0

Z
@Q0L

h � �0 dHd�1 dydC1 D 0:
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By admissibility, we can bound

EQL;T .m; h/ � EQL;T .m
�; h�/

for any minimiser .m�; h�/ in A
per
QL;T

and A0
QL;T

, respectively. By (1.6) and Poincaré’s
inequality (in xdC1; recall that mB;T � 0), we can further boundZ

QL;T

jh�j2 dx D
Z
Q0L

Z T

0

j@xdC1 jr
0
j
�1m�j2 dxdC1 dx0

�
1

T 2

Z
Q0L

Z T

0

jjr
0
j
�1m�j2 dxdC1 dx0:

In the periodic case, we can now apply Young’s inequality and (4.1) to estimate

EQL;T .m
�; h�/ D

Z
QL;T

jr
0m�j dx C

1

2

Z
QL;T

jh�j2 dx

�

Z T

0

� Z
Q0L

jr
0m�j dx0 C

1

2T 2

Z
Q0L

jjr
0
j
�1m�j2 dx0

�
dxdC1

&
Z T

0

� Z
Q0L

jr
0m�j dx0

�2=3� 1
T 2

Z
Q0L

jjr
0
j
�1m�j2 dx0

�1=3
dxdC1

& T �2=3
Z T

0

Z
Q0L

jm�j4=3 dx0 dxdC1 & LdT 1=3;(4.2)

since jm�j D 1.
For the case of zero-flux boundary conditions on �L;T , we extend .m;h/ to Œ�L;3L�d

�Œ0; T � by a sequence of d even reflections ofm and corresponding reflections of h across
each face of �L;T to obtain an admissible configuration in A

per
Q
Œ�L;3L�d�Œ0;T �

. More precisely,

given .m; h/ on QL;T , we first define

m.1/.x/ WD

´
m.x/; x2 Œ�L;L� � Œ�L;L�d�1 � Œ0; T �;

m.2L � x1; x2; : : : ; xdC1/; x 2 ŒL; 3L� � Œ�L;L�d�1 � Œ0; T �;

h.1/.x/ WD

´
h.x/; x2 Œ�L;L� � Œ�L;L�d�1 � Œ0; T �;

.�h1; h2; : : : ; hd /.2L � x1; x2; : : : ; xdC1/; x 2 ŒL; 3L� � Œ�L;L�d�1 � Œ0; T �;

so that @dC1m.1/ Cr 0 � h.1/ D 0 distributionally in Œ�L; 3L� � Œ�L;L�d�1 � Œ0; T � with
lateral boundary conditions h.1/ � �0 D 0 on @.Œ�L;3L�� Œ�L;L�d�1/� Œ0; T �. Note that
thanks to the zero-flux boundary conditions satisfied by h, the field h.1/ has no jump across
the surface ¹Lº � Œ�L;L�d�1 � Œ0; T �; similarly, by construction, the magnetisation m.1/

has no additional jumps on the reflection surface ¹Lº � Œ�L;L�d�1 � Œ0; T �. We then set

m.2/.x/ WD

´
m.1/.x/; x2 Œ�L; 3L� � Œ�L;L�� Œ�L;L�d�2� Œ0; T �;

m.1/.x1; 2L � x2; x3; : : : ; xdC1/; x2 Œ�L; 3L� � ŒL; 3L�� Œ�L;L�d�2� Œ0; T �;
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and

h.2/.x/ WD h.1/.x/; for x2 Œ�L; 3L� � Œ�L;L� � Œ�L;L�d�2 � Œ0; T �;

h.2/.x/ WD .h
.1/
1 ;�h

.1/
2 ; h

.1/
3 ; : : : ; h

.1/

d
/ .x1; 2L � x2; x3; : : : ; xdC1/;

for x 2 Œ�L; 3L� � ŒL; 3L� � Œ�L;L�d�2 � Œ0; T �;

which satisfies @dC1m.2/ C r 0 � h.2/ D 0 distributionally in Œ�L; 3L�2 � Œ�L; L�d�2 �
Œ0; T �, with lateral boundary conditions h.2/ � �0 D 0 on @.Œ�L; 3L�2 � Œ�L; L�d�2/ �
Œ0; T �, and proceed inductively to define

m.d/.x/ WD

²
m.d�1/.x/; x2 Œ�L;3L�d�1� Œ�L;L�� Œ0; T �;

m.d�1/.x1; : : : ; xd�1; 2L � xd ; xdC1/; x2 Œ�L;3L�d�1� ŒL; 3L�� Œ0; T �;

and

h.d/.x/ WD h.d�1/.x/; for x2 Œ�L; 3L�d�1 � Œ�L;L� � Œ0; T �;

h.d/.x/ WD .h
.d�1/
1 ; : : : ; h

.d�1/

d�1
;�h

.d�1/

d
/.x1; : : : ; xd�1; 2L � xd ; xdC1/;

for x 2 Œ�L; 3L�d�1 � ŒL; 3L� � Œ0; T �:

By construction, .m.d/; h.d// 2A
per
Œ�L;3L�d�Œ0;T �

, and since we have not added any extra
inter-facial energy, we have

EŒ�L;3L�d�Œ0;T �.m
.d/; h.d// D 2dEQL;T .m; h/:

Applying the lower bound (4.2), valid in the periodic case, toEŒ�L;3L�d�Œ0;T �.m
.d/; h.d//,

it follows that there exists a universal constant cs <1 such that

EQL;T .m; h/ D 2
�dEŒ�L;3L�d�Œ0;T �.m

.d/; h.d// � csL
dT 1=3:

4.2. Upper bound on the global energy

The upper bound is mainly a consequence of the construction in Corollary 3.4.

Proof of Theorem 1.1 (Upper bound). SincemB;T D 0, in the case of zero-flux boundary
conditions we have that .mrel; hrel/ � 0 is a solution of the relaxed problem. Therefore,
Corollary 3.4 provides the existence of a competitor for the non-convex problem, that is a
pair . zm; Qh/ 2 A0

QL;T
(recall (1.7)). In particular, Qh satisfies zero-flux boundary conditions

on �L;T and zm
�
* 0 as xdC1 ! 0; T . Moreover, . zm; Qh/ satisfies (3.13) and (3.14) (with

hrel � 0), which by Remark 3.5 lead us21 to

min
.m;h/2A0

QL;T

EQL;T .m; h/ � jQL;T j
� «

QL;T

jr
0
zmj C

«
QL;T

j Qh � hrelj
2 dx

�
. jQL;T jT �2=3 . LdT 1=3:

21Recall that this requires the constant CLT in the relation L � CLT T 2=3 to be large enough.
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Let us remark that in this case, the competitor is built out of building blocks looking
exactly as in Figure 2 (since M D M D 0 everywhere). Also, at this point one sees the
importance of the refinement in our construction, since it is the key point that allows for zm
to satisfy the weak boundary condition at xdC1 D 0; T .

In the case of periodic boundary conditions, we do exactly the same, except that this
time the constructed pair . zm; Qh/ does not satisfy the correct boundary conditions. Arguing
as in the proof of the lower bound, we can extend . zm; Qh/ to Œ�L; 3L�d � Œ0; T � by a
sequence of d even reflections of zm and corresponding reflections of Qh across each face
of �L;T to obtain a periodic configuration . zm.d/; Qh.d// 2 A

per
Q
Œ�L;3L�d�Œ0;T �

that satisfies

EŒ�L;3L�d�Œ0;T �. zm
.d/; Qh.d// D 2dEQL;T . zm;

Qh/ . LdT 1=3:

Then, by suitably contracting this pair in the horizontal directions (keeping the height
fixed), we obtain a competitor for the non-convex energy (1.4) in A

per
QL;T

(recall (1.5)),
with the same energy (up to a larger dimensional factor). More precisely, setting

zzm.x/ WD zm.d/.2x0 C .`; : : : ; `/; xdC1/ and QQh.x/ WD
1

2
Qh.d/.2x0 C .`; : : : ; `/; xdC1/;

for x2 QL;T , we get the desired periodic competitor, which satisfies

EQL;T .
zzm;
QQh/ . EŒ�L;3L�d�Œ0;T �. zm

.d/; Qh.d// . LdT 1=3;

hence
min

.m;h/2A
per
QL;T

EQL;T .m; h/ . LdT 1=3:

This concludes the proof.

5. Local energy bounds: Proof of Theorem 1.2

We are now ready to present the proofs of the local energy bounds. Without loss of gen-
erality, we will prove these estimates for small cuboids at the bottom boundary of the
sample. The proofs can easily be adjusted for cuboids at the top boundary.

5.1. Lower bound on the local energy

The lower bound on the local energy in cuboids at the bottom sample boundary is obtained
by a suitable extension of the localised minimiser .m`;t ; h`;t / WD .mjQ`;t .a/; hjQ`;t .a// and
rescaling to obtain an admissible pair . Qm; Qh/ in a large cuboid with periodic lateral bound-
ary conditions and zero top/bottom magnetisation, for which the global lower bound can
be applied.

In contrast to the periodic extension in the global case (see Section 4.1), we now have
to take into account that the normal component of h along �`;t .a/ is non-vanishing. Since
jumps of h at the boundary have to be compensated by an according change in m in order
to preserve admissibility, the extension will be performed differently.
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Proof of Theorem 1.2 (Lower bound). Assume, without loss of generality, that a D 0. We
proceed in several steps.

