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Universal minima of discrete potentials
for sharp spherical codes

Peter Boyvalenkov, Peter Dragnev, Douglas Hardin, Edward Saff and
Maya Stoyanova

Abstract. This article is devoted to the study of discrete potentials on the sphere
in Rn for sharp codes. We show that the potentials of most of the known sharp codes
attain the universal lower bounds for polarization for spherical � -designs previously
derived by the authors, where “universal” is meant in the sense of applying to a large
class of potentials that includes absolutely monotone functions of inner products. We
also extend our universal bounds to T -designs and the associated polynomial sub-
spaces determined by the vanishing moments of spherical configurations, and thus
obtain the minima for the icosahedron, the dodecahedron, and sharp codes coming
from E8 and the Leech lattice. For this purpose, we investigate quadrature formu-
las for certain subspaces of Gegenbauer polynomials P .n/j which we call PULB

subspaces, particularly those having basis ¹P .n/j º
2kC2
jD0 n ¹P

.n/
2k
º: Furthermore, for

potentials with h.�C1/ < 0, we prove that the strong sharp codes and the antipodal
sharp codes attain the universal bounds and their minima occur at points of the codes.
The same phenomenon is established for the 600-cell when the potential h satisfies
h.i/ � 0, i D 1; : : : ; 15, and h.16/ � 0:

We dedicate this article to Blaga Dragneva (1962–2024), the late wife of Peter Dragnev,
for her unwavering support in the course of writing this article

1. Introduction

Let Sn�1�Rn denote the unit sphere. A collection of distinct pointsC D¹x1;x2; : : : ;xN º
� Sn�1 is called a spherical code. For a function hW Œ�1; 1�! Œ0;C1�, continuous and
finite on Œ�1; 1/, we consider the discrete h-potential associated with C :

Uh.x; C / WD
X
y2C

h.x � y/;
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where x 2 Sn�1 is arbitrary. For a fixed cardinality of code and a fixed potential, polariza-
tion is an optimization problem where we seek codes that attain the largest possible mini-
mum (i.e., max-min) or the smallest maximum (min-max) on Sn�1. In a recent work [17],
we derived polarization universal lower and upper bounds (PULB and PUUB) for spheri-
cal codes and designs and related results. Here we continue this investigation by analyzing
the minima of potentials generated by sharp codes, which we show attain our PULB.
Furthermore, we generalize our previous work by developing what we call second level
polarization bounds.

Before introducing the polarization notions, we remind the reader of the definition of
spherical designs introduced in 1977 by Delsarte, Goethals and Seidel [24] (for compre-
hensive surveys, see [1–3]).

Definition 1.1. A spherical � -design C � Sn�1 is a finite subset of Sn�1 such that

1

�.Sn�1/

Z
Sn�1

f .x/ d�.x/ D
1

jC j

X
x2C

f .x/

(� is the surface area measure and jC j denotes cardinality) holds for all polynomials
f .x/ D f .x1; x2; : : : ; xn/ of degree at most � (i.e., the average of f over the set C is
equal to the average of f over Sn�1).

This was extended to the concept of spherical T -designs by Delsarte and Seidel [25]
in 1989 (see also Section 6.1 in [3]). Given a spherical code C � Sn�1, its i -th moment,
i 2N, is defined as

(1.1) M n
i .C / WD

X
x;y2C

P
.n/
i .x � y/;

where P .n/i .t/ are the Gegenbauer polynomials associated with Sn�1 (i.e., with the weight
function given below in (1.5)), normalized byP .n/i .1/D 1. We remark that one of the alter-
native definitions for a spherical � -design is that all the moments M n

i .C /, i D 1; : : : ; � ,
vanish.

Definition 1.2 (Definition 6.1 in [3]). Given an index set T � N, we call a spherical code
C � Sn�1 a T -design if M n

i .C / D 0 for every i 2T .

The polarization quantities we are going to investigate are defined as follows. Let

(1.2) Qh.C / WD inf
x2Sn�1

Uh.x; C / and Qh.n;N / WD sup
jC jDN;C�Sn�1

Qh.C /:

Then the max-min and min-min polarization quantities for T -designs are defined as

(1.3) Qh.n;N; T / WD sup¹Qh.C / W jC j D N; C is a T -designº;

and

(1.4) Qh.n;N; T / WD inf¹Qh.C / W jC j D N;C is a T -designº:

Clearly, we have Qh.n;N;T /�Qh.n;N;T /. When T D ¹1; 2; : : : ; �º, we write � instead
of T in the above notations.
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When considering spherical codes, the Gegenbauer polynomials P .n/i .t/ D P
.0;0/
i .t/

play an intricate role. We remind the reader that these are Jacobi1 polynomials P ˛;ˇi .t/

with parameters ˛ D ˇ D .n� 3/=2 normalized so that P .n/i .1/D 1. Namely, the Gegen-
bauer polynomials P .n/i .t/ are orthogonal on Œ�1; 1�, with orthogonality measure

(1.5) d�n.t/ WD n.1 � t
2/.n�3/=2 dt;

where the normalization constant n is chosen to make �n a probability measure. Recall
that the adjacent Gegenbauer polynomials P .a;b/i .t/, a; b 2 ¹0; 1º, are Jacobi polynomials
with ˛ D aC .n� 3/=2 and ˇ D b C .n� 3/=2, similarly normalized by P .a;b/i .1/ D 1.
Any real polynomial f can be written as

(1.6) f .t/ D

deg.f /X
iD0

fiP
.n/
i .t/;

with Gegenbauer coefficients fi given by

fi WD

Z 1

�1

f .t/P
.n/
i .t/

d�n.t/

kP
.n/
i k

2
, i D 0; : : : ; deg.f /:

We note that Gegenbauer polynomials are even/odd functions for even/odd i .
We recall the polarization universal bounds derived in [17]. The following equiva-

lent definition of a spherical design facilitates our approach to the polarization problem
(see [24] and equation (1.10) in [27]).

Definition 1.3. A code C � Sn�1 is a spherical � -design if and only if for any point
x 2 Sn�1 and any real polynomial f .t/ of degree at most � , the equality

(1.7) Uf .x; C / D
X
y2C

f .x � y/ D f0 jC j

holds, where f0 D
R 1
�1
f .t/ d�n.t/ is the constant coefficient in the Gegenbauer expan-

sion (1.6) of f . Similarly, C is a spherical T -design if and only if (1.7) holds for any
f 2 PT (see Proposition 4.2), where

(1.8) PT WD span ¹P .n/i .t/ W i 2T [ ¹0ºº:

For x 2 Sn�1 and a code C � Sn�1, let

I.x; C / WD ¹x � y W y 2 C º D ¹uiº
`
iD1;

and let ri denote the relative frequency of occurrence of ui ; i.e., ui D x � y for jC jri many
distinct y 2 C . Observe that

(1.9) Uf .x; C / D
X
y2C

f .x � y/ D jC j
X̀
iD1

rif .ui /:

1The Jacobi polynomials P ˛;ˇi .t/ are orthogonal on the interval Œ�1; 1� with respect to the weight function

.1 � t /˛.1C t /ˇ . We use the normalization P ˛;ˇi .1/ D 1.
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Note that (1.7) asserts that the polarization f -potential for C is constant on Sn�1.
This fact serves as the foundation in obtaining lower and upper linear programming (LP)
bounds for polarization. In this article, we are interested in lower bounds, so we summarize
the following PULB result from [17].

Theorem 1.4 (Theorems 3.4 and 3.7, Corollaries 3.9 and 3.10 in [17]). Suppose C is a
spherical � -design of cardinality N on Sn�1, where � DW 2k � 1C ", " 2 ¹0; 1º, and that
the potential h is continuous on Œ�1; 1�, finite on .�1; 1/, and has a derivative h.2kC"/ of
constant sign on .�1; 1/. Then

(1.10) Qh.C / � N
X
i 2 I

�i h.˛i /;

where the index set I , the quadrature nodes ¹˛iºi 2 I , and the positive weights ¹�iºi 2 I
are determined as follows:
(i) when h.�C1/.t/ � 0 on .�1; 1/, then I WD ¹1 � "; : : : ; kº and ¹ j̨ ºj2I are the zeros

of the (possibly adjacent) Gegenbauer polynomials .1C t /"P .0;"/
k

.t/;

(ii) when h.�C1/.t/ � 0 on .�1; 1/, then I D ¹0; 1; : : : ; kº and ¹ j̨ ºj2I are the zeros of
the polynomials .t � 1/.t C 1/1�"P 1;1�"

k�1C"
.t/.

The weights are positive, sum to 1, and are given by

(1.11) �i WD

Z 1

�1

`i .t/ d�n.t/ D

Z 1

�1

`2i .t/ d�n.t/;

where `i .t/ denotes the Lagrange basic polynomials2 associated with the nodes ¹ j̨ºkjD1�".
Moreover, the bound (1.10) is the best that can be attained by linear programming via

polynomials f of degree at most � for which f � h on Œ�1; 1�.
In addition, if a spherical � -design C attains the bound (1.10), then there exists a

point Qx 2 Sn�1 such that the set I. Qx; C / of all inner products between Qx and the points
of C coincides with the set ¹˛iºi 2 I , and the multiplicities of these inner products are
¹N�iºi 2 I , respectively. In particular, the numbers N�i , i 2 I , are positive integers.

Remark 1.5. We note that when a spherical � -design of cardinality N on Sn�1 exists,
then Theorem 1.4 implies the following bounds:

(1.12) Qh.n;N / � Qh.n;N; �/ � N
X
i 2 I

�i h.˛i /:

A by-product of Theorem 1.4 is an alternative proof of the Fazekas–Levenshtein bound
on the covering radius of spherical designs (Theorem 2 in [27]), namely that the minimal
(in terms of inner products) covering radius of a spherical � -design of cardinality N (in
fact, the Fazekas–Levenshtein bound does not depend on the cardinality) is at least as
large as the largest quadrature node in (1.10). In this regard, we showed in [17] that the
vertices of the cube on S2 and the 24-cell on S3 both attain the bound (1.10) for potentials
satisfying case (i), and as such the Fazekas–Levenshtein bound. The simplex and the cross-

2`i . j̨ / D ıij , the Kronecker delta.
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polytope on Sn�1 attain the PULB bound as well. In this article, we show that the same
is true for most of the known sharp codes. However, prominent configurations, such as
the icosahedron, the dodecahedron, and the kissing configurations of E8, and the Leech
lattice do not attain (1.10). Thus, one of our goals is to enhance the PULB by considering
polynomials f with degree higher than � . As a consequence, we obtain stronger bounds,
or second level PULB, which are attained by these codes.

In this paper, we focus on sharp codes which are spherical � -designs which admit at
most Œ.� C 1/=2� distinct inner products between their (distinct) points. All known sharp
codes are listed in several papers, cf. [22,34,35], and no new sharp codes were discovered
since the 1980s. We shall prove that all known sharp codes, except for the infinite family
defined on the last row of Table 2, attain what we call first or second level PULB (the
bounds (1.10) and (4.22), respectively), and therefore the location of their minima are
independent of the potential, and hence universal. The infinite family of the last row, along
with the 600-cell for potential satisfying case (i) of Theorem 1.4, will be considered in a
future work.

This article is structured as follows. In Section 2, we introduce the needed preliminar-
ies. Section 3 contains the first main result, Theorem 3.1, and is devoted to the analysis
of the known sharp codes attaining the PULB (1.10) for potentials satisfying case (i) of
Theorem 1.4; this is the first level PULB. We look into the structure of the corresponding
codes and find suitable points to exhibit the universal minima. In Section 4, we consider
the general case of spherical T -designs for the case T D ¹1; 2; : : : ; 2k C 2º n ¹2kº and
present a Skip 1-Add 2 framework to enhance the max-min polarization bounds from The-
orem 1.4. We introduce the notion of PULB-space and prove that the polynomial subspace
spanning the Gegenbauer polynomials of degree i 2T [ ¹0º is a PULB space in the second
main result, Theorem 4.14. The second level PULB is given in Theorem 4.15. Examples of
codes attaining the new enhanced polarization bounds, namely the icosahedron, the dodec-
ahedron, and the famous kissing configurations in 8 and 24 dimensions3, are presented by
Theorem 5.1 in Section 5. We enumerate the classification of the universal minima of the
known sharp codes via the closest facet to such minima in Section 6. Section 7 establishes
that strongly sharp and antipodal sharp configurations attain the PULB (1.10) for poten-
tials satisfying case (ii) of Theorem 1.4; also, the minima for the 600-cell is found for
potentials h that satisfy h.i/ � 0, i D 1; : : : ; 15, and h.16/ � 0.

2. Preliminaries

2.1. Quadrature rules and spherical designs

Definition 2.1. Let n be a positive integer, and let ƒ be a linear space of univariate
polynomials that contains the constant polynomials. We say that ¹˛iºi 2 I � Œ�1; 1� and
¹�iºi 2 I � .0; 1/, for some finite index set I , form a quadrature rule exact on ƒ if

(2.1) f0 D
X
i 2 I

�if .˛i /; f 2 ƒ:

3M. Viazovska received a Fields Medal in 2022: “For the proof that theE8 lattice provides the densest pack-
ing of identical spheres in 8 dimensions, and further contributions to related extremal problems and interpolation
problems in Fourier analysis.” - https://www.mathunion.org/imu-awards/fields-medal/fields-medals-2022
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If C is a T -design, it follows from (1.7) and (1.9) that I.x; C / D ¹˛1; : : : ; ˛`º with
relative frequencies ¹�1; : : : ; �`º form a quadrature rule that is exact on PT .

2.2. The Delsarte–Goethals–Seidel bound, Levenshtein’s 1=N -quadrature rule and
universal lower bounds (ULB) for energy

The cardinality of spherical � -designs is bounded from below by the following Fisher-type
bound, cf. Theorems 5.11 and 5.12 in [24]. If C � Sn�1 is a � -design, � D 2k � 1C ",
k 2 N, " 2 ¹0; 1º, then

(2.2) jC j � D.n; �/ WD

�
nC k � 2C "

n � 1

�
C

�
nC k � 2

n � 1

�
:

The existence of � -designs on Sn�1 with cardinality N � D.n; �/ is not guaranteed,
and Yudin [43] showed that the bound (2.2) can be improved in some cases (see also [12]).
On the other hand, Seymour and Zaslavsky [40] showed that there exist � -designs on Sn�1

with all large enough cardinalities, and Bondarenko, Radchenko, and Viazovska [5, 6]
solved a long-standing conjecture by proving that there exist spherical � -designs on Sn�1

with all cardinalities N � Cn�n�1, where Cn depends only on the dimension n.
For every cardinality N , we let �n;N be the largest � for which a spherical � -design

of N points on Sn�1 exists. Then the definitions (1.2) and (1.3) immediately imply the
bound

Qh.n;N / � Qh.n;N; �n;N /:

Denote the maximal possible cardinality of a spherical code on C � Sn�1 of pre-
scribed maximal inner product s with

A.n; s/ WD max¹jC jWC � Sn�1; hx; yi � s; x ¤ y 2 C º:

When introducing his bound on the quantity A.n; s/, Levenshtein utilized Gauss-type
1=N -quadrature rules that we now briefly review (cf. Section 4 of [34] and Section 5
of [35]). Given a real number (possibly cardinality) N , there exists a unique � D 2k �

1C ", " 2 ¹0; 1º, such that N 2 .D.n; �/;D.n; � C 1/�, where D.n; �/ are the Delsarte–
Goethals–Seidel numbers (2.2). Let ˛k D s be the maximal (unique in a certain interval)
solution of the equation N D L� .n; t/, where L� .n; t/ is the Levenshtein function (see
Section 5 of [35]). Then there exist uniquely determined quadrature nodes and nonnegative
weights

�1 � ˛1�" < � � � < ˛k < 1; �1�"; : : : ; �k 2 RC;

such that the Radau/Lobatto 1=N -quadrature holds:

(2.3) f0 D
f .1/

N
C

kX
iD1�"

�if .˛i /; for all f 2 P� ;

where P� denotes the collection of polynomials of a single real variable of degree at
most � . When " D 1, then ˛0 D �1 and (2.3) is Lobatto quadrature, otherwise it is Radau
quadrature. The nodes ˛i , i D 1; : : : ; k, are the roots of the equation

P
.";1/

k
.t/P

.";1/

k�1
.˛k/ � P

.";1/

k
.˛k/P

.";1/

k�1
.t/ D 0;

and the weights are found to determine the required accuracy.
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2.3. Sharp codes

We consider sharp codes, that is, spherical � -designs with Œ.� C 1/=2� distinct inner prod-
ucts among distinct points in the code. Tables with all known sharp codes appeared earlier
in the literature. Levenshtein (see Table 9.1 in [34] and Table 6.2 in [35]) exhibited them
as the all known codes attaining his upper bound on A.n; s/, and Cohn and Kumar (see
Table 1 in [22]) showed that they are universally optimal, i.e., they possess, for their
dimension n and cardinality N , the minimum possible h-energy for all absolutely mono-
tone potentials h.

