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Magnetic reconnection in magnetohydrodynamics

Pedro Caro, Gennaro Ciampa and Renato Lucà

Abstract. We provide examples of periodic solutions (in both 2 and 3 dimension)
of the magnetohydrodynamics equations such that the topology of the magnetic lines
changes during the evolution. This phenomenon, known as magnetic reconnection,
is relevant for physicists, in particular in the study of highly conducting plasmas.
Although numerical and experimental evidences exist, analytical examples of mag-
netic reconnection were not known.

1. Introduction

We are interested in the magnetohydrodynamics system, i.e.,8̂̂̂<̂
ˆ̂:
@tuC .u � r/uCrP D ��uC .b � r/b;

@tb C .u � r/b D .b � r/uC ��b;

divu D div b D 0;
u.0; �/ D u0; b.0; �/ D b0;

(MHD)

where (for d D 2; 3) bW .0; T / � Td ! Rd identifies the magnetic field in a resistive
incompressible fluid with velocity uW .0; T / � Td ! Rd . The scalar quantity P W .0; T / �
Td ! R is the pressure, � � 0 is the viscosity and � � 0 is the resistivity. The sys-
tem (MHD) describes the behavior of an electrically conducting incompressible fluid, the
equations are given by a combination of the Navier–Stokes equations and Maxwell’s equa-
tions from electromagnetisms. We point out that the 2D model follows from the 3D model
under the assumption that the solution depends only on the first two variables and that u
and b have third null component.

In the resistive and viscous case (i.e., � > 0 and � > 0), the existence of global weak
solutions with finite energy and local strong solutions to (MHD) in two and three dimen-
sions have been proved in [9]. Moreover, for smooth initial data, they proved the smooth-
ness and uniqueness of their global weak solutions in the two-dimensional case. On the
other hand, in [39] the authors proved the uniqueness of the local strong solutions in 3D,
together with some regularity criteria. See also [31, 40] for existence and uniqueness of
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global mild solutions with small initial data. This situation is somewhat reminiscent of
the available results for the Navier–Stokes equations. A similar situation arises in the non-
viscous case, i.e., when � D 0: in 2D, the existence of global weak solutions has been
proved in [22] for divergence-free initial data in L2. The ideal case � D 0 has attracted
the attention of many mathematicians in recent years, and local well-posedness results,
at an (essentially) sharp level of Sobolev regularity, are now available [16, 17]. Finally,
in the ideal case with no diffusion, i.e., � D � D 0, the local existence of strong solu-
tions for initial data in H s.Rd / with s > d=2C 1 has been established in [37, 38]. See
also [25, 26, 36, 41], for global existence results of smooth solutions in the ideal case
assuming that the initial datum is a small perturbation of a constant steady state.

We are interested in the problem of magnetic reconnection. In the non-resistive case
(�D 0), it is known that the integral lines of a sufficiently smooth magnetic field are trans-
ported by the fluid (Alfvén’s theorem). In particular, the topology of the integral lines of
the magnetic field does not change under the evolution. The topological stability of the
magnetic structure is related to the conservation of the magnetic helicity, which, in the
non-resistive case (� D 0), becomes a very subtle matter at low regularities, intimately
related to anomalous dissipation phenomena. We refer to [2, 14, 15] for some very inter-
esting (positive and negative) results in this direction. On the other hand, in the resistive
case (� > 0), the topology of the magnetic lines may (and it is indeed expected to) change
under the fluid evolution, in both 2 and 3 dimensions, even for regular solutions. This
phenomenon, known as magnetic reconnection, is of particular relevance for physicists, in
particular in the study of highly conducting plasmas. A possible explanation of the phe-
nomenon of the solar flares, large releases of energy from the surface of the sun, involves
magnetic reconnection. The energy stored in the magnetic fields over a large period of time
is rapidly released during the change of topology of the magnetic lines. It is also worth
mentioning that the intensity of the solar flares is of a larger magnitude than the one pre-
dicted by the current (MHD) models, suggesting that also some turbulent phenomenon,
as cascade of energy, may be involved [35]. Although numerical and experimental evi-
dences exist (see [32, 35] and the references therein), no analytical examples of magnetic
reconnection are known. We also refer to [5], where the second author considered the
forced (MHD) system and constructed analytical examples of magnetic reconnection in
the two-dimensional case. Besides the intrinsic mathematical interest, a better understand-
ing by a rigorous analytic viewpoint may give important insights on the Sweet–Parker
model arising in magnetic reconnection theory [35]. Lastly, we remark that an analogous
problem exists in the theory of the three-dimensional Navier–Stokes equations, where in
the presence of viscosity the topology of the vorticity lines is expected to change under
the Navier–Stokes flow. We refer to [6,7,10,20,33] for an overview on this phenomenon.

Thus, in this work we are concerned with providing analytical examples of this phe-
nomenon. Our main result is the following.

Theorem 1.1. Consider d 2 ¹2; 3º. Given any viscosity and resistivity �; � > 0 and any
constants T > 0 and M > 0, there exists a zero-average unique global smooth solution
.u; b/ of (MHD) on Td , with initial datum .0; b0/ and kb0kL2 D M , such that the mag-
netic lines at time t D 0 and t D T are not topologically equivalent, meaning that there
is no homeomorphism of Td into itself mapping the magnetic lines of b.0; �/ into those
of b.T; �/.
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Remark 1.2. Heuristically, one expects a bound for the reconnection time like T >

1=.�N 2/, where N is a characteristic length scale of the solution. Indeed, the PDE can
be interpreted as the Hamiltonian function of the magnetic field being transported by par-
ticles following the trajectories of u, �x � u�t , and also drifting by Brownian motion
with � as the diffusion coefficient, �x � .��t/1=2. Thus, the time it takes a particle to
deviate from the trajectory of u a distance�x equal to the typical scale of variation of the
magnetic field (which is what causes mixing and topological change) is .�x/2=� (in this
case, �x D 1=N ). The solutions we are going to construct will have a reconnection time
of the order of T � 1=.�N 2/, as explained in Remark 4.1 and Remark 7.1 below.

Note that as M may be very large and the solutions have zero-average, we are consid-
ering genuinely large initial magnetic fields (for instance, large in any Sobolev space H s

with s � 0; see also Remark 1.6 below). It is also possible to consider more general initial
velocities u0 ¤ 0. In particular, we may consider large initial velocity if we impose some
a priori structure (see Remark 4.2); however, we prefer to state the result in the simplest
form. Notably, large velocities (without any specific geometrical structure) may be also
considered in the 2D case if we work with very large viscosities (see Theorem 1.3).

The proofs of Theorem 1.1 in 2D and in 3D are logically independent. For the sake of
readability, we first present the proof of the theorem in 3D, which is an adaptation of the
argument from [10]. See also [27] for a simplified construction. The proof of the result
in 2D requires new ideas and it is somehow more general, as it should be clear by the
following observation: if we have found a 2D solution

.b1.t; x1; x2/; b2.t; x1; x2//;

of (MHD) which exhibits a reconnection, then we have also proved magnetic reconnection
for (MHD) in 3D, simply considering the 3D solution

(1.1) .b1.t; x1; x2/; b2.t; x1; x2/; 0/I

the 2D velocity and pressure must be extended to 3D in the analogous way. On the other
hand, an advantage of the genuinely 3D argument will be the possibility to (addition-
ally) prescribe rich topological structures for the magnetic lines, relying upon some deep
results about topological richness of Beltrami fields [11–13]. Moreover, the 3D reconnec-
tion obtained extending the 2D result to 3D as in (1.1) would not be structurally stable in
the sense of the Remark 1.4 below. We explain why in Remark 7.4.

It is worth mentioning already that the 2D result and the (genuine) 3D result that we
presented are structurally stable indeed; see again Remark 1.4.

As we have noted, the condition � > 0 is necessary to prove magnetic reconnection for
smooth solutions, because for � D 0, this is forbidden by Alfvén’s theorem. The heuris-
tic behind the phenomenon is that the resistivity allows to break the topological rigidity.
In this sense, it is interesting that we can prove magnetic reconnection at arbitrarily small
resistivity, namely, for all � > 0. However, we point out that we are not working in a
turbulent regime since the energy of the solutions is concentrated at the scale of dissipa-
tion. Indeed, the reconnection time of our solutions is of order T � 1=.N 2

0 �/, so to prove
reconnection at a fixed time T and � very small, we need to use fields of length scales
much smaller than �1=2.
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Regarding the role played by the viscosity, we mention that Theorem 1.1 might be
extended to the case � D 0, working with growth and stability estimates like the ones used
in the Euler equations theory, rather than in the Navier–Stokes one. The price that we must
pay to work with viscosity � D 0 is of course that we will only have local in time results.

However, the viscosity may enter in the argument in an interesting way, since it is valid
the principle that large viscosity helps too. We will investigate this in the 2D case, where
we can prove a stronger reconnection statement which is valid for any initial velocity
in H 4.T2/ as long as we work with sufficiently large viscosity.

Theorem 1.3. Consider d D 2. Given any resistivity � > 0 and any constants T > 0

and M;R > 0, there exists a viscosity � D �.M;R/� 1 sufficiently large such that the
following holds : for any zero-average u0 with ku0kH4 D R, there exists a zero-average
unique global smooth solution .u; b/ of (MHD) on T2, with initial datum .u0; b0/ and
kb0kL2 DM , such that the magnetic lines at time t D 0 and t D T are not topologically
equivalent.

Remark 1.4. The results that we presented above are structurally stable, in the sense that
if we slightly perturb the initial data (in the appropriate norms) and/or the observation
times t D 0 and t D T , the results are still valid. This will be clear by the proof (see
also Remark 4.2). The structural stability of the phenomenon is important from a physical
point of view, since it guarantees its observability.

The proofs are based on a perturbative analysis of some particular solutions of the
linearized equation, for which one can infer reconnection by a suitable topological argu-
ment. More precisely, in the 3D case, we closely follow the idea of an earlier result of
the third author and Alberto Enciso and Daniel Peralta-Salas [10], in the context of the
Navier–Stokes equation. Thus we consider data for which the magnetic field at time t D 0
has the form

MB0 C ıB1; for M > 0 and 0 < ı � 1;

where Bj are high frequency Beltrami fields (eigenvector of the curl operator) with the
following properties:
(i)3D All the magnetic lines of B0 wing around a certain direction of the torus, in

particular they are all non-contractible. This is a robust topological property, in
the sense that it is still valid for all sufficiently small regular perturbations of B0.

(ii)3D The field B1 has some contractible magnetic line (in fact, in a small ball we can
prescribe magnetic lines knotted and linked in complicated ways following the
topological results from [10–13]). This is again topologically robust.

The idea is then to choose the relevant parameters, namely ı and the eigenvalues (fre-
quencies) of the Beltrami fields, in such a way that our solution will be sufficiently close
(in a regular norm) toMB0 at time t D 0 and to a suitable rescaled version of the field B1,
at time T > 0. Recalling the topological constraint (i)3D , (ii)3D (and their robustness), this
will ensure that the magnetic lines of the solution at time t D 0 and t D T are not homeo-
morphic. Thus we must have had magnetic reconnections in the intermediate times and we
are also able to quantify the time in which the reconnection takes place, see Remark 4.1.

If we try to use the same strategy in 2D, we encounter the problem that it is not easy
to produce a simple high frequency Taylor vector field (which is the 2D analogous of a
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Beltrami field) with all non-contractible vortex lines. Moreover, in two dimensions the
reconnection is expected to occur at critical points, see [35]. Thus, in the 2D case we use a
different topological constraint, that consists in counting the number of stagnation points
of the magnetic field. In particular, we define the initial magnetic field as

MVN C ıV1; for M > 0 and 0 < ı � 1,

where VN and V1 are Taylor fields (eigenvectors of the Stokes problem (5.1)) with the
following properties:

(i)2D The field VN has several stagnation points (namely, � N � 1, half of them are
hyperbolic and half of them elliptic). This is robust in the sense that small regular
perturbations must have at least as many stagnation points.

(ii)2D The fields V1 has exactly four stagnation points, and the topology of the vortex
lines is completely prescribed (see figure 2) and robust (V1 is structurally stable
by Theorem 5.3).

Again, one will then choose the relevant parameters in such a way that the solution
will share the same topological properties (i)2D and (ii)2D at times t D 0 and t D T > 0,
respectively. This proves magnetic reconnection for intermediate times. Again, we can
quantify the time in which the reconnection takes place, see Remark 7.1.

In the last part of the paper, we provide an example of initial magnetic fields which
shows instantaneous reconnection under the (MHD) flow. The theorem is the following.

Theorem 1.5. Consider M > 0 and u0 2 C1.Td / with zero-average, where d 2 ¹2; 3º.
There exists a zero-average initial magnetic field b0, with kb0kL2 D M , such that the
following holds: if d D 3, there is a zero-average local smooth solution of (MHD) with
initial datum .u0; b0/ which at time t D 0 has a tube of magnetic lines that breaks up
instantaneously (namely, for any positive time t > 0/. If d D 2, there is a zero-average
global smooth solution with initial datum .u0; b0/ which at time t D 0 has an heteroclinic
connection that breaks up instantaneously.

The 3D case of the theorem above again closely follows the idea of [10]: by consid-
ering an initial datum which is not structurally stable (again the datum will be a small
perturbation of a Beltrami field), one can prove that some magnetic lines sitting on a res-
onant (embedded 2D) torus rearrange instantaneously their topology. In the 2D case, we
exploit the structural instability of the heteroclinic connections of a suitable perturbation
of a Taylor field. In particular, we show that an heteroclinic connection is instantly broken.
Both results may be proved invoking the Melnikov theory, but in 2D a significant simplifi-
cation of the argument is available (see Section 9). We are grateful to Daniel Peralta-Salas
for this observation.