Step 1. Extension to Q`;2t .
We first extend m`;t to a magnetisation in Q`;2t by an even reflection across the top

surface Œ�`; `�d � ¹tº,

Qm.0/.x/ WD

²
m`;t .x/; x 2 Œ�`; `�d � Œ0; t �;

m`;t .x
0; 2t � xdC1/; x2 Œ�`; `�d � Œt; 2t �:

Note that the extension Qm.0/ is continuous along Œ�`; `�d � ¹tº. Since

@dC1 Qm
.0/.x/ D

²
@dC1m`;t .x/; x 2 Œ�`; `�d � Œ0; t �;

�@dC1m`;t .x
0; 2t � xdC1/; x2 Œ�`; `�d � .t; 2t �;

we define the extension of h`;t to Q`;2t via odd reflection,

Qh.0/.x/ WD

²
h`;t .x/; x 2 Œ�`; `�d � Œ0; t �;

�h`;t .x
0; 2t � xdC1/; x2 Œ�`; `�d � .t; 2t �;

so that

r
0
� Qh.0/.x/ D

²
r 0 � h`;t .x/; x 2 Œ�`; `�d � Œ0; t �;

�r 0 � h`;t .x
0; 2t � xdC1/; x2 Œ�`; `�d � .t; 2t �:

In particular, @dC1 Qm.0/ Cr 0 � Qh.0/ D 0 in Q`;2t , with top/bottom boundary conditions

Qm.0/. � ; 0/ D Qm.0/. � ; 2t/ D 0

and lateral boundary conditions Qh.0/ � �0 D h`;t � �0 on �`;t and Qh.0/ � �0 D �h`;t � �0 on
@Œ�`; `�d � .t; 2t �.

Step 2. Extension to Œ�`; 3`�d � Œ0; 2t �.
Now that the magnetisation has been extended in such a way that the top boundary

condition is zero, we extend . Qm.0/; Qh.0// to a periodic (with respect to x0) configuration in
Œ�`; 3`�d � Œ0; 2t �. To this end, define22 for j D 1; : : : ; d ,

Qh.j /.x/ WD Qh.j�1/.x/; if x 2 Œ�`; 3`�j�1 � Œ�`; `� � Œ�`; `�d�j � Œ0; 2t �

and

Qh.j /.x/ WD .� Qh
.j�1/
1 ; : : : ;� Qh

.j�1/
j�1 ; Qh

.j�1/
j ;� Qh

.j�1/
jC1 ; : : : ;� Qh

.j�1/

d
/

.x1; : : : ; xj�1; 2` � xj ; xjC1; : : : ; xd ; xdC1/;

if x 2 Œ�`; 3`�j�1 � Œ`; 3`� � Œ�`; `�d�j � Œ0; 2t �.

22With the convention that Œa; b�0 D ;.
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Then, for x 2 Œ�`; 3`�j�1 � Œ�`; `� � Œ�`; `�d�j � Œ0; 2t �,

r
0
� Qh.j /.x/ D r 0 � Qh.j�1/.x/;

while for x 2 Œ�`; 3`�j�1 � Œ`; 3`� � Œ�`; `�d�j � Œ0; 2t �,

r
0
� Qh.j /.x/ D �r 0 � Qh.j�1/.x1; : : : ; xj�1; 2` � xj ; xjC1; : : : ; xd ; xdC1/

and Qh.j / � �0 is continuous across the j th reflection surface Œ�`; 3`�j�1�¹`º� Œ�`; `�d�j

� Œ0; 2t �. Hence, setting

Qm.j /.x/ WD Qm.j�1/.x/; if x 2 Œ�`; 3`�j�1 � Œ�`; `� � Œ�`; `�d�j � Œ0; 2t �

and

Qm.j /.x/ WD � Qm.j�1/.x1; : : : ; xj�1; 2` � xj ; xjC1; : : : ; xd ; xdC1/;

if x 2 Œ�`; 3`�j�1 � Œ`; 3`� � Œ�`; `�d�j � Œ0; 2t �, we have that @dC1 Qm.j / Cr 0 � Qh.j / D 0
in Œ�`; 3`�j � Œ�`; `�d�j � Œ0; 2t � for all j D 0; : : : ; d . Since we flipped the sign of the
magnetisation in the extension, we also have thatZ

Œ�`;3`�j�Œ�`;`�d�j
Qm.j /.x0; xdC1/ dx0 D 0 for all xdC1 2 Œ0; t �; j D 1; : : : ; d:

Step 3. Rescaling and global lower bound.
We now shift and rescale . Qm.d/; Qh.d// to obtain an admissible configuration in Q QL;T

with QL D
�
T
2t

�2=3
2`. To this end, set

Qm.x/ WD Qm.d/
��2t
T

�2=3
.x0 C .`; : : : ; `//;

2t

T
xdC1

�
and

Qh.x/ WD
�2t
T

�1=3
Qh.d/

��2t
T

�2=3
.x0 C .`; : : : ; `//;

2t

T
xdC1

�
; for x 2Q QL;T :

Then . Qm; Qh/ 2A
per
Q QL;T

is admissible, and by the global lower bound (4.2), there exists a
universal constant cS > 0 such that

EQ QL;T . Qm;
Qh/ � cS QL

dT 1=3:(5.1)

Step 4. Energy bound.
Note that in the construction of . Qm.d/; Qh.d//, we changed the sign of the magnetisation

along the reflection surface and therefore picked up an extra interfacial energy of twice
the area of the surface along which we reflect, i.e., a total energy of Cd`d�1t for some
dimensional constant Cd <1. It follows that

EQ QL;T . Qm;
Qh/

(1.8)
D

�2t
T

�� 23d�1=3
EŒ�`;3`�d�Œ0;2t�. Qm

.d/; Qh.d//

D

�2t
T

�� 23d�1=3 �
2dEQ`;t .m`;t ; h`;t /C Cd `

d�1 t
�

D

�2t
T

�� 23d�1=3 �
2d`d t eQ`;t .m`;t ; h`;t /C Cd `

d�1 t
�
;
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hence

eQ`;t .m`;t ; h`;t / D 2
�d `�d t�1

�2t
T

� 2
3dC1=3

EQ QL;T . Qm;
Qh/ � 2�d Cd `

�1

(5.1)
� 2�d`�d t�1

�2t
T

� 2
3dC1=3

cS QL
dT 1=3 � 2�d Cd `

�1
D 21=3 cS t

�2=3
� 2�d Cd `

�1:

Therefore, there exists a universal constant c`t <1 such that if ` � c`t t2=3, then

eQ`;t .m`;t ; h`;t / � cs t
�2=3;

with cs D 21=3 cS � Cd=.2d c`t / > 0.

5.2. Upper bound on the local energy

As in [9, 25], instead of directly looking at the energy density

e.Q`;t .a// WD

«
Q`;t .a/

jr
0mj C

«
Q`;t .a/

1

2
jhj2 dx

in a smaller cuboid

Q`;t .a/ WD Q`;t C a; for a2Rd � ¹0º;

we will keep track of the local energy with field shifted by its height average23 (corres-
ponding to a linear approximation of the magnetisation), i.e.,«

Q`;t .a/

jr
0mj C

«
Q`;t .a/

1

2
jh � ht j

2 dx:

In order to obtain the desired local scaling law of the energy of a minimiser, we are there-
fore led to also study the decay of the cumulated field strength

n.Q`;t .a// WD
1

`
sup
Q0
`
.a/

ˇ̌̌̌Z t

0

h dxdC1

ˇ̌̌̌
D
t

`
sup
Q0
`
.a/

jht j;

which, combined with the orthogonality relation (Lemma 2.5), allows us to pass the local
energy bound from the energy density shifted by ht to the unshifted energy density

e.Q`;t .a// D

«
Q`;t .a/

jr
0mj C

«
Q`;t .a/

1

2
jh � ht j

2 dx C
«
Q`;t .a/

1

2
jht j

2 dx

�

«
Q`;t .a/

jr
0mj C

«
Q`;t .a/

1

2
jh � ht j

2 dx C
1

2

`2

t2
n.Q`;t .a//

2:(5.2)

We start with the outer loop of the argument, which proves the upper bound on the
local energy. The core ingredients are the one-step improvement results presented in Sec-
tion 5.2.1 (in the interior) and Section 5.2.2 (at the boundary), which drive the Campanato-
type iterations in Section 5.2.3.

23Recall that ht is the solution of the over-relaxed problem introduced in Section 2.1.
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Proof of Theorem 1.2 (Upper bound ). Let CLT < 1 (to be chosen later). We start in a
cuboid QL;T with L � CLT T 2=3, and let .m; h/ 2 A

per=0
QL;T

be a minimiser of (1.4) with
top and bottom boundary conditions mB D mT � 0.