All sharp codes attain the universal lower bound for h-energy as explained in the next
subsection. In this paper we derive and explore one more aspect of the universality of the
sharp codes by proving their optimality for Theorem 1.4, case (i). To this end, we exploit
their combinatorial nature and analyze, case by case, how they attain the first and second
level polarization bounds (1.10) and (4.22), respectively.

We will use the notation C D .n; N; �/ for the sharp codes; that is, these are codes
C � Sn�1 of cardinality jC j D N and design strength � that have Œ.� C 1/=2� distinct
inner products among distinct points in the code. If � D 2k (when n � 3, this may happen
for k D 1 and 2 only) then C is called strongly sharp [10].

2.4. Universal lower bound on energy of spherical codes

As the sharp codes attain the analogous universal lower bound (ULB) for energy, it is
beneficial to provide a comparison and the relevant context. In this subsection we briefly
introduce the energy counterpart as developed in [15].

It turns out that the Levenshtein’s 1=N -quadrature (2.3) plays an important role in
bounding potential energy. Given a codeC �Sn�1 with cardinality jC j DN , the potential
energy (or h-energy) of C is defined as

Eh.n; C / WD
X

x;y2C;x 6Dy

h.x � y/:

The optimization quantity

E.n;N I h/ WD inf
jC jDN

Eh.n; C /

arises in many areas such as crystallography, material science, information theory, etc.
The following theorem holds.

Theorem 2.2 (Theorems 2.3 and 3.1 in [15]). Let h be an absolutely monotone potential
function on Œ�1; 1/, and let ¹.˛i ; �i /ºkiD1 be the Levenshtein’s 1=N -quadrature rule (that
is exact on P� /. Then the following universal lower bound holds:

(2.4) E.n;N I h/ � N 2

kX
iD1

�i h.˛i /:

Table 1 displays the scaled energy E.n; N I h/=N of all sharp codes, which coincides
with the ULB (2.4) divided by the cardinality N . Namely, the inner products are given



P. Boyvalenkov, P. Dragnev, D. Hardin, E. Saff and M. Stoyanova 610

dim Cardinality Strength Energy (ULB bound)
n N � E.n;N I h/=N

2 N D 2k 2k � 1 h.�1/C 2
Pk�1
jD1 h.cos.2j�=N//

2 N D 2k C 1 2k 2
Pk
jD1 h.cos.2j�=N//

n N � n 1 .N � 1/h.�1=.N � 1//

n nC 1 2 nh.�1=n/

n 2n 3 h.�1/C 2.n � 1/h.0/

3 12 5 h.�1/C 5h.�1=
p
5/C 5h.1=

p
5/

5 16 3 5h.�3=5/C 10h.1=5/

6 27 4 10h.�1=2/C 16h.1=4/

7 56 5 h.�1/C 27h.�1=3/C 27h.1=3/

8 240 7 h.�1/C 56h.�1=2/C 126h.0/C 56h.1=2/

21 112 3 30h.�1=3/C 81h.1=9/

21 162 3 56h.�2=7/C 105h.1=7/

22 100 3 22h.�4=11/C 77h.1=11/

22 275 4 112h.�1=4/C 162h.1=6/

22 891 5 42h.�1=2/C 512h.�1=8/C 336h.1=4/

23 552 5 h.�1/C 275h.�1=5/C 275h.1=5/

23 4600 7 h.�1/C 891h.�1=3/C 2816h.0/C 891h.1=3/

24 196560 11 h.�1/C4600h.�1=2/C47104h.�1=4/C93150h.0/

C47104h.1=4/C 4600h.1=2/

q.q3C1/=.qC1/ .q3C1/.qC1/ 3 q.q2 C 1/h.�1=q/C q4h.1=q2/

q a prime power

Table 1. The energy ULB bound for sharp codes.

by ˛i (the Levenshtein nodes) and the numbers of occurrences of these inner products are
the positive integersN�i (the Levenshtein weights). We note that these spectral parameters
(inner products and number of their occurrences) determine uniquely the sharp codes of
dimension n and cardinality N (see Appendix A in [22], or [4, 21]; the uniqueness of
smaller codes follows from the uniqueness of corresponding strongly regular graphs).
Therefore, we will use the information from Table 1 in order to identify the sharp codes
via their distance distribution as shown by the coefficients in front of the values of the
potential h.

2.5. Strongly regular graphs

Our analysis of the universal minima of the sharp codes will utilize the notion of strongly
regular graphs srg.v; `;�;�/, that is graphs with v vertices, ` edges stemming out of each
vertex, � neighbors to any two adjacent vertices, and � neighbors to any non-adjacent
pair. Our main reference to the properties of these fascinating mathematical structures
will be the recent comprehensive book of Brouwer and Van Maldeghem [19]. The relation
between the strongly regular graphs and sharp codes was described by Cameron, Goethals
and Seidel in [20].
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dim Cardinality Strength Polarization (PULB bound)
n N � h.�C1/ � 0

2 N D 2k 2k � 1 2
Pk
jD1 h.cos..2j � 1/�=N//

2 N D 2kC1 2k h.�1/C 2
Pk
jD1 h.cos.2j�=N//

n N � n 1 Nh.0/

n nC 1 2 h.�1/C nh.1=n/

n 2n 3 nh.�1=
p
n/C nh.1=

p
n/

3� 12 5 4Œ.5=6/h.�
p
3=5/C .4=3/h.0/C .5=6/h.

p
3=5/�

5 16 3 8h.�1=
p
5/C 8h.1=

p
5/

6 27 4 h.�1/C 16h.�1=4/C 10h.1=2/

7 56 5 12h.�1=
p
3/C 32h.0/C 12h.1=

p
3/

8� 240 7 240Œ..6�
p
15/=24/h.�

p
25C5

p
15=10/C..6C

p
15/=24/h.�

p
25�5

p
15=10/

C..6C
p
15/=24/h.

p
25 � 5

p
15=10/C ..6 �

p
15/=24/h.

p
25C 5

p
15=10/�

21 112 3 56h.�1=
p
21/C 56h.1=

p
21/

21 162 3 81h.�1=
p
21/C 81h.1=

p
21/

22 100 3 50h.�1=
p
22/C 50h.1=

p
22/

22 275 4 h.�1/C 162h.�1=6/C 112h.1=4/

22 891 5 162h.�1=
p
8/C 567h.0/C 162h.1=

p
8/

23 552 5 100h.�
p
3=5/C 352h.0/C 100h.

p
3=5/

23 4600 7 275h.�
p
5=5/C 2025h.�

p
5=15/C 2025h.

p
5=15/C 275h.

p
5=5/

24� 196560 11 .1207:983/h.�0:577/C .21794:872/h.�0:349/C .75277:144/h.�0:117//

C.75277:144/h.0:117/C .21794:872/h.0:349/C .1207:983/h.0:577/

q.q3C1/
qC1

�

.q3C1/.qC1/ 3 .q3C1/.qC1/
2

Œh.�
q

1
q3�q2Cq

/C h.
q

1
q3�q2Cq

/�

Table 2. Universal minima for sharp codes, h.�C1/.t/ � 0 case. Codes that do not attain the
PULB (1.10) (the icosahedron, the kissing configurations of E8 and the Leech lattice) are indi-
cated with *.

3. Universal minima for sharp codes: the h.�C1/.t/ � 0 case

In this section, we shall provide a detailed analysis on the relation between our PULB
(1.10) in the case (i) of Theorem 1.4 and the sharp codes in the case T D ¹1; 2; : : : ; �º.

Table 2 lists the parameters of the PULB (1.10) when h.�C1/ � 0, the case (i) of
Theorem 1.4, for the sharp codes C D .n; N; �/. As we shall see in this section, most
sharp codes attain (1.10) with point(s) Qx and distance distributions exactly as shown in
Table 2. Yet there are some notable exceptions, such as the icosahedron, and the kissing
configurations of the E8 lattice and the Leech lattice. Indeed, their coefficients N�i in the
table are non-integer, so they cannot attain (1.10). However, these exceptions serve as a
motivation to develop the framework for an enhanced PULB for T -designs which will be
considered in next sections. We also note that the absolute minima of five non-sharp codes
(symmetrized simplex and its dual in odd dimensions, symmetrized Schlafli, and roots
of E6 and E7 lattices) were found in [7].

We use the data from Table 2 to identify the structure of the sharp codes with respect
to the sought point Qx. Consequently, we are able to present Qx explicitly in all cases under
consideration.
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Regarding the infinite family of sharp codes on the last row of Table 2, we comment
that for q D 2 and q D 3, these are the rows with N D 27 and N D 112. For q a power of
a prime number, a strongly regular graph srg..q3 C 1/.q C 1/; q.q2 C 1/; q � 1; q2 C 1/
exists (see Chapter 3 of [19] and Chapter 9 of [26]). For q D 2m, m � 2 the coefficients
are not integer, and so the first-level bound is not attained. This family, along with the
600-cell, will be considered in detail in a future work.

The following theorem outlines the main result of this section with the specific details
for each code following in separate subsections. More detailed classification of the points
where the universal minima are attained is summarized in Section 6 and Theorem 6.1.

Theorem 3.1. All unmarked sharp codes from Table 2 attain the bound (1.10) when
h.�C1/ � 0, case (i) of Theorem 1.4, with inner products and distance distributions fol-
lowing the data from that table and points Qx as described below.

3.1. Universal minima for N -gons, simplexes, and cross-polytopes

In this subsection, we summarize what is already known in the literature about polariza-
tion of sharp codes, namely that the codes in the first five lines of Table 2 all attain our
PULB (1.10).

The spherical codes for which N � n are considered in Proposition 14.2.1 of [11],
where it is shown that the necessary and sufficient condition for a spherical code to attain
its max-min polarization among all configurations of cardinality N is that the code is a
1-design (see also Example 6.1 in [17]). Since the sharp codes in this case are embedded
simplexes with design strength one, they attain our PULB (1.10).

The max-min polarization optimality of the regular simplex was only recently estab-
lished by Su [41] for the case nD 3 and for general n by Borodachov in [8] (see also [39]).
Using our PULB and PUUB results, an alternative proof was provided in Example 6.2
in [17].

The next class of sharp codes, the cross-polytopes C2n of 2n points on Sn�1, also
attain (1.10). This was shown in [39] for the case of power potentials, and in Example 6.5
of [17] for general potentials satisfying h.�C1/.t/ � 0.

At the end of this subsection, we consider the code from the first two lines of Table 2,
the regular N -gon CN . In this case, the configuration is an optimal max-min polarization
code on the unit circle (see Section 14.3 in [11]). We shall derive this optimality utilizing
our PULB (1.10). Consider when N is even, i.e., N D 2k. In this case, the regular N -gon
is a .2k � 1/-design on the circle S1 and Theorem 1.4, Case (i) with " D 0 holds. The
polynomials P .0;0/

k
.t/ D cos.k arccos t / are the Chebyshev polynomials with nodes ˛i D

cos..2i � 1/�=.2k// and equal weights �i D 1=k, i D 1; : : : ; k. Clearly, a mid-point Qx of
any arc induced by the points ˛i will satisfy the PULB (1.10) with equality; i.e.,

Qh.CN / D Uh. Qx; CN / D

kX
iD1

2h.cos..2i � 1/�=N/ .D Qh.n;N; �//:

The case of odd N is similar.
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3.2. The sharp code .5; 16; 3/

As noted by Cohn–Kumar in [22], the codes in rows 7-9 of Table 2 are obtained as kiss-
ing spherical caps configurations of the codes below them. Namely, fixing a point in the
.8; 240; 7/-code derived from the E8 lattice, the 56 “nearest neighbors” that have the
largest inner product 1=2 (see Table 1) form a scaled version of the .7; 56; 5/-code. Simi-
larly, the 27 “nearest neighbors” of a fixed point on .7; 56; 5/-code form a scaled version
of the .6; 27; 4/-code, and the 16 “nearest neighbors” of a fixed point on .6; 27; 4/-code
form a scaled version of the .5; 16; 3/-code.

Table 1 reveals that if we fix any point in the .5; 16; 3/-code, there are 10 points at
inner product 1=5 and 5 points at an inner product of �3=5 with the fixed point. This
property defines uniquely the code.

Upon inspection of Table 2, we conclude that should C16 WD .5; 16; 3/ attain (1.10),
there has to be a point Qx 2 S4 such that C16 splits into two subsets

A WD ¹aiº
8
iD1 and B WD ¹bj º

8
jD1;

such that Qx � ai D 1=
p
5, for i D 1; : : : ; 8, and Qx � bj D �1=

p
5, for j D 1; : : : ; 8.

Without loss of generality, we may assume Qx D .0; 0; 0; 0; 1/. Define the points ai to
be the eight permutations

A WD
°�
˙

2
p
5
; 0; 0; 0;

1
p
5

�±
D ¹aiº

8
iD1;

where the last coordinate stays fixed and the other non-zero coordinate switches positions.
We next define the points

B WD
°�
˙

1
p
5

,˙
1
p
5

,˙
1
p
5

,˙
1
p
5

,�
1
p
5

�±
D ¹biº

8
iD1;

where the number of negative signs is even. Obviously, Qx � ai D 1=
p
5 D �Qx � bi , i.e., the

point Qx has the required properties.
We next verify that the constructed code has the same inner product distribution asC16.

Fix a1 D .2=
p
5; 0; 0; 0; 1=

p
5/. Then a1 � ai takes the values �3=5 and 1=5 of multiplic-

ities 1 and 6, respectively. Similarly, we can compute a1 � bj , which takes the values �3=5
and 1=5 of multiplicities 4 and 4, respectively. Thus, the total inner product distribution is
the same. The symmetry implies that the same is true for all points in the code.