It is worth mentioning that the idea of looking at the critical points in order to prove
bifurcation results for the 2D Navier–Stokes equation was proposed in [23, 24]. In those
papers, the authors study topology change of streamlines under short time evolution. They
use a Taylor expansion in time and compute the O.t/ correction based on the chosen data
to conclude. In particular, they provide different sets of initial data such that the following
scenario holds:

(i) the set of initial critical points bifurcate from one to two, and then to three critical
points in finite time;
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(ii) three critical points merge into one critical point in finite time;
(iii) the bifurcation can be generated by the Navier–Stokes flow and do not require the

existence of an initial critical point.
However, the method that we use in the proofs of Theorem 1.1 and Theorem 1.3 to

show that the number of critical points changes during the evolution is completely dif-
ferent, and heavily relies on the choice of Taylor fields (and Beltrami fields in 3D) to
implement a robust perturbative argument. Also our instantaneous result is different since,
rather than control the number of critical points, we actually show that the MHD flow
breaks heteroclinic connections between saddle points.

We conclude the introduction with some comments, The first is a remark on the size
of our initial data in the 3D part of Theorem 1.1. Let consider for simplicity the case in
which � D � D 1.

Remark 1.6. It is well known that in the case of the 3D Navier–Stokes equation, one can
use negative order Besov spaces, or even the more general Koch–Tataru space from [21],
in order to develop a well-posedness theory for data which are strongly oscillating (as in
our case). We recall that the space PB�11;1 contains all the critical spaces that in principle
would allow a fixed point argument. The relative norm is

kf k PB�11;1
WD sup

t>0

p
t ket�f kL1 :

The initial data in (the 3D part of) Theorem 1.1 are small with respect to this norm. How-
ever, as observed in Remark 4.5 of [10] (in the case of the Navier–Stokes equation), a
straightforward modification of our argument would allow handling initial data b0 which
are small perturbations of the Beltrami field

B DMN ˛.sin.Nx3/; cos.Nx3/; 0/; for N 2 N and ˛ � 1.

Now, using the fact that et�B D e�N
2tB , one can easily show that the PB�11;1 norm ofB is

1
p
2e
MN ˛�1:

Thus, in the case ˛D 1, we are considering solutions magnetic fields that at the initial time
are even large in the PB�11;1 norm (and thus large in any critical space). It is interesting to
notice that our argument would fail exactly if we take ˛ > 1. The same is true for the
Navier–Stokes equation case (see again Remark 4.5 in [10]).

The last comment concerns another very important model for analyzing reconnection
phenomena is the Hall-MHD system. The latter has an additional term on the left-hand
side of the magnetic equation in (MHD), namely, curl.curlb ^ b/, which is called the Hall
term. We refer to [1, 4, 8, 19] and reference therein for an introduction to these equations.
It is known that the Hall term alone cannot change the topology of the magnetic field
lines; however, it interacts with the magnetic viscosity accelerating the process, see [19].
It is interesting to note that the Hall term is identically zero if b is a Beltrami field. Thus,
since a small data theory is available for global smooth solutions of the Hall-MHD [4],
we expect that the perturbative argument of Theorem 1.1 can be adapted to the case of the
Hall-MHD system as well.



Magnetic reconnection in magnetohydrodynamics 467

1.1. Organization of the paper

In the rest of the introduction, we describe the notation and some general facts that we will
be using throughout the article. In Sections 2 and 5, we recall the concepts of Beltrami
and Taylor fields that will be necessary in the proof of the magnetic reconnection for 3D
and 2D, respectively. One basic ingredient in our proofs is the stability of strong solutions
of the MHD system. Sections 3 and 6 are devoted to this matter in the 3D and 2D case,
respectively. The magnetic reconnection in the 3D case is proved in Section 4. The mag-
netic reconnection in the 2D case is proved in Section 7 in the case of small velocities, and
in Section 8 in the case of large velocities, but under an additional assumption on the size
of the viscosity. Finally, Section 9 is devoted to the instantaneous reconnection.

1.2. Notations and preliminaries

Throughout the paper, we will denote by C a positive constant whose value can change
line by line. We will denote by Td WD Rd=Zd the d -dimensional flat torus equipped with
the Lebesgue measure Ld . We will always work with d 2 ¹2; 3º. For a given positive
integer m and a given d -dimensional vector field wWTd ! Rd , we define

jr
mwj2 WD

X
j˛jDm

j@˛wj2;

where ˛ 2 Nd is a multi-index, and

kwk2H r WD

rX
mD0

Z
Td

jr
mw.x/j2 dx;

where r is a given positive integer. We will use p and q to denote real numbers in Œ1;C1�.
We will adopt the customary notation for Lebesgue spaces Lp.Td / and for Sobolev
spaces W k;p.Td /; in particular, H k.Td / WD W k;2.Td /. We will denote with k � kLp
(respectively, k � kW k;p ,k � kHk ) the norms of the aforementioned functional spaces, omit-
ting the domain dependence. Every definition below can be adapted in a standard way to
the case of spaces involving time, like, e.g., L1.Œ0; T �ILp.Td //. Moreover, for a time-
dependent vector field w.t; x/, we define

kwk2
L2W r;1 WD

rX
mD0

Z 1
0

kr
mw.t; �/k21 dt:

Working in the 2D case, we will frequently use the interpolation inequality

kf kL4.T2/ � Ckf k
1=2

L2.T2/
krf k

1=2

L2.T2/
;

valid for zero-average functions, to which we refer as Ladyzenskaya’s inequality.
In 3D, a similar role will be played by

kf kL1.T3/ � Ckf k
1=2

L6.T3/
krf k

1=2

L2.T3/
;

again valid for zero-average functions, to which we refer as the Gagliardo–Nirenberg
inequality. Finally, we recall the well-known Gronwall lemma.
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Lemma 1.7 (Gronwall). Let f be a nonnegative, absolutely continuous function on Œ0;T �
which satisfies, for a.e. t , the differential inequality

f 0.t/ � ˛.t/f .t/C ˇ.t/;

where ˛ and ˇ are nonnegative, summable functions on Œ0; T �. Then

f .t/ � eA.t/
�
f .0/C

Z t

0

ˇ.s/ e�A.s/ ds
�
;

for all t 2 Œ0; T �, where A.t/ D
R t
0
˛.s/ds.

2. Beltrami fields

In this section, we introduce the main mathematical objects that we need for the 3D mag-
netic reconnection result. These are the so-called Beltrami fields.

A vector field BW T3 ! R3 is called a Beltrami field with frequency N if it is an
eigenfunction of the curl operator with eigenvalue N 2 Z, i.e.,

(2.1) curlB D NB:

It is in fact easy to check that on T3, the eigenvalues are have the form ˙jkj, where
k2Z3. We will restrict our attention to Beltrami fields of nonzero frequency, which are
necessarily divergence-free and have zero mean, i.e.,

divB D 0 and
Z

T3

B dx D 0; if N ¤ 0:

The general form of a Beltrami field of frequency N is indeed

W D
X
jkjDjN j

�
bk cos.k � x/C

bk � k

N
sin.k � x/

�
;

where bk 2 R3 are vectors orthogonal to k, that is, k � bk D 0. It is easy to check that B
satisfies, additionally,

.B � r/B D r
jBj2

2
,

�B D �N 2B:

For our purposes, we consider two topologically non-equivalent Beltrami fields. The first
is given explicitly:

(2.2) B0 WD .2�/
�3=2.sin.N0x3/; cos.N0x3/; 0/:

Note that all the integral lines of the field B0 (which coincide with those of r � B0)
are either periodic or quasi-periodic (depending on the rationality/irrationality of the ratio
sin.N0x3/= cos.N0x3/) and wind around the 2D tori given by the equation x3 D constant.
In particular, all the integral lines of B0 are non-contractible. This property is structurally
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stable, in the sense that it is still true for small (regular enough) perturbations. More pre-
cisely, if

(2.3) kB0 � B
0
kC 3;˛ < �;

with a small (N0-independent) constant, then
(i) B 0 does not have any contractible integral line (since the same is true for B0).

This fact, which is a KAM type theorem, was proved in Lemma 4.2 of [10].
The second Beltrami field is constructed in the following theorem, that is a simplified

version of Theorem 2.1 in [10]. It is worth mentioning that the most important part of the
proof of this result comes from [11–13].

Theorem 2.1 (see Theorem 2.1 in [10]). Let S be a finite union of closed curves (disjoint,
but possibly knotted and linked) in T3 that is contained in the unit ball. For all N1 large
enough and odd, there exists a Beltrami field B1 with some integral lines diffeomorphic
to S (namely, related by a diffeomorphism of T3/. This set is contained in a ball of
radius 1=N1 and is structurally stable, namely, there exists � independent of N1 such that
any B 00 such that

(2.4) kB1 � B
00
kC 1 < �;

has a collection of integral lines diffeomorphic to S . Moreover,

(2.5)
1

CN1
< kB1kL2 <

C
p
N 1

�

In particular,
(ii) B 00 has some contractible integral line (since the same is true for B1).

In fact, the theory developed in [11–13] allows also to prescribe some vortex tubes of
arbitrarily complicated topology which can be realized by the vortex lines of the Beltrami
field B1. In this case, the structural stability requires a stronger norm, namely, C 3;˛ . For
the purpose of this paper, we will consider the simple scenario from Theorem 2.1, as it is
sufficient to prove magnetic reconnection.

The natural numbers N0 and N1 will play the role of free parameters in our construc-
tion, but eventually we will chose one of them much larger than the other in such a way
that our solution at time t D 0 will be close to (a rescaled version of) B0, while at time
t D T > 0 will be close to (a rescaled version of) B1. Thus, as consequence of (i) and (ii)
above, a change of topology of the integral lines must have happened.

3. Stability of regular solutions of the MHD system in 3D

The goal of this section is to provide a stability result for regular solutions of the magne-
tohydrodynamic system. Later, we will often work with some special reference solutions
with zero velocity, but at this stage we prefer to prove a slightly more general perturbative
result. The estimates below will be crucial for two reasons: on the one hand, they will
quantify the error in the perturbative argument (see the remark below); on the other hand,
they will allow us to construct a global solution as a small perturbation of some large
global smooth solution (that will indeed be a Beltrami field).
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The possibility to run a perturbative argument around strong solutions is of course not
a novelty, but the important aspect of the next proposition is that we quantify the error in
such a way that it depends only polynomially by the L2..0; T /IW r;1.T3// norm of the
reference solution .u; b/, for r � 1, while the exponential dependence only involves its
L2..0; T /IL1.T3// norm; see (3.3). This will be important to handle large initial data in
our main theorem.

The initial data will be small perturbations of .u0; b0/, namely, we focus on diver-
gence-free vector fields .w0; m0/ such that

ku0 � w0kH r C kb0 �m0kH r � 1:

We want to show that there exists a unique global regular solution .w; m/ starting from
.0; m0/. To do that, we proceed as in [10]: we know that there exists a local solution
.w; m/, and we prove that it can be extended globally, under suitable estimates for the
Sobolev norms.

Theorem 3.1. For integer r � 1 and any � <min.�;�/, let .u;b/2L2..0;T /IW r;1.T3//

be a global smooth solution of (MHD) with initial datum .u0; b0/ of zero mean such that

(3.1) kukL2W k;1 C kbkL2W k;1 < C.1CN
k�1/;

for all integers 0 � k � r , where N � 1. Then, there exists a sufficiently large positive
constant c such that, for any divergence-free vector field .w0; m0/ with zero mean and

(3.2) ku0 � w0kH r C kb0 �m0kH r �
1

c
N 1�r ;

the corresponding solution .w;m/ to (MHD) is global and satisfies

ku.t; �/ � w.t; �/kHk C kb.t; �/ �m.t; �/kHk(3.3)

� C.1CN k�1/eC.
R t
0 .ku.�;s/k

2
L1
Ckb.�;s/k2

L1
/ds.ku0 � w0kHk C kb0 �m0kHk /e

��t ;

for all 0 � k � r and all t > 0, with a � -dependent constant C .

Remark 3.2. In the next section, we will apply this theorem with the choice .u; b/ D
.0;Me��N

2
0 tB0/, where B0 is the Beltrami field defined in (2.2). It is immediate to check

that this solves (MHD) with an appropriate choice of the pressure (see next section), and
that the assumptions of the theorem are satisfied with N D N0.

Proof. We denote by Pu;b and Pw;m the pressure function of .u; b/ and .w; m/, respec-
tively. We know from [39] that there exists a unique local solution .w; m/ of (MHD)
starting from .w0; m0/. We denote by T � the local time of existence. We start by proving
the bound (3.3), which will be enough to guarantee that the solution is actually global.

Step 1. Preliminaries.
We define v D w � u and h D m � b. It is easy to check that .v; h/ solves the system

(3.4)

8̂̂̂<̂
ˆ̂:
@tv C div.v ˝ v C 2v ˝ u/CrPv;h D ��v C div.h˝ hC 2h˝ b/;
@thC.v � r/hC.u � r/hC.v � r/b D ��hC.h � r/vC.h � r/uC .b � r/v;

div v D div h D 0;
v0 D w0 � u0; h0 D m0 � b0;
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where Pv;h D Pw;m � Pu;b . We recall that, since .u; b/ is a global smooth solution, the
following energy equalities hold:

1

2

d
dt

Z
T3

�
ju.t; x/j2 C jb.t; x/j2

�
dx D ��

Z
T3

jru.t; x/j2 dx � �
Z

T3

jrb.t; x/j2 dx;

1

2

d
dt

Z
T3

ju.t; x/j2 dx D ��
Z

T3

jru.t; x/j2 dx C
Z

T3

.b � r/b � u dx;

1

2

d
dt

Z
T3

jb.t; x/j2 dx D ��
Z

T3

jrb.t; x/j2 dx C
Z

T3

.b � r/u � b dx:

Let us now define the time energies ek as follows:

ek.t/ WD

kX
jD0

Z
T3

�
jr
j v.t; x/j2 C jrjh.t; x/j2

�
dx:

The goal now is to provide bounds on ek via an induction argument.

