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p-group Galois covers of curves in characteristic p. II

Jędrzej Garnek

Abstract. Let k be an algebraically closed field of characteristic p > 0 and let G be a finite p-
group. The results of Harbater, Katz and Gabber associate to every k-linear action of G on kJtK
an HKG-cover, i.e. a G-cover of the projective line ramified only over 1. In this paper we relate
the HKG-covers to the classical problem of determining the equivariant structure of cohomologies
of a curve with an action of G. To this end, we present a new way of computing cohomologies of
HKG-covers. As an application of our results, we compute the equivariant structure of the de Rham
cohomology of Klein four covers in characteristic 2.

1. Introduction

Studying the equivariant structure of the cohomologies of a curve X over a field k with
an action of a finite group G is a natural and well-researched topic. In the classical case,
that is, when char k − #G, the equivariant structure of the module of holomorphic dif-
ferentials was completely determined by Chevalley and Weil using the character theory
of finite groups, cf. [5]. When char k D p > 0 and pj#G, the structure of H 0.X; �X /

becomes much more complicated. Recall that in this setting the character theory is of
limited use and classifying indecomposable representations is a “wild” problem. Even
indecomposable representations of G D Z=p � Z=p in characteristic p > 2 are thought
to be impossible to classify (cf. [4]). In the tame or weakly ramification case, one may
obtain some information on the image of H 0.X;�X / in the K-theory of G, cf. e.g. [10].
Moreover, there are several results for specific groups (see e.g. [2, 27, 33]) or curves (cf.
[8, 15, 25, 26]). Most of those results are proven by giving an explicit basis of the coho-
mology of X . In this article and in its prequel [12] we propose a different strategy for
investigating the equivariant structure of cohomologies in the case when G is a p-group.

From now on, we assume that k is an algebraically closed field of characteristic p
and G is a finite p-group. Let X be a smooth projective curve over k with an action of G.
As explained in [12], we predict that the Hodge cohomology

H 1
Hdg.X/´ H 0.X;�X /˚H

1.X;OX /

and the de Rham cohomology H 1
dR.X/ should decompose as kŒG�-modules into certain
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global and local parts:

H 1
Hdg.X/ Š .global part/˚

M
Q2Y.k/

H 1
Hdg;Q;

H 1
dR.X/ Š .global part/˚

M
Q2Y.k/

H 1
dR;Q;

where � WX!X=GDW Y is the quotient morphism. More precisely, the global part should
depend only on the “topology” of the cover � (i.e. on the curve Y and the stabilizer
subgroups) and be the same for both cohomologies. Moreover, for any given point Q 2
Y.k/ the local parts H 1

Hdg;Q, H 1
dR;Q should depend only on the ring

yOX;Q ´ .��OX /Q ˝OY;Q
yOY;Q;

where yOY;Q denotes completion of the ring OY;Q with respect to the ideal mY;Q.
The goal of this article is to propose a new way of computing the local parts, by estab-

lishing a connection with the Harbater–Katz–Gabber covers (in short: HKG-covers). The
HKG-covers proved to be an important tool in the study of local actions and the deforma-
tion theory of curves with automorphisms, see e.g. [3,6,7,22,28–30]. For any Q 2 Y.k/,
one may construct an HKG-cover XQ!P1 that approximates the cover � WX!Y locally
overQ, see below for a precise definition. It is natural to try to relate its cohomology with
the postulated local parts H 1

Hdg;Q, H 1
dR;Q of the cohomologies of X . Such a result would

reduce investigation of cohomologies of G-covers to HKG-covers. We show that this phi-
losophy is correct for generic p-group covers.

Let k, G and � WX ! Y be as above. Denote by gY the genus of Y and by B � Y.k/
the branch locus of � . For any P 2 X.k/ denote by GP;i the i -th ramification group at P
and let:

dP ´
X
i�0

.#GP;i � 1/; d 0P ´
X
i�1

.#GP;i � 1/; d 00P ´
X
i�2

.#GP;i � 1/:

Note that dP is the exponent of the different of k.X/=k.Y / at P . We assume that the
cover � satisfies the following assumptions, introduced in [12]:

(A) the stabilizer GP of P in G is a normal subgroup of G for every P 2 X.k/,

(B) there exists a function z 2 k.X/ (a “magical element”) satisfying ordP .z/��d 0P
for every P 2 X.k/ and trX=Y .z/ ¤ 0.

Recall that a generic p-group cover satisfies (A) and (B) (cf. [12, Theorem 1.5]). By
the assumption (A), for Q 2 Y.k/ we may denote GQ ´ GP and dQ ´ dP for any
P 2 ��1.Q/.

Results of Harbater (cf. [16]) and of Katz and Gabber (cf. [20]) imply that for any
G-Galois algebra B over kJxK there exists a unique G-cover X! P1 ramified only over
1 and such that there exists an isomorphism yOX;1 Š B of kŒG�-algebras. The cover
X! P1 is called the Harbater–Katz–Gabber cover associated to .B; G/. Suppose now
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that � WX ! Y is as above. Then yOX;Q is a G-Galois algebra over yOY;Q Š kJxK for any
Q 2 Y.k/. Denote by XQ ! P1 the corresponding HKG-cover. Note that it might be
disconnected. In fact, XQ D

F
G=GQ

XıQ, where XıQ ! P1 is a (connected) GQ-HKG-
cover. We give now an example of computation of XQ.

Example 1.1. Let p D 2, k D xF2 andG D V4, the Klein-four group. Let Y be the elliptic
curve with the affine equation w2 C w D u3 over the field k. Consider the V4-cover
� WX ! Y given by the equations:

y20 C y0 D w
3
C

1

w7
; y21 C y1 D w

5
C

1

w7
:

The cover � is branched over the points Q1; Q2 2 Y.k/, where Q1 D .0; 0/ 2 Y.k/

and Q2 is the point at infinity of Y . We give now the equations of XQ1 and XQ2 . Since
ordQ1.w/ D 3, we have w D x�3 for some element x 2 yOY;Q1 , ordQ1.x/ D �1. By
Hensel’s lemma, there exist s0; s1 2 yOY;Q1 such that s20 C s0 D x

�9, s21 C s1 D x
�15. Let

z0´ y0 C s0, z1´ y0 C y1 C s0 C s1. One easily checks that

z20 C z0 D x
21; z21 C z1 D 0:

These equations define XQ1 . Note that XQ1 DXıQ1 tX
ı
Q1

, where XıQ1 Wz
2
0 C z0D x

21 is a
Z=2-cover of P1. Similarly, using the fact that ordQ2.w

3C
1
w7
/D�9 and ordQ2.w

5C
1
w7
/

D �15, one can show that XQ2 D XıQ2 is given by the equations:

z20 C z0 D x
9; z21 C z1 D x

15:

Note that XQ D
F4
iD1 P1 is a trivial V4-cover of P1 for any Q 2 Y.k/ n ¹Q1;Q2º.

For any kŒG�-module V , we write V _ for the dual kŒG�-module. Let

IG ´
°X
g2G

agg 2 kŒG� W
X
g2G

ag D 0
±

be the augmentation ideal of the group G. For any subgroup H � G we consider also the
relative augmentation ideal IG;H ´ IndGH IH , which can be treated as a submodule of
kŒG� (see Section 4). Finally, the kŒG�-module IX=Y is defined by:

IX=Y ´ ker
�X

W

M
Q2Y.k/

IG;GQ ! IG

�
:

The following is the main result of the paper.

Theorem 1.2. Keep the above assumptions. We have the following isomorphisms of kŒG�-
modules:

H 0.X;�X / Š kŒG�
˚gY ˚ IX=Y ˚

M
Q2B

H 0.XQ; �XQ/;
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H 1.X;OX / Š kŒG�
˚gY ˚ I_X=Y ˚

M
Q2B

H 1.XQ;OXQ/;

H 1
dR.X/ Š kŒG�

˚2�gY ˚ IX=Y ˚ I
_
X=Y ˚

M
Q2B

H 1
dR.XQ/:

Moreover, one can further decompose the local terms as follows:

H 0
�
XQ; �XQ

�
Š IndGGQ H

0
�
XıQ; �XıQ

�
;

H 1
�
XQ;OXQ

�
Š IndGGQ H

1
�
XıQ;OXıQ

�
;

H 1
dR

�
XQ

�
Š IndGGQ H

1
dR

�
XıQ

�
:

In the paper [12] we showed a statement similar to Theorem 1.2, but with a different
form of the local parts (cf. ibid, Theorem 1.1). The new result surpasses it in two aspects.
Firstly, the local parts in [12] depended not only on the local rings, but also on the element
z 2 k.X/ from the condition (B). The local parts given in Theorem 1.2 depend only on
the completed local rings, as they come from cohomologies of XQ. Secondly, as the local
parts in [12] were defined as quotients of certain infinitely dimensional vector spaces,
their computation for concrete examples was considerably challenging. The local parts
in Theorem 1.2 can be computed by giving bases of cohomologies of XQ, which seems
much easier than giving bases of cohomologies of X . We present this strategy for Klein
four covers in characteristic 2, see below. In order to prove Theorem 1.2, we use [12,
Theorem 1.1] together with a new description of the cohomologies of a HKG-cover (cf.
Theorem 3.2 in Section 3).