3.3. The sharp codes .6; 27; 4/ and .22; 275; 4/

In these cases, the determination of Qx is straightforward. Table 1 reveals that a fixed point y
in .6; 27; 4/ has inner products with the other points in the code �1=2 and 1=4 with mul-
tiplicity 10 and 16, respectively. Then the antipodal point Qx D �y has the required inner
products with matching multiplicity for the quadrature rule from Table 2. The same argu-
ment applies to the second code .22; 275; 4/. We note that both codes are strongly sharp
and not antipodal.
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3.4. The sharp code .7; 56; 5/ – equiangular lines

This code is obtained as the intersection of a famous set of 28 equiangular lines in R7 with
the unit sphere S6 (see Chapter 11 of [29]). In this case, our considerations go along the
lines of Section 3.2. Let us select a point Qx D .0; 0; 0; 0; 0; 0; 1/. Referring to Table 2, we
seek to split C56 WD .7; 56; 5/ into three subsets

C56 D A [E [ B;

where A and B will have altitude (last coordinate) 1=
p
3 and �1=

p
3, respectively, and

cardinalities jAj D jBj D 12, and where the set E is on the Equator (last coordinate 0)
and jEj D 32. LetA andB be scaled down cross-polytopes at altitudes 1=

p
3 and�1=

p
3,

namely consider the twelve possible permutations for each of the sets (last coordinate
fixed)

A WD
°�
˙

r
2

3
; 0; 0; 0; 0; 0;

1
p
3

�±
D ¹aiº

12
iD1;

B WD
°�
˙

r
2

3
; 0; 0; 0; 0; 0;�

1
p
3

�±
D ¹bj º

12
jD1:

Define the set E to consist of the 32 permutations of the type

E WD
°�
˙

1
p
6

,˙
1
p
6

,˙
1
p
6

,˙
1
p
6

,˙
1
p
6

,˙
1
p
6
; 0
�±
D ¹e`º

32
`D1;

where we either have all positive (1) or all negative (1) signs, or two negative (15) or four
negative (15) signs. Fix

a1 WD .
p
2=3; 0; 0; 0; 0; 0;

p
1=3/:

Then
• a1 � ai has values �1, �1=3 and 1=3 of multiplicities 0, 1 and 10, respectively;
• a1 � bj has values �1, �1=3 and 1=3 of multiplicities 1, 10, and 1, respectively;
• a1 � e` has values �1, �1=3 and 1=3 of multiplicities 0, 16, and 16, respectively.

Thus I.a1;C56/D ¹�1;�1=3;1=3ºwith multiplicities 1;27;27, respectively. It is sim-
ilarly straightforward to see that all other points of C have the same distance distribution,
so the uniqueness implies that this sharp code also attains the PULB bound (1.10).

3.5. The sharp code .22; 100; 3/ from the binary Golay code and the Higman–Sims
graph

The next sharp code has a remarkable connection to the Higman–Sims graph discov-
ered by Dale Mesner in 1956, see [38], and re-discovered in a different setting by Hig-
man and Sims in 1968, see [31] (see Figure 1). This is a unique strongly regular graph
srg.100; 22; 0; 6/ with 100 vertices and 1100 edges, [19]. Each vertex has degree 22.
Any two adjacent vertices share no common neighbor (triangle-free graph), and any two
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non-adjacent vertices have exactly 6 common neighbors. We shall explicitly construct
the C100 WD .22; 100; 3/ code and find all points Qx 2 S21 whose inner products to half
the points of the code are �1=

p
22 and to the other half are 1=

p
22, exactly as the row

of C100 in Table 2 suggests.
The description of the construction of C100 starts with the binary Golay code C23,

“probably the most important of all codes, for both practical and theoretical reasons”,
see [36]. We describe the necessary properties of the Golay codes following the book [36]
(see Chapter 2 and Section 2.6 in Chapter 20). The code C23 is linear (i.e., a subspace
of ¹0; 1º23), has length 23, dimension 12 (i.e., cardinality 212 D 4096) and minimum
distance 7 (i.e., every two distinct codewords differ in at least 7 positions), see Theorems 6
and 7 in [36]. The number of the codewords of minimum weight (i.e., the codewords with
exactly 7 ones) is 253.

Figure 1. The Higman–Sims graph (By Claudio Rocchini. Own work, CC BY 3.0, httpsW//commons.
wikimedia.org/w/index.php?curid=4242731).

The starting point of our construction will be the 253 binary codewords of length 23
from C23 that have weight 7. There are 77 out of these 253 that start with 1. Fix these 77
binary codewords and eliminate their first digit 1. Therefore, we are left with 77 binary
words ˛i , i D 1; : : : ; 77, of length 22 and weight 6, a set we denote by A. Moreover, any
two distinct words from A may intersect in common ones at 0 or 2 positions only. We
remark that the remaining 253 � 77 D 176 points of minimum weight in C23 still have to
play important roles – they will define the 2 � 176D 352 points on S21, where the extrema
of the polarization is attained.

After this preparation, we are ready to explicitly describe the construction of the spher-
ical code C100. Let us fix a point c 2 C100. Table 1 reveals that we need to find 77 points
A WD ¹aiº

77
iD1 in C100 that have inner product 1=11, and 22 points B WD ¹bj º22jD1 that have

inner product �4=11, i.e., c � ai D 1=11, i D 1; : : : ; 77 and c � bj D�4=11, j D 1; : : : ; 22.
Consider the points of C100 as vertices of a graph and adjoin two vertices with an edge
when the inner product between the corresponding points is �4=11. Now the construction
of C100 will follow closely the 1C 22C 77 construction of the Higman–Sims graph [19].

https://commons.wikimedia.org/w/index.php?curid=4242731
https://commons.wikimedia.org/w/index.php?curid=4242731
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We now determine the set A � S21 by substituting 1’s and 0’s in ˛i with x and y
to form the two letter 22-length words ai . We require that the inner product between ai
and aj be �4=11 when they have no intersection, and 1=11 when they intersect at two
positions. Thus, we obtain the following system:

(3.1)
²

12xy C 10y2 D �4=11;

2x2 C 8xy C 12y2 D 1=11

(observe that 6x2 C 16y2 D 1, so ai 2 S21). Solving the system (3.1), we obtain

x D
8
p
5 � 1

11
p
22
� 0:32733 and y D �

3
p
5C 1

11
p
22
� �0:1494:

We next construct the points of B to be 22-length words over the alphabet ¹z; uº with
exactly one z and 21 u’s. Requiring the inner product among points of B to be 1=11 and
that they lie on S21 leads to the system

(3.2)
²
2zuC 20u2 D 1=11;

z2 C 21u2 D 1;

with solution

z D
4 � 21

p
5

11
p
22

and u D
4C
p
5

11
p
22
�

We finally let

c WD
�
�

1
p
22

, �
1
p
22

, � � � , �
1
p
22

�
2 S21:

A straightforward verification yields that the constructed code C100 has the same dis-
tance distribution as the unique .22; 100; 5/ sharp code (cf. the data in Table 1).

We next construct the points of extremal polarization. For this purpose, we consider the
176D 253� 77 words of weight 7 from C23 beginning with 0 and erase that 0. We denote
the set of the remaining 22-length binary codewords of weight 7 as B. These codewords
are used to split the Higman–Sims graph into two copies (1C 7C 42 and 15C 35) of the
Hoffman–Singleton graph (see [18, 32]) as follows. Given a fixed codeword of B, form
Qx 2 S21 that has 7 a’s at the positions of the 7 ones and 15 b’s at the positions of the 15
zeros. Let C1 be the set of 50 D 1C 7C 42 points of C that include the point c, the 7
points in B that have z in common position with an a from Qx, and the 42 points of A that
have one x and a in common position. Then the set C2 of 50 D 15C 35 points is made
of the other 15 points from B and the 35 points from A that have three x’s and a’s in
common positions.

Utilizing the conditions that Qx � c D �1=
p
22 and Qx 2 S21, we get the system²

7aC 15b D 1;

7a2 C 15b2 D 1;

which yields that

a D
5C 15

p
5

110
and b D

5 � 7
p
5

110
�
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We verify directly the following inner product equalities:

a.x C 6y/C b.5x C 10y/ D �
1
p
22

, a.3x C 4y/C b.3x C 12y/ D
1
p
22

,

and
a.z C 6u/C 15bu D �

1
p
22

, 7auC b.z C 14u/ D
1
p
22
�

This implies that the sharp code C100 D .22; 100; 3/ attains the PULB (1.10).

3.6. The sharp code .22; 275; 4/ and the MacLaughlin graph

Even though we already have determined in Subsection 3.3 that the sharp code C275 WD
.22; 275; 4/ attains the PULB (1.10), we shall explicitly construct this code, as it will
facilitate our analysis of the sharp codes .21; 112; 3/, .21; 162; 3/, and .23; 552; 5/.

This construction is based on the MacLaughlin graph, see [37], a strongly regular
graph srg.275; 112; 30; 56/, with 275 vertices and 15; 400 edges (see Figure 2). Each
vertex has degree 112, any two adjacent vertices share 30 common neighbors, and any two
non-adjacent vertices have exactly 56 common neighbors. The complementary graph is
also a strongly regular graph srg.275;162;105;81/with degree of the vertices 162, adjoint
vertices sharing 105 common neighbors, while disjoint vertices sharing 81 neighbors [19].
We shall explicitly construct the C275 sharp code and find all points Qx 2 S21 whose inner
products and frequency match the PULB data in Table 2.

Figure 2. The McLaughlin graph (By Claudio Rocchini. Own work, CC BY-SA 3.0, httpsW//
commons.wikimedia.org/w/index.php?curid=10840948).

Our starting point is again the 253 binary codewords of length 23 from the Golay
code C23, that have weight 7, which we shall call blocks. Denote the collection of 77
codewords that end with 1 in the 23-rd position with A, and the 176 codewords that end
in 0 with B . Introduce the collection

P WD ¹Œ1; 0; : : : ; 0�; Œ0; 1; : : : ; 0�; : : : ; Œ0; 0; : : : ; 1�º

https://commons.wikimedia.org/w/index.php?curid=10840948
https://commons.wikimedia.org/w/index.php?curid=10840948
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of 23 additional codewords of length 23, which we call points. The combined 253C 22C
1D 276 codewords of points and blocks will be regarded as vertices of a graph. A point pi
and a block bj will be adjacent if they do not share a 1 on the same position, or bj Œi � D 0.
Two blocks may share 1’s in only one or three positions (recall that the octads of C23
intersect in zero, two or four positions, and we eliminated a column of 1’s), they will be
adjacent when they share 1 in one position only.

Let us fix the vertex (point) p23. It will be connected with the 176 blocks in B , and to
no other vertices in P or A. Any other vertex in P is connected to 120 vertices in B , to
no vertices in P , and to 56 vertices in A. Any vertex in A is adjacent to 96 vertices in B ,
to 16 vertices in P , and to 16 in A. Finally, any vertex in B is adjacent to p23, to 70 other
vertices in B , to 15 vertices in P , and to 42 vertices in A.

We next apply an operation switch on the neighboring vertices of p23, which erases
any edge between a neighbor and non-neighbor of p23 and creates an edge between a
neighbor and non-neighbor of p23 when there is none. So, all edges stemming fromB toA
andP are erased, and all non-edges fromB toA andP become edges. Thus, p23 becomes
isolated. As such, we are going to eliminate the last column and obtain codewords of
length 22, which we continue to refer as points and blocks in P , A, and B having 22, 77,
and 176 elements, respectively. We summarize the adjacency rules:

(1) A point p 2 P is adjacent to a block a 2 A if they do not share a 1 on the same
position (56 such occurrences), and is non-adjacent when they do. Points in P are
disjoint. A point p 2 P is adjacent to a block b 2 B , if they share a 1 on the same
position (56 such occurrences), and non-adjacent when they do not.

(2) A block a 2 A is adjacent to another block in a0 2 A if there are no 1’s on the same
positions (16 such occurrences), and non-adjacent when the two blocks share 1’s in
exactly two positions. A block a 2 A is adjacent to a point p 2 P if no 1’s are shared
in the same position (16 such occurrences). A block a 2 A is adjacent to a block
b 2 B if exactly three 1’s have shared positions, and non-adjacent when only one 1
is being shared in the same position (80 such occurrences);

(3) A block b 2 B is adjacent to another block in b0 2 B if there is exactly one 1 in
a shared position (70 such occurrences), and non-adjacent when the two blocks
share 1’s in exactly three positions. A block b 2 B is adjacent to a point p 2 P
if one 1 shares the same position (7 such occurrences). A block b 2 B is adjacent to
a block a 2 A if exactly three 1’s have shared positions, and non-adjacent when only
one 1 is being shared in the same position (35 such occurrences).

Observe that the total number of edges for each vertex is 112.
We next construct the code C275 using the MacLaughlin graph structure as described

above. Let x, y, z, u, a and b be real variables in Œ�1; 1�. We shall convert 22-length
codewords to points on S21 as follows. Vertices in P will convert to points with one
coordinate z for 1 and 21 coordinates u for 0, vertices in A to points with six x’s for 1’s
and 16 y’s for 0, and vertices in B to points with seven a’s for 1 and 15 b’s for 0. We shall
require the inner product between two corresponding points in the code C275 to be �1=4
when the corresponding vertices are adjacent, and 1=6 otherwise.



Universal minima of discrete potentials for sharp spherical codes 619

The inner products conditions for adjacent and non-adjacent points corresponding to
vertices in A yield a system similar to (3.1),²

12xy C 10y2 D �1=4;

2x2 C 8xy C 12y2 D 1=6;

that has four solutions. We select the one that works for the other inner products:

(3.3) x D
2
p
30

33
�

p
2

22
� 0:26767 and y D �

p
30

44
�

p
2

22
� �0:18876:

For z and u, we get a system similar to (3.2):²
2zuC 20u2 D 1=6;

z2 C 21u2 D 1;

with a solution

(3.4) z D
3
p
2

44
C
7
p
30

44
� 0:96780 and u D

3
p
2

44
�

p
30

132
� 0:05492:

Finally, inner products conditions for adjacent and non-adjacent points corresponding to
vertices in B yield ²

a2 C 12ab C 9b2 D �1=4;

3a2 C 8ab C 11b2 D 1=6;

with solution

(3.5) a D �
5
p
30

88
C

p
2

88
� �0:29513 and b D

7
p
30

264
C

p
2

88
� 0:16130:

Utilizing the adjacency rules and the values from (3.3), (3.4) and (3.5), we verify
directly that the inner products of a point p 2 P with points in A and B are, respectively,

zy C 6ux C 15uy D �
1

4
, zx C 5ux C 16uy D

1

6
,

zaC 6uaC 15ub D �
1

4
, zb C 7uaC 14ub D

1

6
�

Similarly, we verify the inner products between points in A and B:

3xaC 4yaC 3xb C 12yb D �
1

4
, xaC 5xb C 6yaC 10yb D

1

6
,

and the unit norm conditions

6x2 C 16y2 D 1 and 7a2 C 15b2 D 1:

The frequency of the corresponding inner products from a fixed point in C275 of 162
inner products of 1=6 and 112 inner products of �1=4 follows from the property of the
MacLaughlin graph and the itemized adjacency rules above.

We have also directly verified that for any fixed point w 2 C275, the inner products of
the point �w to the points of the code satisfy the conditions of Theorem 1.4, so the code
.22; 275; 4/ attains the bound (1.10).