Step 2. Estimate on e0.
We multiply the first equation in (3.4) by v, and we obtain that

@t
jvj2

2
C .v � r/

jvj2

2
C 2.v � r/u � v C div.Pv;hv/

D ��v � v C .h � r/h � v C .h � r/b � v C .b � r/h � v;

and integrating over T3, we get

1

2

d
dt

Z
T3

jvj2 dx C 2
Z

T3

.v � r/u � v dx D ��
Z

T3

jrvj2 dx C
Z

T3

.h � r/h � v dx

C

Z
T3

.h � r/b � v dx C
Z

T3

.b � r/h � v dx:(3.5)

We multiply the second equation in (3.4) by h and, after integrating over T3, we get that

1

2

d
dt

Z
T3

jhj2 dx C
Z

T3

.v � r/b � h dx D ��
Z

T3

jrhj2 dx C
Z

T3

.h � r/v � h dx(3.6)

C

Z
T3

.h � r/u � h dx C
Z

T3

.b � r/v � h dx:

We use the identities Z
T3

.h � r/h � v dx D �
Z

T3

.h � r/v � h dx;Z
T3

.b � r/h � v dx D �
Z

T3

.b � r/v � h dx;

and summing up (3.5) and (3.6), we get that

1

2

d
dt

Z
T3

�
jvj2 C jhj2

�
dx C 2

Z
T3

.v � r/u � v dx C
Z

T3

.v � r/b � h dx

D ��

Z
T3

jrvj2 dx � �
Z

T3

jrhj2 dx C
Z

T3

.h � r/u � h dx C
Z

T3

.h � r/b � v dx:(3.7)
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By using integration by parts and Young’s inequality, we obtain the following estimates:ˇ̌̌ Z
T3

.v � r/u � v dx
ˇ̌̌
D

ˇ̌̌
�

Z
T3

.v � r/v � u dx
ˇ̌̌

� kukL1 kvkL2 krvkL2 � Ckuk
2
L1 kvk

2
L2
C "krvk2

L2
;

where " is a small constant that will be chosen later, and C D .4"/�1. Similarly,ˇ̌̌ Z
T3

.h � r/u � h dx
ˇ̌̌
� Ckuk2L1 khk

2
L2
C "krhk2

L2
;ˇ̌̌ Z

T3

.v � r/b � h dx
ˇ̌̌
� Ckbk2L1 kvk

2
L2
C "krhk2

L2
;ˇ̌̌ Z

T3

.h � r/b � v dx
ˇ̌̌
� Ckbk2L1 khk

2
L2
C "krvk2

L2
:

Then, by substituting in (3.7), we obtain that

d
dt
e0.t/ � C

�
ku.t/k2L1 C kb.t/k

2
L1

�
e0.t/

� 2.� � 2"/

Z
T3

jrvj2 dx � 2.� � 2"/
Z

T3

jrhj2 dx:

Finally, since v and h have zero mean for all times in which they are defined, we can use
Poincaré’s inequality

kf kL2 � krf kL2 ;

and by properly fixing ", we obtain that

d
dt
e0.t/ �

�
C
�
ku.t/k2L1 C kb.t/k

2
L1

�
� 2�

�
e0.t/;

where � 2 .0; 1/ is a fixed quantity which depend on � and �. By Gronwall’s lemma, it
follows that

e0.t/ �
�
kv0k

2
L2
C kh0k

2
L2

�
exp

�
C

Z t

0

ku.�/k2L1 C kb.�/k
2
L1 d� � 2�t

�
;

which leads to

ku.t; �/ � w.t; �/k2
L2
C kb.t; �/ �m.t; �/k2

L2

� exp
�
C

Z t

0

ku.�/k2L1 C kb.�/k
2
L1 d� � 2�t

� �
ku0 � w0k

2
L2
C kb0 �m0k

2
L2

�
;

which implies (3.3) for k D 0.

Step 3. Inductive step.
We are assuming that, for all k < r ,

ek.t/ � C.1CN
2k�2/ exp

�
C

Z t

0

.ku.�/k2L1 C kb.�/k
2
L1/ d�

�
� e�2�t

�
kv0k

2
Hk C kb0k

2
Hk

�
:
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We will show that the bound holds also for k D r . Let ˛ 2 N3 with j˛j � r , and differen-
tiate the equation for the velocity by r˛ to obtain

@t@
˛v � ��@˛v Cr@˛Pv C

X
ˇ�˛

�
˛

ˇ

�
.@ˇv � r/@˛�ˇv

C

X
ˇ�˛

�
˛

ˇ

��
.@ˇu � r/@˛�ˇv C .@ˇv � r/@˛�ˇu

�
D

X
ˇ�˛

�
˛

ˇ

��
.@ˇh � r/@˛�ˇhC .@ˇb � r/@˛�ˇhC .@ˇh � r/@˛�ˇb

�
:

Multiply the above equation by @˛v and integrating in space, we get

1

2

d
dt

Z
T3

j@˛vj2 dx C �
Z

T3

jr@˛vj2 dx C
Z

T3

X
ˇ�˛

�
˛

ˇ

�
.@ˇv � r/@˛�ˇv @˛v dx

C

Z
T3

X
ˇ�˛

�
˛

ˇ

�h
.@ˇu � r/@˛�ˇv @˛v C .@ˇv � r/@˛�ˇu @˛v

i
dx

D

Z
T3

X
ˇ�˛

�
˛

ˇ

��
.@ˇh � r/@˛�ˇh @˛vC.@ˇb � r/@˛�ˇh @˛vC.@ˇh �r/@˛�ˇb @˛v

�
dx:

We use the divergence-free condition and, by integration by parts and Young’s inequality,
we can estimate the terms above as follows:ˇ̌̌ Z

T3

.@ˇv � r/@˛�ˇv @˛v dx
ˇ̌̌
�
"

6

Z
T3

jr@˛vj2 dx C C
Z

T3

j@ˇvj2j@˛�ˇvj2 dx;ˇ̌̌ Z
T3

.@ˇu � r/@˛�ˇv @˛v dx
ˇ̌̌
�
"

6

Z
T3

jr@˛vj2 dx C C
Z

T3

j@ˇuj2j@˛�ˇvj2 dx;ˇ̌̌ Z
T3

.@ˇv � r/@˛�ˇu @˛v dx
ˇ̌̌
�
"

6

Z
T3

jr@˛vj2 dx C C
Z

T3

j@ˇvj2j@˛�ˇuj2 dx;ˇ̌̌ Z
T3

.@ˇh � r/@˛�ˇh @˛v dx
ˇ̌̌
�
"

6

Z
T3

jr@˛vj2 dx C C
Z

T3

j@ˇhj2j@˛�ˇhj2 dx;ˇ̌̌ Z
T3

.@ˇb � r/@˛�ˇh @˛v dx
ˇ̌̌
�
"

6

Z
T3

jr@˛vj2 dx C C
Z

T3

j@ˇbj2j@˛�ˇhj2 dx;ˇ̌̌ Z
T3

.@ˇh � r/@˛�ˇb @˛v dx
ˇ̌̌
�
"

6

Z
T3

jr@˛vj2 dx C C
Z

T3

j@ˇhj2j@˛�ˇbj2 dx:

By summing up over ˇ the above inequalities, we get that

1

2

d
dt

Z
T3

j@˛vj2 dxC�
Z

T3

jr@˛vj2 dx � "
Z

T3

jr@˛vj2 dxCCku.t/k2L1
Z

T3

j@˛vj2 dx

CC

r�1X
kD0

Z
T3

jr
kvj2jrr�kvj2 dx C C

rX
kD1

Z
T3

jr
kuj2 jrr�kvj2 dx

CCkb.t/k2L1

Z
T3

j@˛vj2dxCC
r�1X
kD0

Z
T3

jr
khj2jrr�khj2dxCC

rX
kD1

Z
T3

jr
kbj2jrr�khj2dx:
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We use Gagliardo–Nirenberg’s inequality to estimate

kr
kvkL1 � Ckr

kC1vk
1=2

L2
kr

kvk
1=2

L6
� Ckrvk

1=2

HkC1 kvk
1=2

HkC1 ;

where the Sobolev embedding is used to get the second inequality. Thus, from the defini-
tion of er , we get

1

2

d
dt

Z
T3

j@˛vj2 dx C �
Z

T3

jr@˛vj2 dx

� "

Z
T3

jr@˛vj2 dx C C.ku.t/k2L1 C kb.t/k
2
L1/er .t/

CC.krv.t/kH rCkrh.t/kH r /er .t/
3=2
CC

rX
kD1

.krku.t/k2L1Ckr
kb.t/k2L1/er�k.t/

� "

Z
T3

jr@˛vj2 dx C C.ku.t/k2L1 C kb.t/k
2
L1/er .t/C ".krv.t/k

2
H r C krh.t/k

2
H r /

CCer .t/
3
C C

rX
kD1

.krku.t/k2L1 C kr
kb.t/k2L1/er�k.t/;

where in the last computation we applied Young’s inequality. Finally, by using Poincaré’s
inequality and summing over ˛, we end up to

d
dt

X
j˛j�r

Z
T3

j@˛vj2 dx � �2.� � "/
X
j˛j�r

Z
T3

jr@˛vj2 dx C Cer .t/3

C C.ku.t/k2L1 C kb.t/k
2
L1/er .t/

C C

r�1X
kD0

�
kr

r�ku.t/k2L1 C kr
r�kb.t/k2L1

�
ek.t/:

We now consider the equation for the magnetic field: applying @˛ to the equation, we
obtain

@t@
˛h � ��@˛hC

X
ˇ�˛

�
˛

ˇ

��
.@ˇv � r/@˛�ˇhC .@ˇu � r/@˛�ˇhC .@ˇv � r/@˛�ˇb

�
D

X
ˇ�˛

�
˛

ˇ

��
.@ˇh � r/@˛�ˇv C .@ˇh � r/@˛�ˇuC .@ˇb � r/@˛�ˇv

�
:

By multiplying by @˛h, we get

1

2

d
dt

Z
T3

j@˛hj2 dx C �
Z

T3

jr@˛hj2 dx

C

X
ˇ�˛

�
˛

ˇ

�Z
T3

�
.@ˇv � r/@˛�ˇhC .@ˇu � r/@˛�ˇhC .@ˇv � r/@˛�ˇb

�
� @˛h dx

D

X
ˇ�˛

�
˛

ˇ

�Z
T3

�
.@ˇh � r/@˛�ˇv C .@ˇh � r/@˛�ˇuC .@ˇb � r/@˛�ˇv

�
� @˛h dx:
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We now use estimates similar to those above, where r˛h plays the role of r˛v, obtaining

d
dt

X
j˛j�r

Z
T3

j@˛hj2 dx � �2.� � "/
X
j˛j�r

Z
T3

jr@˛hj2 dx

C C
�
ku.t/k2L1 C kb.t/k

2
L1

�
er .t/C Cer .t/

3

C

r�1X
kD0

�
kr

r�ku.t/k2L1 C kr
r�kb.t/k2L1

�
ek.t/:

By summing the inequalities, we get

d
dt
er .t/ � � 2.� C � � 2"/er .t/C C

�
ku.t/k2L1 C kb.t/k

2
L1

�
er .t/C Cer .t/

3(3.8)

C 2

r�1X
kD0

�
kr

r�ku.t/k2L1 C kr
r�kb.t/k2L1

�
ek.t/

Let us assume that er .t/2 is small enough that

�2.� C � � 2"/er C Ce
3
r � �2�er :

Then, by substituting in (3.8) and using the inductive step on ek , we obtain (recall that
here k � 1)

d
dt
er .t/ � �2�er C C.ku.t/k

2
L1 C kb.t/k

2
L1/er

C CN 2k�2 exp
�
� 2�t C C

Z t

0

ku.�/k2L1 C kb.�/k
2
L1 d�

�
�

r�1X
kD0

�
kr

r�ku.t/k2L1 C kr
r�kb.t/k2L1

�
Qk.t/ ek.0/;

and hence, by Gronwall’s lemma,

er .t/ � C exp
�
�2�t C C.kuk2

L2L1
C kbk2

L2L1
/
�
er .0/(3.9)

�

h
1C

r�1X
kD0

N 2k�2
�
kr

r�kuk2
L2L1

C kr
r�kbk2

L2L1

�i
� C.1CN 2r�2/ exp

�
�2�t C C.kuk2

L2L1
C kbk2

L2L1
/
�
er .0/;

where in the second inequality we used assumption (3.1).
Now, the assumption we made on er .t/ is satisfied at time t D 0 (and thus for short

times) by the smallness hypothesis (3.2). Moreover, this can be extended to any further
time using the inequality (3.9) and again (3.2). This completes the proof.

4. Magnetic reconnection in 3D

In this section, we provide an example of magnetic reconnection in the three-dimensional
case. The idea is to construct a global solution of (MHD) via a perturbative argument in
such a way that we can “control" the topology of its magnetic lines at t D 0 and t D T .
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Proof of Theorem 1.1, case d D 3. We divide the proof in several steps.

Step 1. Construction of the global smooth solution.
Let B0 and B1 be the Beltrami fields defined in (2.2) and in Theorem 2.1, respectively,

and consider the couple .u0;b0/D .0;MB0/ as an initial datum for (MHD). Then, a global
smooth solution of (MHD) is given by

.u.t; x/; b.t; x// D
�
0;Me��N

2
0 tB0.x/

�
;

with pressure

Pu;b.t; x/ D �
1

2
M 2 e�2�N

2
0 t jB0.x/j

2:

This may be easily verified recalling that B0 is a Beltrami field. Now, consider the couple
.0;m0/ as initial datum of (MHD), where m0 is given by

m0 WDMB0 C ıB1:

Looking at the definition of (2.2), we immediately see that

kMB0kH r DMN r
0 :

We want to construct a global smooth solution .w;m/ starting from such an initial datum.
First of all, we define

h0 WD m0 � b0 D ıB1:

We compute the H r norm of ıB1 using (2.5), the fact that B1 is Beltrami and the equiva-
lence between the H 1 norm of B1 and the L2 norm of its curl, so that we arrive to

CN r�1
1 < kB1kL2 < CN

r�1=2
1 :

Thus in particular, we have that

kh0kHk � CıN
k
1 :

Since we want to apply Theorem 3.1, we require that

(4.1) ıN r
1 � N 1�r

0 :

Thus, recalling also Remark 3.2, we know that there exists a unique global solution .w;m/
starting from .0;m0/ and that the difference h.t; �/ D m.t; �/ � b.t; �/ satisfies

kw.t; �/kHk C kh.t; �/kHk � C.N
k�1
0 C 1/ e��tkh0kHk

for all 0 � k � r .