By Theorem 1.1, there exists a constant CS <1 such that the energy density satisfies

e.QL;T / � CS T
�2=3:

In order to transfer the energy scaling from the large scale to smaller cuboids at the
sample boundary, we run an iteration based on a one-step improvement for the renormal-
ised energy density

f .Q`;t .a// WD
t2

`2

� «
Q`;t .a/

jr
0mj C

1

2

«
Q`;t .a/

.h � ht /
2 dx

�
:

We will also denote

f0.Q`;t .a// WD
t2

`2
e.Q`;t .a//:

Note that if e.QL;T / � CST �2=3, then

(5.3) f0.QL;T / � CS
T 4=3

L2
� CS C

�2
LT � �

for any � > 0 ifCLT is chosen large enough. Therefore f0 (and f , as we will see in the next
step) provides a good (non-dimensional) small quantity which is suitable for an iteration
down to smaller scales. For this iteration it is convenient to work with cuboids Q QL;T such
that QLD cLT T 2=3 with CLT =8 � cLT � CLT =4. Thus, the first step in our proof consists
of transferring the energy scaling from QL;T to Q QL;T (note that in this step the height of
the cuboid remains fixed).

Step 1.
Choose CLT so large that the assumption of Proposition 5.11 holds. Then there exists

a constant cLT with the property that CLT =8 � cLT � CLT =4 and such that, for QL D
cLT T

2=3, there holds

f0.Q QL;T .a// . f0.QL;T /C
T 4=3

QL2
,

for any a2Rd � ¹0º satisfying Q QL;T .a/ � Q 3
4L;T

.

Step 2.

We now consider the cumulated fieldH.x0/ WD
R T
0
hdxdC1, which by the first equation

in (1.3) satisfies r 0 � H D �
R T
0
@dC1m dxdC1 D �.mT � mB/ D 0 with periodic or

zero-flux boundary conditions on @Q0L. Since an energy-minimising h is a gradient field,
hD �r 0u (see Remark 2.2), we haveH.x0/D �r 0.

R T
0
udxdC1/D �Tr 0uT , hence the

function uT solves��0uT D 0 onQ0L with periodic or zero-flux boundary conditions. But
that means uT is constant, implying that the cumulated field H � 0 on Q0L, in particular,
n.QL;T / D 0 and n.Q QL;T .a// D 0.
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Hence, we have that

f .Q QL;T .a// D f0.Q QL;T .a// . f0.QL;T /C
T 4=3

QL2
,(5.4)

and therefore, inserting (5.3), we get f .Q QL;T .a// � � for any � > 0 if CLT is chosen
large enough. Due to good screening properties, the quantity f has the right decay on
smaller length scales: for any Q̀ � QL=8 and t � T such that Q̀ D cLT t2=3, and b such that
Q Q̀;t .b/ � Q 3

4
QL;T .a/, there holds

f .Q Q̀;t .b// . f .Q QL;T .a//C
T 4=3

QL2
and

n.Q Q̀;t .b// . n.Q QL;T .a//C
�
f .Q QL;T .a//C

T 4=3

QL2

� 1
dC2 .

�
f .Q QL;T .a//C

T 4=3

QL2

� 1
dC2
I

see Proposition 5.13 (increasing CLT , hence cLT , if necessary).
Combining this with (5.4), recalling that f .QL;T / D f0.QL;T /, we are led to

f .Q Q̀;t .b// . f .QL;T /C
T 4=3

QL2
; and n.Q Q̀;t .b// .

�
f .QL;T /C

T 4=3

QL2

� 1
dC2
;

for any b such that Q Q̀;t .b/ � Q 3
4
QL;T .a/.

Step 3.
By a covering argument, we can then extend the estimate from Step 2 to cuboids

Q`;t .b/ with ` � cLT t2=3: we divide Q`;t .b/ into J D .`= Q̀/d disjoint cuboids Q Q̀;t .bj /,

j D 1; : : : ; J of lateral side length Q̀ D cLT t2=3 centred at points bj on the bottom bound-
ary of QL;T (without loss of generality, the constant cLT is chosen such that J 2 N); see
Figure 4.

L � CLT T
2=3

T
t

zL D cLT T
2=3

` � cLT t
2=3

z̀D ct2=3

bj b

Figure 4. Depiction of the different cuboids and scales used throughout the proof.

In the boxes Q Q̀;t .bj / we can apply Sept 2, from which it follows that

f .Q`;t .b// D
t2

`2
1

`d t

JX
jD1

� Z
Q Q̀;t .bj /

jr
0mj C

1

2

Z
Q Q̀;t .bj /

jh � ht j
2 dx

�
D

� Q̀
`

�dC2 JX
jD1

f .Q Q̀;t .bj //;
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and using that f .Q Q̀;t .bj // . f .QL;T /C T
4=3= QL2, we obtain

f .Q`;t .b// .
� Q̀
`

�dC2
J
�
f .QL;T /C

T 4=3

QL2

�
.
� Q̀
`

�2�
f .QL;T /C

T 4=3

QL2

�
:(5.5)

Similarly, we may estimate

(5.6) n.Q`;t .b//D
t

`
sup
j

sup
Q0
Q̀
.bj /

jht j D
Q̀

`
sup
j

n.Q Q̀;t .bj // .
Q̀

`

�
f .QL;T /C

T 4=3

QL2

� 1
dC2
:

Step 4.
Finally, recalling (5.2), the local energy bound follows for any cuboid Q`;t .b/ �

Q 3
4
QL;T .a/ (with ` � cLT t2=3 and a such that Q QL;T .a/ � Q 3

4L;T
), since

e.Q`;t .b// �
`2

t2
f .Q`;t .b//C

`2

t2
n.Q`;t .b//

2;

so using (5.5), (5.6), and the fact that f .QL;T / D f0.QL;T / � CS T 4=3=L2, we obtain
with Q̀ D cLT t2=3 and QL D cLT T 2=3, that

e.Q`;t .b// .
Q̀2

t2

�
f .QL;T /C

T 4=3

QL2

�
C

Q̀2

t2

�
f .Q QL;T /C

T 4=3

QL2

�2=.dC2/
. c2LT t

�2=3
�T 4=3
QL2

�2=.dC2/
. c

2d=.dC2/
LT t�2=3:

Step 5. The role of the lateral boundary conditions.
This proves the upper bound in the theorem for small cuboids contained in Q 3

4
QL;T .

We now give an argument how to extend this to any cuboid contained in QL;T sitting at
the bottom boundary.

If .m; h/ satisfies periodic boundary conditions, then it also minimises the energy
in Q2L;T . Therefore, applying Step 1 of the proof, we obtain

f0.Q QL;T .a// . f0.Q2L;T /C
T 4=3

QL2
. f0.QL;T /C

T 4=3

QL2
,

for any a 2Rd � ¹0º such that Q QL;T .a/ � Q 3
2L;T

(and in particular for any a such that
Q QL;T .a/ � QL;T ). We can then apply Step 2, which holds for any b such that Q Q̀;t .b/ �
Q 3

4
QL;T .a/. Combining the two, we deduce that Step 2 holds for any b such thatQ Q̀;t .b/�

QL;T . Hence, the local energy upper bound is extended to any cuboid contained in QL;T
sitting at the bottom boundary.

If .m; h/ satisfies zero-flux boundary conditions, then by arguing as in the proof of
the global scaling laws, we can obtain a new configuration . zm; Qh/, which is periodic
in Q2L;T and that has the same energy up to a dimensional constant. More precisely,
we can extend .m; h/ to Œ�L; 3L�d � Œ0; T � by a sequence of d even reflections of m and
corresponding reflections of h across each face of �L;T to obtain an admissible configur-
ation in A

per
Q
Œ�L;3L�d�Œ0;T �

.
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Finally, by translating the extended configuration to QŒ�2L;2L�d�Œ0;T �, we get a peri-
odic pair . zm; Qh/ in A

per
Q2L;T

that satisfies

EQ2L;T . zm;
Qh/ D 2dEQL;T .m; h/ . LdT 1=3:

Since h is a gradient field, so is Qh, therefore we deduce that . zm; Qh/ is an almost-minimising
configuration at scale .2L;T /. Hence, Step 1 (which still holds true for almost-minimisers
at scale .2L;T /) implies that forCLT large enough we can find a constantCLT =8� cLT �
CLT =4 such that for QL D cLT T 2=3, we have

f0.Q QL;T .a// . zf0.Q2L;T /C
T 4=3

QL2
. f0.QL;T /C

T 4=3

QL2
,

for any a2Q0L � ¹0º such thatQ QL;T .a/�Q 3
2L;T

. However, at this stage we do not know

whether . zm; Qh/ is almost-minimising on smaller scales, so that when iterating down to
smaller cuboids with Proposition 5.13, we have to leave some space to the lateral bound-
ary �L;T . Therefore, in contrast to the periodic case, we can benefit from this estimate
only for a’s such that Q QL;T .a/ � QL;T .

Applying Step 2, we infer that the outcome of that step holds for any b such that
Q Q̀;t .b/ � Q 3

4
QL;T .a/, for any a such that Q QL;T .a/ � QL;T . Moreover, as a careful look

at the proof reveals, the factor 3=4 was arbitrarily chosen (for concreteness purposes), and
can actually be replaced by any factor 
 < 1. This reflects the fact that the argument holds
for any cuboid located at a positive distance from �L;T , leaving enough space to benefit
from interior regularity.

Hence, it only remains to extend the previous local energy bounds to cuboids centred
at the lateral boundary �L;T . In order to do so, we appeal to an iteration at the boundary.
Letting Q�

`;t
.b/ WD Q`;t .b/ \QL;T be a cuboid at the boundary of QL;T , centred in a

point b 2 �L;T \ ¹xdC1 D 0º, and arguing almost verbatim as in Step 2, replacing the use
of Proposition 5.13 by Proposition 5.15, we deduce that

f .Q�
Q̀;t
.b// . f .QL;T /C

T 4=3

QL2
; and n.Q�

Q̀;t
.b// .