P. Boyvalenkov, P. Dragnev, D. Hardin, E. Saff and M. Stoyanova 620

3.7. The sharp codes .21; 112; 3/ and .21; 162; 3/ – first and second subconstituent
of the MacLaughlin graph

The next two codes are derived from .22; 275; 4/ in the context discussed by Delsarte,
Goethals, and Seidel in Section 8 of [24] (see also [20]). Let us fix a point, say p22
in the subsection above, and use orthogonal transformation that sends p22 in p275 WD
.0; 0; : : : ; 0; 1/ 2 S21. Then there are two derived codes, when " D 1=6 and " D �1=4,
denoted with A and B , respectively, with jAj D 162 and jBj D 112. The first config-
uration A leads to a code C162 WD .21; 162; 3/, a sharp code with 162 points, inner
products �2=7 and 1=7, that is a 3-design. It is related to the second subconstituent of
the MacLaughlin graph, a strongly regular graph srg.162; 56; 10; 24/ with vertices the
points in the code and adjacency rule when the inner product is �2=7.

The second configuration B leads to a code C112 WD .21; 112; 3/, one of the infinite
family of sharp codes (the last row of Table 2), coming from combinatorial configurations
called generalized quadrangles (see, e.g., [20] and references therein). Recall that this is
a family of spherical 3-designs in dimensions n D q.q3 C 1/=.q C 1/, with cardinalities
N D .q C 1/.q3 C 1/ and inner products �1=q and 1=q2, where q is a power of a prime
number. The sharp code C112 is obtained when qD 3, with nD 21,N D 112 and the inner
products are �1=3 and 1=9. It is related to the first subconstituent of the MacLaughlin
graph, a strongly regular graph srg.112; 30; 2; 10/ with vertices the points in the code and
adjacency rule when the inner product is �1=3.

We first focus on C162. The points of A are contained in an affine hyperplane orthog-
onal to p275, at distance d D 1=6 to the origin, and with radius of the circumscribed
hypersphere determined by A being R D

p
35=6. Let e denote the center of mass of A.

We fix any point b 2 B . As the complementary to the MacLaughlin graph is strongly
regular srg.275; 162; 105; 81/, the non-adjacent vertices p275 and b have exactly 81 com-
mon neighbors inA, say a1; : : : ;a81. Let g be the center of mass of these 81 points. Denote
the rest of the points inAwith a82; : : : ;a162. As we have already constructedC275, a direct
verification shows that

.g � e/ � .ai � e/

kg � ekR
D

1
p
21

, for i D 1; : : : ; 81;

.g � e/ � .aj � e/

kg � ekR
D �

1
p
21

, for j D 82; : : : ; 162:

Therefore, the point Qx WD .g � e/=kg � ek, as well as its antipode � Qx, satisfy that the
PULB (1.10) is attained by the sharp code C162. For each b, we have a different split, and
since the second subconstituent of the MacLaughlin graph has 112 such splits, these are
all of the minima.

The optimality of C112 with respect to (1.10) is obtained similarly, this time using that
two non-adjacent vertices in sqr.275; 112; 30; 56/ have 56 common neighbors.

3.8. The sharp code .23; 552; 5/ – equiangular lines

Like .7; 56; 5/, the sharp code C552 WD .23; 552; 5/ is obtained by taking 276 equiangular
lines in R23 intersecting the unit sphere S22. Along with the icosahedron, these are the
only configurations known to attain the absolute bound (see [24] and Chapter 11 of [29]).
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Since the .22; 275; 4/ (MacLaughlin) code is derived from C552, we can recover C552
from the points of C275 D ¹x1; x2; : : : ; x275º as follows. Let �0 WD .0; : : : ; 0; 1/ 2 S22

be one of the points of C552. Then the closest 275 points will be �i WD .xi 2
p
6=5; 1=5/,

i D 1; : : : ; 275, where the first 22 are coming from P , the next 77 from A, and the last 176
from B in Section 3.6. The other 276 points are antipodal to the already present points,
namely �iC275 D ��i , i D 1; : : : ; 275 and �551 D .0; : : : ; 0;�1/ D ��0.

Select Qx WD .1=5; : : : ; 1=5;�
p
3=5/ 2 S22. Using (3.4), we compute

Qx � �i D
2
p
6.z C 21u/

25
�

p
3

25
D

p
3

5
, for i D 1; : : : ; 22:

Similarly, from (3.3) we get

Qx � �i D
2
p
6.6x C 15y/

25
�

p
3

25
D �

p
3

5
, for i D 23; : : : ; 99:

Utilizing (3.5), we obtain

Qx � �i D
2
p
6.7aC 15b/

25
�

p
3

25
D 0; for i D 100; : : : ; 275:

Along with Qx � �0 D �
p
3=5, and the antipodallity of the code, we obtain that there are

100 points whose inner product with Qx is �
p
3=5, 352 whose inner product is 0, and 100

with
p
3=5, so C552 with Qx attains the PULB bound (1.10).

For the next two codes, .23; 4600; 7/ and .22; 891; 5/, we find it easier to determine Qx
as they are embedded in S23.

3.9. The sharp code .23; 4600; 7/ and the Leech lattice

Our next sharp code, C4600 WD .23; 4600; 5/, is a kissing configuration arising from the
Leech lattice sharp code CL WD .24; 196560; 11/.

We first describe CL as the code of 196560 minimal vectors in the Leech lattice
normalized on S23 using the extended binary Golay code C23 of length 24 and cardi-
nality 4096. In CL, we have
(a) 22 �

�
24
2

�
D 1104 points of type 1:

1
p
32
Œ.˙4/2; 022�I

(b) 24 � 4096 D 98304 points of type 2:

1
p
32
Œ.�3/1; .˙1/23�;

where the upper signs follow the 1’s in C23;
(c) 27 � 759 D 97152 points of type 3:

1
p
32
Œ.˙2/8; 016�;

where for every one of the 759 octads in C23 we place ˙2 with even number of
negative signs.
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We now fix one of the points in CL, namely

a WD
1
p
32
Œ4; 4; 0; : : : ; 0�:

The 4600 points X WD ¹xiº4600iD1 � CL, that have inner product a � xi D 1=2, are:
(1) 88 points of the type 1, namely

1
p
32
Œ4; 0; .˙4/1; 021� and

1
p
32
Œ0; 4; .˙4/1; 021�I

(2) 25 � 77 D 2464 points of type 2, namely

1
p
32
Œ2; 2; .˙2/6; 016�;

where in the 77 octads having 1 as first and second coordinates we place 2, and the
other six have˙2 with even number of negative signs;

(3) 2 � 210 D 2048 points of the type 3, namely

1
p
32
Œ3; 1; .˙1/22� and

1
p
32
Œ1; 3; .˙1/22�;

with signs chosen to follow the codewords in C23 starting with Œ1;0; : : : � or Œ0;1; : : : �.
Note that the centroid of X is mX WD .1=

p
32/Œ2; 2; 0; : : : ; 0� and that it is a center of

a hypersphere of radius r D
p
3=2 that circumscribes X . We can then express

C4600 D
®
yi WD 2.xi �mX /=

p
3
¯4600
iD1
� S23:

The PULB quadrature data from Table 2 suggests a sub-configuration Y in X of 275
points. Considering the structure of the McLaughlin graph and the .22; 275; 4/ code
described in Section 3.6, we select the following 22 C 77 C 176 construction of the
McLaughlin graph-type sub-configuration Y . Let

P WD
° 1
p
24
Œ�2; 2; .C4/1; 021�

±
; A WD

° 1
p
24
Œ0; 0; .C2/6; 016�

±
;

B WD
° 1
p
24
Œ�1; 1; .�1/7; .C1/15�

±
;

where jP j D 22, jAj D 77 and jBj D 176 (in B , we select �1 for 1 in the 176 binary
words of the Golay code C23 of length 23 that have weight 7 and start with 0).

We determine that the center of mass of Y is

mY D
1
p
24

h
�
4

5
, 4
5

, 2
5

, . . . , 2
5

i
2 R24:

Indeed, the first coordinate is .22 � .�2/C 77 � 0C 176 � .�1//=.275
p
24/ D �4=5

p
24,

and the second is found similarly. For the rest of the coordinates, we utilize the itemized
rule 1 in Section 3.6 to compute that they all will be equal to .4C 21 � 2C 56 � 0C 120 �
1C 56 � .�1//=.275

p
24/ D 2=5

p
24. Note that kmY k D 1=

p
5. Define

Qx WD
1
p
30
Œ�2; 2; 1; : : : ; 1� 2 S23:
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We evaluate the inner product with points of type 1,

Qx �
1
p
24
Œ�2; 2; .C4/1; 021� D

1
p
5

, Qx �
1
p
24
Œ�2; 2; .�4/1; 021� D

1

3
p
5
I

with points of type 2,

Qx �
1
p
24
Œ0; 0; .˙2/6; 016� D

°
˙

1
p
5

, ˙
1

3
p
5

±
I

and with points of type 3 (note that the �1’s in the last 22 coordinates could be 7, 11,
or 15):

Qx �
1
p
24
Œ˙1;�1; .˙1/22� D

°
˙

1
p
5

, ˙
1

3
p
5

±
:

We directly verify the frequencies of 275 and 2025. Alternatively, the uniqueness of
the quadrature rule implies the frequencies of the corresponding inner products. Conse-
quently, the code C4600 with Qx attains the PULB (1.10).

3.10. The sharp code .22; 891; 5/

We describe the last sharp code in this analysis, C891 WD .22; 891; 5/, as derived of C4600.
We fix a point

b WD
1
p
24
Œ�2; 2; 4; 0; : : : ; 0� 2 C4600;

and determine the setZ WD ¹ziº891iD1 of 891 points from C4600 that are closest to b, namely
that b � zi D 1=3. There are:
(a) 43 type 1 points, including the 42 points

1
p
24
Œ�2; 2; 0; .˙4/1; 020�

and the point .1=
p
24/Œ2;�2; 4; 0; : : : ; 0�;

(b) 24 � 21 D 336 type 2 points,

1
p
24
Œ0; 0; 2; .˙2/5; 016�

(where there are even number of �2’s);
(c) and 29 D 512 type 3 points,

1
p
24
Œ�1; 1; 1; .˙1/21�:

The center of mass of Z is

mZ D
1

3
b D

1

3
p
24
Œ�2; 2; 4; 0; : : : ; 0� 2 R24:

As b is also an element of the McLaughlin graph-type code Y constructed in Sec-
tion 3.9, its second subconstituent U with cardinality jU j D 162 (see Section 3.7) will be a
subset ofZ. The code U will contain 21 points .1=

p
24/Œ�2; 2; 0; .C4/1; 020� from P , 21

points .1=
p
24/Œ0; 0; 2; .C2/5; 016� fromA, and 120 points .1=

p
24/Œ�1; 1; 1; .�1/7; 114�.
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We compute the coordinates of the centroid of U to be

mU D
1

3
p
24
Œ�3; 3; 3; 1; : : : ; 1� 2 R24:

The calculation of the first three coordinates is obvious. For the evaluation of the other
coordinates, we observe that among the 21 words in A that share 2 as a third coordinate,
there are exactly 5 words that will share 2 in any subsequent coordinate, and for any such
coordinate, there are 40 words with �1 and 80 words with 1.

We now consider the hypersphere with centermZ and radius r D 2
p
2=3 that circum-

scribes Z. As in Section 3.9, we express

C891 D
®
vi WD 3.zi �mZ/=2

p
2
¯
� S23;

and we select

Qx WD
mU �mZ

kmU �mZk
D

1
p
24
Œ�1; 1;�1; 1; : : : ; 1� 2 S23:

Evaluating the inner products of Qx with the points in C891, we observe that I. Qx; C891/ D
¹�1=3; 0; 1=3º, which coupled with the uniqueness of the quadrature rule shows that the
frequencies of these inner products will be 162, 567, and 162, respectively (we have also
verified it directly). As a conclusion, the sharp code C891 with the so chosen point Qx
attains (1.10).

4. Max-min polarization of T -designs

In this section, we develop the framework for deriving enhanced, second-level PULB.
This will allow us to find the universal minima for the remaining sharp codes listed in
Table 2, except for the infinite family to be considered in a subsequent manuscript, along
with the 600-cell.

4.1. Spherical T -designs

The following fundamental lemma sheds light on the relation between the moments (1.1),
the spherical harmonics, and the discrete potentials for Gegenbauer polynomials.

Lemma 4.1 (see, e.g., Lemma 5.2.2 in [11], and [13]). Let C � Sn�1 and let k be a
positive integer. Let Hn

k
be the subspace of spherical harmonics of degree k 2 N and let

Z.n; k/ denote the dimension of this subspace. Then the following are equivalent:
(a) The moment M n

k
.C / D 0.

(b) For any orthogonal basis ¹Ykj .x/º
Z.n;k/
jD1 of Hn

k
,X

x2C

Yk;j .x/ D 0; 1 � j � Z.n; k/:

(c) For any x 2 Sn�1, X
y2C

P
.n/

k
.x � y/ D 0:
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The next characterization of spherical T -designs follows immediately from Lemma 4.1.

Proposition 4.2. Let T � N be a nonempty index set. Then C � Sn�1 is a spherical
T -design if and only if (1.7) holds for all f 2 PT .

We will use this property to derive enhanced PULBs.

Definition 4.3. Let T � N be an index set and let h be a potential function. Denote by
L.n; T; h/ the class of lower admissible polynomials f .t/ such that

(a) f 2 PT ;
(b) f .t/ � h.t/ for every t 2 Œ�1; 1�.

Utilizing this definition and Proposition 4.2, we derive the following Delsarte–Yudin
type lower bound on the polarization potential of h.t/.

Proposition 4.4. Let h.t/ be a potential function, let T � N be an index set, and let f 2
L.n;T;h/ be a lower admissible polynomial. Then for all spherical T -designs C � Sn�1,
the following lower bound holds:

Uh.x; C / � Uf .x; C / D f0 jC j; x 2 Sn�1:

Consequently,

(4.1) Qh.C / � max
f2L.n;T;h/

¹f0jC jº:

Proof. This is immediate from Definition 1.2, Definition 4.3 and Proposition 4.2.

The following corollary is an immediate consequence of (4.1).

Corollary 4.5. Let T � N be an index set and suppose that the collection of spherical
T -designs C � Sn�1 of cardinality jC j D N is non-empty. Then

Qh.n;N; T / � N max
f2L.n;T;h/

f0:

This gives rise to the following linear program:

given: n; T; h;

maximize: f0;(4.2)
subject to: f 2 L.n; T; h/:

4.2. PULB-spaces

In [17], we were able to solve this linear program explicitly in the important case of spheri-
cal � -designs, i.e., T D¹1; : : : ; �º, for certain classes of potentials, leading to Theorem 1.4.
Gauss–Jacobi quadrature formulas play an essential role in the solution.

Thus, the main ingredients in our approach to the program (4.2) will be the existence
of an appropriate quadrature rule exact on PT and an interpolation polynomial from PT
staying below the potential h. In the case of spherical � -designs, the featured existence
on P� is guaranteed by the classical Gauss–Jacobi quadratures and the Hermite interpola-
tion polynomials.
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In Section 3, we showed that most known sharp codes attain the bound (1.10) for
potentials h such that h.�C1/ � 0. Yet, there are notable exceptions, such as the icosa-
hedron and the kissing configurations of E8 and the Leech lattice that do not attain this
first level PULB (1.10). However, we will show that they attain an enhanced PULB for
properly chosen index set T � ¹1; : : : ; �º.

Our framework for deriving an enhanced PULB on PT � P� will follow a similar
approach as the one for potential energy ULB in [16]. We start with the concept of a
PULB-space.

Definition 4.6. Let n � 2 be a positive integer and T � N an index set. A space PT
is a PULB-space for dimension n associated with the index set T if the following two
conditions hold:

(i) there exists a quadrature rule with nodes in Œ�1; 1� and positive weights that is exact
on PT ,

(ii) for any absolutely monotone function h, there exists some f 2L.n;T;h/ that agrees
with h at the nodes of the quadrature rule from (i).