Step 2. Further estimates on the global solution.
We need more estimates on the difference h in order to control the behavior of the fluid

at time t D T . Recall that, since in our reference solution uD 0, we have that w D v, and
then h satisfies the following identity:

h.t; �/ D e�t�h0

C

Z t

0

e�.t�s/� div
�
h.s/˝ v.s/�v.s/˝ h.s/Cb.s/˝ v.s/�v.s/˝ b.s/

�
ds(4.2)
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For simplicity, we define

Lh.t; �/ WD

Z t

0

e�.t�s/� div
�
h.s/˝ v.s/ � v.s/˝ h.s/

�
ds;(4.3)

Lb.t; �/ WD

Z t

0

e�.t�s/� div
�
b.s/˝ v.s/ � v.s/˝ b.s/

�
ds:(4.4)

First of all, note that by Theorem 3.1 and the estimate (4.1) of the previous step, we get
that

kv.t; �/kH r C kh.t; �/kH r � CN r�1
0 e��tkh0kH r � ıN r�1

0 N r
1 I

recall that here we have chosen v0 D 0. Then, by using the above formula, we estimate
the tensorial products in Lh and Lb as follows:

kh.s/˝ v.s/kH rC1 � kh.s/kL1 kv.s/kH rC1 C kv.s/kL1 kh.s/kH rC1

� kh.s/kH2 kv.s/kH rC1 C kv.s/kH2 kh.s/kH rC1

� Cı2N rC1
0 N rC3

1 e��s;

kb.s/˝ v.s/kL2 � kb.s/kL1 kv.s/kL2 � Cıe
��N 2

0 s;

kb.s/˝ v.s/kH rC1 � Ckv.s/kL1 kb.s/kH rC1 C Ckv.s/kH rC1 kb.s/kL1

� Ckv.s/kH2kb.s/kH rC1 C Ckv.s/kH rC1kb.s/kL1

� Ce��N
2
0 s
�
ıN rC2

0 N 2
1 C ıN

r
0N

rC1
1

�
� Ce��N

2
0 s ıN rC2

0 N 2
1 ;

where in the last inequality we assumed that

(4.5) N 2
0 � N r�1

1 :

Using (see Lemma 4.3 in [10])

(4.6) kes�f kHk � e
�s
kf kHk ; for f with zero-average;

we estimate Lh as follows:

kLh.t; �/kH r � C

Z t

0

ke�.t�s/�
�
h.s/˝ v.s/

�
kH rC1 ds

� C

Z t

0

e��.t�s/kh.s/˝ v.s/kH rC1 ds

� Cı2N rC1
0 N rC3

1

Z t

0

e��.t�s/ e���s ds � Cı2N rC1
0 N rC3

1 :

On the other hand, using (see Lemma 4.3 in [10])

(4.7) kes�f kHk � Cs
�k=2
kf kL2 ; for f with zero-average;
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we estimate

kLb.t; �/kH r

� C

Z t=2

0

ke�.t�s/� .b.s/˝ v.s//kH rC1 ds C C
Z t

t=2

ke�.t�s/� .b.s/˝ v.s//kH rC1 ds

� C

Z t=2

0

.t � s/�.rC1/=2 kb.s/˝ v.s/kL2 ds C C
Z t

t=2

e��.t�s/ kb.s/˝ v.s/kH rC1 ds

� Cı

Z t=2

0

.t � s/�.rC1/=2 e��N
2
0 s ds C C ıN rC2

0 N 2
1

Z t

t=2

e��.t�s/ e��N
2
0 s ds

� CıN�20 C CıN
rC2
0 N 2

1 e
��N 2

0 t=2:

Step 3. Choice of the parameters.
In this step, we fix the parametersN0,N1 and ı. First of all, we know that at time t D 0,

the magnetic field m0 satisfies

m0 DMB0 C ıB1:

Then, let us consider the rescaled vector field

M�1m0;

that satisfies
kM�1m0 � B0kH r � CıN r

1 � N 1�r
0 :

Thus, recalling (2.3) and property (i) of Section 2, using the Sobolev embedding and
taking r sufficiently large, we see that the integral lines ofM�1m0 are all non-contractible.
Furthermore, since the rescaling does not change the topology of its integral lines, all the
integral lines of m0 are non-contractible.

We now consider the behavior of the fluid at time t D T . We rescale the magnetic
field as

ı�1e�N
2
1 Tm.T; �/;

and then, since m D b C h and by formula (4.2), we get

ı�1 e�N
2
1 Tm.T; �/ D B1 C

M

ı
e��.N

2
0�N

2
1 /TB0.x/

C ı�1 e�N
2
1 T

Z T

0

e�.T�s/� div
�
h.s/˝v.s/Cb.s/˝v.s/�v.s/˝h.s/�v.s/˝b.s/

�
ds:

Our goal is to choose the constants ı, N0 and N1 such that

ı�1 e�N 2
1 T m.T; �/ � B1




H r � 1;

for a sufficiently large r . Thus, since ı�1e�N
2
1 Tm.T; �/ is simply a rescaling of m.T; �/,

the integral lines ofm.T; �/ will be locally diffeomorphic to the set � defined in Section 2,
as consequence of (2.4), property (ii) and Sobolev embedding. In particular, m.T; �/ will
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possess some contractible integral lines, thus the set of its integral lines will be not homo-
topically equivalent to that ofB1, proving that magnetic reconnection must have happened
between the times t D 0 and t D T .

It remains to show that Qb1 satisfies (2.4). By the estimates proved in the Step 2, we
have that

kMı�1 e��.N
2
0�N

2
1 /TB0kH r �Mı�1 e��.N

2
0�N

2
1 /T kB0kH r

�Mı�1 e��.N
2
0�N

2
1 /TN r

0 ;(4.8)

kı�1e�N
2
1 TLh.T; �/kH r � Cı�1e�N

2
1 T kLh.T; �/kH r

� Cı�1e�N
2
1 T ı2N rC1

0 N rC3
1 D CıN rC1

0 N rC3
1 e�N

2
1 T ;(4.9)

kı�1e�N
2
1 TLb.T; �/kH r � ı�1e�N

2
1 T kLb.T; �/kH r

� ı�1e�N
2
1 T ıN�20 D e�N

2
1 TN�20 :(4.10)

In order to make the above quantities small, we define ı as

(4.11) ı WD N
�.rC1/
0 N

�.rC3/
1 e�2�N

2
1 T :

With this choice, we can easily verify that (4.1) holds. Moreover, by the choice of ı as
above, we have that (4.8) is small if

(4.12) e��N
2
0 T � N�2r�10 N�r�31 M�1e�3�N

2
1 T :

Note that if N0 is chosen sufficiently larger than N1, (4.5) and (4.12) are satisfied, and the
quantities in (4.9) and (4.10) can be made arbitrarily small.

Step 4. Rescaling of the initial datum.
To complete the proof of the theorem, we need to rescale the norm of m0 in the above

construction. This can be done by replacing it with the initial condition Mm0=km0kL2 ,
since the rescaling factor does not change anything in the above arguments.

Some remarks on the proof above are in order.

Remark 4.1. The reconnection scenario presented in Theorem 1.1 is not instantaneous.
We can in fact prove that for a strictly positive time interval, the magnetic fieldm does not
have any contractible integral line. To show this, we define the rescaled vector fields

Qm.t; �/ WD
m.t; �/

MN r
0

and QB0 WD N
�r
0 B0;

and we obtain that

k Qm.t; �/ � QB0kH r . .1 � e��N
2
0 t /C

ı

MN r
0

e��N
2
1 tN r

1 C
ı2N rC1

0 N rC3
1

N r
0

C
ı

N rC2
0

C
ıN rC2

0 N 2
1

N r
0

�
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Thus, given the choice of ı as in (4.11) and the relation N1 � N0, we have that for any
t 2 .0; 
=.�N 2

0 //, it holds

k Qm.t; �/ � QB0kH r . 
 C
1

N
ˇ
0

,

for some positive ˇ and 
 small enough. So, from Lemma 4.2 of [10], it follows that the
solution does not have any contractible integral line at least until time of order 1=.�N 2

0 /.
On the other hand, in Theorem 1.1 we have shown that, for reconnection to occur, we must
have T and N0 satisfy the relationship (4.12), and then

T �
1

�N 2
0

�

In conclusion, the reconnection takes place in a resistive time scale, i.e., at a time of the
order 1=.�N 2

0 /.

Remark 4.2. The choice u0 D 0 simplifies the proof, but we may easily generalize the
argument to small velocities, namely taking ku0kH r D ", where the size of the small
parameter " depends on all the relevant parameters we introduced in the proof. Moreover,
we may consider large data u0 (and " perturbation of them) if we add an appropriate
structure. For example, if we choose u0 DMB0, it is easy to see that�

Me��N
2
0 tB0.x/;Me

��N 2
0 tB0.x/

�
is a smooth solution of (MHD) with initial datum .u0; b0/ D .MB0;MB0/, choosing the
pressure

P D
M 2

2
.e�2�N

2
0 t � e�2�N

2
0 t / jB0j

2:

Then, when we estimate the H r -norm of (4.2), there are additional terms to be com-
puted, i.e., Z t

0

e�.t�s/� div
�
h.s/˝ u.s/ � u.s/˝ h.s/

�
ds;

which can be analyzed in the same way we did for Lb to close the argument.

Remark 4.3. In the computations above, it is crucial that � > 0. Indeed, the choice of the
frequency N0 D N0.�/ depends on �, and N0.�/!1 as �! 0, preventing to promote
the magnetic reconnection scenario to the ideal case (in fact, we choose N0 proportional
to ��1=2).

Remark 4.4. Differently to �, the estimates above do not blow up in the vanishing viscos-
ity limit � ! 0. It is a reasonable guess that a similar result may hold in the inviscid case
for local-in-time solutions. In light of Remark 4.1, in order to prove such a result, one must
guarantee that the time of local existence is greater than the time at which reconnection
is expected to occur. This imposes an additional smallness condition on the parameter ı.
Standard energy estimates imply that ı must be exponentially small inN0, which does not
allow us to make small the term in (4.8). We leave this for a future work.
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5. Taylor fields

After fixing the notations and recalling some definitions and structurally stability results,
we introduce the main mathematical objects which are needed in our 2D magnetic recon-
nection proof. These are the so-called Taylor fields, which may be viewed as a 2D coun-
terpart of the Beltrami fields from Section 2.

We say that vW T2 ! R2 is a Hamiltonian vector field if it can be written as the
orthogonal gradient of a scalar function  , i.e.,

v D r? WD .@x2 ;�@x1 /:

Hamiltonian vector fields are by definition divergence-free, and we denote by

Dr
H .T

2/ D ¹v 2 C r .T2/ W v is a Hamiltonian vector fieldº:

We recall that a singular point x0 of a vector field v 2C r .T2/ is said to be non-degenerate
if rv.x0/ is an invertible matrix. It is worth to note that if v is a smooth divergence-free
vector field, then a non-degenerate singular point of v must be either a saddle or a center.

Remark 5.1. By the Helmoltz decomposition, an incompressible vector field on T2 is
either Hamiltonian or a constant vector field. Since we will always work with zero-average
vector fields, there will be no difference between being incompressible and Hamiltonian.

We now give the definition of structural stability.

Definition 5.2. A vector field v on Td is structurally stable if there is a neighborhood U

of v in C 1.Td / such that whenever v0 2 U, there is a homeomorphism of Td onto itself
transforming trajectories of v onto trajectories of v0.

Note that, as a consequence of the classical result of Peixoto [34], no 2D divergence-
free vector field with some critical point that is a center is structurally stable under gen-
eral C r perturbations. This is because centers might be destroyed adding small sink or
sources, which in the incompressible setting are however forbidden. Thus, in the diver-
gence-free case a stronger result holds, see [29]. Moreover, the Peixoto stability result
does not allow any kind of connection between saddle points, while in the incompressible
case, saddle self-connections are allowed. On the other hand, heteroclinic self connec-
tions are expected to give rise to bifurcation phenomena also in the incompressible case
(see Theorem 1.5).

Theorem 5.3 (Ma–Wang [29]). A divergence-free Hamiltonian vector field v 2 Dr
H .T

2/

with r � 1 is structurally stable under Hamiltonian vector field perturbations if and only if

• v is regular, i.e., all singular points of v are not degenerate;
• all saddle points of v are self-connected.

Moreover, the set of all C r structurally stable Hamiltonian vector fields is open and
dense in Dr

H .T
2/.

5.1. Building blocks in 2D: Taylor vortices

For the two-dimensional case, we need to introduce a class of vector fields called Taylor
vortices. We refer to [28,30] for more details on the following. We consider the eigenvec-



P. Caro, G. Ciampa and R. Lucà 482

tors of the following Stokes problem:

(5.1)
²
��V D �V ;

V D r? :

Provided that � 2 N, for any couple of integers n � 1; m � 0, we can easily construct a
solution of (5.1) with � D n2 Cm2 in the following way:

V1
nm D .m sinnx1 cosmx2;�n cosnx1 sinmx2/;

V2
nm D .m cosnx1 sinmx2;�n sinnx1 cosmx2/;

V3
nm D .m cosnx1 cosmx2; n sinnx1 sinmx2/;

V4
nm D .m sinnx1 sinmx2; n cosnx1 cosmx2/;

V1
n D .sinnx2; 0/; V2

n D .cosnx2; 0/; V3
n D .0; sinnx1/; V4

n D .0; cosnx1/:

Denote by Vnm D span¹V1
nm;V

2
nm;V

3
nm;V

4
nmº and Vn D span¹V1

n ;V
2
n ;V

3
n ;V

4
nº. Then,

by varying n;m, these spaces generate all the (zero-average) solutions of (5.1).
It is important to note that the vector fields Vnm (and Vn, respectively) are stationary

solutions of the Euler equations for a suitable choice of the pressure. For instance, we have´
.V1
nm � r/V

1
nm D rP

1
nm;

div V1
nm D 0;

with pressure given by

P 1nm D m
2 .sin.nx1//2 C n2 .sin.mx2//2:

Crucially, all vector fields in Vnm are not Hamiltonian structurally stable, because
they are not saddle self-connected, see Figure 1. However, they may have two kind of
topological structure, see Theorem 4.5.3 in [30].