As an application of Theorem 1.2, we describe the equivariant structure of the de Rham
cohomology of Klein four covers of projective line in characteristic 2. Keep the above
notation with p D 2 and G D V4 D ¹e; �; �; ��º. Recall that the indecomposable kŒV4�-
modules are completely classified (cf. [1] or [2, Appendix]). In the sequel we will need five
indecomposable kŒV4�-modules apart from k (i.e. the trivial representation) and kŒV4�, cf.
Table 1.2. Note that in order to construct a kŒV4�-module of dimension n, we have to give
a pair of commuting square matrices of order at most 2 in Gln.k/, corresponding to the
action of � and � .

The Klein four covers in characteristic 2 were studied in several articles, including
[13, 14]. As shown recently in [2], there exist infinitely many isomorphism classes of
indecomposable kŒV4�-modules that may appear as a direct summand of the module of
holomorphic differentials of a V4-cover in characteristic 2. As we will see, this remains in
stark contrast with the case of the de Rham cohomology.

Theorem 1.3. Let k be an algebraically closed field of characteristic 2. Suppose that
� WX! Y is a V4-cover of smooth projective curves over k that satisfies the condition (B)
(this holds automatically for example if Y D P1). There exist 7 isomorphism classes of
indecomposable kŒV4�-modules that may appear as a direct summand of H 1

dR.X/:

k; kŒV4�; N2;0; N2;1; N2;1; M3;1 and M3;2:
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Module � � Dual module

N2;0

�
1 1

0 1

� �
1 0

0 1

�
N2;0

N2;1

�
1 0

0 1

� �
1 1

0 1

�
N2;1

N2;1

�
1 1

0 1

� �
1 1

0 1

�
N2;1

M3;1

0@1 0 1

0 1 0

0 0 1

1A 0@1 1 0

0 1 0

0 0 1

1A M3;2

M3;2

0@1 0 1

0 1 0

0 0 1

1A 0@1 0 0

0 1 1

0 0 1

1A M3;1

Table 1.2. kŒV4�-modules used in the article.

In fact, we provide a more precise result. Namely, in Theorem 6.1 we give a decompo-
sition ofH 1

dR.X/ into indecomposable summands in terms of local invariants of the cover
for curves satisfying the assumptions of Theorem 1.3. It seems that it would be much
harder to obtain this result using [12, Theorem 1.1].

Example 1.4. Let � WX ! Y be as in Example 1.1. We compute now the equivariant
structure of H 1

dR.X/. In order to compute IX=Y , note that IG;GQ2 D IG . Hence:

IX=Y Š ker.IG;GQ1 ˚ IG;GQ2 ! IG/ Š IG;GQ1 :

By [12, Corollary 1.2], H 1
dR.X

ı
Q1
/ Š I˚20GQ1

and hence:

H 1
dR.XQ1/ Š IndGGQ1 H

1
dR

�
XıQ1

�
Š I˚20G;GQ1

:

One shows that IG;GQ1 Š I
_
G;GQ1

Š N2;1, see the proof of Lemma 6.4. By computing an
explicit basis of the de Rham cohomology of XQ2 (see Proposition 6.5), one proves that:

H 1
dR.XQ2/ Š N

˚6
2;0 ˚M

˚4
3;1 ˚M

˚4
3;2 :

It turns out that X satisfies the condition (B), cf. Example 6.2. Hence by Theorem 1.2:

H 1
dR.X/ Š kŒV4�

˚2
˚ IG;Q2 ˚ I

_
G;Q2

˚H 1
dR.XQ1/˚H

1
dR.XQ2/

Š kŒV4�
˚2
˚N˚222;1 ˚N

˚6
2;0 ˚M

˚4
3;1 ˚M

˚4
3;2 :

Outline of the paper

In Section 2 we discuss preliminaries on algebraic curves. Section 3 is devoted to a new
description of the cohomologies of HKG-covers. In Section 4 we prove Theorem 1.2. Sec-
tion 5 recalls basic facts concerning V4-covers. In Section 6, we compute the equivariant
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structure of the de Rham cohomologies of Klein four covers, assuming a result on the
cohomologies of V4-HKG covers (Proposition 6.5). Proposition 6.5 is proven in the last
section.

2. Preliminaries

In this section we introduce notation concerning algebraic curves and recall basic facts
used throughout the paper. For an arbitrary smooth projective curve Y over a field k we
denote by k.Y / the function field of Y and by gY its genus. Also, we write ordQ.f /
for the order of vanishing of a function f 2 k.Y / at a point Q 2 Y.k/. Let mn

Y;Q ´

¹f 2 k.Y / W ordQ.f / � nº for any n 2 Z. To simplify notation, we write�Y ,�k.Y / and
H 1

dR.Y / instead of�Y=k ,�k.Y /=k andH 1
dR.Y=k/. We often identify a finite set S � Y.k/

with a reduced divisor in Div.Y /. Thus e.g. �Y .S/ will denote the sheaf of logarithmic
differential forms with poles in S . In the sequel we often use residues of differential forms,
see e.g. [17, Remark III.7.14] for relevant facts.

LetG be a finite group and � WX ! Y be a finite separableG-cover of smooth projec-
tive curves over a field k. We identify �k.Y / with a submodule of �k.X/ and k.Y / with a
subfield of k.X/. We denote the ramification index of � at P 2 X.k/ by eX=Y;P and by
GP;i the i -th ramification group of � at P , i.e.

GP;i ´
®
� 2 G W �.f / � f mod miC1

P for every f 2 OX;P
¯
:

Also, we use the following notation:

dX=Y;P ´
X
i�0

.#GP;i � 1/; d 0X=Y;P ´
X
i�1

.#GP;i � 1/; d 00X=Y;P ´
X
i�2

.#GP;i � 1/

(dX=Y;P is the exponent of the different of k.X/=k.Y / at P , cf. [31, Proposition IV.§1.4]).
Recall that for any P 2 X.k/ and ! 2 �k.Y /:

ordP .!/ D eX=Y;P � ord�.P/.!/C dX=Y;P (2.1)

(see e.g. [17, Proposition IV.2.2 (b)]). For any sheaf F on X andQ 2 Y.k/ we abbreviate
.��F /Q to FQ and .��F /Q ˝OY;Q

yOY;Q to yFQ. We write briefly trX=Y for the trace

trk.X/=k.Y /W k.X/! k.Y /:

Note that it induces a map

�k.X/ Š k.X/˝k.Y / �k.Y / ! �k.Y /;

which we also denote by trX=Y . Recall that for any � 2 �k.X/ and Q 2 Y.k/:X
P2��1.Q/

resP .�/ D resQ
�

trX=Y .�/
�

(2.2)

(see [18, Proposition 1.6] or [32, p. 154, (R6)]).



p-group Galois covers of curves in characteristic p. II 353

In the sequel we use also the following description of cohomologies on a smooth
projective curve Y . Let S � Y.k/ be a finite non-empty set. Write U ´ Y n S and let �
be the generic point of Y . For any locally free sheaf F of finite rank we have a natural
isomorphism (cf. [12, Lemma 5.2]):

H 1.Y;F / Š coker
�
F .U /!

M
Q2S

F�=FQ
�
; (2.3)

Similarly, if F � D .F 0 d
�! F 1/ is a cochain complex of locally free OY -modules of finite

rank with a k-linear differential then (cf. [12, Lemma 6.2]):

H1.Y;F �/ Š Z1S .F
�/=B1S .F

�/; (2.4)

where

Z1S .F
�/´

®
.!; .hQ/Q2S / W ! 2 F 1.U /; hQ 2 F 0

� ; ! � dhQ 2 F 1
Q 8Q 2 S

¯
;

B1S .F
�/´

®
.dh; .hC hQ/Q2S / W h 2 F 0.U /; hQ 2 F 0

Q 8Q 2 S
¯
:

Suppose now that Y D
Fr
iD1 Yi is a disjoint union of smooth projective curves. Note that

H 0.Y; �Y / D
Lr
iD1H

0.Yi ; �Yi /, H
1.Y;OY / D

Lr
iD1H

1.Yi ;OYi /, etc. By abuse of
notation, we will denote by k.Y / the total fraction field of Y , i.e. k.Y /´

Lr
iD1 k.Yi /.

3. Cohomology of HKG-covers

Let k and G be as in Section 1. Suppose B is a k-algebra with a k-linear action of G
such that A´ BG equals kJxK. Results of Harbater (cf. [16]) and of Katz and Gabber
(cf. [20]) imply that there exists a unique G-cover � WX! P1 ramified only over1 and
such that there exists an isomorphism yOX;Q ŠB of kŒG�-algebras. We call � WX! P1 the
Harbater–Katz–Gabber cover (in short: HKG-cover) associated to .B; G/. The following
natural question arises.

Question 3.1. How to describe the invariants of the curve X (e.g. its Hodge and de Rham
cohomologies) in terms of B?

This problem was studied in several papers, see e.g. [19,23,24]. The listed articles give
for instance a way of computing H 0.X; �X/. However, this description depends on the
choice of the Artin–Schreier tower and thus is impractical for our purposes. We offer an
alternative approach using certain distinguished elements in the total fraction field of B.