It follows from Theorem 1.4 that P� is a PULB-space for the set T D ¹1; 2; : : : ; �º.
Although the index set can be infinite (e.g., for antipodal codes), we will consider only
finite T in this paper.

When PT is a PULB-space, then we may solve the linear program (4.2).

Theorem 4.7. Suppose for some T � N that PT is a PULB-space for dimension n with
quadrature rule given by nodes ¹˛iº`iD1 and weights ¹�iº`iD1. For any potential h abso-
lutely monotone on Œ�1; 1�, we have

(4.3) max
f2L.n;T;h/

f0 D
X̀
iD1

�i h.˛i /:

Proof. Let h be absolutely monotone on Œ�1; 1� and let f 2 L.n; T; h/. Then,

f0 D
X̀
iD1

�if .˛i / �
X̀
iD1

�i h.˛i /:

On the other hand, choosing f 2 L.n; T; h/ that agrees with h at the nodes ¹˛iº`iD1
shows (4.3).

Theorem 4.8. Suppose PT is a PULB-space for dimension n with (unique) quadrature
rule given by nodes ¹˛iº`iD1 and weights ¹�iº`iD1, and let ˛` D maxi ˛i . Furthermore,
suppose C � Sn�1 is a spherical T -design that attains the PULB

(4.4) Qh.C / D
X̀
iD1

�i h.˛i /:

Then y 2 Sn�1 is a minimum point of Uh.�; C / (i.e., Uh.y; C / D Qh.C // if and only
if the collection of inner products I.y; C / coincides with ¹˛iº`iD1, and the frequencies of
these inner products are ¹N�iº`iD1. Furthermore, if y is a minimum point of Uh.�; C /,
then:
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(i) y is a furthest point in Sn�1 from C ; i.e., d.y; C / D maxx2Sn�1 d.x; C /, where
d.x; C / WD minz2C kx � zk.

(ii) The subsets Cy;˛i WD ¹z 2 C W z � y D ˛iº have centroids 1
N�i

P
z2Cy;˛i

z D ˛iy,
i D 1; : : : ; `.

(iii) The convex hull of Cy;˛` forms a facet of the convex hull of C (and henceN�` � n/.

Proof. (i) Suppose to the contrary that d.y; C / < d.x; C / for some x 2 Sn�1. For the
(absolutely monotone) Riesz potentials hm.t/ WD .2� 2t/�m=2 with parameterm > 0, we
have

N

d.x; C /m
�

X
z2C

hm.x � z/ � N
X̀
iD1

�ihm.˛i / �
N�`

d.y; C /m
�

Taking an m-th root and letting m!1, we derive a contradiction.
(ii) We first prove the statement when i D `. As a global minimum, y is also a local

minimum of Uhm.x; C / on Sn�1, so the gradient is a constant multiple of y, i.e.,

rUhm.y; C / D
X
x2C

2y � 2x

ky � xkmC2
D Cmy:

To find the constant Cm, we take a dot product with y and use that kx � yk2 D 2� 2x � y
for any two vectors on the unit sphere to conclude that

Cm D
X
x2C

1

ky � xkm
�

Thus, we derive that

(4.5)

X
x2Cy;˛`

2y � 2x

d.y; C /2
C

X
x2CnCy;˛`

.2y � 2x/ d.y; C /m

ky � xkmC2

D .N�`/y C
X

x2CnCy;˛`

d.y; C /m

ky � xkm
y:

As we let m!1, the second terms on both sides approach zero, and we arrive at the
formula

1

N�`

X
x2Cy;˛`

x D
�
1 �

d.y; C /2

2

�
y D ˛`y:

This shows the statement for i D `. Applying this equation to (4.5), we getX
x2CnCy;˛`

.2y � 2x/ d.y; C /m

ky � xkmC2
D

X
x2CnCy;˛`

d.y; C /m

ky � xkm
y;

and after dividing both sides by d.y; C /m, we can apply similar arguments to conclude
the validity for all i D 1; : : : ; `.

(iii) This assertion follows from Lemma 1 in [14].
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We shall use the Riesz potentials hm introduced in the proof above in the following
corollary.

Corollary 4.9. If PT is a PULB-space for dimension n, then the corresponding quadra-
ture rule from Definition 4.6 is unique.

Proof. Suppose there are two quadrature rules with nodes ¹˛iº`iD1 and ¹˛0iº
`0

iD1 (labeled in
increasing order), and weights ¹�iº`iD1 and ¹�0iº

`0

iD1, respectively. Then (4.3) implies that
for any absolutely monotone h, we have

(4.6)
X̀
iD1

�i h.˛i / D

`0X
iD1

�0i h.˛
0
i /:

We first prove that ˛` D ˛0` and �` D �0`. If ˛` 6D ˛0`, without loss of generality we may
assume ˛` < ˛0`. Using h.t/ D hm.t/ in (4.6), we get

(4.7)
X̀
iD1

�i .2 � 2˛i /
�m=2

D

`0X
iD1

�0i .2 � 2˛
0
i /
�m=2:

Multiplying by .2 � 2˛0
`
/m=2 the equation (4.7) and letting m!C1, we derive �0

`
D 0,

which is a contradiction with the assumption that the weights are positive. If ˛` D ˛0
`
,

the same process will yield that �` D �0`. Once we establish that ˛` D ˛0` and �` D �0`,
we can cancel the corresponding terms in (4.7) and proceed analogously to deduce the
uniqueness.

4.3. Quadrature rule on PT

We now extend the Gauss–Jacobi quadrature on P� to a larger subspace of polynomials.
Motivated by the cases of sharp codes for which the PULB is not attained, we shall con-
sider � -designs for odd � D 2k � 1 that have additional zero moments of higher order.
Recall that for any integer k the Gauss–Jacobi quadrature ruleZ 1

�1

f .t/ d�n.t/ D

kX
iD1

�if .˛i /

holds true for all f 2 P2k�1. Here the nodes ¹˛iº, i D 1; : : : ; k; are the roots of the
Gegenbauer polynomial P .n/

k
.t/, and the �i are found in (1.11).

Specifically, we consider skip one-add two index set of the form

T k WD ¹1; : : : ; 2k � 1; 2k C 1; 2k C 2º D ¹1; 2; : : : ; 2k C 2º n ¹2kº:

The polynomial subspace is given as

(4.8) PT k WD P2k�1 ˚ span
�
P
.n/

2kC1
; P

.n/

2kC2

�
:

We shall focus on necessary conditions for the existence of a quadrature rule exact
on PT k . In the process, we will establish existence and uniqueness.
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Lemma 4.10. Suppose n� 3. Any quadrature rule that is exact on PT k has at least kC 1
distinct nodes.

Proof. Let ¹ˇi ; �iº`iD1 be such a quadrature rule. If ` < k, then

f .t/ WD .t � ˇ1/
2
� � � .t � ˇ`/

2
2 PT k ;

and hence Z 1

�1

.t � ˇ1/
2 : : : .t � ˇ`/

2 d�n.t/ D
X̀
iD1

�if .ˇi / D 0;

which is impossible.
If ` D k, then since P� � PT k , the quadrature rule is the Gauss–Jacobi (or Gegen-

bauer) quadrature with nodes the zeros ˛i , i D 1; : : : ; k, of P .n/
k
.t/, and with respective

weights �i , i D 1; : : : ; k. Let us introduce the two linear functionals acting on polynomials

I.f / WD

Z 1

�1

f .t/ d�n.t/ and QR.f / WD

kX
iD1

�if .˛i /:

Clearly, I.P .n/i / D QR.P
.n/
i / D 0, i 2T . We also have that I.P .n/

2k
/ D 0, which implies

that QR.P .n/
2k
/ 6D 0, for otherwise the quadrature rule would be exact on P2kC1 and the

uniqueness of the Gauss–Jacobi quadrature would lead to a contradiction. Consider the
polynomial

(4.9) f .t/ WD P
.n/

k
.t/P

.n/

kC2
.t/ D f2kC2P

.n/

2kC2
.t/C f2kP

.n/

2k
.t/C � � � C f2P

.n/
2 .t/:

Observe that f0 D I.f / D 0. From [28], all the coefficients in the Gegenbauer expansion
are nonnegative, and f2kC2 and f2 are strictly positive.

We claim that f2k > 0 as well. Suppose there are k and n such that f2k D 0 in (4.9).
For brevity, let ˛ WD n=2 � 1. We shall utilize the first two terms of the expansion (see
equation (2.3) in [33])

P
.n/

k
.t/ D

.˛/k

.2˛/k
.2t/k �

k.k � 1/.˛/k�1

.2˛/k
.2t/k�2 C � � � ;

where .˛/k WD ˛.˛ C 1/ � � � � � .˛ C k � 1/ is the Pochhammer symbol, to conclude that

(4.10) f .t/D
.˛/k.˛/kC2

.2˛/k.2˛/kC2

h
.2t/2kC2 �

� .kC2/.kC1/
˛ C k C 1

C
k.k � 1/

˛Ck � 1

�
.2t/2k

i
C � � �

Similarly, (4.9) with f2k D 0 yields

f .t/ D f2kC2
.˛/2kC2

.2˛/2kC2

h
.2t/2kC2 �

.2k C 2/.2k C 1/

˛ C 2k C 1
.2t/2k

i
C � � �

Thus, we obtain the equation

.2k C 2/.2k C 1/

˛ C 2k C 1
D
.k C 2/.k C 1/

˛ C k C 1
C

k.k � 1/

˛ C k � 1
�
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It is easy to verify that the latter equation has two solutions, ˛ D 0 and ˛ D �k. This
contradiction proves the claim that f2k > 0.

To complete the proof, observe that QR.f / D 0, because P .n/
k

is annihilating poly-
nomial for the quadrature rule. From (4.9), however, QR.f / D f2kQR.P

.n/

2k
/ 6D 0. The

derived contradiction affirms the lemma.

4.4. Skip 1 – Add 2 quadrature framework

We next exhibit a framework on how to obtain the quadrature nodes should we have a skip
one-add two subspace depicted in (4.8). We shall also establish that this subspace is a tight
PULB-space.

We continue with the necessary and sufficient conditions for existence of a quadrature
in Definition 4.6 (i). Suppose we have exactly k C 1 quadrature nodes ˇ1 < � � � < ˇkC1 in
.�1; 1/ and weights i , i D 1; 2; : : : ; k C 1 (the existence is established in Lemma 4.12),
such that

(4.11)
Z 1

�1

f .t/ d�n.t/ D

kC1X
iD1

if .ˇi /

for any f 2 PT k . Define the annihilating polynomial associated with the quadrature as

qkC1.t/ WD Ck.t � ˇ1/ � � � .t � ˇkC1/ D P
.n/

kC1
.t/C aP

.n/

k
.t/C bP

.n/

k�1
.t/C uk�2.t/;

where Ck is a normalizing constant and uk�2.t/ is a polynomial of degree at most k � 2.
We shall show that uk�2.t/ � 0. Indeed, for any i D 0; 1; : : : ; k � 2, the polynomial
qkC1P

.n/
i 2 PT k , so the quadrature (4.11) holds true, implying that

0 D

Z 1

�1

qkC1.t/P
.n/
i .t/ d�n.t/ D

Z 1

�1

uk�2.t/P
.n/
i .t/ d�n.t/; i D 0; 1; : : : ; k � 2:

Therefore, uk�2.t/ � 0 and

(4.12) qkC1.t/ D P
.n/

kC1
.t/C aP

.n/

k
.t/C bP

.n/

k�1
.t/

for some a; b 2 R.
To determine a and b, choose any f 2 PT k . Then

f .t/ D qkC1.t/
�
dkC1P

.n/

kC1
.t/C dkP

.n/

k
.t/C dk�1P

.n/

k�1
.t/
�
C v2k�1.t/;

where v2k�1.t/ is a polynomial of degree at most 2k � 1. Clearly, f � v2k�1 2 PT k , so

(4.13)
Z 1

�1

qkC1.t/
�
dkC1P

.n/

kC1
.t/C dkP

.n/

k
.t/C dk�1P

.n/

k�1
.t/
�
d�n.t/ D 0

from the quadrature (4.11). As f is orthogonal to P .n/
2k

, we also have

(4.14)
Z 1

�1

qkC1.t/
�
dkC1P

.n/

kC1
.t/C dkP

.n/

k
.t/C dk�1P

.n/

k�1
.t/
�
P
.n/

2k
.t/ d�n.t/ D 0:
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Next, since f was arbitrary in PT k , we can select two (basic) triples .dkC1; dk ; dk�1/
D .1; 0; c/ and .dkC1; dk ; dk�1/ D .0; 1; d/ so that equations (4.13) and (4.14) hold true.
This yields a system of equationsZ 1

�1

�
P
.n/

kC1
.t/C aP

.n/

k
.t/C bP

.n/

k�1
.t/
��
P
.n/

kC1
.t/C cP

.n/

k�1
.t/
�
d�n.t/ D 0;Z 1

�1

�
P
.n/

kC1
.t/C aP

.n/

k
.t/C bP

.n/

k�1
.t/
��
P
.n/

k
.t/C dP

.n/

k�1
.t/
�
d�n.t/ D 0;Z 1

�1

�
P
.n/

kC1
.t/C aP

.n/

k
.t/C bP

.n/

k�1
.t/
��
P
.n/

kC1
.t/C cP

.n/

k�1
.t/
�
P
.n/

2k
.t/ d�n.t/ D 0;Z 1

�1

�
P
.n/

kC1
.t/C aP

.n/

k
.t/C bP

.n/

k�1
.t/
��
P
.n/

k
.t/C dP

.n/

k�1
.t/
�
P
.n/

2k
.t/ d�n.t/ D 0;

which reduces to

(4.15)

kP
.n/

kC1
k
2
C bc kP

.n/

k�1
k
2
D 0;

akP
.n/

k
k
2
C bd kP

.n/

k�1
k
2
D 0;

h.P
.n/

kC1
/2; P

.n/

2k
i C .b C c/hP

.n/

kC1
P
.n/

k�1
; P

.n/

2k
i D 0;

ah.P
.n/

k
/2; P

.n/

2k
i C d hP

.n/

kC1
P
.n/

k�1
; P

.n/

2k
i D 0:

Let ak denote the leading coefficient of the Gegenbauer polynomial of degree k, i.e.,
P
.n/

k
.t/ D akt

k C � � �. The last equation of (4.15) then becomes

.aa2k C dakC1ak�1/ht
2k ; P

.n/

2k
i D 0:

Since ht2k ; P .n/
2k
i 6D 0, we have that d D �aa2

k
=.akC1ak�1/. Utilizing the following for-

mulas (see [35] and formula (5.2.3) in [11]):

akC1

ak
D
nC 2k � 2

nC k � 2
and kP

.n/

k
k
2
D

nC k � 2

nC 2k � 2

�
k C n � 2

k

��1
in the second and fourth equations of (4.15), we obtain two cases: (i) a D d D 0; or
(ii) b D k=.k C n � 2/. The second case leads to a contradiction with the first and the
third equations of (4.15) (see also (4.19) below). Therefore, we conclude that a D d D 0,
which reduces the system to

kP
.n/

kC1
k
2
C bc kP

.n/

k�1
k
2
D 0;

h.P
.n/

kC1
/2; P

.n/

2k
i C .b C c/hP

.n/

kC1
P
.n/

k�1
; P

.n/

2k
i D 0;

which can be simplified utilizing (4.10) to (recall that ˛ D n=2 � 1)

(4.16)
bc D �

.k C 1/k.˛ C k � 1/

.2˛ C k/.2˛ C k � 1/.˛ C k C 1/
,

b C c D �
2˛ .k C 1/2 .˛ C k � 1/

.2˛ C k/.2˛ C k � 1/.˛ C 2k C 1/
�
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The lemma below shows that when we select b as the positive of the two solutions
of (4.16), the polynomial qkC1.t/ has k C 1 distinct roots in .�1; 1/.