Figure 1. Phase diagram of the vector field V411.

Let us recall that the set of Hamiltonian structurally stable vector fields is open and
dense in the set of Hamiltonian vector fields. This means that, for any given Vnm, one can
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find a neighborhood U, with respect to the topology in C 1, such that if V 2 U, then V is
a Hamiltonian structurally stable vector field, see Theorem 3.3.2 in [30]. This in particu-
lar means that by perturbing Vnm, it is possible to break heteroclinic saddle connections.
This is suggested by the fact that for Hamiltonian perturbations, the Melnikov function
associated to an heteroclinic saddle connection may be nonzero, while it has to be zero
in the case of homoclinic saddle connection (since the perturbation is autonomous, the
Melnikov function is indeed a constant in this cases). A rigorous mechanism to break het-
eroclinic saddle connections has been proposed in [29]. The same holds for the space Vn
with n > 1, while in V1, there are vector fields which are structurally stable. An example
of a stable Taylor field is given by

(5.2) V1 D
�

sin x2;
1

2
sin x1

�
;

whose phase diagram can be found in Figure 2. In particular, note that the structural
stability follows from the absence of heteroclinic connections. The field V1 has indeed
two saddle points, which are not connected by any integral line. It is also important for
us that V1 solves the stationary Euler .V1 � r/V1 D rP equation, with pressure P D
1
2

cos x1 cos x2.

Figure 2. Phase diagram of the vector field V1.

Consider n;m � 1. We set N 2 WD n2 Cm2 (note that here N may be not integer). We
denote by VN D V1

nm. In the rest of the paper, we will focus, to fix ideas, on this particular
subfamily of Taylor fields with eigenvalue N 2, but we could similarly consider any other
Taylor fields with eigenvalue N 2 with straightforward modifications of the arguments.
The critical points of VN are given by

(5.3) x� WD
�k1�
n

, k2�
m

�
and Nx WD

� �
2n
C
k1�

n
, �
2m
C
k2�

m

�
;

with k1 D 1; : : : ; 2n and k2 D 1; : : : ; 2m (with a small abuse of notation, we omit the
dependence of x� and Nx on k1 and k2, that will be however irrelevant). By computing the
gradient of VN , we obtain that

rVN D

�
nm cos.nx1/ cos.mx2/ �m2 sin.nx1/ sin.mx2/
n2 sin.nx1/ sin.mx2/ �nm cos.nx1/ cos.mx2/

�
:



P. Caro, G. Ciampa and R. Lucà 484

Thus, at the critical points we have

(5.4) rVN .x
�/ D ˙

�
nm 0

0 �nm

�
or rVN . Nx/ D ˙

�
0 �m2

n2 0

�
;

and rVN is always invertible in the critical points with determinant ˙ n2m2. Note that
the x� are hyperbolic critical points, while the Nx are elliptic ones.

It is also worth to note that the distance between critical points can be controlled by
below with C=N (this is clear by (5.3)). Moreover, a straightforward computation on the
norms gives

kVN kC k D ckN
kC1:

We conclude this section with the following lemma, which investigates the stability
of the critical points of our Taylor fields under small perturbations. If we do not take into
account the quantitative bound (5.5) for ı0.N /, the content of the lemma is an immediate
consequence of the implicit function theorem, as the linearization of VN is invertible at
the critical points. However, it will be crucial for us to quantify the size of the perturbative
parameter ı, since in our applications it will not be possible to have ı too small (compared
to a certain function of the frequency N ). For instance, if in the next lemma we would
allow the choice ı0.N /D e�CN

2
with C � 1, we could not use it anymore in the proof of

Theorem 1.1. This is why, in the proof below, we run again the implicit function theorem
machinery for this particular example.

Lemma 5.4. Let VN be the Taylor field with eigenvalue N 2 D n2 C m2 defined above,
and let W 2 C 1. For all N sufficiently large (depending only on kW kC 1/, there exists
ı0 D ı0.N / such that the vector field QV WT2 ! R2 defined as

QV .x/ WD VN .x/C ıW.x/;

has at least 8nm regular critical points for every jıj < ı0.N /. We may choose

(5.5) ı0.N / D N
�L;

where L is a fixed large integer.

Proof. First of all, note that the critical points of QV are zeros of the vector-valued function
F WT2 �R! R2 defined as

(5.6) F.x; ı/ D VN .x/C ıW.x/:

At the hyperbolic critical points x�, we have (see 5.4) that

F.x�; 0/ D 0 and rxF.x
�; 0/ is invertible;

and the same is true at the elliptic critical points. We can thus apply the implicit function
theorem to the function F in a neighborhood of x� (or Nx): this implies that here exist
ı0 D ı0.N / > 0 and a (smooth) curve xW Œ�ı0; ı0�! T2 with x.0/ D x� (or x.0/ D Nx)
such that F.x.ı/; ı/ D 0 for all jıj < ı0. We must now quantify the value of ı0 to be
as in (5.5). This will imply, in particular, that the new critical points x.ı/, obtained with
different choices of x� and Nx, do not collapse into each others.
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We first consider the hyperbolic points. Note that

(5.7) rxF.x
�; ı/ D ˙

�
nm 0

0 �nm

�
C ırW.x�/;

thus

(5.8) detrxF.x�; ı/ D �n2m2 CO.ınm/;

and so

j detrxF.x�; ı/j >
N 2

2
,

for jıj < ı0, with ı0 sufficiently small. Here we used that N . nm . N 2. Hereafter,
all the O may also depend on kW kC 1 . For instance, in (5.8) we should have written
O.ınmkW kC 1/. However, we will always omit the dependence to simplify the notations.

This allows us to define a suitable of map ˆ such that the curve x.ı/ will be con-
structed as the fixed point of this map. Let denote with ��0;ı0.x

�; 0/ the set of all the
curves

ı 2 Œ�ı0; ı0�! 
.ı/ 2 B�0.x
�/;

where B�0.x
�/ is the ball centered at x� with radius �0 > 0 (to be fixed). We endow

��0;ı0.x
�; 0/ with the distance

dist.
; 
 0/ D sup
jıj<ı0

j
.ı/ � 
 0.ı/j:

This will give us a continuous curve as fixed point. We could consider a distance which
takes into account also the derivative of 
 to show that the fixed point is a C 1 curve (in
fact, is C k if W 2 C k), but this will be unessential for our purposes. We define

ˆ W 
.ı/ 2 ��0;ı0.x
�; 0/! ˆ.
.ı// WD 
.ı/ � .rxF.x

�; ı//�1F.
.ı/; ı/:

We will show that ˆ is a contraction, so that its fixed point x.ı/ satisfies F.x.ı/; ı/ D 0,
as claimed. We define (with a small abuse of notation), for x 2 B�0.x

�/,

ˆ.x; ı/ D x � .rxF.x
�; ı//�1F.x; ı/:

Note that
rxˆ.x; ı/ D Id � .rxF.x�; ı//�1rxF.x; ı/:

Moreover, expanding the sine and cosine, we get

(5.9) rxF.x; ı/ D ˙

�
nmCO.N 4�L/ O.N 2�2L/CO.ı/

O.N 2�2L/CO.ı/ nmCO.N 4�L/

�
for all x such that jx � x�j < CN�L, namely taking

�0 D CN
�L;

where the constant C that depends only on kW kC 1 will be chosen later. Note that this
choice of �0 automatically implies that the new critical points that we found do not col-
lapse into each other, (taking, for instance, L � 2) for all N sufficiently large (depending
on L and kW kC 1 .) Thus the perturbed vector field has more that 8nm (regular) critical
points.
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Now, fixing ı0.N / D N�L and taking L sufficiently large, we rewrite (5.9) as

(5.10) rxF.x; ı/ D ˙

�
nmCO.N�L=2/ O.N�L=2/

O.N�L=2/C nmCO.N�L=2/

�
;

and we can compute

(5.11) rxˆ.x; ı/ D
�
1C��1.n2m2CO.N�L=3// O.N�L=3/

O.N�L=3/ 1C��1.n2m2 CO.N�L=3//

�
;

where
� WD �n2m2 CO.N�L=3/:

Then, noting that
n2m2

�
D �1CO.N�L=3/;

we see that, for all N sufficiently large,

(5.12) jrxˆ.x; ı/j � 1:

This implies thatˆ contracts the distances. To show thatˆ is a contraction, it now suffices
to prove (5.14) below, that we will deduce from

(5.13) jˆ.x�; ı/ � x�j � �0;

that is, the constant curve 
.t/W Œ�ı0; ı0�! x� does not change too much underˆ. Indeed,
combining (5.12) and (5.13) and using the triangle inequality, we readily see that

(5.14) ˆ.��0;ı0.x
�; 0// � ��0;ı0.x

�; 0/:

On the other hand,

ˆ.x�; ı/ � x� D �.rxF.x
�; ı//�1F.x�; ı/ and F.x�; ı/ D ıW.x�/;

recall (5.6) and VN .x�/ D 0. Thus we can use (5.10) to estimate

jˆ.x�; ı/ � x�j D

ˇ̌̌̌
1

�

�
nmCO.N�L=2/ O.N�L=2/

O.N�L=2/C nmCO.N�L=2/

��
ıW1.x/

ıW2.x/

� ˇ̌̌̌
. jıjkW kC 1 � jıjkW kC 1 � �0;

which leads to (5.13) for all N sufficiently large. In the last inequality, we have used that
ı0 D N

�L and �0 D CN�L, and we have taken the constant C sufficiently large (in fact,
a large multiple of kW kC 1 ). This conclude the argument for the hyperbolic critical points.

For the elliptic critical points, we proceed in the same way. Here we sketch the relevant
calculations. First of all, we have that

rF. Nx; ı/ D ˙

�
0 �m2

n2 0

�
C ıW;

and, as above, we get thus

detrxF. Nx; ı/ D �n2m2 CO.ınm/;
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and so

j detrxF. Nx; ı/j >
N 2

2
�

Defining ˆ as
ˆ.x; ı/ D x � .rxF. Nx; ı//

�1 F.x; ı/;

we can show that rxˆ.x; ı/ has the form (5.11) and that it contracts the distances. Then
almost the same calculations as above allows us to prove the analogous of (5.13), with x�

replaced by Nx, and to conclude with the same computations as in the previous case.

6. Stability of the MHD system in 2D

In this section, we prove some preliminary results on the system (MHD) in the two-
dimensional setting.

6.1. Boundedness of the H r norms

We start by proving an a priori estimate for the Sobolev norms of the solution. This result
(Theorem 6.2) will provide us some useful estimates in order to prove Theorem 6.4, which
quantifies the decay of the velocity as the viscosity becomes large. Moreover, a perturba-
tive version of Theorem 6.2, namely Theorem 6.3, will be used directly in the proof of
the 2D magnetic reconnection in Theorem 1.1.

Remark 6.1. While the propagation of the H r regularity for 2D solutions is not surpris-
ing, the relevant information here is the fact that we control the growth exponentially in
the L2 norms, while only polynomially in the higher order Sobolev norms.

Define � WD 1C ku0k2L2 C kb0k
2
L2

and take � < min.�; �/.

Theorem 6.2. Let u0; b0 2 H r .T2/ be two divergence-free vector fields with zero mean.
Assume

ku0kHk C kb0kHk � CN
k ; k D 0; : : : ; r;

for some N > 1. Let .u; b; p/ be the unique solution (MHD) with initial datum .u0; b0/.
Then, for all � < 2,

ku.t; �/k2H r C kb.t; �/k
2
H r C ��

Z t

0

kr
rC1u.s; �/k2

L2
ds(6.1)

C ��

Z t

0

kr
rC1b.s; �/k2

L2
ds � N 2r eC�=�

2

;

and

(6.2) ku.t; �/k2H r C kb.t; �/k
2
H r � N

2re�2�teC�=�
2

;

where the implicit constants C depend on �; �; r .

When r D 0, we have of course more precise estimates than (6.1), see, for instance,
estimate (6.5) and the energy estimate (6.4). A similar comment applies at least to small
values of r ; however, the general form (6.2), which is enough for our purposes, is well
suited to be generalized to the corresponding stability estimate (see Theorem 6.3).
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Proof. We divide the proof in several steps.