We start by introducing the needed notation. Let L be the total fraction field of B.
Then B D

Qr
iD1 kJtiK and L D

Qr
iD1 k..ti //. Similarly, let K D k..x// be the fraction

field of A and mA´ .x/ be the maximal ideal of A. Let mi D .ti / be the unique maximal
ideal of kJtiK; we will identify it with the corresponding ideal of B. Also, let mB ´Tr
iD1 mi be the Jacobson radical of B and let ordmi

WL! Z [ ¹1º be the composition
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of the valuation k..ti //!Z[ ¹1º associated to mi with the surjection L� k..ti //. We
denote byGj .mi=mA/ the j th ramification group of mi over mA. Note that in particular,
G0.mi=mA/ Š Gal.k..ti //=K/ is the decomposition group of mi over mA. From now
on we make the following assumption:

(�) G0.m1=mA/ is a normal subgroup of G.

This implies in particular, that all the extensions k..t1//=K; : : : ; k..tr //=K are isomorphic
andG0.m1=mA/ is the decomposition group of mi over mA for every i D 1; : : : ; r . Thus
we may identify L with

Q
G=G0

k..t1//. We denote also from now onGi ´Gi .m1=mA/.
Let e D e.mi=mA/´ #G0 be the ramification index of mi over mA. Similarly, let

d ´
X
i�0

.#Gi � 1/; d 0´
X
i�1

.#Gi � 1/; d 00´
X
i�2

.#Gi � 1/:

For any topological k-algebra C , denote by�C the module of continuous k-linear Kähler
differentials. In particular, �A D kJxKdx, �K D k..x// dx, �B D

Lr
iD1Bdti , �L DLr

iD1 L dti . Similarly, let

�
log
A D

1

x
�A; �

log
B D

1

t1 � t2 � : : : � tr
�B:

be the logarithmic Kähler differentials.
Write R D ��1.1/ for the ramification set of � and denote U ´ P1 n ¹1º, V ´

��1.U /. For a future use, note that:

X D IndGG0 X
ı; (3.1)

where Xı ! P1 is the HKG-cover associated to .kJt1K; GQ/ and IndGG0 X
ı is the disjoint

union
F
G=G0

Xı with the natural action of G. The Riemann–Hurwitz formula (cf. [17,
Corollary IV.2.4]) for the cover Xı ! P1 implies that gXı D 1

2
d 00.

We say that z 2 L is a magical element for the extension L=K, if ordmi
.z/ � �d 0 for

every i D 1; : : : ; r and trL=K.z/ 2A�. In this context, we denote by z_ the dual element of
z with respect to the trace pairing. In other words, z_ is defined by the following equalities
for all g1; g2 2 G:

trL=K
�
g1.z/ � g2.z

_/
�
D

´
1; g1 D g2;

0; otherwise:

The following is the main result of this section.

Theorem 3.2. Keep the above notation. In particular, let X ! P1 be the HKG-cover
corresponding to .B; G/. Suppose that z 2 L is a magical element. Then we have the
following isomorphisms of kŒG�-modules:

H 0.X; �X/ Š
�

log
BL

g2G g
�.z/�

log
A

;
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H 1.X;OX/ Š

L
g2G g

�.z_/mA

mB

;

H 1
dR.X/ Š

²
.!; �/ 2

�LL
g2G g

�.z/�
log
A

�

L
g2G g

�.z_/mA

mB

W ! � d� 2 �
log
B

³
:

For future use, recall that for any f 2 L:

trL=K.f / 2 m˛
A; (3.2)

where ˛´ miniD1;:::;rb.ordmi
.f /C d/=ec. For the proof see [21, Lemma 1.4 (b)].

We list now some properties of magical elements. Note that if z 2 L is a magical
element for L=K then there exists 1 � i � r such that ordmi

.z/ D �d 0. Indeed, if we
would have ordmi

.z/ > �d 0 for i D 1; : : : ; r , then trL=K.z/ 2mA by (3.2), which would
yield a contradiction. We prove now a partial converse of this fact.

Lemma 3.3. Keep the above assumptions. If z 2 L satisfies ordmi
.z/ � �d 0 for all i D

1; : : : ; r and equality holds for precisely one i , then z is a magical element for L=K.

Proof. Let zD.z1; : : : ; zr /2LD
Qr
iD1 k..ti //. Suppose that ordm1.z/D�d

0 and ordmi
.z/

> �d 0 for i D 2; : : : ; r . Note that by (3.2) we have trL=K.z1/ 2 A and trL=K.zi / 2 mA

for i D 2; : : : ; r . Let KDK0 �K1 � � � � �Kn D k..t1// be a tower of Z=p-extensions.
Note that Ki is a field with a discrete valuation ordKi

. Let KiC1=Ki be given by the
Artin–Schreier equation:

y
p
i � yi D hi 2 Ki for i D 0; : : : ; n � 1:

Note that ordKi
.hi / < 0 for every i D 0; : : : ; n � 1, since otherwise KiC1 would not

be a field. Without loss of generality, we may assume that p − ordKi
.hi / for every i D

1; : : : ; r . In this context one often says that y1; : : : ;yn are the Artin–Schreier generators for
k..t1//=K in standard form. Then [12, Lemmas 7.2 and 8.1] show that z0 ´ y

p�1
1 � : : : �

y
p�1
n satisfies trL=K.z0/D˙1 and ordm1.z

0/D�d 0. Thus, for some c2k�, ordm1.z1�cz
0/

>�d 0. But this implies by (3.2) that trL=K.z1 � cz0/ 2mA. Therefore trL=K.z1/�˙c 6�
0 .mod mA/ and trL=K.z/D

Pr
iD1 trk..ti //=K.zi /2AnmADA�. This ends the proof.

Corollary 3.4. Every étale G-Galois algebra L=K satisfying .�/ has a magical element.

Proof. Let z ´ .t�d
0

1 ; 0; : : : ; 0/ 2 L D
Qr
iD1 k..ti //. Then z is a magical element for

L=K by Lemma 3.3.

In case when L is a field, the definition of a magical element simplifies.

Corollary 3.5. Suppose that G0 D G (i.e. LD k..t1//). Then z 2 L is a magical element
for L=K if and only if ordm1.z/ D �d

0.

Proof. Lemma 3.3 implies that if ordm1.z/D �d
0, then trL=K.z/ 2 A�. For the converse

implication, note that if ordm1.z/ > �d
0, then trL=K.z/ 2 mA by (3.2).
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The following result will be crucial in the proof of Theorem 3.2.

Proposition 3.6. Keep the assumptions of Theorem 3.2. Then:

�L D

M
g2G

g�.z/�
log
A ˚H

0.V;�X/:

We prove Proposition 3.6 by induction on #G. Before the proof we need two auxiliary
results.

Lemma 3.7. Keep the assumptions of Theorem 3.2. Then for any H E G, the extension
LH=K satisfies the condition .�/ and has zH ´ trL=LH .z/ as a magical element.

Proof. Note that the maximal ideals of BH are mH
i for i D 1; : : : ; r . Since G0 E G, we

have G0.mH
i =mA/D G0H=H E G=H . Thus LH=K also satisfies the condition .�/. By

the transitivity of the different (cf. [31, §III.4, Proposition 8]):

d 0.m1=mA/ D d
0.m1=m

H
1 /C e.m1=m

H
1 / � d

0.mH
1 =mA/:

By (3.2) we see that for i D 1; : : : ; r :

ordmH
i
.zH / �

�
�d 0.m1=mA/C d.m1=m

H
1 /

e.m1=m
H
1 /

�
D �d 0.mH

1 =mA/:

Moreover, trLH =K.zH / D trL=K.z/ 2 A�. This ends the proof.

Lemma 3.8. H 0.V;�X/ is a free kŒG�-module.

Proof. Let V ı be the preimage of P1 n ¹1º on Xı. Using Riemann–Roch theorem, one
sees that H 0.Xı;OXı.d

0 � R// ¤ H 0.Xı;OXı..d
0 � 1/ � R//, since deg.d 0 � R/ D d 0 >

2gXı � 2 D d
00 � 2. Let z 2 H 0.Xı;OXı.d

0 �R// nH 0.Xı;OXı..d
0 � 1/ �R//. Then z

is regular on V ı and trXı=P1.z/¤ 0 by Corollary 3.5. Therefore z is a normal element for
k..t1//=K by [12, Proposition 3.1] and ���Xı jU D

L
g2G0

g�.z/�P1 jU as subsheaves
of the constant sheaf ���k.Xı/ on P1. Thus:

H 0.V;�X/ D IndGG0 H
0.V ı; �Xı/ D IndGG0

M
g2G0

g�.z/H 0.U;�P1/

Š kŒG�H 0.U;�P1/:

Proof of Proposition 3.6. We prove this by induction on #G. Denote:

SG.z/´
M
g2G

g�.z/�
log
A :

For #G D 1 this is true, as then z 2 k� and Proposition 3.6 comes down to the equality:

k
�
.t/
�
dt D

1

t
kJtK dt ˚ kŒ1=t�

dt

t2
:
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Suppose now that #G > 1. LetH D hhi �G be a central subgroup of order p (it exists by
[9, Chapter 6, Theorem 1 (1)]). Denote X0´ X=H and G0 D G=H D ¹g1H; : : : ; gsH º.
Then X0! P1 is the HKG-cover associated to .BH ;G0/. Suppose to the contrary that ! 2
SG.z/ \H