Lemma 4.11. Let b > 0 > c be the two solutions of (4.16). Then

(4.17) qkC1.t/ WD P
.n/

kC1
.t/C bP

.n/

k�1
.t/ D

.˛/kC12
kC1

.2˛/kC1
.t � ˇ1/ � � � .t � ˇkC1/;

where ˇi are distinct, symmetric about the origin, and in the interval .�1; 1/.

Proof. The symmetry of the roots is an immediate consequence of the explicit form
of qkC1. It is easily shown that the system (4.16) has two real solutions. Without loss
of generality, assume b > 0 > c. Using the three-term recurrence formula for the Gegen-
bauer polynomials (with the normalization P .n/i .1/ D 1)

(4.18) .2˛ C k/P
.n/

kC1
.t/ D 2.˛ C k/tP

.n/

k
.t/ � kP

.n/

k�1
.t/;

we shall write

qkC1.t/ D P
.n/

kC1
.t/C bP

.n/

k�1
.t/ D

2.˛ C k/

2˛ C k
tP

.n/

k
.t/ �

� k

2˛ C k
� b

�
P
.n/

k�1
.t/:

We claim that the constant c1 WD k=.2˛ C k/ � b is positive. Indeed, consider the
quadratic polynomial g2.t/ WD .t � b/.t � c/. Using (4.16), we compute directly that

(4.19) g2

� k

2˛ C k

�
D

2k2˛.k C 2/.˛ C k/2

.2˛ C k/2 .2˛ C k � 1/.˛ C 2k C 1/.˛ C k C 1/
> 0:

As g2.t/ � 0 on Œc; b�, c < 0 < b, and k=.2˛ C k/ > 0, we derive the claim.
We will obtain now the existence of the k C 1 roots of qkC1 by careful accounting

of the interlacing property of the zeros ¹˛iº of P .n/
k

and ¹�j º of P .n/
k�1

. We know that
�1 < ˛1 < �1 < ˛2 < � � �< �k�1 < ˛k . Clearly, as qkC1.1/D 1C b > 0 and qkC1.˛k/D
�c1P

.n/

k�1
.˛k/ < 0, we will have one zero in the interval .˛k ; 1/. From qkC1.˛k�1/ D

�c1P
.n/

k�1
.˛k�1/ > 0, we account for another root of qkC1 in the interval .˛k�1; ˛k/. We

complete the proof of the lemma analogously utilizing the symmetry of the Gegenbauer
polynomials.

Lemma 4.12. The zeros of qkC1.t/ defined in (4.17) induce a quadrature rule on PT k
with positive weights.

Proof. In Lemma 4.11, we established that the polynomial qkC1 defined in (4.12) has
k C 1 distinct roots ¹ˇiº � .�1; 1/, which we use as nodes of the quadrature (4.11). Since
the Lagrange basic polynomials Li .t/, i D 1; : : : ; k C 1, are of degree k, they are con-
tained in PT k , so the weights i WD

R 1
�1
Li .t/ d�n.t/, for i D 1; : : : ; k C 1, are uniquely

determined. Moreover, they are symmetric because of the symmetry of the nodes. What is
left is to prove for the existence of the quadrature in Definition 4.6 (i) is the positivity of
the weights i .
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Let us consider first the case when k is odd. Then the nodes and the weights are evenly
paired as ˇi D �ˇkC2�i and i D kC2�i , i D 1; : : : ; .k C 1/=2. The polynomial

ui .t/ WD
.t � ˇ1/

2 � � � .t � ˇkC1/
2

.t � ˇi /2 .t � ˇkC2�i /2
D
.t � ˇ1/

2 � � � .t � ˇkC1/
2

.t2 � ˇ2i /
2

is of degree 2k � 2 and belongs to PT k . Applying the quadrature rule, we obtain

0 <

Z 1

�1

ui .t/ d�n.t/ D i ui .ˇi /C kC2�i ui .ˇkC2�i / D 2i ui .ˇi /;

which implies i > 0.
When k WD2m is even, the same argument yields the positivity of all weights but mC1,

which is corresponding to the node ˇmC1D 0. Recall that the zeros ¹˛iºkiD1 of P .n/
k

define
the Gauss–Gegenbauer quadrature with positive weights ¹�iºkiD1,Z 1

�1

f .t/ d�n.t/ D

kX
iD1

�if .˛i /;

that is exact for all polynomials f of degree at most 2k � 1. This is the quadrature utilized
to derive the first level PULB. The proof of Lemma 4.11 established that ¹˛iº and ¹ˇiº
interlace, i.e.,

ˇ1 < ˛1 < ˇ2 < � � � < ˛m < 0 D ˇmC1 < ˛mC1 < � � � < ˇ2m < ˛2m < ˇ2mC1:

We also have that the nodes ¹˛iº and the weights ¹�iº are symmetric with respect to the
origin, namely ˛i D �˛kC1�i and �i D �kC1�i , i D 1; : : : ; m. We now select the degree
2k � 2 polynomial

f .t/ WD
.t�ˇ1/ � � � .t�ˇm/.t�ˇmC2/ � � � .t�ˇ2mC1/.t�˛2/ � � � .t�˛2m�1/

.�ˇ1/ � � � .�ˇm/.�ˇmC2/ � � � .�ˇ2mC1/.�˛2/ � � � .�˛2m�1/
2 PT k :

Utilizing the symmetry, we simplify

f .t/ WD �
.t2 � ˇ2mC2/ � � � .t

2 � ˇ22mC1/.t
2 � ˛2mC1/ � � � .t

2 � ˛22m�1/

ˇ2mC2 � � � ˇ
2
2mC1˛

2
mC1 � � � ˛

2
2m�1

�

Applying the two quadrature rules with respect to the measure �n to f , we obtain

mC1 D

Z 1

�1

f .t/ d�n.t/ D 2�2mf .˛2m/

D �2�2m
.˛22m�ˇ

2
mC2/ � � � .˛

2
2m�ˇ

2
2mC1/.˛

2
2m�˛

2
mC1/ � � � .˛

2
2m�˛

2
2m�1/

ˇ2mC2 � � � ˇ
2
2mC1˛

2
mC1 � � � ˛

2
2m�1

> 0;

because all terms in the numerator are positive except for ˛22m � ˇ
2
2mC1 < 0. This com-

pletes the proof of the lemma.
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The last step in the preparation of the main result in this subsection is a positive defi-
niteness result needed for the interpolation property from Definition 4.6(ii).

Lemma 4.13. The polynomial gk.t/ WD .t � ˇ1/.t � ˇ2/ � � � .t � ˇk/ has positive Gegen-
bauer coefficients.

Proof. Denote the Gegenbauer expansion

(4.20) gk.t/ D
.2˛/kC1

2kC1 .˛/kC1

qkC1.t/

t � ˇkC1
D

kX
iD0

ciP
.n/
i .t/:

We first note that from (4.10),

qkC1.t/ D P
.n/

kC1
.t/C bP

.n/

k�1
.t/

D
.˛/kC12

kC1

.2˛/kC1
tkC1 C

� .b˛/k�12k�1
.2˛/k�1

�
..k C 1/k˛/k 2

k�1

.2˛/kC1

�
tk�1 C : : : ;

which implies that ˇ1 C ˇ2 C � � � C ˇkC1 D 0. As

gk.t/ D t
k
� .ˇ1 C � � � C ˇk/ t

k�1
C � � � D tk C ˇkC1 t

k�1
C � � �

D
.2˛/k

2k.˛/k
P
.n/

k
.t/C ˇkC1

.2˛/k�1

2k�1.˛/k�1
P
.n/

k�1
.t/C � � � ;

we have that ck D .2˛/k=2k.˛/k > 0 and ck�1 D ˇkC1.2˛/k�1=2k�1.˛/k�1 > 0 (recall
ˇkC1 2 .˛k ; 1/, where ˛k is the largest root of the Gegenbauer polynomials P .n/

k
).

The remaining of the proof follows the approach from Proposition 3.2 in [22]. Let
i � k � 1. The orthogonality implies thatZ 1

�1

.P
.n/

kC1
.t/C bP

.n/

k�1
.t//

P
.n/
i .t/ � P

.n/
i .ˇkC1/

t � ˇkC1
d�n.t/ D 0:

Thus,Z 1

�1

P
.n/

kC1
.t/CbP

.n/

k�1
.t/

t � ˇkC1
P
.n/
i .t/d�n.t/DP

.n/
i .ˇkC1/

Z 1

�1

P
.n/

kC1
.t/CbP

.n/

k�1
.t/

t � ˇkC1
d�n.t/;

or, equivalently,Z 1

�1

gk.t/P
.n/
i .t/ d�n.t/ D P

.n/
i .ˇkC1/

Z 1

�1

gk.t/ d�n.t/:

Utilizing the expansion (4.20), we derive that

cikP
.n/
i k

2
D P

.n/
i .ˇkC1/c0; i D 0; 1; : : : ; k � 1:

Since all of the roots of P .n/i .t/, i D 0; 1; : : : ; k � 1, are smaller than ˛k < ˇkC1, we
derive that P .n/i .ˇkC1/ > 0, and therefore all of the coefficients c0; c1; : : : ; ck�1 have the
same sign. As ck�1 > 0, the lemma follows.
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Theorem 4.14. The subspace PT k defined in (4.8) is a PULB-space.

Proof. The existence of a quadrature with positive weights required in Definition 4.6(i)
has already been established in Lemma 4.12. We shall derive the interpolating polynomial
needed for Definition 4.6(ii) next.

Let h be any absolutely monotone potential. Let H2kC1.t I h/ b ethe Hermite interpo-
lant in the space P2kC1 at the multi-set ¹t1; t2; : : : ; t2kC2ºD¹ˇ1; ˇ1; ˇ2; : : : ; ˇkC1; ˇkC1º.
Let uj .t/ WD .t � t1/ : : : .t � tj /, j D 1; : : : ; 2kC 2, denote the partial products associated
with the multi-set. Using Newton’s formula, we write

H2kC1.t I h/ D

2kC1X
jD0

hŒt1; : : : ; tjC1�uj .t/

D

2k�1X
jD0

hŒt1; : : : ; tjC1�uj .t/C hŒt1; : : : ; t2kC1� g
2
k.t/C hŒt1; : : : ; t2kC2� gk.t/gkC1.t/;

where gkC1.t/D .t � ˇ1/ � � � .t � ˇkC1/D .2˛/kC1=2kC1.˛/kC1.P
.n/

kC1
.t/C bP

.n/

k�1
.t//

clearly has positive Gegenbauer coefficients. From Lemma 4.13, gk also has positive
Gegenbauer coefficients, so from [28] we have that g2

k
, gkgkC1, and g2

kC1
all have pos-

itive Gegenbauer coefficients, and in particular, their 2k-th coefficients will be positive.
But this implies the 2k-th Gegenbauer coefficient h2k of the interpolant H2kC1.t I h/ is
also positive. Let e2k denote the 2k-th Gegenbauer coefficient of g2

kC1
, and consider the

polynomial

G2kC2.t I h;PT k / WD H2kC1.t I h/ �
h2k

e2k
g2kC1.t/:

It clearly interpolatesH2kC1.t Ih/ and hence h.t/ and its derivative at the nodes ¹ˇiº. It is
also orthogonal toP .n/

2k
and hence belongs to PT k . Finally, from the absolute monotonicity

of h, the regular interpolant H2kC1.t I h/ � h.t/ on Œ�1; 1� (this follows easily by an
application of Rolle’s theorem), so we have

(4.21) G2kC2.t I h;PT k / � H2kC1.t I h/ � h.t/;

verifying Definition 4.6(ii). The theorem is proved.

4.5. Second level PULB for T k-designs

Next, equipped with Theorem 4.14, we proceed with the PULB for T k-designs which we
call second level PULB.

Theorem 4.15. Suppose that C is a spherical T k-design of cardinality N on Sn�1, and
that the potential h is absolutely monotone on Œ�1; 1�. Then

(4.22) Qh.C / � N

kC1X
iD1

ih.ˇi /:

Equality in (4.22) holds if and only if there exists a point Qx 2 Sn�1 such that I. Qx; C / D
¹ˇiº

kC1
iD1 with integer frequencies ¹NiºkC1iD1 . The location of such a point is independent

of the potential h, and hence will be referred to as a universal minimum.
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Remark 4.16. In the examples of Section 5, the absolute monotonicity requirement for h
may be relaxed to h.2k/ � 0, h.2kC1/ � 0, and h.2kC2/ � 0. We also note that a general
result on the case of equality (under additional assumptions) is found in Theorem 3.1
of [9].

Proof. We already established that the roots of qkC1 define a quadrature rule that is exact
on PT k . The interpolant G2kC2.t I h;PT k / defined in (4.21) belongs to L.n; T k ; h/ and
agrees with h at the quadrature nodes ¹ˇiºkC1iD1 . Now the second level PULB (4.22) fol-
lows from Corollary 4.5. Should a point Qx exist, for which equality in (4.22) holds, the
independence of its location from the potential h follows from that of the nodes ˇi and
weights i .

In the next section, we will verify directly that for the icosahedron, the dodecahe-
dron, and the roots of E8 and the Leech lattices, the corresponding polynomial subspaces
PT k are PULB-spaces, thus providing concrete applications of the general result of The-
orem 4.14. We will also determine the universal minima Qx for which equality holds
in (4.22). The concept of a PULB space and its application to a third-level PULB is found
in Theorem 7.2, which considers the universal minima for the 600-cell for potentials sat-
isfying the conditions in case (ii) of Theorem 1.4. The considerably more difficult case (i)
requires even higher level PULB’s, and will be the focus of a future work, along with the
infinite family of sharp codes in the last row of Table 2.

5. Next level PULB – icosahedron, dodecahedron, E8, and Leech
lattice

In this section we illustrate Theorem 4.15 and the next level PULB (4.22). Three of
the Platonic solids (tetrahedron, cube, and octahedron) attain the first level PULB (1.10)
(see [17] for details), while the icosahedron and the dodecahedron attain the second level
PULB (4.22). Similarly, with the exception of the infinite family (to be considered in a
future work), all sharp codes in Table 2 attain (1.10), with the exception of the icosahe-
dron, and the kissing configurations of E8 and the Leech lattice, which attain the second
level PULB (4.22). In a recent independent work [9], Borodachov analyzed via different
methods the icosahedron, dodecahedron and the kissing configuration of E8.

Theorem 5.1. The sharp codes from Table 3 attain the bound (4.22) with inner products
and distance distributions as given in that table and points Qx as described below.

5.1. Icosahedron

We remind the reader that the icosahedron, denoted here as I12, is a sharp code with inner
products�1;˙1=

p
5, has 12 vertices, 20 equilateral triangles as faces, and 30 equal edges.

It is also true that the icosahedron solves the best covering problem for 12 points on S2.
We shall show that the minima of the discrete potential are attained at the centers of the
spherical caps determined by the equilateral triangle faces.