�
f .QL;T /C

T 4=3

QL2

�1=.dC2/
;

for any b 2 �L;T \ ¹xdC1 D 0º.
Thus, combining the estimates on cuboids located in the bulk of QL;T with the ones

centred on �L;T \ ¹xdC1 D 0º, we deduce that Step 2 holds for any b such thatQ Q̀;t .b/�
QL;T . Hence, the local energy upper bound is extended to any cuboid contained in QL;T
sitting at the bottom boundary. This concludes the proof.

The rest of this section is devoted to the proof of the one-step improvement results
and the iteration to smaller scales. In our forthcoming article [24], we will give a simpler
proof by a closer study of the convex relaxation of the problem, which is based on duality
and avoids some of the more complicated constructions (especially the boundary layer
construction). It also shows from a somewhat different angle that the shift of the energy
by ht is quite natural in view of the convex relaxation.24

24In fact, ht is the solution to the over-relaxed problem introduced in Section 2.1, which makes this approach
similar to [2].
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5.2.1. One-step improvements in the interior. We start with a first one-step improve-
ment result, which allows us to go to smaller widths ` � L, while keeping the height T
fixed. This one-step improvement result is somewhat simpler, because it does not need
decay of the cumulated field encoded in the quantity n defined above. However, this will
be a crucial ingredient in the second one-step improvement result.

Lemma 5.1 (One-step improvement, version A for fixed height). Let .m; h/ be a minim-
iser of the non-convex energy (1.4) in QL;T with periodic or zero-flux lateral boundary
conditions and mB D mT � 0.

For any � 2 .0; 1=2�, there exists an � > 0 such that the following holds: if ` � L is
such that f0.Q`;T / � �, then

f0.Q�`;T .a// � �f0.Q`;T / .�
T 4=3

`2
(5.7)

for any a2Rd � ¹0º with jaj � .1 � 2�/` (so that Q2�`;T .a/ � Q`;T /.

Remark 5.2. We have the followings observations.
(1) In order to iterate this one-step improvement, (5.7) shows that we need `� T 2=3,

which is consistent with the prediction that branching is observed on cuboids at the sample
boundary that are wide enough to capture the oscillations of the magnetisation. More
precisely, fix � 2 .0; 1=2�, and let f0.QL;T / � � with the � given by Lemma 5.1. Further,
let cLT � .2C���1/1=2, where C� is the implicit constant in (5.7). Then

f0.Q�`;T .a// � �f0.QL;T /C C�
T 4=3

`2
� �� C C� c

�2
LT �

�

2
C
�

2
� �;

hence we can iterate the one-step improvement.
(2) As the proof of Lemma 5.1 reveals, the assumptionmT � 0 can be replaced by the

assumption
ª T
0
h dxdC1 . T �1=3 on the cumulated field.

(3) Since a 2 Rd � ¹0º is required to be such that Q2�`;T .a/ � QL;T , this implies
that Q�`;T .a/ � Q.1��/L;T , in particular, the smaller cuboid has to stay away from the
boundary �L;T .

Lemma 5.3 (One-step improvement, version B for fixed aspect ratio). Let .m; h/ be a
minimiser of the non-convex energy (1.4) inQL;T with periodic or zero-flux lateral bound-
ary conditions, mB � 0, and jmT j � 1.

For any � 2 .0; 1=3� and A <1, there exist constants ı; � 2 .0; 1/ with the property
that

� �
ıdC2

A
,(5.8)

such that the following holds: if ` � L and t � T are such that

f .Q`;t / � � and n.Q`;t / � ı;
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then for any a2Rd � ¹0º with jaj � .1 � 3�/` (so that Q3�`;t .a/ � Q`;t /, there holds

f .Q�`;�3=2t .a// � �f .Q`;t / .�
t4=3

`2
,(5.9)

n.Q�`;�3=2t .a// � �
1=2n.Q`;t / .� f .Q`;t /1=.dC2/:(5.10)

Note that we are going down with a different exponent in the x0 and xdC1 directions.
This ensures that the ratio t2=3`�1 stays invariant when going down to smaller scales and
later ensures the right scaling relation on the smaller scales.

Remark 5.4. Fixing � 2 .0; 1=4�, we can iterate this one-step improvement. Indeed, let
f .Q`;t /� � and n.Q`;t /� ı with � and ı from Lemma 5.3 (which are fixed by the choice
of � ). If Cn; Cf <1 denote the implicit constants in (5.10) and (5.9), then

f .Q�`;�3=2t .a// � �f .Q`;t /C Cf
t4=3

`2
�
�

4
C Cf

t4=3

`2
,

and

n.Q�`;�3=2t .a// � �
1=2 n.Q`;t /C Cnf .Q`;t /

1=.dC2/
�
ı

2
C Cn �

1=.dC2/;

as long as a2Rd � ¹0º is such thatQ3�`;t .a/�Q`;t . By (5.8), for the choiceAD 2Cn, it
then follows that n.Q�`;�3=2t .a// � ı. Hence, if Cf t4=3=`2 � 3�=4, which is guaranteed

if ` � C`t t2=3 with C`t � .
4Cf
3�
/1=2, we also have f .Q�`;�3=2t .a// � �. Let us mention

that the condition on a implies that Q�`;�3=2t .a/ � Q.1�2�/`;�3=2t , so that the iteration
(Proposition 5.13) based on Lemma 5.3 only gives information on f and n on smaller
cuboids at the top/bottom boundary that have positive distance from �L;T .

Before giving the proof of Lemma 5.1 and Lemma 5.3, let us start with some technical
preliminaries that will be useful. The first one concerns the choice of a good cuboid with `
on which the boundary trace is well-behaved. The second one concerns a monotonicity
formula for the renormalised energy density f , which seems to be new in this context and
plays an important role in Lemma 5.3.

Lemma 5.5 (Choice of good width). Let h 2 L2.Q0L/ for some L > 0. Then the set of
`2 ŒL=2;L� such that «

@Q0
`

.h � �/2 dHd�1 .
«
Q0L

jhj2 dx0

has positive Lebesgue measure.

Proof. By Fubini’s theorem,Z L

L=2

Z
@Q0

`

.h � �/2 dHd�1 d` D
Z
ŒL=2;L�d

.h � �/2 dx0 �
Z
QL

jhj2 dx0 <1;

so that
R
@Q0

`
.h � �/2 dHd�1 is finite for Lebesgue-a.e. ` 2 ŒL=2;L�. Given A > 1, we let

ƒ´
°
` 2 ŒL=2;L� W

Z
@Q0

`

.h � �/2 dHd�1
�
2A

L

Z
Q0L

jhj2 dx0
±
:
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By Markov’s inequality, for any A > 1 it holds that jƒc j � L=2A, and hence jƒj �
L
2
.1 � 1=A/ > 0, and for all `2ƒ, we have«

@Q0
`

.h � �/2 dHd�1
� 2A

�L
`

�d�1 «
Q0L

jhj2 dx0 � 2dA
«
Q0L

jhj2 dx0:

The results thus follows.

Lemma 5.6 (Monotonicity formula). Let h2L2.Q`;T / for some `; T > 0. Then the map

t 7!
t2

`2

«
Q`;t

.h � ht /
2 dx

is non-decreasing in Œ0; T �.

Proof. Since h 2 L2.Q`;T /, h. � ; t / is well-defined and finite for Lebesgue-a.e. t > 0 by
Fubini’s theorem. We calculate

d
dt
ht D

d
dt
1

t

Z t

0

h dxdC1 D
1

t

�
h. � ; t / � ht

�
;

and obtain with this
d
dt
t2

`2

«
Q`;t

.h � ht /
2 dx D

1

`2
d
dt

�
t

Z t

0

«
Q0
`

.h � ht /
2 dx0 dxdC1

�
D

1

`2

� Z t

0

«
Q0
`

.h � ht /
2 dx C t

«
Q0
`

.h. � ; t / � ht /
2 dx0 � 2t2

«
Q`;t

.h � ht / �
d
dt
ht dx

�
D

1

`2

�
t

«
Q`;t

.h�ht /
2 dx C t

«
Q`;t

.h. � ; t /�ht /
2 dx�2t

«
Q`;t

.h�ht / � .h. � ; t /�ht / dx
�

D
t

`2

«
Q`;t

.h � h. � ; t //2 dx � 0;

which proves the claim.

The proofs of both Lemma 5.1 and Lemma 5.3 have the same first steps and only
deviate at the end when it comes to estimating the cumulated field strength n. We therefore
start with the common part first and conclude the proofs separately.

Proof of Lemma 5.1 and Lemma 5.3 (common part). Let � and a 2Rd � ¹0º be as in the
assumptions of Lemmas 5.1 and 5.3, respectively, and denote `� D �`, t� D � t for � � 1.

Step 1. Choice of good width.
Let � 2 Œ�`; 2�`� be a good width in the sense of Lemma 5.5 (in an xdC1-integrated

version). Then for g WD h � �j��;t� .a/ and its height average gt� D
R t�
0
g dxdC1, there holds«

��;t� .a/

.g � gt� /
2 dHd�1 dxdC1 .