Step 1. Estimate for r D 0.
By standard arguments, we know that the following identity holds for smooth solu-

tions:

(6.3)

1

2

d
dt

Z
T2

.ju.t; x/j2 C jb.t; x/j2/ dx C �
Z

T2

jru.t; x/j2 dx

C �

Z
T2

jrb.t; x/j2 dx D 0:

By integrating the above identity in time, we obtain that

ku.t; �/k2
L2
C kb.t; �/k2

L2
C2�

Z t

0

kru.s; �/k2
L2

ds(6.4)

C 2�

Z t

0

krb.s; �/k2
L2

ds D ku0k2L2 C kb0k
2
L2
;

which gives (6.1) for r D 0. Moreover, note that if we apply Poincaré’s inequality to (6.3),
we obtain that

d
dt

�
ku.t; �/k2

L2
C kb.t; �/k2

L2

�
� �2� ku.t; �/k2

L2
� 2�kb.t; �/k2

L2
;

and by Gronwall’s inequality (recall � < min.�; �/),

(6.5) ku.t; �/k2
L2
C kb.t; �/k2

L2
�
�
ku0k

2
L2
C kb0k

2
L2

�
e�2�t :

Step 2. Estimate for r D 1.
We differentiate the equations, and multiplying the first by ru and the second by rb,

we obtain that
1

2

d
dt

�
kru.t; �/k2

L2
C krb.t; �/k2

L2

�
C �kr2u.t; �/k2

L2
C �kr2b.t; �/k2

L2

C

Z
T2

rŒ.u � r/u� W ru dx C
Z

T2

rŒ.u � r/b� W rb dx

D

Z
T2

rŒ.b � r/b� W ru dx C
Z

T2

rŒ.b � r/u� W rb dx:

Thanks to the properties of the transport operator, we have several cancellations which
yield

1

2

d
dt

�
kru.t; �/k2

L2
C krb.t; �/k2

L2

�
C�kr2u.t; �/k2

L2
C �kr2b.t; �/k2

L2

�

Z
T2

jruj jruj2 dx C 3
Z

T2

jruj jrbj2 dx:

We now use Hölder’s, Ladyzenskaya’s, and Young’s inequalities to get thatZ
T2

jruj jruj2 dx � kru.t; �/kL2 kru.t; �/k
2
L4
� kru.t; �/k2

L2
kr

2u.t; �/kL2

�
C

�"
kru.t; �/k4

L2
C �"kr2u.t; �/k2

L2
;
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and that

3

Z
T2

jruj jrbj2 dx

� kru.t; �/kL2 krb.t; �/k
2
L4
� 3kru.t; �/kL2 krb.t; �/kL2 kr

2b.t; �/kL2

�
C

�"
kru.t; �/k2

L2
krb.t; �/k2

L2
C �"kr2b.t; �/k2

L2
:

Then, by “absorbing constants” and taking " small we get, for all � <min.�; �/ and � < 2,

1

2

d
dt

�
kru.t; �/k2

L2
C krb.t; �/k2

L2

�
C ��kr2u.t; �/k2

L2
C ��kr2b.t; �/k2

L2
(6.6)

�
C

�
kru.t; �/k4

L2
C
C

�
kru.t; �/k2

L2
krb.t; �/k2

L2

�
C

�
kru.t; �/k2

L2

�
kru.t; �/k2

L2
C krb.t; �/k2

L2

�
;

where C depends on � and � . Finally, by Poincaré’s inequality, we obtain

d
dt
.kru.t; �/k2

L2
C krb.t; �/k2

L2
/(6.7)

�

�
� 2� C

C

�
kru.t; �/k2

L2

� �
kru.t; �/k2

L2
C krb.t; �/k2

L2

�
;

and then, by Gronwall’s lemma and the energy inequality, we obtain that

kru.t; �/k2
L2
C krb.t; �/k2

L2
�
�
kru0k

2
L2
C krb0k

2
L2

�
eC�=�

2

e�2�t :

Finally, we integrate in time (6.6) and by using the energy inequality and the estimate
above, we obtain that

��

Z t

0

kr
2u.s; �/k2

L2
ds C ��

Z t

0

kr
2b.s; �/k2

L2
ds

�
�
kru0k

2
L2
C krb0k

2
L2

� �
1C

CC0

�2
eC�=�

2
�
;

which implies (6.1).

Step 3. Inductive step.
Let r � 2 and assume that the estimate (6.2) holds for r � 1. Let ˛ 2N2 with j˛j D r .

We differentiate the equation by @˛ and we multiply by @˛u and @˛b, respectively, the
equations for u and b in (MHD), obtaining that

1

2

d
dt

�
k@˛u.t; �/k2

L2
C k@˛b.t; �/k2

L2

�
C �kr@˛u.t; �/k2

L2
C �kr@˛b.t; �/k2

L2

C

Z
T2

@˛Œ.u � r/u� W @˛u dx C
Z

T2

@˛Œ.u � r/b� W @˛b dx

D

Z
T2

@˛Œ.b � r/u� W @˛b dx C
Z

T2

@˛Œ.b � r/b� W @˛u dx:
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Then, by using again the properties of the transport operator, we have that

1

2

d
dt

�
k@˛u.t; �/k2

L2
C k@˛b.t; �/k2

L2

�
C �kr@˛u.t; �/k2

L2
C �kr@˛b.t; �/k2

L2

C

X
ˇ�˛;ˇ¤0

Z
T2

@ˇu � r@˛�ˇu W @˛u dx C
X

ˇ�˛;ˇ¤0

Z
T2

@ˇu � r@˛�ˇb W @˛b dx

D

X
ˇ�˛;ˇ¤0

Z
T2

@ˇb � r@˛�ˇu W @˛b dx C
X

ˇ�˛;ˇ¤0

Z
T2

@ˇb � r@˛�ˇb W @˛u dx:(6.8)

By summing over j˛j D r and 0 ¤ ˇ � ˛, we get the estimate

1

2

d
dt

�
kr

ru.t; �/k2
L2
C kr

rb.t; �/k2
L2

�
C �krrC1u.t; �/k2

L2
C �krrC1b.t; �/k2

L2
(6.9)

�

rX
kD1

� Z
T2

jr
kuj jrrC1�kuj jrruj dx C

Z
T2

jr
kuj jrrC1�kbj jrrbj dx

�
C

rX
kD1

� Z
T2

jr
kbj jrrC1�kuj jrrbj dx C

Z
T2

jr
kbj jrrC1�kbj jrruj dx

�
:

Now note that the second and the third terms on the right-hand side are the same. Then,
consider the terms of the sum with k D 1; r ; we have the following estimates:Z

T2

jru.t; x/j jrru.t; x/j2 dx � kru.t; �/kL2 kr
ru.t; �/k2

L4
(6.10)

� kru.t; �/kL2 kr
ru.t; �/kL2 kr

rC1u.t; �/kL2

�
C

�"
kru.t; �/k2

L2
kr

ru.t; �/k2
L2
C �"krrC1u.t; �/k2

L2
:Z

T2

jru.t; x/j jrrb.t; x/j2 dx � kru.t; �/kL2 kr
rb.t; �/k2

L4
(6.11)

� kru.t; �/kL2 kr
rb.t; �/kL2 kr

rC1b.t; �/kL2

�
C

�"
kru.t; �/k2

L2
kr

rb.t; �/k2
L2
C �"krrC1b.t; �/k2

L2
:

andZ
T2

jrb.t; x/j jrrb.t; x/j jrru.t; x/j dx

�

Z
T2

jrb.t; x/j jrrb.t; x/j2 dx C
Z

T2

jrb.t; x/j jrru.t; x/j2 dx

�
C

�"
krb.t; �/k2

L2
.krru.t; �/k2

L2
C kr

rb.t; �/k2
L2
/C �"krrC1u.t; �/k2

L2

C �"krrC1b.t; �/k2
L2
:
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If r D 2, this is enough to conclude since, taking " small, we have obtained that

d
dt

�
kr

ru.t; �/k2
L2
C kr

rb.t; �/k2
L2

�
C ��krrC1u.t; �/k2

L2
C ��krrC1b.t; �/k2

L2

�
C

�

�
kru.t; �/k2

L2
C krb.t; �/k2

L2

��
kr

ru.t; �/k2
L2
C kr

rb.t; �/k2
L2

�
;

and as we did several times before, by Poincaré’s and Gronwall’s inequalities, we get that

kr
ru.t; �/k2

L2
C kr

rb.t; �/k2
L2
�
�
kr

ru0k
2
L2
C kr

rb0k
2
L2

�
eC�=�

2

e�2�t ;

which also implies, after integration in time,

��

Z t

0

kr
rC1u.s; �/k2

L2
ds C ��

Z t

0

kr
rC1b.s; �/k2

L2
ds � krru0k2L2 C kr

rb0k
2
L2

C
C

�

Z t

0

�
kru.s; �/k2

L2
C krb.s; �/k2

L2

�
.krru.s; �/k2

L2
C kr

rb.s; �/k2
L2
/ ds

� .ku0k
2
H r C kb0k

2
H r / e

C�=�2 :

Then, we assume that r � 3 and we estimate the remaining terms in (6.9) as follows:
back to (6.8), we exploit the divergence-free condition, and by integrating by parts, we
have to bound the following integrals:

r�1X
kD2

Z
T2

jr
ku.t; x/j jrr�ku.t; x/j jrrC1u.t; x/j dx

�

r�1X
kD2

C

Z
T2

jr
ku.t; x/j2 jrr�ku.t; x/j2 dx C

�

c

Z
T2

jr
rC1u.t; x/j2 dx:

By Ladyzenskaya’s inequality,Z
T2

jr
ku.t; x/j2 jrr�ku.t; x/j2 dx � krku.t; �/k2

L4
kr

r�ku.t; �/k2
L4

� kr
ku.t; �/kL2 kr

kC1u.t; �/kL2 kr
r�ku.t; �/kL2 kr

r�kC1u.t; �/kL2

�
1

2
kr

ku.t; �/k2
L2
kr

r�kC1u.t; �/k2
L2
C
1

2
kr

kC1u.t; �/k2
L2
kr

r�ku.t; �/k2
L2
:

Note that, choosing k D r � 1 in the second term, we have a contribution

kr
ru.t; �/k2

L2
kru.t; �/k2

L2
:

Thus, recalling the previous estimates for the contributions k D 1; : : : ; r , after rearranging
the indices in the sums, we arrive to

d
dt

�
kr

ru.t; �/k2
L2
C kr

rb.t; �/k2
L2

�
� ���krru.t; �/k2

L2
� ��krrb.t; �/k2

L2

C
C

�

�
kru.t; �/k2

L2
C krb.t; �/k2

L2

� �
kr

ru.t; �/k2
L2
C kr

rb.t; �/k2
L2

�
C
C

�

r�1X
kD2

�
kr

r�kC1u.t; �/k2
L2
kr

ku.t; �/k2
L2

�
:(6.12)
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We now estimate the last group of terms using the induction assumption (6.2) for k D
2; : : : ; r � 1. This yields

(6.13) kr
r�kC1u.t; �/k2

L2
kr

ku.t; �/k2
L2
� N 2.r�kC1/eC�=�

2

kr
ku.t; �/k2

L2
:

Plugging this into (6.12), we arrive to

d
dt
.krru.t; �/k2

L2
C kr

rb.t; �/k2
L2
/ � ���krru.t; �/k2

L2
� ��krrb.t; �/k2

L2
(6.14)

C
C

�

�
kru.t; �/k2

L2
C krb.t; �/k2

L2

� �
kr

ru.t; �/k2
L2
C kr

rb.t; �/k2
L2

�
C
C

�

r�1X
kD2

N 2.r�kC1/ eC�=�
2

kr
ku.t; �/k2

L2
:

Using Poincaré’s inequality and Gronwall’s lemma, we obtain the desired estimate (6.2).
Note that the time integral of the last contribution of the right-hand side of (6.14) is esti-
mated using the induction assumption (6.1). Integrating (6.14), we also obtain (6.1), and
the proof is concluded.

6.2. Boundedness of the H r norms of the difference equation (6.15)

We also need a perturbative version of Theorem 6.2, in order to control the H r norms of
solutions of the difference system

(6.15)

8̂<̂
:
@tv C div.v ˝ v C 2v ˝ u/CrPv;h D ��v C div.h˝ hC 2h˝ b/;
@thC .v � r/hC.u � r/hC.v � r/b D ��hC.h � r/vC.h � r/uC.b � r/v;

div v D div h D 0;

where .u; b/ is a solution of (MHD). Note that w D uC v, m D b C h solves the (MHD)
equation (with an appropriate choice of the pressure). To do so, we define

Q� WD 1C ku0k
2
L2
C kb0k

2
L2
C kv0k

2
L2
C kh0k

2
L2
;

and we take � < min.�; �/.

Theorem 6.3. Let v0; h0 2 H r .T2/ be two divergence-free vector fields with zero mean.
Let .v; h; Pv;h/ be the unique solution (6.15) with initial datum .v0; h0/, where .u; b/ is a
solution of (MHD). Assume that

ku0kHk C kb0kHk � CN
k and kv0kHk C kh0kHk � Cı; k D 0; : : : ; r;

for some N > 1. Then

(6.16) kh.t; �/k2H r C kv.t; �/k
2
H r � ı

2N 2re�2�t eC
Q�=�2 ;

where the implicit constants C depend on r and � .

The proof is a straightforward generalization of that of Theorem 6.2, we left the details
to the reader. Again, at least for small values of r , we may prove stronger estimates. For
instance, for r D 0, we may set Q� WD ku0k2L2 C kb0k

2
L2

. The bound (6.16) is however
sufficient for our purposes.
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6.3. Decay of the velocity

We conclude the section by proving that the H r norm of the velocity decays in � (if the
viscosity is large). This result (Theorem 6.4) will be useful to prove 2D magnetic recon-
nection with arbitrary initial velocity and large viscosity, namely Theorem 1.3.

Theorem 6.4. Let u0; b0 2 H r .T2/ be two divergence-free vector fields with zero mean.
Assume

ku0kHk C kb0kHk � CN
k ; k D 0; : : : ; r;

for someN > 1. Let .u;b;p/ be the unique solution of (MHD) with initial datum .u0; b0/.
Assume that � > 3�. Then

(6.17) kr
ru.�; t /k2

L2
�

�
kr

ru0k
2
L2
C
Ce�te��t

��
N 2r

�
eC�=�

2

e��t :

Remark 6.5. This bound will be important for two reasons. The first is that the right-hand
side goes to zero as � !1. The second is that, as in all the 2D results of this paper, the
estimate is exponential in the L2 norm of the initial datum, while only polynomial in the
higher order Sobolev norms.

Proof. We divide the proof in several steps.