Let ¹x1; x2; x3º form one such side. Orient it horizontally, so that the center of the
circumscribed spherical cap Qx is located at the North Pole. We have that Qx D .x1 C x2 C
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x3/=kx1 C x2 C x3k, from which we can find that, for i D 1; 2; 3,

Qx � xi D
kx1 C x2 C x3k

3
D

p
3C 2x1 � x2 C 2x1 � x3 C 2x2 � x3

3
D

q
1C 2=

p
5

p
3

�

If we order the rest of the points of the icosahedron into three horizontal planes, we find
that I. Qx; I12/ D ¹b1; b2; b3; b4º, where
(5.1)

b1 D �

q
1C2=

p
5

p
3

; b2 D �

q
1�2=

p
5

p
3

; b3 D

q
1�2=

p
5

p
3

; b4 D

q
1C2=

p
5

p
3

�

Let us compare this result to what our Skip 1-Add 2 method produces. In this case
(k D 3, nD 3), the system (4.15) gives aD d D 0 and b D 5=9, c D�1. Recalling (4.12),
we see that the polynomial q4.t/ is

q4.t/ D P
.3/
4 .t/C bP

.3/
2 .t/ D

35

8
t4 �

35

12
t2 C

7

72
,

and its zeros are found to be exactly b1, b2, b3 and b4.
SinceMi .I12/D 0 for all odd i and for i D 2;4, and 8, we set T 3 WD ¹1;2; 3; 4; 5; 7; 8º

and consider (see (4.8)) the subspace

PT 3 WD P5 ˚ span.P .3/7 ; P
.3/
8 / D P8 \ ¹P

.3/
6 º
?:

Theorem 4.14 gives that PT 3 is a PULB-space and hence the second level bound (4.22)
from Theorem 4.15 holds. The optimal polynomial G8.t I h;PT 3/, is found as follows.
If uj .t/ D .t � t1/ � � � .t � tj /, j D 0; : : : ; 8, are the partial products associated with the
multi-set ¹t1; t2; : : : ; t8º D ¹b1; b1; : : : ; b4º, then

G8.t I h;PT 3/ D

7X
iD0

hŒt1; : : : ; tjC1� uj .t/ �
h6

e6
u8.t/;

where

h6 D
16

231
hŒt1; : : : ; t7�C

16
p
75C 30

p
5

3465
hŒt1; : : : ; t8�; e6 D

128

3465
�

If h.6/.t/� 0, h.7/.t/� 0, and h.8/.t/� 0 on Œ�1;1�, thenG8.t Ih;PT 3/� h.t/ on Œ�1;1�
and G8.t I h;PT 3/ 2 L.3; T 3; h/. The quadrature rule

(5.2)
1

2

Z 1

�1

f .t/ dt D
1

4
f .b1/C

1

4
f .b2/C

1

4
f .b3/C

1

4
f .b4/

holds for all polynomials in PT 3 , in particular for G8.t I h;PT 3/. Thus,

12G0 D 3

4X
iD1

G8.bi I h;PT 3/ D 3

4X
iD1

h.bi / D Uh. Qx; I12/;
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because G8.bi Ih;PT 3/ D h.bi /. This implies that Uh.x; I12/ attains its global minimum
at Qx (as well as at all other centers of circumscribed spherical caps associated with the
equilateral triangles). In other words, the icosahedron attains the second level bound (4.22)
from Theorem 4.15.

We have the lower bound

(5.3) Qh.3; 12/ � Qh.I12/ D 3

4X
iD1

h.bi /;

where the ¹biº are given in (5.1). Moreover, as a by-product we obtain that b4, the largest
node in the quadrature (5.2), is a lower bound for the covering radius of all spherical
5-designs on S2, an improvement of the Fazekas–Levenshtein bound, that is attained by
the icosahedron.

5.2. Dodecahedron

We can utilize the above framework to find a second level PULB, as well as a simi-
lar generalization of the Fazekas–Levenshtein bound, for the case of spherical 5-designs
of 20 points on S2. While not a sharp code, the dodecahedron D20 is one of the Platonic
solids and of independent interest. We include it also because it highlights an important
phenomenon, namely that the annihilating polynomial qkC1.t/ does not depend on the
cardinality N , but only on k and n. As such, it is the same as for the icosahedron. These
properties follow from the duality of the icosahedron and dodecahedron.

Recall that the dodecahedron is an antipodal spherical 5-design, has 20 vertices, 12
regular pentagons as its faces and 30 equal edges, and, moreover, its eighth moment is
zero. Let Qx be the center of the spherical cap circumscribing one of the regular pentagon
faces. Orienting Qx as the North Pole and the associated pentagon to be horizontal, we
observe that the vertices are partitioned into four parallels. The inner products in I. Qx;D20/
are the same as in the case of the icosahedron, namely the numbers b1, b2, b3 and b4
from (5.1), but now with multiplicities 5 each. Observe that the polynomial q4.t/ in (4.12)
depends on the design strength � and dimension n, but not on cardinality of the code, so
it is the same in this case. Noticing that I. Qx;D20/ gives rise to the same partial products
as in the icosahedron case, we deduce the second level PULB

Qh.3; 20/ � Qh.D20/ D 5

4X
iD1

h.bi /:

5.3. The sharp code .8; 240; 7/ and the E8 lattice

The last two codes we will consider, namely, the kissing configurations of the E8 lattice
and the Leech lattice, have received significant attention lately with the discovery that
these lattices solve the hard spheres best packing problems in the relevant dimensions
(see [23, 42]). The points of contact of a fixed sphere with the other neighboring spheres
are 240 (see Figure 3) in R8 and 196560 in R24, and define sharp codes that do not attain
the first level PULB (1.10). We shall see that like the icosahedron, both attain the second
level PULB (4.22) as described in Section 4 and shown in Table 3.
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dim Cardinality Strength Second level polarization bound
n N � h.�C1/ � 0; h.�C2/ � 0; h.�C3/ � 0

3 12 5 3h
�
�

p
1C2=

p
5

p
3

�
C 3h

�
�

p
1�2=

p
5

p
3

�
C 3h

�p
1�2=

p
5

p
3

�
C 3h

�p
1C2=

p
5

p
3

�
3 20 5 5h

�
�

p
1C2=

p
5

p
3

�
C 5h

�
�

p
1�2=

p
5

p
3

�
C 5h

�p
1�2=

p
5

p
3

�
C 5h

�p
1C2=

p
5

p
3

�
8 240 7 14h

�
�

p
2
2

�
C 64h

�
�

p
2
4

�
C 84h.0/C 64h

�p
2
4

�
C 14h

�p
2
2

�
24 196560 11 552h

�
�

p
6
4

�
C 11178h

�
�

p
6
6

�
C 48600h

�
�

p
6
12

�
C 75900h.0/

C48600h
�p

6
12

�
C 11178h

�p
6
6

�
C 552h

�p
6
4

�
Table 3. Second-level PULB quadrature for the icosahedron, dodecahedron, E8, and Leech lattice.

Figure 3. The roots of E8 lattice (By Claudio Rocchini –Own work, CC BY 3.0, httpsW//commons.
wikimedia.org/w/index.php?curid=4932406).

We first exhibit the coordinates of the sharp code C240 WD .8; 240; 7/. There are
27 D 128 vectors Œ.˙1=

p
8/8� with even number of negative signs and 4

�
8
2

�
D 112 points

with two coordinates Œ.˙1=
p
2/2; 06�. As seen in Table 2, the quadrature weights for the

.8; 240; 7/ sharp code are not integers and the code C240 does not attain the PULB (1.10).
Thus, we proceed with the Skip 1-Add 2 framework as in Section 4.

In this case, k D 4 and n D 8, so the system (4.15) gives a D d D 0, b D 1=6 and
c D �1. The quadrature annihilating polynomial q5.t/ is

q5.t/ D
t .8t2 � 1/.2t2 � 1/

6
,

with zeros

b1 D �

p
2

2
, b2 D �

p
2

4
, b3 D 0; b4 D

p
2

4
and b5 D

p
2

2
�

Let us select QxD Œ1;0; : : : ; 0� 2 S7. There are 14 points with Qx � Œ1=
p
2; .˙1=

p
2/1; 06�

D 1=
p
2, 14with Qx � Œ�1=

p
2;.˙1=

p
2/1;06�D�1=

p
2, and 84with Qx � Œ0; .˙1=

p
2/2;05�

https://commons.wikimedia.org/w/index.php?curid=4932406
https://commons.wikimedia.org/w/index.php?curid=4932406
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D 1=
p
2. Similarly, there are 64 points with Qx � Œ1=

p
8; .˙1=

p
8/7�D 1=

p
8, and 64 points

with Qx � Œ�1=
p
8; .˙1=

p
8/7� D �1=

p
8, both with even number of negative signs. This

data is shown in Table 3.
Since Mi .C240/ D 0 for all odd i and for i D 2; 4; 6, and 10, we set

T 4 WD ¹1; 2; 3; 4; 5; 6; 7; 9; 10º

and consider the subspace

PT 4 WD P7 ˚ span.P .8/9 ; P
.8/
10 / D P10 \ ¹P

.8/
8 º
?:

It is a PULB-space by Theorem 4.14, and the second level bound (4.22) from Theo-
rem 4.15 holds. The optimal polynomial G10.t I h;PT 4/, is found as follows. If uj .t/ D
.t � t1/ � � � .t � tj /, j D 0; : : : ; 10, are the partial products associated with the multi-set
¹t1; t2; : : : ; t10º D ¹b1; b1; : : : ; b5º, then

G10.t I h;PT 4/ D

9X
iD0

hŒt1; : : : ; tjC1� uj .t/ �
h8

e8
u10.t/;

where

h8 D
143

1280
hŒt1; : : : ; t9�C

143
p
2

2560
hŒt1; : : : ; t10�; e8 D

143

2048
�

If h.8/.t/ � 0, h.9/.t/ � 0, and h.10/.t/ � 0 on Œ�1; 1�, then G10.t I h;PT 4/ � h.t/ on
Œ�1; 1� and G10.t I h;PT 4/ 2 L.8; T 4; h/. The quadrature rule

240

Z 1

�1

f .t/ d�8.t/ D 14f .b1/C 64f .b2/C 84f .b3/C 64f .b4/C 14f .b5/

holds for all polynomials in PT 4 , and hence for G10.t Ih;PT 4/ 2 L.8; T 4; h/. Thus, as in
the icosahedron case,

240G0 D Uh. Qx; C240/;

because G10.bi I h;PT 4/ D h.bi /. This implies that Uh.x; C240/ attains its global min-
imum at Qx, and that the sharp code C240 with the so chosen Qx attains the second level
bound (4.22). The classification of the points of minima will be given in Section 6.

5.4. The sharp code .24; 196560; 11/ and the Leech lattice

The most complex known sharp code is the one arising from the shortest vectors of
the Leech lattice. Recall that CL D .24; 196560; 11/ was introduced in Subsection 3.9
and the three types of shortest vectors in the Leech lattice to be normalized in order
to belong to S23 are 1104 points of type A Œ.˙1=

p
2/2; 022�; 98304 points of type B

Œ.�3=
p
32/1; .˙1=

p
32/23�, where the upper signs follow the 1’s in the codewords of

the extended binary Golay code; and 97152 of type C Œ.˙1=.2
p
2//8; 016�. The PULB

quadrature from Table 2 does not have integer weights, so we proceed with the Skip 1-
Add 2 process. With k D 6 and n D 24, the system (4.15) implies a D d D 0, b D 4=81
and c D �1. The quadrature annihilating polynomial q7.t/ is

q7.t/ D
17t.6t2 � 1/.24t2 � 1/.8t2 � 3/

9315
,
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with zeros

b1D�

p
6

4
, b2D�

p
6

6
, b3D�

p
6

12
, b4D 0; b5D

p
6

12
, b6D

p
6

6
, b7D

p
6

4
�

The corresponding quadrature weights can be found from the Lagrange basis correspond-
ing to the node set ¹b1; : : : ; b7º (see the last row of Table 3; also below).

We set T 6 WD ¹1; 2; : : : ; 14º n ¹12º and consider the corresponding polynomial sub-
space

PT 6 D P14 \ ¹P
.24/
12 º

?:

Then PT 6 is a PULB-space by Theorem 4.14, and the second level bound (4.22) from
Theorem 4.15 holds. The optimal polynomial G14.t I h; PT 6/, is found as follows. If
uj .t/ D .t � t1/ � � � .t � tj /, j D 0; : : : ; 14, are the partial products associated with the
multi-set ¹t1; t2; : : : ; t14º D ¹b1; b1; : : : ; b7º, then

G14.t I h;PT 6/ D

13X
iD0

hŒt1; : : : ; tjC1� uj .t/ �
h12

e12
u14.t/;

where

h12 D
310155

2315264
hŒt1; : : : ; t13�C

310155
p
6

9261056
hŒt1; : : : ; t14� and e12 D

516925

5292032
�

If h.12/.t/ � 0, h.13/.t/ � 0, and h.14/.t/ � 0 on Œ�1; 1�, then G14.t I h;PT 6/ � h.t/ on
Œ�1; 1� and G14.t I h;PT 6/ 2 L.24; T 6; h/. For any polynomial f 2 PT 6 , we have

(5.4)

196560

Z 1

�1

f .t/ d�24.t/

D 552f
�
�

p
6

4

�
C 11178f

�
�

p
6

6

�
C 48600f

�
�

p
6

12

�
C 75900f .0/

C 48600f
�p6
12

�
C 11178f

�p6
6

�
C 552f

�p6
4

�
(see the last row of Table 3).

Let us select the point Qx D Œ5=
p
48; 1=

p
48; : : : ; 1=

p
48� 2 S23. We shall prove that

I. Qx; CL/ D
°
˙

p
6

4
,˙

p
6

6
,˙

p
6

12
; 0
±
:

It is easy to see that the inner products of Qx with points of type A yield values°
˙
5C 1

4
p
6

,˙
5 � 1

4
p
6

,˙
1C 1

4
p
6

,˙
1 � 1

4
p
6

±
D

°
˙

p
6

4
,˙

p
6

6
,˙

p
6

12
; 0
±
:

Next, determine the set of inner products of Qx with points of type B. Points starting
with 3=

p
32 will have 8, 12 or 16 positive coordinates follow, which yields inner products

with Qx of
p
6=12,

p
6=6 and

p
6=4, respectively. For points that start with �3=

p
32, the
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number of positive coordinates changes to 7, 11, and 15 and the inner products are�
p
6=4,

�
p
6=6, and �

p
6=12, respectively. If a point of type B starts with 1=

p
32 and another

coordinate is 3=
p
32, then the number of other positive coordinates is 7, 11, and 15 with

inner products 0,
p
6=12, and

p
6=6, respectively. If that other coordinate is �3=

p
32,

then the number of positive coordinates changes to 6, 10, and 14 and the inner products
are respectively �

p
6=12, 0, and

p
6=12. The case of a point of type B starting with

�1=
p
32 is handled analogously.

Points of type C may start with 1=.2
p
2/,�1=.2

p
2/, or 0. In the first case, the number

of negative coordinates is 0, 2, 4, or 6with respective inner products
p
6=4,
p
6=6,
p
6=12,

and 0. In the second case, the number of subsequent negative coordinates may be 1, 3, 5,
and 7 yielding corresponding inner products of 0, �

p
6=12, �

p
6=6, and �

p
6=4. Finally,

if a point of type C has a first coordinate 0, then there may be 0, 2, 4, 6, and 8 subsequent
negative coordinates, in which case the inner products are

p
6=6,
p
6=12, 0, �

p
6=12, and

�
p
6=6, respectively.
The code CL and the point Qx define a quadrature rule exact on PT 6 DP14 \ ¹P

.24/
12 º

?

because the corresponding moments are zero, see Lemma 4.1. As the quadrature nodes are
the same as the quadrature nodes of the rule listed on Table 3, the weights are determined
uniquely from the Lagrange basis. Therefore, the frequencies of the inner products will
match the corresponding ones in the quadrature rule on Table 3.