0.V;�X/, ! ¤ 0. Let i � 0 be the largest number for which .h � 1/i � ! ¤ 0
(note that .h� 1/p D 0, thus there exists such a number). Denote !0´ .h� 1/i �!. Then
.h � 1/ � !0 D 0, i.e. !0 2 �k.X0/. On the other hand, !0 2 H 0.V; �X/ clearly implies
!0 2 H 0.V 0; �X0/, where V 0 is the image of V through X! X0. Let zH ´ trL=LH .z/.
Note that zH is a magical element for the extension LH=K by Lemma 3.7. We show now
that !0 2 SG0.zH /. Let !0 D

P
g2G g

�.z/!0g , where !0g 2 �
log
A for every g 2 G. The

condition h.!0/D !0 implies that !0
gh
D !0g for any g 2G. Thus we can define !0j ´ !0g

for any g 2 gjH . We have:

!0 D
X
g2G

g�.z/!0g D

sX
jD1

!0j

X
g2gjH

g�.z/ D

sX
jD1

g�j .zH /!
0
j 2 SG0.zH /:

This shows that !0 2 SG0.zH / \H 0.V 0; �X0/. But by induction hypothesis,

SG0.zH / \H
0.V 0; �X0/ D ¹0º:

Thus SG.z/ \H 0.V;�X/ D ¹0º.
Denote:

Q´
�L

SG.z/˚H 0.V;�X/
:

We will show now that Q D ¹0º. Suppose to the contrary that ! 2 �L has non-zero
image in Q. Let i � 0 be the largest number such that .h � 1/i � ! ¤ 0 in Q and denote
!0 ´ .h � 1/i � !. Then !0 2 QH . Using the long exact sequence of group cohomology
for

0! SG.z/˚H
0.V;�X/! �L ! Q! 0

we obtain:

0! SG.z/
H
˚H 0.V;�X/

H
! �HL ! QH

! H 1
�
H;SG.z/˚H

0.V;�X/
�
: (3.3)

Note that H 1.H; SG.z// D 0, since SG.z/ is a free kŒG�-module and hence also a free
kŒH�-module. On the other hand, using Lemma 3.8 we see thatH 1.H;H 0.V;�X//D 0.
Thus (3.3) implies that �LH D �HL ! QH is a surjection. Therefore, without loss of
generality we may assume that !0 2 �LH . By induction hypothesis, !0 2 SG0.zH / ˚
H 0.V 0;�X0/. But this implies that !0 D 0 in Q! Indeed,H 0.V 0;�X0/ �H

0.V;�X/ and
if � D

Ps
jD1 g

�
j .zH /�j 2 SG0.zH / for �j 2 �

log
A , then

� D

sX
jD1

�j

p�1X
lD0

.gjh
l /�.z/ 2 SG.z/;

i.e. SG0.zH / � SG.z/ Contradiction ends the proof.
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Proof of Theorem 3.2. Denote the right-hand sides in Theorem 3.2 by H 0.z/, H 1.z/,
H 1

dR.z/ respectively. Let SG.z/ be defined as in the proof of Proposition 3.6 and denote:

S_G.z/´
M
g2G

g�.z_/mA:

The quotients in Theorem 3.2 are well defined. Indeed, [12, Lemma 3.2] implies that
SG.z/ � �

log
B and [12, Lemma 3.4] yields mB � S

_
G.z/.

Proposition 3.6 implies that

�
log
B D SG.z/˚H

0
�
X; �X.R/

�
;

since SG.z/ � �
log
B and H 0.V; �X/ \ �

log
B D H 0.X; �X.R//. Moreover, the residue

theorem (cf. [32, Corollary after Theorem 3]) implies thatH 0.X;�X.R//DH
0.X;�X/.

Thus we obtain the desired isomorphism:

H 0.X; �X/ Š
�

log
B

SG.z/
:

In the sequel we will use (2.3) and (2.4) for the sheaf ��OX and the complex ����X
on P1 with S D ¹1º. Note that since � is affine, H 1.X;OX/ Š H 1.P1; ��OX/ and
H 1

dR.X/ Š H1.P1; ����X/. Moreover, if we denote by � the generic point of P1, then
.��OX/� Š k.X/. The pairing

k.X/ ��k.X/ ! k; .f; !/´ res1
�

trX=P1.f � !/
�

induces both the Serre’s duality H 0.X; �X/
_ Š H 1.X;OX/ and the duality between

�
log
B =SG.z/ and S_G.z/=mB (cf. [12, Lemma 3.5 (1)]). This proves that

H 1.X;OX/ Š S
_
G.z/=mB:

Recall that H 0.X; �X/ D H
0.X; �X.R// and H 1.X;OX/ Š H

1.X;OX.�R//. Hence,
by the exact sequence [12, (6.2)], the de Rham cohomology of X might be computed as

the hypercohomology of the complex .OX.�R/
d
�! �X.R//. We obtain:

H 1
dR.X/ Š

®
.!; �/ 2 H 0.V;�X/ � k.X/ W ! � d� 2 �X.R/

¯®
.df; f C �/ W f 2 OX.V /; � 2 OX.�R/1

¯
Š

®
.!; �/ 2 H 0.V;�X/ �

k.X/
OX.�R/1

W ! � d� 2 �X.R/
¯®

.df; f / W f 2 OX.V /
¯

Š

®
.!; �/ 2 H 0.V;�X/ �

L
mB
W ! � d� 2 �

log
B

¯®
.df; f / W f 2 OX.V /

¯
(we used the isomorphism k.X/=OX.�R/1 Š L=mB for the last equality). By Proposi-
tion 3.6 H 0.V;�X/ may be identified with �L

SG.z/
. Thus we may identify:

H 1
dR.z/ Š

°
.!; �/ 2 H 0.V;�X/ �

S_G.z/

mB

W ! � d� 2 �
log
B

±
:
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The inclusion:
H 0.V;�X/ � S

_
G.z/ ,! H 0.V;�X/ � L

induces a homomorphism H 1
dR.z/! H 1

dR.X/. Thus we obtain a commutative diagram:

0 H 0.z/ H 1
dR.z/ H 1.z/ 0

0 H 0.X; �X/ H 1
dR.X/ H 1.X;OX/ 0;

in which rows are exact and the left and right arrows are isomorphisms. Thus the middle
arrow is also an isomorphism. This ends the proof.

4. p-group covers

In this section we assume that k, G and � WX ! Y are as in Theorem 1.2. Recall that
B � Y.k/ denotes the set of branch points of � and let R´ ��1.B/ be the ramification
locus. Also, by abuse of notation, for Q 2 Y.k/ we write GQ;i ´ GP;i , eQ ´ eX=Y;P ,
dQ ´ dX=Y;P etc. for any P 2 ��1.Q/. Note that these quantities do not depend on the
choice of P by the condition (A).

Denote for any Q 2 B:

H 0
Q ´

�X .B/QL
g2G g

�.z/�Y .B/Q
;

H 1
Q ´

L
g2G g

�.z_/OY .�B/Q

OX .�R/Q
;

H 1
dR;Q ´

²
.!; �/ 2

�k.X/L
g2G g

�.z/�Y .B/Q
�

L
g2G g

�.z_/OY .�B/Q

OX .�R/Q
W

! � d� 2 �X .B/Q

³
:

Proof of Theorem 1.2. Recall that by [12, Theorem 1.1] we have the following isomor-
phisms of kŒG�-modules:

H 0.X;�X / Š kŒG�
˚gY ˚ IX=Y ˚

M
Q2B

H 0
Q;

H 1.X;OX / Š kŒG�
˚gY ˚ I_X=Y ˚

M
Q2B

H 1
Q;

H 1
dR.X/ Š kŒG�

˚2gY ˚ IX=Y ˚ I
_
X=Y ˚

M
Q2B

H 1
dR;Q:

Fix Q 2 B and let x 2 k.Y / be a uniformizer at Q. We prove now that

H 0
Q Š H

0.XQ; �XQ/:
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Let A´ yOY;Q and B´ yOX;Q. From now on, we use the notation of Section 3. In par-
ticular, denote by K and L the total fraction fields of A and B. Note that K D k..x//

and L is a G-Galois étale algebra over K. The inclusion �k.X/ ,! �L induces a natural
morphism:

H 0
Q ´

�X .R/QL
g2G g

�.z/�Y .B/Q
!

�
log
BL

g2G g
�.z/�

log
A

Š H 0.XQ; �XQ/ (4.1)

(we used Theorem 3.2 for the last isomorphism). The map (4.1) is injective, since if

! D
X
g2G

g�.z/!g 2 �X .R/Q \
�M
g2G

g�.z/�
log
A

�
then !g D trX=Y .g�.z_/ � !/ 2 �k.Y / \ �

log
A D �Y .B/Q for every g 2 G and thus

! 2
L
g2G g

�.z/�Y .B/Q. We prove now that the map (4.1) is surjective. Note that
for any ! 2 �L there exists !0 2 �k.X/ with ! � !0 2

L
g2G g

�.z/�
log
A . Indeed, if

! D
P
g2G g

�.z/!g then it suffices to take !0 ´
P
g2G g

�.z/!<0g , where for � DP
i2Z aix

i dx 2 �K D k..x// dx, we put �<0 ´
P
i<0 aix

i dx. This proves that (4.1)
is an isomorphism.