«
Q2�`;t� .a/

.h � ht� /
2 dx . ��d

«
Q`;t�

.h � ht� /
2 dx;

and applying the monotonicity formula from Lemma 5.6, we obtain

t2�
`2

«
Q`;t�

.h � ht� /
2 dx �

t2

`2

«
Q`;t

.h � ht /
2 dx � f .Q`;t /;



Domain branching in micromagnetism 445

hence

t2�
�2

«
��;t� .a/

.g � gt� /
2 dHd�1 dxdC1 . ��.dC2/f .Q`;t /:(5.11)

Step 2. Construction of a competitor.
Let .mr ; hr / 2 Xr

�
Q�;t� .a/

�
be the admissible pair constructed in Proposition 2.6

with g D h � �, that is, hr � � D .h � ht� / � � on ��;t� .a/ (extended by zero outside
Ar .Q�;t� .a// WD .Q

0
�.a/ nQ

0
��r .a//� Œ0; t� �). Further, setmt� D�r 0 �

R t�
0
hdxdC1. Then

jmt� j � 1 in Q0
`
, and .mrel; hrel/ WD .

xdC1
t�
mt� C mr ; ht� C hr / 2Arel

Q�;t� .a/
is admissible

for the relaxed problem in Q�;t� .a/ with boundary conditions given by the non-convex
minimiser .m; h/. Let us observe that

@dC1mrel D
1

t�
mt� C @dC1mr ;

and therefore

t�k@dC1mrelk
2
L2xdC1L

1

x0
.Q�;t� .a//

� 1C t�k@dC1mrk
2
L2xdC1L

1

x0
.A�;t� .rIa//

(2.4); (2.6)
. 1:

We can thus apply Corollary 3.4, which provides the existence of an admissible pair
. zm; Qh/2AQ�;t� .a/

.gImB;T / such that (3.13) and (3.14) hold in Q�;t� .a/.
We claim that

Qht� D

« t�

0

Qh dxdC1 D
« t�

0

h dxdC1 D ht� :(5.12)

In fact, let us observe that

�r
0
� Qht� D �r

0
�

« t�

0

Qh dxdC1 D
« t�

0

@dC1 zm dxdC1 D
mt� �mB

t�
�

Moreover, on ��;t� .a/ it holds that« t�

0

Qh � � dxdC1 D
« t�

0

g dxdC1 D
« t�

0

h � � dxdC1:

By construction, Qh is a gradient field, hence Qh D �r 0 Qu, where Qu is a solution to²
��0u D �.mt� �mB/=t� in Q�;t� .a/;
�r 0u � � D gt� on ��;t� .a/:

Finally, by observing that u0 D �r 0ht� is also a solution, by uniqueness we deduce the
validity of the claim.

On the other hand, by (local) minimality of .m; h/ in Q�;t� .a/, we haveZ
Q�;t� .a/

jr
0mj C

1

2

Z
Q�;t� .a/

h2 dx �
Z
Q�;t� .a/

jr
0
zmj C

1

2

Z
Q�;t� .a/

Qh2 dx:(5.13)
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Step 3. Orthogonality and optimality.
To bound f .Q`� ;t� .a//, we start by estimating

f .Q`� ;t� .a// D
t2�

`2
�

1

`d
�
t�

� Z
Q`� ;t�

.a/

jr
0mj C

1

2

Z
Q`� ;t�

.a/

.h � ht� /
2
�

�
t2�

`2
�

1

`d
�
t�

� Z
Q�;t� .a/

jr
0mj C

1

2

Z
Q�;t� .a/

.h � ht� /
2
�
:

By Lemma 2.5, we further have thatZ
Q�;t� .a/

jr
0mj C

1

2

Z
Q�;t� .a/

.h � ht� /
2

D

Z
Q�;t� .a/

jr
0mj C

1

2

Z
Q�;t� .a/

h2 �
1

2

Z
Q�;t� .a/

h2t� dx

(5.13)
�

Z
Q�;t� .a/

jr
0
zmj C

1

2

Z
Q�;t� .a/

Qh2 dx �
1

2

Z
Q�;t� .a/

h2t� dx

(5.12)
D

Z
Q�;t� .a/

jr
0
zmj C

1

2

Z
Q�;t� .a/

. Qh � Qht� /
2 dx;

hence

f .Q`� ;t� .a// �
t2�

`2
�

1

`d
�
t�

� Z
Q�;t� .a/

jr
0
zmj C

1

2

Z
Q�;t� .a/

. Qh � Qht� /
2 dx

�
(3.13)
.

t2�
�2

�N
�
C

«
Q�;t� .a/

. Qh � Qht� /
2 dx

�
:(5.14)

Step 4. Estimate of the correction fields in the interior and in the boundary layer.
Note that since mB � 0, we have HB � 0, so that by Proposition 2.6 we may bound

t2�
�2

«
Q�;t� .a/

. Qh� Qht� /
2 dx .

t2�
�2

«
Q�;t� .a/

. Qh � hrel/
2 dx C

t2�
�2

«
Q�;t� .a/

.hrel � Qht� /
2 dx

(3.14)
.

t2�
�2

�2

N 2t2�
C
t2�
�2

1

�d t�

Z
A�;t� .rIa/

h2r dx

(2.5); (2.4)
.

1

N 2
C

�� t2�
�2

«
��;t� .a/

.g � gt� /
2
� 1
dC1

C
t�

�
sup
Q0�.a/

ˇ̌̌ « t�

0

h dxdC1
ˇ̌̌� t2�
�2

«
��;t� .a/

.g � gt� /
2

(5.11)
.

1

N 2
C

�
��.dC2/f .Q`;t /

� dC2
dC1
C n.Q�;t� .a//�

�.dC2/f .Q`;t /:

Inserting this in (5.14), we are led to

f .Q`� ;t� .a// .
�Nt2�
�3
C

1

N 2
C
�
��.dC2/f .Q`;t /

� dC2
dC1 C n.Q�;t� .a//�

�.dC2/f .Q`;t /
�
:
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Recalling that `� D �`, optimising inN 2N (i.e., choosingN D dt�2=3� �e), we find with
`� � � � 2`� ,

f .Q`� ;t� .a// .
t
4=3
�

`2
�

C

�
��.dC2/f .Q`;t /

� dC2
dC1
C n.Q�;t� .a//�

�.dC2/f .Q`;t /:(5.15)

Remark 5.7. Since minimality of .m; h/ in QL;T is only used in (5.13) (in the form of
local minimality of .m; h/ in Q�;t� .a/, it can be replaced by almost-minimality in Q`;t in
the sense of Remark 1.5. This leads to an extra term Ct4=3=`2 in the estimate, and can
therefore be absorbed in the right-hand side of (5.7) and (5.9).

At this point, the proofs of Lemma 5.1 and Lemma 5.3 deviate: to bound the cumulated
field strength n.Q�;t� .a//, we have to distinguish the cases � D 1 (for t D T ) and � D �3=2

(for t < T ).

Proof of Lemma 5.1. We proceed in two steps.
Step 5.A. Treatment of the cumulated field. Note that for t D T and � D 1, we haveR T

0
hdxdC1D 0, cf. Step 2 of the proof of Theorem 1.2. In particular, f .Q`;T /Df0.Q`;T /

and

n.Q�;T / D
1

�
sup
Q0�.a/

ˇ̌̌ Z T

0

h dxdC1
ˇ̌̌
D 0;

which simplifies estimate (5.15) to

f0.Q`� ;T .a// .
T 4=3

`2
�

C ��.dC2/ .��.dC2/f0.Q`;T //
1=.dC1/f0.Q`;T /:(5.16)

Step 6.A. Choice of �. Let C > 0 be the implicit constant in (5.16). In view of (5.7),
we choose

� D �dC2
��dC3
C

�dC1
:

Then

C��.dC2/
�
��.dC2/f0.Q`;T /

�1=.dC1/
� C��.dC2/

�
��.dC2/ �

�1=.dC1/
� �;

from which it follows that

f .Q`� ;T .a// � �f .Q`;T / .
T 4=3

`2
�

�

Proof of Lemma 5.3. We proceed in two steps.
Step 5.B. Estimate on the cumulated field strength n. As we shall next show, for � < 1,

the cumulated field strength n.Q�;t� .a// decays with respect to the vertical direction. Let
us observe that

n.Q`� ;t� .a// �
�

`�
n.Q�;t� .a//;(5.17)

so it suffices to estimate n.Q�;t� .a//.
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By the triangle inequality and since Q0�.a/ � Q
0
2�`
.a/ � Q0

`
, we have

n.Q�;t� .a// �
t�

�
sup
Q0�.a/

ˇ̌̌ « t

0

h dxdC1
ˇ̌̌
C
t�

�
sup
Q0�.a/

ˇ̌̌ « t�

0

h dxdC1 �
« t

0

h dxdC1
ˇ̌̌

� �
`

�
n.Q`;t /C

t�

�
sup
Q0�.a/

ˇ̌̌ « t�

0

h dxdC1 �
« t

0

h dxdC1
ˇ̌̌
:

We claim that the latter term can be estimated by

t�

�
sup
Q0�.a/

ˇ̌̌ « t�

0

h dxdC1 �
« t

0

h dxdC1
ˇ̌̌

.
`

�
.�f .Q`;t //

1=.dC2/;(5.18)

thus

n.Q�;t� .a// �
`

�
� n.Q`;t / .