The polynomialG14.bi Ih;PT 6/2L.24;T 6;h/ provides the second level PULB (4.22),
attained by CL with the point Qx as described above; i.e.,

Qh.CL/ D 552h
�
�

p
6

4

�
C 11178h

�
�

p
6

6

�
C 48600h

�
�

p
6

12

�
C 75900h.0/

C 48600h
�p6
12

�
C 11178h

�p6
6

�
C 552h

�p6
4

�
:

6. Classification of the universal minima of sharp codes when
h.�C1/.t/ � 0

In this section, we shall characterize the universal minima of the sharp codes. The follow-
ing theorem describes the minima of the discrete potential for codes that attain first and
second level PULB.

Theorem 6.1. Let C � Sn�1, jC j D N , be a sharp code that attains the first or second
level PULB, (1.10) or (4.22), respectively, as shown in Table 2 or 3. Then the global min-
imum of Uh.x; C / is the corresponding polarization bound in Table 2 or Table 3. This
minimum is attained at a point y 2 Sn�1 if and only if the collection of inner products
I.y; C /, coincides with the set of quadrature nodes ¹˛iºi 2 I or ¹ˇiºkC1iD1 and the frequen-
cies of these inner products are ¹N�iºi 2 I or ¹NiºkC1iD1 , respectively. Furthermore, y is a
center of the spherical cap determined by a hyperplane that is ˛k or ˇkC1, respectively,
distance from the origin and is determined by the N�k- or NkC1-point facet of C that
is closest to y. For all sharp codes and Platonic solids in Tables 2 and 3, these facets
are uniquely determined up to isometry and hence all minima are obtained from Qx by an
isometric transformation.
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Proof. This theorem is a direct consequence of the conditions in Theorems 1.4 and 4.15
for attaining the bounds (1.10) and (4.22), respectively. Indeed, if C attains the corre-
sponding PULB, then the existence of a point Qx follows. Moreover, any other point y
where the global minimum is obtained will have to satisfy the same properties of that Qx
does. In particular, N�k or NkC1 points, respectively from the code will have to lie in a
hyperplane ¹z 2 Rn W y � z D ˛kº or ¹z 2 Rn W y � z D ˇkC1º, respectively. We enumer-
ate below all sharp codes discussed above and the unique facets determining the minima,
which completes the proof.

We now describe the N�k or NkC1-point facets for the sharp codes in Table 2 and
Table 3 explicitly.

(1) The both cases of the regularN -gon on S1, the quadrature determines two points of
the N -gon circle that are closest to y and hence y is a midpoint of the arc between
two consecutive points from the N -gon.

(2) Since the codes are degenerate in this case, we simply embed them in a Equatorial
hyperplane and the North and South Poles are the minima (for all possible embed-
dings).

(3) For the regular simplex case N D n C 1, the n-point facet is a simplex of one
dimension lower and hence unique (all sharp codes are unique).

(4) For the cross-polytope code, the n-point facet in questions is also a simplex of one
dimension lower and hence unique.

(5) For the icosahedron we have to consider the second level PULB, where the facet is
an equilateral triangle (see Table 3).

(6) The .5; 16; 3/ sharp code has an 8-point facet in a 4-dimensional hyperplane at a
distance 1=

p
5 from the origin. By Theorem 8.2 in [24], we conclude the 8-point

facet forms a cross-polytope.
(7) The .6; 27; 4/ sharp code has minima at points that are antipodal to points from

the code (the facet is a 10-point cross-polytope on a 5-dimensional hyperplane at a
distance 1=2 from the origin).

(8) The .7; 56; 5/ sharp code has a 12-point facet on a 6-dimensional hyperplane at
a distance 1=

p
3 from the origin. That it is a cross-polytope follows from Theo-

rem 8.2 in [24] again.
(9) For the E8 lattice code .8; 240; 7/ we need to consider the second-level PULB,

which reveals that the corresponding 14-point facet is a cross-polytope in a 7-
dimensional hyperplane at a distance 1=

p
8 from the origin. The description of

these points of minima is given in [9]; they are the vertices of the Gosset regular
polytope 421 [30].

(10) The .21; 112; 3/ code has a 56-point facet in a 20-dimensional hyperplane at a
distance 1=

p
21 from the origin. While this is not a sharp code, it forms the Gewirtz

graph, a unique strongly regular graph srg.56; 10; 0; 2/ (see Section 10.20 in [19]).
(11) The .21; 162; 3/ code has a 81-point facet in a 20-dimensional hyperplane, also at

a distance 1=
p
21 from the origin. This too is not a sharp code, but it forms the

Brouwer–Haemers graph (Section 10.28 in [19]), a unique strongly regular graph
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srg.81; 20; 1; 6/. As there are two more strongly regular graphs with 81 points, the
VNO�4 .3/ graph, a unique srg.81; 30; 9; 12/ graph (Section 10.29 in [19]), and two
rank 3 conference graphs srg.81; 40; 19; 20/ (Section 10.30 in [19]), we verified
the distances within the 81-point facet to conclude that the configuration is indeed
Brouwer–Haemers graph.

(12) The Higman–Sims sharp code .22; 100; 3/ has a 50-point facet that forms a Hoff-
man–Singleton graph, a unique strongly regular graph srg.50; 7; 0; 1/ (see Sec-
tion 10.19 in [19]).

(13) Similarly to the .6; 27; 4/ sharp code, the McLaughlin sharp code .22; 275; 4/ has
minima at points that are antipodal to points from the code. The facet is a 112-point
sharp code (this follows from Theorem 8.2 in [24]).

(14) The .22; 891; 5/ code has a 162-point facet in a 21-dimensional hyperplane at a
distance 1=4 from the origin. Utilizing Theorem 8.2 in [24], we have that this facet
forms a sharp code and hence is uniquely determined.

(15) The .23; 552; 5/ code has a 100-point facet, forming a Higman–Sims sharp code
embedded in a hyperplane that is

p
3=5 distance away from the origin.

(16) The .23; 4600; 7/ code has a 275-point facet, forming a McLaughlin sharp code
embedded in a hyperplane that is

p
5=5 distance away from the origin.

(17) Finally, we conclude with the Leech lattice. The second level reveals that the facet
closest to a minima is comprised of 552-point code which, according to Theo-
rem 8.2 in [24], is a sharp code and hence is uniquely determined.

7. Max-min polarization of sharp codes: the h.�C1/.t/ � 0 case

In this section, we consider the max-min polarization of the sharp codes for the case
of h.�C1/.t/ � 0. As case (ii) of Theorem 1.4 describes, the quadrature nodes in this
case are the zeros of the polynomials .t � 1/.t C 1/1�"P 1;1�"

k�1C"
.t/. Table 4 depicts the

PULB quadratures for the sharp codes in this case. There are five codes, namely .5; 16; 3/,
.21; 112; 3/, .21; 162; 3/, .22; 100; 3/ and .22; 891; 5/, along with the infinite family in
the last row, that do not attain the bound (their N�i are non-integer). Unlike the case
of nonnegative derivative case h.�C1/ � 0, where specialized analysis is needed for each
code, here we are able to obtain that all other sharp codes attain the bound with a single
theorem. Note that the presence of the inner product 1 in the quadrature means that the
optimality is attained with x being any point of the code.

We recall the definition of strongly sharp codes as sharp configurations that are even
strength designs (see Definition 2.1 in [10]), namely spherical 2k-designs with k distinct
inner products, as only k D 1 and 2 are possible. We also shall refer to sharp configura-
tions that are antipodal as antipodal sharp codes. The following theorem establishes the
optimality of such codes in the case under consideration.

Theorem 7.1. Let h be a continuous potential on Œ�1; 1� with h.�C1/ � 0 on Œ�1; 1� and
let C be either a strongly sharp code or an antipodal sharp code. Then the minimum of
Uh.x; C / occurs at a point of the code C and the code C attains the PULB (1.10).
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dim Cardinality Strength Polarization bound
n N � h.�C1/ � 0

2 N D 2k 2k � 1 h.�1/C 2
Pk�1
jD1 h.cos.2j�=N//C h.1/

2 N D 2k C 1 2k 2
Pk
jD1 h.cos..2j � 1/�=N//

n N D 2 � n 1 .N=2/Œh.�1/C h.1/�

n nC 1 2 nh.�1=n/C h.1/

n 2n 3 h.�1/C .2n � 2/h.0/C h.1/

3 12 5 h.�1/C 5h.�1=
p
5/C 5h.1=

p
5/C h.1/

5� 16 3 8Œ.1=5/h.�1/C .8=5/h.0/C .1=5/h.1/�

6 27 4 10h.�1=2/C 16h.1=4/C h.1/

7 56 5 h.�1/C 27h.�1=3/C 27h.1=3/C h.1/

8 240 7 h.�1/C 56h.�1=2/C 126h.0/C 56h.1=2/C h.1/

21� 112 3 56Œ.1=21/h.�1/C .40=21/h.0/C .1=21/h.1/�

21� 162 3 27Œ.1=7/h.�1/C .40=7/h.0/C .1=7/h.1/�

22� 100 3 25Œ.1=11/h.�1/C .42=11/h.0/C .1=11/h.1/�

22 275 4 112h.�1=4/C 162h.1=6/C h.1/

22� 891 5 81Œ.1=46/h.�1/C .126=23/h.�
p
6=12/

C.126=23/h.�
p
6=12/C .1=46/h.1/�

23 552 5 h.�1/C 275h.�1=5/C 275h.1=5/C h.1/

23 4600 7 h.�1/C 891h.�1=3/C 2816h.0/C 891h.1=3/C h.1/

24 196560 11 h.�1/C 4600h.�1=2/C 47104h.�1=4/C 93150h.0/

C47104h.1=4/C 4600h.1=2/C h.1/

q.q3C1/=.qC1/� .q3C1/.qC1/ 3 .N=2/Œ.1=n/h.�1/C ..2n � 2/=n/h.0/C .1=n/h.1/�

Table 4. PULB Quadrature for sharp codes, nonpositive case – right-hand side of (1.10). Codes that
do not attain the PULB (1.10) for Theorem 1.4, case (ii), are indicated with *.

Proof. Let H� .t I h/ be the polynomial that interpolates the potential h at the nodes ˛i ,
i 2 I , and the derivative h0 whenever ˛i 2 .�1; 1/. For antipodal sharp codes, we have
" D 0. The Hermite interpolation error formula yields that

f .t/�H� .t Ih/ D
h.�C1/.�/

.� C 1/Š
.t C 1/.t � ˛1/

2
� � � .t � ˛k�1/

2.t � 1/ � 0; t 2 Œ�1; 1�:

Similarly, for strongly sharp codes " D 1, and the Hermite error formula is modified as
follows:

f .t/ �H� .t I h/ D
h.�C1/.�/

.� C 1/Š
.t � ˛1/

2
� � � .t � ˛k/

2.t � 1/ � 0; t 2 Œ�1; 1�:

Observe that the distinct inner products between points of the code coincide with the
quadrature nodes, which follows from Theorem 3.1 in [15]. Clearly, any point of the code
then can play the role of Qx in Theorem 1.4, which concludes the proof.

In Sections 4 and 5, we derived a generalization of the PULB (1.10) to T -designs and
in particular a procedure Skip 1-Add 2 and what we refer to as second-level polarization.
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We proceed with a result for the 600-cell (Figure 4), that can be viewed (although the
600-cell is not a sharp code) through the same lens as a Skip 1-Add 4 and a third-level
polarization. While we are able to determine the inner products between points of the
600-cell and their frequency directly from the code, a third level ULB quadrature as in
Table 1 may be derived as in Section 5.2 of [16]. In Theorem 7.2 below, we will see that
the universal minimum is attained at a point of the code, which leads to the universal
polarization bound in the form shown in (7.1).

For potentials continuous on Œ�1; 1� that have h.i/ � 0, i D 1; : : : ; 15, and h.16/ � 0,
we are able to adapt the proof of Theorem 5.1 in [17] and derive the following result
about the 600-cell C600. Recall that the inner product among points of the 600-cell (no
necessarily distinct) are given by

B WD
°
� 1;�

1C
p
5

4
,�
1

2
, 1 �

p
5

4
; 0;

p
5 � 1

4
, 1
2

, 1C
p
5

4
; 1
±
D ¹biº

9
iD1:

Figure 4. The 600 cell (By Claudio Rocchini –Own work, CC BY 3.0, httpsW//commons.wikimedia.
org/w/index.php?curid=4481192).

Theorem 7.2. Let h be a continuous potential on Œ�1; 1� that has h.i/ � 0, i D 1; : : : ; 15,
and h.16/ � 0. Then the minimum of the discrete potential Uh.x; C600/ is attained at the
points y 2 C600, i.e.,

(7.1) Qh.C600/ D h.b1/C 12

4X
jD1

h.b2j /C 20

1X
iD0

h.b4iC3/C 30h.b5/C h.b9/:

Proof. The proof follows very closely the layout of the proof of Theorem 5.1 in [17].
Introduce the multi-set

I D ¹tj º
16
jD1 WD ¹b1; b2; b2; b3; b3; : : : ; b8; b8; b9º;

and consider the partial products

gj .t/ WD .t � t1/ � � � .t � tj /; j D 1; : : : ; 16; g0.t/ WD 1:

https://commons.wikimedia.org/w/index.php?curid=4481192
https://commons.wikimedia.org/w/index.php?curid=4481192
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Denote with g.t I h; I / the interpolating polynomial of h at the nodes of I . The Newton
interpolating formula yields that

(7.2) g.t I h; I / D

15X
jD0

hŒt1; : : : ; tjC1� gj .t/;

where hŒt1; : : : ; tjC1� denotes the divided difference of h in the listed nodes. Note that
all of the divided differences of h.t/ in (7.2) are nonnegative because hŒt1; : : : ; tjC1� D
h.j /.�/=j Š � 0. The Hermite interpolation error formula and h.16/ � 0 show that (recall
that b9 D 1)

h.t/ � g.t I h/ D
h.16/.�/

16Š
.t � b1/.t � b2/

2
� � � .t � b8/

2 .t � b9/ � 0; t 2 Œ�1; 1�:

In Theorem 5.1 of [17], it was shown that the 12-th Gegenbauer coefficients of g.t I h; I /
and g16 are positive, so the polynomial

H.t I h; I / WD g.t I h; I / �
.g.t I h; I //12

.g16/12
g16.t/ D

16X
iD0

HiP
.4/
i .t/

interpolates h at the points of I , H12 D 0, and H.t I h; I / � h.t/. This implies that

Uh.z; C600/ D
X
y2C0

h.z � y/ �
X
y2C0

H.z � yI h/

D 120H0 D
X
y2C0

H.w � yI h/ D
X
y2C0

h.w � y/

D h.b1/C 12

4X
jD1

h.b2j /C 20

1X
iD0

h.b4iC3/C 30h.b5/C h.b9/:

That the only minima are points of the code follows analogously to [17].

The minima of the discrete potential induced by the 600-cell for absolutely monotone
potentials (or h.16/ � 0) is a much more complex problem that will be addressed in a
subsequent work.
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