Step 1. L2 estimate.
Let us consider the equation for the velocity field, namely,

@tuC .u � r/uCrP D ��uC .b � r/b:

Multiplying the equation above by u and integrating by parts, it is easy to show that

1

2

d
dt
ku.t; �/k2

L2
C �kru.t; �/k2

L2

D �

Z
T2

b ˝ b W ru dx � kb.t; �/k2
L4
kru.t; �/kL2

� kb.t; �/kL2 krb.t; �/kL2 kru.t; �/kL2

�
C

�
kb.t; �/k2

L2
krb.t; �/k2

L2
C
�

2
kru.t; �/k2

L2
;

where in the third line we used Ladyzhenskaya’s inequality, while in the fourth we used
Young’s inequality. Then, by Poincaré’s inequality, we obtain that

d
dt
ku.t; �/k2

L2
� �� ku.t; �/k2

L2
C
C

�
kb.t; �/k2

L2
krb.t; �/k2

L2
:

Now, we use Gronwall’s inequality and Theorem 6.2 with r D 0; 1 (and, say, � D 1), to
compute

ku.t; �/k2H r C kb.t; �/k
2
H r � N

2re�2�teC�=�
2

;
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and

ku.t; �/k2
L2
�

�
ku0k

2
L2
C
C

�

Z t

0

kb.s; �/k2
L2
krb.s; �/k2

L2
e�s ds

�
e��t

�

�
ku0k

2
L2
C
CeC�=�

2

�

Z t

0

krb.s; �/k2
L2
e.��2�/s ds

�
e��t

�

�
ku0k

2
L2
C
CeC�=�

2

�
e.��2�/t

Z t

0

krb.s; �/k2
L2

ds
�
e��t�ku0k

2
L2
e��tC

CeC�=�
2
e��t

��

where we have taken � > �=2; this is possible as we have assumed that � D min.�; �/ (in
fact, � > 3�).

Step 2. H 1 estimate.
We differentiate the equation and multiply by ru to get, after integration by parts

1

2

d
dt
kru.t; �/k2

L2
C �kr2u.t; �/k2

L2
�

Z
T2

jruj jruj2 dx C
Z

T2

jr.b ˝ b/j jr2uj dx

�
�

2
kr

2u.t; �/k2
L2
C
C

�
kru.t; �/k2

L2
kru.t; �/k2

L2
C
C

�

Z
T2

jbj2jrbj2 dx

�
�

2
kr

2u.t; �/k2
L2
C
C

�
kru.t; �/k2

L2
kru.t; �/k2

L2

C
C

�
kbk2

L2
krbk2

L2
C
C

�
krbk2

L2
kr

2bk2
L2
:

We rewrite the inequality above by using Poincaré’s inequality,

d
dt
kru.t; �/k2

L2
�

�C
�
kru.t; �/k2

L2
� �

�
kru.t; �/k2

L2

C
C

�

�
kb.t; �/k2

L2
krb.t; �/k2

L2
C krbk2

L2
kr

2bk2
L2

�
;

and as usual, Gronwall’s lemma gives that

kru.t; �/k2
L2

�

�
kru0k

2
L2
C
C

�

Z t

0

�
kb.s; �/k2

L2
krb.s; �/k2

L2
Ckrbk2

L2
kr

2bk2
L2

�
e�s ds

�
eC�=�

2

e��t

�

�
kru0k

2
L2
C
C

�

Z t

0

krb.s; �/k2
L2
e.��2�/s ds C

CN 2

�

Z t

0

kr
2b.s; �/k2

L2
e.��2�/s ds

�
� eC�=�

2

e��t

�

�
kru0k

2
L2
C
C

�
e.��2�/t

Z t

0

krb.s; �/k2
L2

ds C
CN 2

�
e.��2�/t

Z t

0

kr
2b.s; �/k2

L2
ds
�

� eC�=�
2

e��t

�

�
kru0k

2
L2
C
C

��
e.��2�/t C

CN 4

��
e.��2�/t

�
eC�=�

2

e��t :

Then the conclusion follows as in the previous step.



Magnetic reconnection in magnetohydrodynamics 495

Step 3. General case.
Let ˛ 2 N2 with j˛j D r . We apply @˛ to the equation and we multiply by @˛u to

obtain that

1

2

d
dt
k@˛u.t; �/k2

L2
C �kr@˛u.t; �/k2

L2
C

X
ˇ�˛;ˇ¤0

Z
T2

@ˇu � r@˛�ˇu W @˛u dx

D

X
ˇ�˛

Z
T2

@ˇb � r@˛�ˇb W @˛u dx:

We analyze the third and the fourth terms separately. First, we have thatX
ˇ�˛;ˇ¤0

Z
T2

@ˇu � r@˛�ˇu W @˛u dx

� 2

Z
T2

jruj jrruj2 dx C
X

1<jˇ j<r

Z
T2

@ˇu � r@˛�ˇu W @˛u dx

�
�

4
kr

rC1u.t; �/k2
L2
C
C

�
kru.t; �/k2

L2
kr

ru.t; �/k2
L2

C
C

�

r�1X
kD2

Z
T2

jr
kuj2 jrr�kuj2 dx

�
�

4
kr

rC1u.t; �/k2
L2
C
C

�
kru.t; �/k2

L2
kr

ru.t; �/k2
L2
C
C

�
N 2reC�=�

2

e�4�t ;

where we have integrated by parts in the sum 1 < jˇj < r and we have applied Theo-
rem 6.2. On the other hand, arguing in a similar way, for the last term we have thatX
ˇ�˛

Z
T2

@ˇb � r @˛�ˇb W @˛u dx D �
X
ˇ�˛

Z
T2

@ˇb � @˛�ˇb W r@˛u dx

�
�

4

Z
T2

jr
rC1uj2 dx C

C

�

rX
kD0

Z
T2

jr
kb.t; �/j2 jrr�kb.t; �/j2 dx

�
�

4
kr

rC1u.t; �/k2
L2
C
C

�

rX
kD0

kr
kb.t; �/k2

L4
kr

r�kb.t; �/k2
L4

�
�

4
kr

rC1u.t; �/k2
L2
C
C

2�

rX
kD0

kr
kb.t; �/k2

L2
kr

r�kC1b.t; �/k2
L2

C
C

2�

rX
kD0

kr
r�kb.t; �/k2

L2
kr

kC1b.t; �/k2
L2

�
�

4
kr

rC1u.t; �/k2
L2
C
C

�
eC�=�

2
rX
kD0

N 2.r�k/
kr

kC1b.t; �/k2
L2
e�2�t :
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Then, by Poincaré’s inequality, we obtain that

d
dt
kr

ru.t; �/k2
L2
�
C

�
.kru.t; �/k2

L2
� �/ krru.t; �/k2

L2
C
C

�
N 2reC�=�

2

e�4�t

C
C

�

rX
kD0

N 2.r�k/
kr

kC1b.t; �/k2
L2
e�2�t :

Now, applying Gronwall’s inequality and arguing as we did in the previous steps, we
obtain that (again we choose � D �=2)

kr
ru.t; �/k2

L2
�

�
kr

ru0k
2
L2
C
C

�
N 2r

Z t

0

e.��2�/s ds
�
eC�=�

2

e��t

C

�C
�

rX
kD0

N 2.r�k/

Z t

0

kr
kC1b.s; �/k2

L2
e.���/s ds

�
eC�=�

2

e��t

�

�
kr

ru0k
2
L2
C
Ce�te�2�t

�.� � 2�/
N 2r
C

rX
mD0

CN 2r

��
e.���/t

�
eC�=�

2

e��t ;

where we used (6.1) in the last inequality. Recalling � > 3�, this implies (6.17), and the
proof is concluded.

7. Magnetic reconnection in 2D (small velocity)

We are ready to prove the 2D case of our main Theorem 1.1.

7.1. Construction of the initial datum

For our argument, we may chose as a reference solution any of the (large frequency) Taylor
fields defined in Section 5. However, to fix the idea, we focus on

V1
n` D .` sinnx1 cos `x2;�n cosnx1 sin `x2/;

where n2C `2DN 2 andN will be taken large. We will set, with a small abuse of notation,
VN D V1

n`
. Also, we take V1 2 V1 and we choose, among them, one of the Hamiltonian

structurally stable vector field (we know that in V1 there are some). For example, we
can use

V1 D
�

siny;
1

2
sin x

�
:

We consider the initial data

m0 D b0 C h0; with b0 WD
M

N
VN and h0 WD ıV1;

where M > 0 (is possibly large) and ı > 0 will be chosen to be very small. Indeed, the
goal is to show that we can choose ı small and N big enough such that if m.t; �/ is the
solution of (MHD) with initial datum m0, then m0 will have at least 8`n regular critical
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points, while at some positive time t D T > 0, the topology of the integral lines ofm.T; �/
will be the same of V1; in particular, m.T; �/ will have 4 regular points. Thus a change
of topology of the magnetic lines happened between t D 0 and t D T . Note that in the
statement of the theorem, we denote with b the solution which reconnects, but in the proof
it denotes the reference solution.

Proof of Theorem 1.1, case d D 2. We divide the proof in several steps.

Step 1. Auxiliary solutions of (MHD).
Recall that VN is divergence free and that �VN D �N 2VN . Moreover, VN solves

.VN � r/VN D rPVN ;

with pressure (recall N 2 D n2 C `2)

PVN D
1

2

�
`2.sin.nx1//2 C n2.sin.`x2//2

�
:

Thus the couple
.u; b/ D .0; e��N

2t VN /

is the unique smooth solution of (MHD) with data.0; VN /; the pressure is e�2�N
2tPVN .

Step 2. Integral lines at time 0.
Consider the rescaled datum

N

M
m0 D VN C

N

M
ıV1:

Taking

(7.1) ı < c
M

NLC1
,

where c is a suitable small constant, we have that N
M
ı � ı0.N / from Lemma 5.4, thus

the vector field N
M
m0, and so m0, has at least 8n` regular critical points.

Step 3. Evolution under the MHD flow.
We denote with .v; h/ the solution of the difference equation (3.4), with initial datum

.0; h0/; where h0 WD ıV1:

Thus, under our choices, the reference solution is .u; b/D .0; M
N
e��N

2tVN / and the solu-
tion with initial datum

.0;m0/; where m0 WD
M

N
VN C h0; with b0 WD

M

N
VN and h0 WD ıV1;

is denoted by .w;m/. Using Duhamel’s formula, we can write

(7.2) m.t; �/ D
M

N
e��N

2t VN C ı e
��tV1 CD.t; �/;

where
D.t; �/ WD Lh.t; �/C Lb.t; �/
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and we recall that Lh; Lb introduced in (4.3)-(4.4) are defined as

Lh.t; �/ WD

Z t

0

e�.t�s/� div
�
h.s/˝ v.s/ � v.s/˝ h.s/

�
ds;

Lb.t; �/ WD

Z t

0

e�.t�s/� div
�
b.s/˝ v.s/ � v.s/˝ b.s/

�
ds:

Since (the constant C here depends on M and r)

kb0kHk � CN
�1
kVN kHk � CN

k and kh0kHk D ıkV1kHk � Cı;

by Theorem 6.3 we get that

kv.t; �/kHk C kh.t; �/kHk � ıN
k e��teC

Q�=�2 ;

for k D 0; : : : ; r . Then, by using the above formula, we estimate the H r norms of the
tensorial products in Lh and Lb as follows:

kh.s/˝ v.s/kH rC1 � kh.s/kL1 kv.s/kH rC1 C kv.s/kL1 kh.s/kH rC1

� kh.s/kH2 kv.s/kH rC1 C kv.s/kH2 kh.s/kH rC1

� Cı2N rC3e��s;

kb.s/˝ v.s/kL2 � kb.s/kL1 kv.s/kL2 � Cıe
��N 2s;

kb.s/˝ v.s/kH rC1 � Ckv.s/kL1 kb.s/kH rC1 C Ckv.s/kH rC1 kb.s/kL1

� Ckv.s/kH2kb.s/kH rC1 C Ckv.s/kH rC1 kb.s/kL1

� Ce��N
2s .ıN 2

C ıN rC1/ � Ce��N
2sıN rC1:

Using (4.6), we estimate

kLh.t; �/kH r � C

Z t

0

ke�.t�s/�.h.s/˝ v.s//kH rC1 ds(7.3)

� C

Z t

0

e��.t�s/ kh.s/˝ v.s/kH rC1 ds

� Cı2N rC3e��s
Z t

0

e��.t�s/ e���s ds � Cı2N rC3e��s :

Using (4.7), we estimate

(7.4) kLb.t; �/kH r

� C

Z t=2

0

ke�.t�s/�.b.s/˝ v.s//kH rC1 ds C C
Z t

t=2

ke�.t�s/�.b.s/˝ v.s//kH rC1 ds

� C

Z t=2

0

.t � s/�.rC1/=2kb.s/˝ v.s/kL2 ds C C
Z t

t=2

e��.t�s/kb.s/˝ v.s/kH rC1 ds

� Cı

Z t=2

0

.t � s/�.rC1/=2 e��N
2s ds C CıN rC1

Z t

t=2

e��.t�s/e��N
2s ds

� CıN�2 C CıN rC1 e��N
2t=2:
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Step 4. Choice of the parameters.
In this step, we fix the parameters N and ı. Recall that ı must satisfy (7.1), so

that m.0; �/ has at least 8n` regular critical points. Then we consider the behavior of
the fluid at time t D T . We rescale the magnetic field as

ı�1e�Tm.T; �/;

and then recalling (7.2), we get

ı�1 e�Tm.T; �/ D V1 C ı
�1 M

N
e��.N

2�1/T VN C ı
�1 e�TD.T; �/:

Our goal is to choose N so large that

(7.5) kı�1 e�Tm.T; �/ � V1kH r � 1;

for a sufficiently large1 r , so that using the structural stability of V1 underC 1 perturbations
(see Section 5) and Sobolev embedding, one can show that the set of the integral lines
of ı�1 e�Tm.T; �/, and thus ofm.T; �/, is diffeomorphic to that of V1. In particular,m.T; �/
has only 4 critical points, and we must have had magnetic reconnection between t D 0

and t D T . It remains to prove (7.5). We choose

ı DMe��TN�.LC1/; L � r C 3;

for some sufficiently large L. This is compatible with (7.1), and combining (7.3)–(7.4),
we get

kı�1 e�TD.T; �/kH r � Cı�1 e�T
�
ı2N rC3

C ıN�2 C CıN rC1 e��N
2T=2

�
� Ce�T ıN rC3

C
Ce�T

N 2
C CN rC1e��N

2T=2

�
C

N
C
Ce�T

N 2
C CN rC1 e��N

2T=2
� 1;

where we have taken N sufficiently large, depending on T and � (in particular, N propor-
tional to ��1=2). Under this choice of ı and N , we also have


ı�1 M

N
e��.N

2�1/T VN





H r
� CNLCrC1e��N

2T
� 1;

and this concludes the proof.