`

�
.�f .Q`;t //

1=.dC2/:(5.19)

Before providing a proof for (5.18), let us observe that, by inserting (5.19) in (5.17), we
find

n.Q`� ;t� .a// �
�

�
n.Q`;t / . ��1.�f .Q`;t //

1=.dC2/(5.20)

and that, by plugging (5.19) into (5.15), we obtain

f .Q`� ;t� .a// .
t
4=3
�

`2
�

C ��.dC2/
�
.��.dC2/f .Q`;t //

1=.dC1/
C
�

�
n.Q`;t /

C
1

�
.�f .Q`;t //

1=.dC2/
�
f .Q`;t /:(5.21)

In order to prove (5.18), let us consider the function

H.x0/ WD

Z t�

0

h dxdC1 �
t�

t

Z t

0

h dxdC1 D
Z t�

0

.h � ht / dxdC1; x0 2Q0�.a/:

By the Cauchy–Schwarz inequality, we have that

jH.x0/j2 � t�

Z t�

0

.h � ht /
2 dxdC1 � t� t

« t

0

.h � ht /
2 dxdC1:(5.22)

We now apply interior elliptic regularity to estimate supx0 2Q0� jH.x
0/j2. To this end, note

that H solves the equation

r
0
�H D r 0 �

Z t�

0

h dxdC1 �
t�

t

Z t

0

r
0
� h dxdC1 D �mt� C

t�

t

Z t

0

@dC1m dxdC1

D
t�

t
mt �mt� DWM:
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Further, by minimality, h is a gradient, so that also H D �r 0U is a gradient field whose
potential solves ��0U DM , with jM j � 2. Let x0� be an arbitrary point in Q0�.a/. Then,
by elliptic regularity, we can bound

jH.x0�/j
2 .

«
B˛`.x

0
�/

jH j2 dx0 C .˛`/2 sup
B˛`.x

0
�/

jr
0
�H j2

(5.22)
. ˛�d t� t

«
Q`;t

.h � ht /
2 dx C .˛`/2;

where the last inequality holds as long as B˛`.x0�/ � Q
0
`
, which is guaranteed for any

˛ � � , since x0� 2Q
0
�.a/ �Q

0
2�`
.a/, hence B˛`.x0�/ �Q

0
3�`
.a/ �Q0

`
by our assumption

on a. Optimising in ˛ then yields

˛ D
� t� t
`2

«
Q`;t

.h � ht /
2 dx

�1=.dC2/
D .�f .Q`;t //

1=.dC2/;(5.23)

in particular the condition ˛ � � is fulfilled if � is chosen small enough (see the next step).
From this, we deduce that

sup
x0 2Q0�.a/

jH.x0/j2 . `2 .�f .Q`;t //
2=.dC2/;

which by definition of H proves the claimed estimate (5.18).

Step 6.B. Choice of � and ı. We can now fix the parameters � and ı for � D �3=2.
Let C be the maximum of the implicit constants in inequalities (5.20) and (5.21). Given
� 2 .0; 1=2�, we choose ı so small that

C��.dC2/
�3=2

�
n.Q`;t / �

�

3
,

which is ensured by the choice ı D �dC5=2

3C
. We then choose � so small such that

C��1.�3=2f .Q`;t //
1=.dC2/

�
ı

2
,

and

C��.dC2/ max
®
.��.dC2/f .Q`;t //

1=.dC1/; ��1.�3=2f .Q`;t //
1=.dC2/

¯
�
�

3
,

which is ensured by the choice25

� D min
°
�dC1=2

� ı

2C

�dC2
; �dC2

��dC3
3C

�dC1
; ��3=2

��dC4
3C

�dC2±
:

Notice that, in particular, � � �dC1=2, which implies that ˛ � .�3=2�/1=.dC2/ � � ,
see (5.23).

This completes the proofs of Lemma 5.1 and Lemma 5.3.

25In fact, given any constant A <1 we may choose � to satisfy � � ıdC2=A.
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5.2.2. One-step improvement on the lateral boundary. In this subsection, we extend
the previous one-step improvements to small cuboids

Q�`;s.a/ WD Q`;s.a/ \QL;T

with center a 2�L;T \ ¹xdC1 D 0º at the boundary26. This requires a few modifications
compared to the previous two one-step improvements, in particular an adapted boundary
layer construction and the appeal to boundary regularity for the elliptic PDE satisfied by
the cumulated field.

Lemma 5.8 (One-step improvement, version C for fixed aspect ratio on the lateral bound-
ary). Let .m; h/ be a minimiser of the non-convex energy (1.4) in QL;T with zero-flux
lateral boundary conditions, mB � 0, jmT j � 1. For any � 2 .0; 1=2� and A <1, there
exist constants ı; � 2 .0; 1/ with the property that

� �
ıdC2

A
,

such that the following holds: for any a2�L;T \ ¹xdC1 D 0º, we have that if ` � L and
t � T are such that

f .Q�`;t .a// � � and n.Q�`;t .a// � ı;

then there holds

f .Q�
�`;�3=2t

.a// � �f .Q�`;t .a// .�
t4=3

`2
,

n.Q�
�`;�3=2t

.a// � �1=2 n.Q�`;t .a// .� f .Q�`;t .a//
1=.dC2/:

In order to provide a proof for Lemma 5.8, as before we start with some technical
preliminaries that will be useful.

Lemma 5.9 (Choice of good width). Let a2�L;T \ ¹xdC1 D 0º. If h 2 L2.Q�
`
.a/0/ for

some ` 2 .0; L�, with h � � D 0 on Q�
`
.a/0 \ �L;T , then the set of �2 Œ`=2; `� such that«

@Q�� .a/0
.h � �/2 dHd�1 .

«
Q`.a/

0

jhj2 dx0

has positive Lebesgue measure.

Proof. It is a minor modification of the proof of Lemma 5.5.

Lemma 5.10 (Monotonicity formula). Let h2L2.Q�
`;T
.a// for some `; T > 0, and for

some a2�L;T \ ¹xdC1 D 0º. Then the map

t 7!
t2

`2

«
Q�
`;t
.a/

.h � ht /
2 dx

is non-decreasing in Œ0; T �

Proof. It is a minor modification of the proof of Lemma 5.6.

26As before, we will write Q�
`
.a/0 WD Q0

`
.a/ \Q0

L
for the projection of Q�

`;s
.a/ to the first d coordinates,

and ��
`;s
.a/ WD @Q�

`
.a/0 � Œ0; s� for the lateral boundary.
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We are now ready to give a proof for Lemma 5.8.

Proof. Let � 2 .0; 1=2�, a 2�L;T \ ¹xdC1 D 0º, and denote `� D �`, t� D �3=2 t . The
first three steps of the proofs of Lemma 5.1 and 5.3 can be applied almost verbatim. Let
us therefore only point some of the adaptations.

Step 1. Choice of good width.
Let � 2 Œ�`; 3

4
`� be a good width in the sense of Lemma 5.9. Then«

���;t�
.a/

.g � gt� /
2 dHd�1 dxdC1 .

«
Q�3
4 `;t�

.a/

.h � ht� /
2 dx .

«
Q�
`;t�

.h � ht� /
2 dx;

and applying the monotonicity formula from Lemma 5.10, we obtain

t2
�

`2

«
Q�
`;t�

.a/

.h � ht� /
2 dx �

t2

`2

«
Q�
`;t
.a/

.h � ht /
2 dx � f .Q�`;t .a//;

hence
t2
�

`2

«
���;t�

.a/

.g � gt� /
2 dHd�1 dxdC1 . f .Q�`;t .a//:

Step 2. Construction of a competitor.
As before, we start with the over-relaxed solution in Q��;t� .a/, i.e., .xdC1

t�
mt� ; ht� /,

and modify it using Proposition 2.6 in a boundary layer to a competitor .mrel; hrel/ for
the relaxed problem with boundary conditions g D h � � on ���;t� .a/, bottom magnetisa-
tionmB D 0, and top magnetisationmt� D�r 0 �

R t�
0
hdxdC1 coming from the minimiser

.m;h/ inQL;T . By means of Corollary (3.4), .mrel; hrel/ 2Arel
Q��;t�

.a/
.gI0;mt� / can now be

massaged into a competitor for the non-convex problem. Appealing to (local) minimality
of .m; h/ in Q��;t� .a/ then allows us to estimate

f .Q�`� ;t� .a// .
t
4=3

�

`2
�

C ��.dC2/
��
��.dC2/f .Q�`;t .a//

� 1
dC1 C n.Q��;t� .a//

�
f .Q�`;t .a//:

Step 3. Estimate on n.
We now estimate

n.Q��;t� .a// �
t�

�
sup
Q�� .a/0

ˇ̌̌ « t

0

h dxdC1
ˇ̌̌
C
t�

�
sup
Q�� .a/0

ˇ̌̌ « t�

0

h dxdC1 �
« t

0

h dxdC1
ˇ̌̌

�
t�

t

`

�
n.Q�`;t .a//C

t�

�
sup
Q�� .a/0

ˇ̌̌ « t�

0

h dxdC1 �
« t

0

h dxdC1
ˇ̌̌
:

As in the previous one-step improvement, let us consider the function

H.x0/ WD

Z t�

0

h dxdC1 �
t�

t

Z t

0

h dxdC1 D
Z t�

0

.h � ht /dxdC1; x0 2Q�` .a/
0:

Since this time we need to control the maximum of H over Q��.a/
0 up to the boundary,

we extend H across the lateral boundaries @Q�
`
.a/0 \ @Q0L as follows: @Q�

`
.a/0 \ @Q0L

may consist of up to d interfaces. We present the argument for the case that the number
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of such interfaces is k 2 ¹1; : : : ; dº, and these interfaces are situated, respectively, at
x1 D L; x2 D L; : : : ; xk D L. In that case, as in the proof of the global lower bound on
the energy (for zero-flux boundary conditions), we define successively extensions H .j /

on the extended (by reflections along the axes x1; : : : ; xj ) domain Q�;.j /
`

.a/ as follows:

H .1/.x0/ WD

´
H.x0/; if x02Q�

`
.a/0

.�H1;H2; : : : ;Hd /.2L � x1; x2; : : : ; xd /; if x02Q�;.1/
`

.a/0 nQ�
`
.a/0;

with

r
0
�H .1/.x0/ D r 0 �H.x0/ for x0 2Q�` .a/

0; and

r
0
�H .1/.x0/ D .r 0 �H/.2L � x1; x2; : : : ; xd / for x0 2Q�;.j /

`
.a/0 nQ�` .a/

0:

Note that H � �0 D 0 on the interface ¹x1 D Lº, so we can set

m.1/.x0/ WD

8̂<̂
:

t�
t
m.x0; t / �m.x0; t� /; if x0 2Q�

`
.a/0;

t�
t
m.2L � x1; x2; : : : ; xd ; t /

�m.2L � x1; x2; : : : ; xd ; t� /; if x0 2Q�;.1/
`

.a/0 nQ�
`
.a/0;

to obtain r 0 � H .1/ D m.1/ with jm.1/j � 2 on Q�;.1/
`

.a/0. Define inductively, for j D
1; : : : ; k,

H .j /.x0/ WD H .j�1/.x0/; if x0 2Q�;.j�1/
`

.a/0;

H .j /.x0/ WD .H1; : : : ;�Hj�1; : : : ;Hd /.x1; : : : ; 2L � xj ; : : : ; xd /;

if x0 2Q�;.j /
`

.a/0 nQ
�;.j�1/

`
.a/0;

and, correspondingly,

m.j /.x0/ WD

8̂<̂
:
t�
t
m.j�1/.x0; t / �m.j�1/.x0; t� /; if x0 2Q�;.j�1/

`
.a/0;

t�
t
m.j�1/.x1; : : : ; 2L � xj ; : : : ; xd ; t /

�m.j�1/.x1; : : : ; 2L � xj ; : : : ; xd ; t� /; if x02Q�;.j /
`

.a/0nQ
�;.j�1/

`
.a/0:

Finally, we set zH WDH .k/ and zm WDm.k/ onQ�;.k/
`

.a/0. Then zH satisfiesr 0 � zH D zm, and
in particular, jr 0 � zH j D j zmj � 2. Note that this construction crucially uses thatH � �0 D 0
across ��

`;t
.a/ \ �L;T . By minimality of h and the construction of the extension, zH is a

gradient.
Now for any x0�2Q

�
�.a/

0, by interior elliptic regularity for the potential of zH , we have
that

jH.x0�/j.
«
B 0
˛`
.x0�/

j zH j2 dx0C .˛`/2 sup
B 0
˛`
.x0�/

jr
0
� zH j2 . ˛�d

«
Q
�;.k/
`

.a/0
j zH j2 dx0C .˛`/2;

as long as ˛ is small enough so that B 0
˛`
.x0�/�Q

�;.k/

`
.a/0. By construction ofH , we then

have

jH.x0�/j . ˛�d
«
Q`.a/

0

jH j2 dx0 C .˛`/2 . ˛�d t� t

«
Q�
`;t
.a/

.h � ht /
2 dx C ˛2`2;



Domain branching in micromagnetism 453

and we can optimise in ˛ to obtain

˛ D
� t� t
`2

«
Q�
`;t
.a/

.h � ht /
2 dx

�1=.dC2/
;

hence

jH.x0�/j
2 . `2

� t� t
`2

«
Q�
`;t
.a/

.h � ht /
2 dx

�2=.dC2/
;

and by taking the supremum over all x0� 2 Q
�
�.a/

0 we obtain

sup
x0� 2Q

�
� .a/0
jH.x0�/j . `2

�
�3=2f .Q�`;t .a//

�2=.dC2/
:

The rest of the proof now proceeds as the proof of Lemma 5.3.

5.2.3. The iterations. We are now in the position to iterate our one-step improvements.

Proposition 5.11 (Iteration, version A). There exist universal constants � 2 .0; 1/ and
cLT � 1 (depending only on the dimension d/ such that the following holds: if f0.QL;T /
� � and ` � L=4 is such that ` � cLT T 2=3, then

f0.Q`;T .a// . f0.QL;T /C
T 4=3

`2
(5.24)

for any a 2 Rd � ¹0º such that Q`;T .a/ � Q 3
4L;T

.

Remark 5.12. The choice ` � L=4 and a such that Q`;T .a/ � Q 3
4L;T

, in particular
jaj � L=2, is arbitrary at this point. Since the iteration is based on the interior one-step
improvement Lemma 5.1, we just have to make sure to have some positive distance to the
boundary �L;T .

Proof. Without loss of generality, let a D 0 and fix � 2 .0; 1=4�. The general case can
be obtained by applying Lemma 5.1 once with a such that Q`;T .a/ � Q 3

4L;T
and then

re-applying it for the fixed centre a.

Step 1. Proof for cuboids with geometrically related side lengths.
We first prove the bound (5.24) for `D `N WD �NL for someN 2N, and then extend

the result to arbitrary ` such that cLT T 2=3 � ` � L. More precisely, we prove inductively
that there exists a universal constant C0 <1 such that for k D 0; 1; : : : ; N there holds27

f0.Q`k ;T / � �
kf0.QL;T /C C0

T 4=3

L2
�k�1

X
0�j�k�1

��3j :(5.25)

Note that the inequality holds trivially for k D 0, so assume that (5.25) holds true for all
1 � k � K with K � N � 1.

27With the convention that a summation over the empty set is equal to zero.
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By the induction hypothesis for k D K, we have that

f0.Q`K ;T / � �
Kf0.QL;T /C C0

T 4=3

L2
�K�1

X
0�j�K�1

��3j(5.26)

D �Kf0.QL;T /C C0
T 4=3

L2
��2.K�1/

1 � �3K

1 � �3

D �Kf0.QL;T /C C0
T 4=3

`2
�2.N�KC1/

1 � �3K

1 � �3
�

Note that �2.N�KC1/ � 1 since K � N � 1, hence, provided that c2LT � 2C0.1 � �
3/=�,

we may bound

f0.Q`K ;T / � �
Kf0.QL;T /C C0

T 4=3

`2
1

1 � �3
� �Kf0.QL;T /C

C0

c2LT

1

1 � �3

� 2�K � C
�

2
� �:

We can therefore apply Lemma 5.1 to infer that

f0.Q`KC1;T / � �f0.Q`K ;T /C C�
T 4=3

`2K
D �f0.Q`K ;T /C

C�

�2K
T 4=3

L2
,

with C� the implicit constant in (5.9). Using (5.26), we then obtain

f0.Q`KC1;T / � �
KC1f0.QL;T /C C0

T 4=3

L2
�K

X
0�j�K�1

��3j C C� �
�2K T

4=3

L2

� �KC1f0.QL;T /C C0
T 4=3

L2
�K

X
0�j�K

��3j ;

where the last inequality holds provided that the constant C0 is chosen such that C0 � C� .
Finally, by taking k D N in (5.25), we obtain

f0.Q`;T / � �
Nf0.QL;T /C C0

T 4=3

L2
�N�1

N�1X
jD0

��3j

D �Nf0.QL;T /C C0
T 4=3

L2
��2.N�1/

1 � �3N

1 � �3

D �Nf0.QL;T /C C0
T 4=3

`2
�2
1 � �3N

1 � �3
. f0.QL;T /C

T 4=3

`2
�

Step 2. General ` � L=4.
If ` is not of the form in Step 1, then there exists an N 2 N such that `2 .`NC1; `N /.

But then we can bound

f0.Q`;T / �
� `N

`NC1

�dC2 T 2
`2N

� «
Q`N ;T

jr
0mj C

«
Q`N ;T

1

2
h2 dx

�
D ��.dC2/f0.Q`N ;T /;

hence (5.24) follows from Step 1.
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Proposition 5.13 (Iteration, version B). There exist universal constants �; ı 2 .0; 1/
and c`t�1 (depending only on the dimension d/ such that the following holds: if f .QL;T /
� �, n.QL;T / � ı, and ` � L=8, t � T are such that `t�2=3 D LT �2=3 � c`t , then

(5.27)
f .Q`;t .a// . f .QL;T /C

T 4=3

L2
;

n.Q`;t .a// . n.QL;T /C
�
f .QL;T /C

T 4=3

L2

�1=.dC2/
for any a2Rd � ¹0º such that Q0

`
.a/ � Q03

4L
.