Similarly, the inclusion k.X/ ,! L induces an isomorphism:

H 1
Q ´

L
g2G g

�.z_/OY .�B/Q

OX .�R/Q
!

L
g2G g

�.z_/mB

mA

Š H 1.XQ;OXQ/:

For the de Rham cohomology, by Theorem 3.2 the inclusion �k.X/ � k.X/ ,! �L � L

induces a map H 1
dR;Q ! H 1

dR.XQ/, which fits in the commutative diagram with exact
rows:

0 H 0
Q H 1

dR;Q H 1
Q 0

0 H 0.XQ; �XQ/ H 1
dR.XQ/ H 1.XQ;OXQ/ 0:

Since the outer two arrows are isomorphisms, we deduce that the mapH 1
dR;Q!H 1

dR.XQ/

is also an isomorphism.
Finally, note that by (3.1) XQ D IndGGQ XıQ, which easily leads to the isomorphisms:

H 0.XQ; �XQ/ Š IndGGQ H
0.XıQ; �XıQ

/

H 1.XQ;OXQ/ Š IndGGQ H
1.XıQ;OXıQ

/

H 1
dR.XQ/ Š IndGGQ H

1
dR.X

ı
Q/:

This ends the proof.
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For later use, we prove a lemma that simplifies computation of IX=Y . In the sequel we
identify the relative augmentation ideal IG;H (as defined in Section 1) with:

IG;H D
°X
g2G

agg 2 kŒG� W
X

g2g0H

ag D 0 8g0 2 G
±
:

For anyQ 2 B and g 2 G, let gQ 2
L
B kŒG� be the element with g on theQ-th compo-

nent and 0 on other components.

Lemma 4.1. Suppose that S � B is such that for every Q 2 B there exists Q0 2 S such
that GQ � GQ0 . Then:

IX=Y Š
M

Q2BnS

IG;GQ ˚ I.S/;

where I.S/´ ker.†W
L
Q2S IG;GQ ! IG/.

Proof. We prove it by induction on jB n S j. For B D S this is straightforward. To prove
the induction step, it suffices to show that if S D S 0 [ ¹Q0º and GQ0 � GQ1 for some
Q1 2 S

0, then:

I.S/ Š IG;GQ0 ˚ I.S
0/:

We treat both sides as submodules of
L
B kŒG�. The isomorphisms are given by:

ˆW I.S/! IG;GQ0 ˚ I.S
0/;X

Q;g

aQg � gQ 7!
X
g

aQ0g � gQ0 C
X
g

aQ0g � gQ1 C
X
Q2S 0

X
g

aQg � gQ;

‰W IG;GQ0 ˚ I.S
0/! I.S/;X

Q;g

agQ � gQ 7!
X
g

aQ0g � gQ0 �
X
g

aQ0g � gQ1 C
X
Q2S 0

X
g

aQg � gQ

(we abbreviate
P
Q2S to

P
Q and

P
g2G to

P
g ). Note thatˆ is well defined. Indeed, for

any
P
Q;g aQg � gQ 2 I.S/:

•
P
g aQ0g � g 2 IG;GQ0 � IG;GQ1 ,

•
P
g aQ0g � gQ1 C

P
Q2S 0 aQg � gQ 2 ker.

L
S 0 kŒG�! kŒG�/, sinceX

g

aQ0g � g C
X
g

X
Q2S 0

aQg � g D
X
g

� X
Q2S

aQg

�
� g:

and
P
Q;g aQggQ 2 ker.

L
S kŒG�! kŒG�/.

Analogously one checks that ‰ is well defined. It is easy to check that ˆ and ‰ are
equivariant and mutually inverse.
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5. Klein four covers

In this section we recall basic facts concerning V4-covers in characteristic 2. Keep pre-
vious notation with p D 2 and G D V4 D ¹e; �; �; ��º. Write H0 D h�i, H1 D h�i,
H1 D h��i. Let also for any subgroup H � V4:

B.H/´ ¹Q 2 B W GQ D H º;

B 0.H/´ ¹Q 2 B W GQ;i D H; GQ;iC1 D ¹eº for some iº:

We discuss now how to find B.V4/, B.Hi /, B 0.Hi / and dQ, given the equations defin-
ing X . Recall that the function field of X is given by equations of the form:

y20 C y0 D h0; y21 C y1 D h1; (5.1)

where h0; h1 2 k.Y /, �.y0/ D y0 C 1, �.y1/ D y1 and �.y0/ D y0, �.y1/ D y1 C 1.
Denote y1´ y0 C y1, h1´ h0 C h1.

We say that the equations (5.1) are in standard form at a pointQ 2 Y.k/, if the function
hi is either regular at Q or has a pole of odd order for every i D 0; 1;1. Note that any
equation can be brought to the standard form at a given point by successively subtracting
powers of a uniformizer. Moreover, if Y D P1, one can find an equation of the form (5.1),
which is in standard form at any Q 2 Y.k/.

The article [2] defined two local invariants mQ and MQ of the cover � associated to
every Q 2 Y.k/ as follows. The number mQ is the minimum of the lower ramification
jumps of the covers X=Hi ! Y for i 2 ¹0; 1;1º atQ. Similarly,MQ is the maximum of
those jumps. Note that for any i 2 ¹0; 1;1º the coverX=Hi ! Y is given by the equation
y2i C yi D hi . Its lower ramification jump at Q equals poleQ.hi / (cf. [11, Lemma 4.2]),
where poleQ.h/´ max¹0;� ordQ.h/º for any h 2 k.Y /. Therefore:

mQ ´ min
®

poleQ.h0/; poleQ.h1/; poleQ.h1/
¯
;

MQ ´ max
®

poleQ.h0/; poleQ.h1/; poleQ.h1/
¯
:

In order to simplify the formulation of Theorem 6.1, we modify these definitions slightly.
Namely, we replace mQ by max¹1; mQº and MQ by max¹1; MQº. In other words, if
GQ ¤ V4, then we put mQ D 1 (instead of 0) and if GQ D ¹eº, then also MQ D 1.

The discussion above easily allows to determine the setsB.H/,B 0.H/ for anyH �G:

• We have Q 2 B.V4/ if and only if h0, h1, h1 have poles at Q. In this case, Q 2
B 0.Ha/ if and only if mQ ¤ MQ and mQ D � ordQ.ha/. Moreover, Q 2 B 0.V4/ if
and only if mQ DMQ, i.e. ordQ.h0/ D ordQ.h1/ D ordQ.h1/ < 0.

• We have Q 2 B.Ha/ if and only if ha 2 OY;Q and hb , hc have a pole at Q for
¹a; b; cº D ¹0; 1;1º.

• We have Q 62 B if and only if h0, h1, h1 2 OY;Q.
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By [34, Section 3] for any Q 2 B.V4/:

V4 D GQ;0 D � � � D GQ;mQ > GQ;mQC1 D � � �

D GQ;mQC2.MQ�mQ/ > GQ;mQC2.MQ�mQ/C1 D ¹eº

and for Q 2 B.Ha/:

V4 > Ha D GQ;0 D � � � D GQ;MQ
> GQ;MQC1 D ¹eº:

In particular,

dQ D

8̂̂<̂
:̂
mQ C 2MQ C 3; GQ D V4;

MQ C 1; #GQ D 2;

0; Q 62 B:

Moreover, ifQ 2B.V4/\B 0.Ha/, ��1.Q/D¹P º then ordP .ha/D�4mQ, ordP .ya/D
�2mQ and ordP .hb/ D �4MQ, ordP .yb/ D �2MQ for b ¤ a.

Proposition 5.1. Keep the above notation and suppose that Y D P1. Then there exists
z 2 k.X/ satisfying (B).

Proof. Suppose thatX is given by the equations (5.1), which are in standard form at every
Q 2 P1.k/. Then for P 2 R and i 2 ¹0; 1º:

ordP .yi / � �d 0P : (5.2)

Indeed, if GP D V4, then ordP .yi / � �2MQ > �.2MQ CmQ/ D �d
0
P . If GP D Ha,

then ordP .yi / � �MQ D �d
0
P .

For anyQ 2B , let zQ 2 k.X/ be an element such that trX=Y .zQ/D 1 and ordP .zQ/�
�d 0P for every P 2 ��1.Q/. Note that such an element zQ exists by Corollary 3.4. The
elements 1; y0; y1; y0y1 form the k.Y /-linear basis of k.X/ and trX=Y .1/D trX=Y .y0/D
trX=Y .y1/ D 0, trX=Y .y0y1/ D 1. Therefore zQ must be of the form:

zQ D aQ C bQy0 C cQy1 C y0y1

for some aQ; bQ; cQ 2 k.P1/. Let a; b; c 2 k.P1/ be functions that are regular outside
of B and such that

a � aQ; b � bQ; c � cQ 2 OP1;Q for every Q 2 B: (5.3)

We will show that
z´ aC by0 C cy1 C y0y1 2 k.X/

satisfies (B). Indeed, trX=Y .z/ D 1. Moreover, z is regular outside of B and for every
Q 2 B:

z D zQ C .z � zQ/ D zQ C .a � aQ/C .b � bQ/y0 C .c � cQ/y1

has valuation at least �d 0Q by (5.2) and (5.3) and by the definition of zQ. This ends the
proof.
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6. The de Rham cohomology of V4-covers

In this section we prove a more precise version of Theorem 1.3. Keep notation from the
previous section. Suppose that � satisfies condition (B). Since hGQ W Q 2 Bi D V4 by
[12, Lemma 3.6], we may distinguish three cases:

• Case 1: B.V4/ ¤ ¿,

• Case 2: B.V4/ D ¿ and B.H0/; B.H1/; B.H1/ ¤ ¿,

• Case 3:B.V4/DB.Ha/D¿ andB.Hb/DB.Hc/¤¿, where ¹a;b; cº D ¹0;1;1º.