We conclude the section with some remarks.

Remark 7.1. As for the three-dimensional case, the 2D solution provided by Theorem 1.1
does not reconnect instantaneously. To show this, let .w;m/ be the solution constructed in
Theorem 1.1 above. Then, by using Duhamel’s formula, we can write

m.t; �/ D
M

N
e��N

2t VN C ı e
��tV1 CD.t; �/;

where
D.t; �/ WD Lh.t; �/C Lb.t; �/;

1It suffices r D 3 in order to control the norm C 1.T2/.
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and Lh and Lb are defined as in (4.3)–(4.4). For the rescaled vector field Qm D N
M
m, we

have that
k Qm.t; �/ � VN kH r � C.1 � e��N

2t
C ı C kD.t; �/kH r /:

Then, since

lim
t!0

1 � e��N
2t

��N 2t
D 1;

given the estimate on the Duhamel’s term, we have that for t � 
=.�N 2/, with 
 small
enough, it holds

(7.6) k Qm.t; �/ � VN kr � C .
 C ı C ı
2N rC3

C ıN rC1/:

Thus, thanks to our choice of the parameter ı, i.e.,

ı DMe��TN�.LC1/; L � r C 3;

we obtain that the quantity in (7.6) can be made as small as we want for N big enough.
This implies that the solution m.t; �/ has at least 8n` hyperbolic critical points if t �

=.�N 2/, showing that the result is stable for small times and the reconnection is not
instantaneous. On the other hand, in Theorem 1.1 we prove that m.t; �/ is topologically
equivalent to V1 provided that we can make small the quantity

N re��N
2t
� 1;

and this holds for �N 2t � 1, which is equivalent to require that

t �
1

�N 2
�

Therefore, the reconnection must take place in a resistive time scale, that is, at a time of
order 1=.�N 2/.

Remark 7.2. The choice u0 D 0 simplifies the proof, but we may easily generalize the
argument to small velocities, namely, taking ku0kH r D " (for a sufficiently large r), where
the size of the small parameter " depends on all the relevant parameters we introduced in
the proof. As in the 3D case (see Remark 4.2), we can consider large data u0 (and "-
perturbations of them) introducing some extra structure. Moreover, in the 2D case we can
also consider large velocities as long as we take the viscosity � sufficiently large. This
result is proved in the next section.

Remark 7.3. The result requires � > 0, and we cannot promote it to the zero resistivity
limit �! 0; see Remark 4.3. Remark 4.4 applies in the 2D case as well.

Remark 7.4. As explained in the introduction, we can obtain a 3D reconnection result by
the 2D result, extending the 2D magnetic field to a 3D object in the natural way (see (1.1)).
However, the 3D reconnection result obtained in this way would not be structurally stable
(in the sense of Remark 1.4), since we would need some structural stability of (lines
of) degenerate critical points (under 3D perturbations), which is in general false. Indeed,
we can immediately recognize that the argument used in Lemma 5.4 fails for degenerate
critical points.



Magnetic reconnection in magnetohydrodynamics 501

8. Magnetic reconnection in 2D (large velocity)

We are now ready to show how to prove magnetic reconnection for any initial zero-average
velocity field in H 4.T2/, but taking the viscosity � very large.

Proof of Theorem 1.3. We consider initial data .u0; b0/, with u0 2 H 4.T2/ with zero
average, and we consider the initial data

b0 D
M

N
VN C ıV1;

where M > 0 (is possibly large) and ı > 0 will be small (only depending on N and M ),
and N large (depending on � and T ) so that we have, as in the proof above, that b0 has at
least 8n` (regular) critical points. More precisely, we fix (recall (7.1))

(8.1) ı D c
M

NLC1
,

for some small constant c > 0. Let then T > 0. Since (see again the previous section)

e�T�
�M
N
VN C ıV1

�
D
M

N
e��N

2t VN C ı e
��tV1;

we can represent b. �; T /, using Duhamel’s formula, as

b. �; T / D
M

N
e��N

2T VN C ı e
��T V1 CD.t/;

where now

D.t/ WD

Z T

0

e�.T�s/� div .b.s; �/˝ u.s; �/ � u.s; �/˝ b.s; �// ds;

Thus we rescale e�T ı�1b.T; �/, and we must prove

ke�T ı�1b.T; �/ � V1kH r � 1;

for a sufficiently large r , so that by the Sobolev embedding and the structural stability
of V1 under C 1 perturbations (see Section 5), we know that b.T; �/ (as the rescaled field)
has only 4 (regular) critical points. Since

ke�T ı�1b.T; �/ � V1kH r D




e�T ı�1 M
N
e��N

2T VN C e
�T ı�1D.t/





H r
;

we only need to bound the Sobolev norms of these two terms in a suitable way. If

R WD ku0kH4 ;

then by (6.17) we have, after taking � sufficiently large compared to T ,

ku.�; t /kH4 � e
C

�2
.R2CN 2C1/

R2
e��t

��
�
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Thus,

ke�T ı�1D.t/kH3 � Ce�T ı�1
Z T

0

e��.T�s/kb.s; �/kH4 ku.s; �/kH4 ds

� C ı�1
Z T

0

e�s kb.s; �/kH4 ku.s; �/kH4 ds

�
eC.R

2CN 2C1/R2

ı��

Z T

0

kb.s; �/kH4 ds �
eC.R

2CN 2C1/R2N 2r

ı���
� 1;

where we used (6.1) in the penultimate inequality and we have then taken again � suffi-
ciently large (compared to all the fixed parameters). Also, we have


e�T ı�1 M

N
e��N

2T VN





H3
� Cı�1MN 2e��T.N

2�1/
� 1;

where, recalling the definition (8.1) of ı, the last inequality follows choosing N suffi-
ciently large. This concludes the proof.

Remark 8.1. The assumption u0 2H 4.T2/ can be improved, but our goal was simply to
provide examples in which we can consider large velocities at the initial time t D 0.

Remarks 7.3 and 7.4 apply here too.

9. Instantaneous reconnection

The aim of this section is to exhibit an example of instantaneous magnetic reconnec-
tion, proving Theorem 1.5. The 3D argument is exactly the same used in [10] to prove
instantaneous vortex reconnection for Navier–Stokes, so we will only sketch it for the
sake of completeness. The 2D case requires some new ideas, but it is in some extent
simpler. Indeed, while the 3D argument relies upon the subharmonic Melnikov theory
developed by Guckenheimer and Holmes in [18], in 2D one can use the more classical
homoclinic/heteroclinic Melnikov method, in the heteroclinic formulation of Bertozzi, see
p. 1276 of [3]. Moreover, a significant simplification of the argument is possible, based on
the stream function formulation (we are grateful to Daniel Peralta-Salas for this observa-
tion), and we present it below.

Proof of Theorem 1.5, d D 3. We consider initial data .u0; b0/, with b0 given by

(9.1)
b0 WDM

�
sin.x3 C "h/; cos.x3 C "h/;�".@x1h/ sin.x3 C "h/

� ."@x2h/ cos.x3 C "h/
�
;

where h D h.x1; x2/ is a 2D periodic function and " is a small parameter, both to be
fixed later. Note that b0 is zero-average and divergence-free. Since u0 may be large, we
only have local solutions. However, this is acceptable for our purposes, since we aim to
prove instantaneous reconnection of some of the magnetic lines of b0. Noting that b0 is
the pullback of the Beltrami field

M .sin x3; cos x3; 0/ ;
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under the volume preserving diffeomorphism

(9.2) ˆ.x/ D .x1; x2; x3 C "h.x//;

we see that the integral lines of b0 are periodic or quasi-periodic and they form fami-
lies of invariant tori, like that one of (9.2). We expand in Taylor series finding, for small
times t > 0,

(9.3) B.t/ D b0 C t .��b0 � .u0 � r/b0 C .b0 � r/u0/CO.t2/:

The goal is then to show that the Melnikov function associated to one of the periodic
orbits (living on one of the resonant tori) has a non-simple zero. The computation of the
Melnikov function only depends on the linear part of the PDE above, since in the non-
resistive case � D 0, the magnetic lines are transported, thus the Melnikov function must
be identically zero. Once we have noted this fact, we can proceed exactly as in the proof
of Theorem 1.4 of [10] to show that, choosing h.x1; x2/ D cos.pX1 � qx2/, where p=q
is rational, for all " > 0 sufficiently small and for all sufficiently small times t > 0, the
resonant torus corresponding to cotX3 D p=q is instantaneously broken.

Remark 9.1. By some standard PDEs considerations, and invoking a slightly more gen-
eral version of the stability Theorem 3.1 (which takes into account small initial velocities
rather than zero ones), one can show that if we restrict to small (say) H 1 velocities, the
(strong) solutions constructed in the previous proof are indeed global.

We conclude the paper with the proof of the 2D instantaneous reconnection result.

Proof of Theorem 1.5, d D 2. Let us consider the following vector field:

(9.4) b"0DM.� sin.x1/ sin.x2�"x1/;�" sin.x1/ sin.x2�"x1/� cos.x1/cos.x2�"x1/:

Note that div b"0 D 0. Note also that for " D 0, the vector field b"0 corresponds to �V4
11,

and we denote it by b0. The integral lines of b0 are the solutions of

(9.5)
²
Px1 D �M sin.x1/ sin.x2/;
Px2 D �M cos.x1/ cos.x2/;

where the dot denotes the derivative with respect to the parametrization. The integral lines
(of the system above) present heteroclinic orbits connecting four saddle points. This is a
peculiarity shared by the phase diagram of the Taylor fields. Note that, if we considered
u0 D 0, the solution of (MHD) would be given by .u; b/D .0;�Me�2tb0.x//: obviously,
the magnetic field b is topologically equivalent to b0 (that is �V4

11 from Section 5.1), and
there would be no reconnection at any time. However, if we perturb b0 as in (9.4), we are
able to provide an example of instantaneous change of the topology of the integral lines.

We start noting that b"0 is given by the pullback of b0,

b"0 D ˆ
�b0;

under the change of variables

ˆ.x1; x2/ D .x1; x2 � "x1/:
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It is clear that ˆ is a volume preserving diffeomorphism, thus, in particular, the integral
lines of b"0 are topologically equivalent to those of b0. However, b"0 is not a Taylor field (in
particular, it is not an eigenvector of the Laplacian), and its structure can change during
the evolution of the fluid.

We consider a smooth vector field u0 with zero divergence. The system (MHD) with
initial datum .u0; b

"
0/ admits a global smooth solution that we denote by .u"; b"/. By using

the equation, we Taylor expand b" with respect to time, obtaining that

(9.6) b".t; x/ D b"0 C t .��b
"
0 C .b

"
0 � r/u0 � .u0 � r/b

"
0/CO.t2/;

here t has to be seen as the perturbative parameter. Of course, this representation holds
for short times, that is a harmless restriction since we want to prove an instantaneous
reconnection result.

Since div b".t; �/ D 0 (and the average on T2 is zero as well), there exists a stream
function (or Hamiltonian)  ".t; �/, namely, a scalar function such that

b".t; x/ D r? ".t; x/:

We denote with  "0 the stream function at time t D 0, and recalling the definition (9.4)
of b"0, it is easy to verify that

 "0.x1; x2/ D � sin x1 cos.x2 � "x1/:

To fix the ideas, we consider the saddle connection given by

x2 D "x1 C
�

2
,

with x1 2 Œ0; ��. This is an heteroclinic orbit connecting the saddle points A D .0; �=2/
and B D .�; "� C �=2/. Thus for the stream function, we have  "0.A/ D  

"
0.B/.

Taking this into account, it is easy to show that, since the Hamiltonian is constant
along heteroclinic orbits, the connection is (instantly) broken if we can prove that, at least
for small values of t ,

(9.7)  ".t; A/ ¤  ".t; B/:

In particular, the inequality (9.7) is implied by the following:

(9.8) .@t 
"/.0; A/ ¤ .@t 

"/.0; B/;

as we now explain. Applying Taylor’s formula to  ", we get

(9.9)  ".t; x/ D  "0.x/C .@t 
"/.0; x/ t CO.t2/:

Moreover, from the second equation in (MHD), we have that

.@t 
"/.0; A/ D �� "0.A/C .u0 � r/ 

"
0.A/;

and similarly for B . Since both A and B are critical points of  "0 ,

r "0.A/ D r 
"
0.B/ D 0;
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and then
@t 

".0; A/ D �� "0.A/;

and the same for B . Thus, by a direct computation we obtain that

� "0.A/ D �2" and � "0.B/ D 2" cos."�/;

and in particular, � "0.A/ ¤ � 
"
0.B/ for " 2 .0; 1/, that concludes the proof.

Remark 9.2. The previous arguments cannot be promoted to the zero resistivity limit
�! 0, since they work in a regime where �� t . Indeed, otherwise we could not consider
the O.t2/ terms in (9.3) and (9.9) as higher order perturbations of the leading terms

t .��b"0 C .b
"
0 � r/u0 � .u0 � r/b

"
0/ and t .�� "0 C .u0 � r/ 

"
0/:

Thus, as � ! 0, also the range of times t > 0 for which we have proved a change of
topology (with respect to the initial time t D 0) shrinks to zero.
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