Remark 5.14. As in the previous iteration, the choice ` � L=8 and a such that Q0
`
.a/ �

Q03
4L

is arbitrary, as long as we make sure to stay away from the boundary �L;T .

Proof of Proposition 5.13. Without loss of generality, let a D 0 and fix � 2 .0; 1=8�.

Step 1. Proof for cuboids with geometrically related side lengths.
We let `k WD �kL, tk WD .�3=2/kT for k 2N0. We assume that `D `N and hence also

t D tN for some N 2 N, and extend the statement to arbitrary `; t with fixed aspect ratio
in Step 2. Note that

t
4=3

k

`2
k

D
T 4=3

L2
for all k 2 N:(5.28)

In view of Lemma 5.3 and Remark 5.4, we will prove inductively that, for kD 0;1; : : : ;N ,
there holds28

f .Q`k ;tk / � �
kf .QL;T /C C

T 4=3

L2

X
0�j�k�1

�j ;(5.29)

n.Q`k ;tk / � �
k=2 n.QL;T /(5.30)

C zC
X

0�j�k�1

�j=2
�
�k�j�1f .QL;T /C

T 4=3

L2

X
0�i�k�j�2

� i
�1=.dC2/

:

Observe that the inequalities trivially hold for k D 0. Assume that (5.29) and (5.30)
hold true for 0� k�K withK �N � 1. Let us first prove that (5.29) holds for kDKC 1.
By the assumption on level K, we have that

(5.31) f .Q`K ;tK /� �
Kf .QL;T /CC

T 4=3

L2

K�1X
jD0

�j � �Kf .QL;T /C
C

1 � �

T 4=3

L2
� �;

provided that the constant in L� T 2=3 is chosen large enough. We can therefore apply
Lemma 5.3 to infer

f .Q`KC1;tKC1/ � � f .Q`K ;tK /C C�;f
t
4=3
K

`2K

,

28With the convention that a summation over the empty set is equal to zero.
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with C�;f the implicit constant in (5.9). Then, by inserting the first inequality in (5.31)
and using (5.28), we obtain

f .Q`KC1;tKC1/ � �
KC1f .QL;T /C C

T 4=3

L2

KX
jD1

�j C C�;f
T 4=3

L2

� �KC1f .QL;T /C C
T 4=3

L2

KX
jD0

�j ;

where the last inequality holds provided that the constant C is chosen such that C � C�;f .
Let us now prove that (5.30) holds for k D K C 1. As before, we can estimate

n.Q`K ;tK /

� �K=2 n.QL;T /C zC

K�1X
jD0

�j=2
�
�K�j�1f .QL;T /C

T 4=3

L2

X
0�i�K�j�2

� i
�1=.dC2/

� �K=2 n.QL;T /C zC
�
K�1
dC2

1 � �
d

2.dC2/

f .QL;T /
1=.dC2/

C
zC

1 � �1=2

�T 4=3
L2

1

1 � �

�1=.dC2/
;

hence n.Q`K ;tK / � ı provided � is chosen small enough (depending on � and ı fixed) and
the constant in L� T 2=3 is chosen large enough. We can therefore apply Lemma 5.3 to
infer

n.Q`KC1;tKC1/ � �
1=2 n.Q`K ;tK /C C�;nf .`K ; tK/

1=.dC2/;

with C�;n the implicit constant in (5.10). Combining with the induction hypotheses (5.30)
and (5.29), we are led to

n.Q`KC1;tKC1/

� �1=2
�
�K=2 n.QL;T /C zC

K�1X
jD0

�j=2
�
�K�j�1f .QL;T /C

T 4=3

L2

X
0�i�K�j�2

� i
�1=.dC2/�

C C�;n

�
�Kf .QL;T /C C

T 4=3

L2

K�1X
iD0

� i
�1=.dC2/

� � .KC1/=2 n.QL;T /C zC

KX
jD1

�j=2
�
�K�jf .QL;T /C

T 4=3

L2

X
0�i�K�j�1

� i
�1=.dC2/

C C�;n C
�
�Kf .QL;T /C

T 4=3

L2

K�1X
iD0

� i
�1=.dC2/

� � .KC1/=2 n.QL;T /C zC

KX
jD0

�j=2
�
�K�jf .QL;T /C

T 4=3

L2

X
0�i�K�j�1

� i
�1=.dC2/

;

provided we choose zC � C�;nC . The result is thus proved.
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Step 2. General `; t with fixed aspect ratio.
If `; t are not of the form in Step 1, then there exists anN 2N such that `2 .`NC1; `N /

and t 2 .tNC1; tN /. By Lemma 5.6, we can estimate

f .Q`;t / D
t2

`2

«
Q`;t

jr
0mj C

t2

`2

«
Q`;t

1

2
jh � ht j

2 dx

�
t2N
`2

«
Q`;tN

jr
0mj C

t2N
`2

«
Q`;tN

1

2
jh � htN j

2 dx

�

� `N

`NC1

�dC2 t2N
`2N

� «
Q`N ;tN

jr
0mj C

«
Q`N ;tN

1

2
jh � htN j

2 dx
�

D ��.dC2/f .Q`N ;tN /:

Similarly, following the line of argument in Step 5.B of the proof of the one-step improve-
ment (Lemma 5.1), we may bound

n.Q`;t / . ��1
�
n.Q`N ;tN /C f .Q`N ;tN /

1=.dC2/
�
;

hence (5.27) follows from Step 1.

Proposition 5.15 (Iteration, version C at the boundary). There exist universal constants
�;ı2 .0;1/ and c`t � 1 (depending only on the dimension d/ such that the following holds:
if f .Q�L;T .a// � �, n.Q

�
L;T .a// � ı, for a2�L;T \ ¹xdC1 D 0º, and ` � L, t � T are

such that `t�2=3 D LT �2=3 � c`t , then

f .Q�`;t .a// . f .Q�L;T .a//C
T 4=3

L2
,

n.Q�`;t .a// . n.Q�L;T .a//C
�
f .Q�L;T .a//C

T 4=3

L2

�1=.dC2/
:

Proof. The proof of Proposition 5.15 is a minor modification of the proof of Proposi-
tion 5.13, using the boundary one-step improvement (Lemma 5.8) instead of the interior
one-step improvement (Lemma 5.3).

A. A useful elliptic estimate

Lemma A.1. Let Q0 D .0; 1/d , f 2 L2.Q0/ and H D ¹a1º ��djD2.aj ; bj / �Q
0. Let u

be the unique solution of the elliptic Neumann problem

(A.1)

8<: ��0u D f �
� 1

jH j

Z
Q0
f dx0

�
Hd�1

bH in Q0;

�r 0u � �0 D 0 on @Q0;

with zero average
R
Q0
u dx0 D 0. ThenZ

Q0
jr
0uj2 dx0 .

1

jH j

Z
Q0
f 2 dx0:(A.2)

While this result is rather standard, we give a proof for the convenience of the reader.
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Proof. Note that the right-hand side of the PDE in (A.1) lies in the negative-order Sobolev
space H�1.Q0/ ' H 1

0 .Q
0/�. Indeed, let ' 2C1c .Q

0/. ThenZ
Q0
' dHd�1

bHD lim
�#0

1

�

Z
Q0
'�� dx0;

where29

��.x
0/ WD 1.a1;a1C�/.x1/

dY
jD2

1.aj ;bj /.xj /:

Define
��.x1/ WD 1.a1;a1C�/.x1/.x1 � a1/C 1.a1C�;1/.x1/�:

Then 1.a1;a1C�/ D � 0� , and integration by parts yields

1

�

Z
Q0
'�� dx0 D �

1

�

Z
Q0
@1'.x

0/��.x1/

dY
jD2

1.aj ;bj /.xj / dx0:

Hence, by the Cauchy–Schwarz inequality,ˇ̌̌1
�

Z
Q0
'�� dx0

ˇ̌̌2
�

� 1
�2

Z
Q0
�2� .x1/

dY
jD2

1.aj ;bj /.xj / dx0
� Z

Q0
j@1'j

2 dx0

�

� dY
jD2

.bj � aj /
1

�2

Z 1

0

��.x1/
2 dx1

� Z
Q0
jr
0'j2 dx0

D jH j
�
1 � a1 �

2�

3

� Z
Q0
jr
0'j2 dx0 � jH j

Z
Q0
jr
0'j2 dx0:

It follows thatˇ̌̌ Z
Q0
' dHd�1

bH

ˇ̌̌
� jH j1=2 kr 0'kL2.Q0/ for all ' 2C 1c .Q

0/:

We may now estimateˇ̌̌ Z
Q0
r
0u � r 0' dx0

ˇ̌̌
(A.1)
D

ˇ̌̌ Z
Q0
f ' dx0 �

� 1

jH j

Z
Q0
f dx0

� Z
Q0
' dHd�1

bH

ˇ̌̌
� kf kL2.Q0/ k'kL2.Q0/ C

� 1

jH j

Z
Q0
f dx0

�
jH j1=2 kr 0'kL2.Q0/

Poincaré
. jH j�1=2 kf kL2.Q0/ kr

0'kL2.Q0/:

Taking the supremum over all ' 2C 1c .Q
0/ yields (A.2).
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