We adopt the convention H�1´ V4, N2;�1´ 0.

Theorem 6.1. Let k be an algebraically closed field of characteristic 2. Suppose that
� WX! Y is a V4-cover of smooth projective curves over k that satisfies the condition (B)
(this holds automatically for example if Y D P1). Keep the above notation. Then:

H 1
dR.X/ Š kŒV4�

˚2gY ˚ IX=Y ˚ I
_
X=Y

˚

M
i2¹�1;0;1;1º

M
Q2B 0.Hi /

N
MQ�mQ
2;i ˚M

.mQ�1/=2

3;1 ˚M
.mQ�1/=2

3;2 ;

where

IX=Y Š

8̂̂̂<̂
ˆ̂:
M

#B.V4/�1
3;1 ˚N

#B.H0/
2;0 ˚N

#B.H1/
2;1 ˚N

#B.H1/
2;1 ; in Case 1;

M3;2 ˚N
#B.H0/�1
2;0 ˚N

#B.H1/�1
2;1 ˚N

#B.H1/�1
2;1 ; in Case 2;

k ˚N
#B.Hb/�1
2;b

˚N
#B.Hc/�1
2;c ; in Case 3:

Theorem 6.1 will be proven at the end of this section. Note that Theorem 1.3 is a direct
corollary of Theorem 6.1. We discuss now numerical examples.

Example 6.2. Let � WX ! Y be as in Example 1.1. Thus Y is the elliptic curve with the
affine equationw2CwD u3 andX is given by (5.1) with h0 Dw3C 1

w7
; h1 Dw

5C
1
w7

.
Then � is unramified outside of ¹Q1; Q2º, since those are the only poles of h0 and h1,
and is in standard form at Q1 and at Q2. Hence, since ordQ1.w/ D 3, ordQ2.w/ D �3
and h1 2 OY;Q1 , we have:

.mQ1 ;MQ1/ D
�
1; poleQ1.h1/

�
D .1; 21/;

.mQ2 ;MQ2/ D
�

poleQ2.h0/; poleQ2.h1/
�
D .9; 15/:

By the discussion in Section 5, Q1 2 B.H1/, Q2 2 B.V4/ \ B 0.H0/ (hence we are in
Case 1). Moreover, we see that dX=Y;Q1 D 22, dX=Y;Q2 D 42. Hence, by Riemann–Hurwitz
formula:

2.gX � 1/ D 4 � 2 � .1 � 1/C 2 � 22C 42;

i.e. gX D 44. Let X1 be the Z=2-cover of Y given by y21 C y1 D h1. Then dX1=Y;Q1 D
16 (cf. [11, Lemma 4.2]) and gX1 D 9. Hence gX1 > 2 � 2 � gY and gX > 2 � 2 � gX1 .
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By [12, Lemmas 7.2 and 7.3] both covers X ! X1 and X1 ! Y have magical elements.
Hence by [12, Lemma 8.1], the coverX! Y also has a magical element. By Theorem 6.1:

H 1
dR.X/ Š kŒV4�

˚2
˚N˚222;1 ˚N

˚6
2;0 ˚M

˚4
3;1 ˚M

˚4
3;2 :

Example 6.3. Let � WX ! Y be given by the equations (5.1), where Y D P1 and h0; h1 2
k.Y /, h0 D x3C xC 1

.x�1/7
, h1 D x3C xC 1

x5
. LetQi ´ i 2 P1 for i D 0; 1;1. Then

the branch locus of � is contained in ¹Q0; Q1; Q1º, as those are the only poles of h0
and h1. Moreover, �

poleQ0.h0/; poleQ0.h1/; poleQ0.h1/
�
D .0; 5; 5/;�

poleQ1.h0/; poleQ1.h1/; poleQ1.h1/
�
D .7; 0; 7/;�

poleQ1.h0/; poleQ1.h1/; poleQ1.h1/
�
D .3; 3; 0/:

By the discussion in Section 5, Qi 2 B.Hi / for i D 0; 1;1 and .MQ0 ;MQ1 ;MQ1/ D

.5; 7; 3/. Thus we are in Case 2 and by Theorem 6.1:

H 1
dR.X/ ŠM3;1 ˚M3;2 ˚N

˚4
2;0 ˚N

˚6
2;1 ˚N

˚2
2;1:

We start the proof of Theorem 6.1 by computing the module IX=Y .

Lemma 6.4. Keep the above notation. Then:

IX=Y Š

8̂̂̂<̂
ˆ̂:
M

#B.V4/�1
3;1 ˚N

#B.H0/
2;0 ˚N

#B.H1/
2;1 ˚N

#B.H1/
2;1 ; in Case 1,

M3;2 ˚N
#B.H0/�1
2;0 ˚N

#B.H1/�1
2;1 ˚N

#B.H1/�1
2;1 ; in Case 2,

k ˚N
#B.Hb/�1
2;b

˚N
#B.Hc/�1
2;c ; in Case 3:

Proof. Before the proof note that IV4 Š M3;1, which follows by computing the matrices
of � and � in the basis .e C � C � C ��; e C �; e C �/ and comparing them with the
matrices in Table 1.2. Moreover, IV4;Hi Š N2;i for i 2 ¹0; 1;1º. Indeed, for example
the matrices of � and � acting on IV4;H0 in the basis .e C � C � C ��; e C �/ match the
matrices in Table 1.2.

Case 1. Let Q0 2 B.V4/. Then, by Lemma 4.1:

IX=Y Š
M
Q¤Q0

IV4;GQ ˚ I
�
¹Q0º

�
ŠM

#B.V4/�1
3;1 ˚N

#B.H0/
2;0 ˚N

#B.H1/
2;1 ˚N

#B.H1/
2;1 ˚ ker.IV4 ! IV4/

ŠM
#B.V4/�1
3;1 ˚N

#B.H0/
2;0 ˚N

#B.H1/
2;1 ˚N

#B.H1/
2;1 :

Case 2. Suppose that Qi 2 B.Hi / for i 2 ¹0; 1;1º. Then, by Lemma 4.1 for S ´
¹Q0;Q1;Q1º:

IX=Y Š
M

Q2BnS

IV4;GQ ˚ I.S/

Š N
#B.H0/�1
2;0 ˚N

#B.H1/�1
2;1 ˚N

#B.H1/�1
2;1 ˚ I.S/:
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Moreover, one easily checks that the basis of I.S/ is:

e1´ eQ0 C �Q0 C �Q0 C .��/Q0 C eQ1 C �Q1 C �Q1 C .��/Q1 ;

e2´ eQ1 C �Q1 C �Q1 C .��/Q1 C eQ1 C �Q1 C �Q1 C .��/Q1 ;

e3´ �Q0 C .��/Q0 C �Q1 C .��/Q1 C �Q1 C �Q1 :

Then �.e1/ D �.e1/ D e1, �.e2/ D �.e2/ D e2 and �.e3/ D e3 C e1, �.e3/ D e3 C e2.
This shows that Spank.e1; e2; e3/ ŠM3;2 (cf. Table 1.2).

Case 3. Suppose that Qb 2 B.Hb/, Qc 2 B.Hc/. Using Lemma 4.1 for S ´ ¹Qb;Qcº
analogously as in (a) and (b):

IX=Y Š N
#B.Hb/�1
2;b

˚N
#B.Hc/�1
2;c ˚ I.S/:

The kŒV4�-module I.S/ is one-dimensional, which implies it must be the trivial represen-
tation of V4.

The following result will be proven in Section 7.

Proposition 6.5. Let k be an algebraically closed field of characteristic 2 andGDZ=2�
Z=2. Suppose that X! P1 is a V4-HKG-cover andB DB 0.Hi /. Denotem´mX=P1;1,
M ´MX=P1;1. Then, as kŒV4�-modules:

H 1
dR.X/ Š N

˚.M�m/
2;i ˚M

˚.m�1/=2
3;1 ˚M

˚.m�1/=2
3;2 :

We show now how Proposition 6.5 together with previous results implies Theorem 6.1.

Proof of Theorem 6.1. Recall that if Y D P1, the cover � WX ! Y has a magical element
by Proposition 5.1. Using Theorem 1.2:

H 1
dR.X/ Š kŒV4�

˚2gY ˚ IX=Y ˚ I
_
X=Y ˚

M
i2¹�1;0;1;1º

M
Q2B 0.Hi /

H 1
dR.XQ/;

The module IX=Y was computed in Lemma 6.4. Suppose now thatQ 2 B 0.Hi /. Then, by
Proposition 6.5:

H 1
dR.XQ/ Š N

˚.MQ�mQ/

2;i ˚M
˚.mQ�1/=2

3;1 ˚M
˚.mQ�1/=2

3;2 :

The proof follows.

7. HKG-covers for V4

This section will be devoted to the proof of Proposition 6.5. We keep the notation of
Proposition 6.5. Suppose at first that G1 D Hi . In particular, m D 1. Then H 1

dR.X
ı/ Š

k˚.M�1/ by [12, Corollary 1.2]. Hence:

H 1
dR.X/ Š IndV4

Hi
H 1

dR.X
ı/ Š .IndV4

Hi
k/˚.M�1/ Š N

˚.M�1/
2;i ;

which proves Proposition 6.5 in this case.
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From now on, we assume that G1 D V4. Without loss of generality, we may assume
that ord1.h0/ D �m and ord1.h1/ D �M . Indeed, this is immediate if 1 2 B 0.V4/,
since then ord1.h0/ D ord1.h1/ D ord1.h1/ D �m D �M . If 1 2 B 0.H1/ (resp.
1 2 B 0.H1/), then we may twist the action of V4 by swapping � and � (respectively �
and �� ). Under this twist, the module N2;0 maps to N2;1 (respectively N2;1).

We may assume that the function field of X is given by equations (5.1) in standard
local form at every Q 2 P1. Thus h0; h1 2 kŒx� and deg.h0/ D m, deg.h1/ D M . For
brevity, we write m0´ m�1

2
, M 0´ M�1

2
, M 00´ M�m

2
and M0´ b

2M�m�1
4
c. Recall

that gX D 1
2
d 001 D

1
2
.mC 2M � 3/. Let P 2 X.k/ be the point lying over 1 2 P1.k/

and V ´ X n ¹P º.
Recall that there exists ˛ 2 kŒx� of degreeM 00 such that ordP .y1C˛y0/D�2M Cm.

Indeed, by [34, Corollary 3.10 and the proof of Theorem 3.11] there exists ˛ 2 k.x/
with the desired properties. By taking the polynomial part, we may assume that ˛ 2 kŒx�.
Denote the coefficients of ˛ as follows:

˛ D ˛0 C ˛1 � x C � � � C ˛M 00 � x
M 00 :

In order to prove Proposition 6.5 we construct an explicit basis of H 1
dR.X/. Denote by

h00, h01 the derivatives of the polynomials h0; h1 2 kŒx�. Note that any rational function
T 2 k.x/ can be uniquely written as a sum T D ŒT ��0 C ŒT �<0, where ŒT ��0 2 kŒx� and
ŒT �<0 is a rational function, whose numerator has lower degree then denominator.

Consider the elements of �X.V / � k.X/ given by the following formulas:

• for i 2 I1´ ¹0; : : : ; m0 � 1º:

ai ´ .xi dx; 0/;

bi ´

�
y1x

i dx;
y0y1x

i˛

h01 C ˛h
0
0

�
;

ci ´

�
y0x

i dx;
y0y1x

i

h01 C ˛h
0
0

�
;

• for i 2 I2´ ¹1; : : : ; m0º:

ei ´

��
h01
xi

�
�0

dx;
y1

xi

�
;

fi ´

��
h00
xi

�
�0

dx;
y0

xi

�
;

gi ´

�
y1 �

�
h00
xi

�
�0

dx C y0

�
h01
xi

�
�0

dx;
y0y1

xi
C
i � y1˛h0

h01 � x
iC1

�
;

• for i 2 I3´ ¹m0 C 1; : : : ;M � 1 �m0º:

ui ´

��
h01
xi

�
�0

dx;
y1

xi

�
;

vi ´

�
y0

�
h01
xi

�
�0

dx;
y0y1

h01 C ˛h
0
0

�
h01
xi

�
�0

�
:
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In the sequel we will need to compute valuations of several functions and forms on X.
To this end we use (2.1) as well as the following relations:

• ordP .dx/ D �8C dP D 2M Cm � 5,

• ordP .h0/ D �4m, ordP .h1/ D �4M ,

• ordP .y0/ D �2m, ordP .y1/ D �2M ,

• ordP .y1 C ˛y0/ D �2M Cm,

• ordP .y0y1 C ˛h0/ D �2M �m.

For the proof of the last relation, note that:

ordP .y0y1 C ˛h0/ D ordP
�
y0y1 C ˛.y

2
0 C y0/

�
D ordP .y0 �

�
.y1 C ˛y0/C ˛/

�
D �2m � 2M Cm D �2M �m:

In the sequel we use also the fact that for any T 2 k.x/:�
T .x/

�
<0
dx; y0 �

�
T .x/

�
<0
dx; y1 �

�
T .x/

�
<0
dx 2 �X;P : (7.1)

Indeed, note that:

ordP
�
ŒT .x/

�
<0
dx
�
� ordP

�
y0 �

�
T .x/

�
<0
dx
�
� ordP

�
y1 �

�
T .x/

�
<0
dx
�

� �2M C 4C 2M Cm � 5 D m � 1 � 0:

Lemma 7.1. The elements .ai/i2I1 , .bi/i2I1 , .ci/i2I1 , .ei/i2I2 , .fi/i2I2 , .gi/i2I2 , .ui/i2I3 ,
.vi /i2I3 belong to Z1B.���

�
X/.

Proof. In order to show that a pair .!; f / 2 �X.V / � k.X/ is in Z1B.���
�
X/, one has to

show that ! � df 2 �X;P . We have:

• ai 2 Z
1
B.���

�
X/ for i 2 I1, since ordP .xi dx/ D mC 2M � 5 � 4i � 0,

• bi 2 Z
1
B.���

�
X/ for i 2 I1, since:

y1x
i dx � d

�
y0y1x

i˛

h01 C ˛h
0
0

�
D
h01x

i .y1 C ˛y0/ dx

h01 C ˛h
0
0

C y0y1 � d

�
xi˛

h01 C ˛h
0
0

�
2 �X;P

(the first summand has valuation 2m� 4i � 5 � 0, and the second 2M Cm� 4i � 1
� 0),

• ci 2 Z
1
B.���

�
X/ for i 2 I1, since:

y0x
i dx � d

�
y0y1x

i

h01 C ˛h
0
0

�
D
xih00.y1 C ˛y0/ dx

h01 C ˛h
0
0

C y0y1 � d

�
xi

h01 C ˛h
0
0

�
2 �X;P

(the first summand has valuation 4M � 2m � 4i � 5�0 and the second 4M � m �
4i � 1 � 0),
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• ei 2 Z
1
B.���

�
X/ for i 2 I2 and ui 2 Z1B.���

�
X/ for i 2 I3, since:�

h01
xi

�
�0

dx � d

�
y1

xi

�
D

�
h01
xi

�
<0

dx C i �
y1 dx

xiC1
2 �X;P

(the first summand is holomorphic at P by (7.1), the second has valuation mC 4i �
1 � 0),

• fi 2 Z
1
B.���

�
X/ for i 2 I2, since:�
h00
xi

�
�0

dx � d

�
y0

xi

�
D

�
h00
xi

�
<0

dx C i �
y0 dx

xiC1
2 �X;P ;

(the first summand is holomorphic at P by (7.1), the second has valuation 2M �mC
4i � 1 � 0),

• gi 2 Z
1
B.���

�
X/ for i 2 I2, since:

y1 �

�
h00
xi

�
�0

dx C y0

�
h01
xi

�
�0

dx � d

�
y0y1

xi
C
i � y1˛h0

h01 � x
iC1

�
Dy1 �

�
h00
xi

�
<0

dxCy0

�
h01
xi

�
<0

dxCi �
y0y1C˛h0

xiC1
dxCi � y1 � d

�
˛h0

h01 � x
iC1

�
2�X;P

(the first two terms are holomorphic by (7.1), the third term has valuation 4i � 1 and
the fourth term valuation 2M �mC 4i C 3 � 0),

• vi 2 Z
1
B.���

�
X/ for i 2 I3, since:

y0

�
h01
xi

�
�0

dx � d

�
y0y1

h01 C ˛h
0
0

�
h01
xi

�
�0

�
D

�
h01
xi

�
�0

�
h00 � .y1 C ˛y0/

h01 C ˛h
0
0

dx C y0y1 � d

�
Œh01=x

i ��0

h01 C ˛h
0
0

�
2 �X;P

(Œh
0
1

xi
��0 is a polynomial of degree M � 1 � i . Hence the first summand has valuation

4i � 2m � 1 � 0 and the second one valuation 4i �mC 3 � 0).

Lemma 7.2. We have the following equalities in H 1
dR.X/:

�.ai / D ai ; �.bi / D bi ; �.ci / D ci C ai ;

�.ai / D ai ; �.bi / D bi C ai ; �.ci / D ci ;

�.ei / D ei ; �.fi / D fi ; �.gi / D gi C ei ;

�.ei / D ei ; �.fi / D fi ; �.gi / D gi C fi ;

�.ui / D ui ; �.vi / D vi C ui ;

�.ui / D ui ; �.vi / D vi :
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Proof. It is straightforward that ai is V4-invariant for i 2 I1. Note now that for i 2 I1:

�.bi / � bi D

�
0;

y1x
i˛

h01 C ˛h
0
0

�
:

Moreover,

ordP

�
y1x

i˛

h01 C ˛h
0
0

�
D 2m � 4i � 4 � 0:

Hence �.bi / D bi in H 1
dR.X/. Similarly:

• �.bi / D bi C ai for i 2 I1, since:

ordP

�
y0x

i˛

h01 C ˛h
0
0

�
D 2M � 4i � 4 � 0:

• �.ci / D ci C ai , �.ci / D ci for i 2 I1, since:

ordP

�
y1x

i

h01 C ˛h
0
0

�
D 2M � 4i � 4 � 0;

ordP

�
y0x

i

h01 C ˛h
0
0

�
D 4M � 2m � 4i � 4 � 0;

• �.ei /D �.ei /D ei , �.fi /D �.fi /D fi for i 2 I2 and �.ui /D �.ui /D ui for i 2 I3,
since 1=xi 2 OX;P ,

• �.gi / D gi C ei , �.gi / D gi C fi for i 2 I2, since:

ordP

�
˛h0

h01 � x
iC1

�
D 2.M �m/C 4i � 0;

• �.vi / D vi C ui , �.vi / D vi for i 2 I3, since:

ordP

�
y1

h01 C ˛h
0
0

�
h01
xi

�
�0

�
y1

xi

�
� 0;

ordP

�
y0

h01 C ˛h
0
0

�
h01
xi

�
�0

�
D 4M � 2m � 4i � 4 � 0:

For the first inequality, note that:

y1

h01 C ˛h
0
0

�
h01
xi

�
�0

�
y1

xi
D
y1Œh

0
1=x

i �<0

h01 C ˛h
0
0

C
y1˛h

0
0

.h01 C ˛h
0
0/ � x

i
:

The first summand has valuation at least 2M at P , the second 4i � 2m � 0.

In the sequel we use the following basis of the holomorphic differentials on X.

Theorem 7.3. The basis of H 0.X; �X/ is given by the differential forms:

• xi dx for i D 0; : : : ;M �M0 � 2,
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• y0x
i dx for i D 0; : : : ;M0 � 1,

• .y1 C ˛y0/ � x
i dx for i D 0; : : : ; m0 � 1.

Proof. This is basically [2, Lemma 3.6]. The cited article uses the following notation:
uD u1´ y0, vD v1´ y1, p´ h0, q´ h1, �1´ 1

x
,w1.j /´ y1C Œ˛��M 00�j � y0

for j 2 Z, where Œ˛��t ´
PM 00

iDt ˛ix
i for any t 2 Z. Thus by [2, Lemma 3.6] the basis of

X is given by ¹f dx W f 2 Bº, where:

B D B1 D B1;1 [B1;2 [B1;3;

B1;1 D ¹x
i1 W 0 � i1 �M �M0 � 2º;

B1;2 D ¹y0 � x
i2 W 0 � i2 �M0 � 1º;

B1;3 D

²
y1 � x

i3 W 0 � i3 �

�
m � 5

4

�³
[

²
w1

�
i3 �

�
m � 1

4

��
� xi3 W

�
m � 1

4

�
� i3 � m

0
� 1

³
:

By adding the elements of B1;2 to the elements of B1;3, one may replace B1;3 by®
.y1 C ˛y0/ � x

i
W 0 � i � m0 � 1

¯
:

This ends the proof.

Observe that by (2.2):

resP

�
y0y1

xi
dx

�
D

´
1; i D 1;

0; otherwise;
(7.2)

resP

�
y20
xi
dx

�
D resP

�
y21
xi
dx

�
D resP

�
dx

xi

�
D 0 (7.3)

for any i 2 Z. We recall also that the Serre duality is given by the pairing:

H 1.X;OX/ �H
0.X; �X/! k;

hf; !i ´ resP .f � !/:

In order to prove that the elements listed above yield a basis of H 1
dR.X/, we start by

establishing the linear independence of some of them. The idea is to use the Hodge–de
Rham exact sequence:

0! H 0.X; �X/! H 1
dR.X/! H 1.X;OX/! 0:

First, we investigate the dependence of the images of the elements in H 1.X;OX/ and use
Serre duality along with Theorem 7.3. Then we are left with a dependence in H 0.X;�X/

and we may use Theorem 7.3 for the second time.
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Lemma 7.4. The elements .ai /i2I1 , .ei /i2I2 , .fi /i2I2 , .ui /i2I3 are linearly independent
in H 1

dR.X/.

Proof. We extend the definition of ai and ei as follows. Denote ai D .xi dx; 0/ for i D
m0; : : : ;M 0 � 1 and ei ´ ui for i D m0 C 1; : : : ;M 0. Note that for i > M 0:

ui D

��
h01
xi

�
�0

dx;
y1

xi

�
D

��
h01
xi

�
�0

dx; 0

�
in H 1

dR.X/:

Moreover, Œh
0
1

xi
��0 is a polynomial of degree M � 1 � i . Hence:

ui 2 Spank.aj W j �M � 1 � i/ n Spank.aj W j < M � 1 � i/:

Therefore it suffices to show that the elements .ai /M
0�1

iD0 , .ei /M
0

iD1, .fi /m
0

iD1 are linearly
independent in H 1

dR.X/. Suppose that for some Ai ; Fi ; Ei 2 k we have:

M 0�1X
iD0

Ai � ai C

M 0X
iD1

Ei � ei C

m0X
iD1

Fi � fi D 0 (7.4)

in H 1
dR.X/. Then in H 1.X;OX/:

M 0X
iD1

Ei �
y1

xi
C

m0X
iD1

Fi �
y0

xi
D 0: (7.5)

We divide the proof into four steps.

Step I. For j D 1; : : : ;M0 we have Ej D 0 and for every j D 1; : : : ; m0:

Fj D

M 00X
lD0

˛l �EjCl : (7.6)

Proof of Step I. Using Theorem 7.3, (7.5) and relations (7.2), (7.3) we obtain for any
j 2 ¹1; : : : ;M0º:

0 D

� M 0X
iD1

Ei �
y1

xi
C

m0X
iD1

Fi �
y0

xi
; y0 � x

j�1 dx

�
D Ej :

Analogously, for any j D 1; : : : ; m0:

0 D

� M 0X
iD1

Ei �
y1

xi
C

m0X
iD1

Fi �
y0

xi
; .y1 C ˛y0/ � x

j�1 dx

�
D

M 00X
lD0

˛l �EjCl C Fj :

This shows that (7.6) is true.
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Step II. For any i D 1; : : : ;M 0:

Ei �

i�1X
lDi0.i/

˛l �
y0

xi�l
� Ei �

y1

xi
C y0 � Pi .x/ .mod OX;P /; (7.7)

where i0.i/´ max.0; i �m0/, Pi 2 kŒx�, degPi �M 00 � i .

Proof of Step II. Take Pi .x/´ Ei �
PM 00

lDi ˛l � x
l�i . For i � M0 the equality (7.7) is

immediate, since Ei D 0 by Step I. If i > M0, then:

Ei �

i�1X
lDi0.i/

˛l �
y0

xi�l
CEi �

y1

xi
C y0 � Pi .x/ D Ei �

�
y1 C ˛y0

xi
C

i0.i/�1X
lD0

˛l �
y0

xi�l

�
:

But ordP .
y1C˛y0
xi

/ � 4.M0C 1/� 2M Cm � 0. Moreover, for 0 � l � i0.i/� 1 one has
i � l > m0, which implies that y0=xi�l 2 OX;P . This proves (7.7).

Step III. There exist polynomials Si ; Ti 2 kŒx�, degTi �M � i such that in H 1
dR.X/:

m0X
iD1

Fi � fi D

M 0X
iD1

Ei �
�
y0Si .x/ dx C Ti .x/ dx;

y1

xi

�
:

Proof of Step III. Using (7.6):

m0X
iD1

Fi � fi D

m0X
iD1

M 00X
lD0

˛lElCi �
�
Œh00=x

i ��0 dx;
y0

xi

�
:

Thus substituting t ´ l C i :

m0X
iD1

Fi � fi D

M 00X
lD0

lCm0X
tDlC1

˛lEt �
�
Œh00=x

t�l ��0 dx; y0=x
t�l
�

D

m0CM 00X
tD1

t�1X
lDi0.t/

˛lEt �
�
Œh00=x

t�l ��0 dx;
y0

xt�l

�
D

M 0X
tD1

Et �

�
Qt .x/ dx;

t�1X
lDi0.t/

˛l
y0

xt�l

�
;

whereQt .x/´
Pt�1
lDi0.t/

˛l Œh
0
0=x

t�l ��0 2 kŒx�. Moreover, since ˛i D 0 for i > M 00, we
have degQt � degŒh00=x

t�M 00 ��0 D mCM
00 � 1 � t . By (7.7):

m0X
iD1

Fi � fi D

M 0X
iD1

Ei �
�
Qi .x/ dx;

y1

xi
C y0 � Pi .x/

�
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D

M 0X
iD1

Ei �
�
Qi .x/ dx C d

�
y0 � Pi .x/

�
;
y1

xi

�
D

M 0X
iD1

Ei �
�
y0Si .x/ dx C Ti .x/ dx;

y1

xi

�
;

where Si .x/´ P 0i .x/, Ti .x/´ Qi .x/C h
0
0.x/ � Pi .x/, deg Ti � mCM 00 � 1 � i <

M � i .

Step IV. By applying the equality from Step III to (7.4) we obtain:

0 D

M 0�1X
iD0

Ai � .x
i dx; 0/C

M 0X
iD1

Ei �
�
Œh01=x

i ��0 dx C y0Si .x/ dx C Ti .x/ dx; 0
�
:

In other words:
M 0�1X
iD0

Aix
i dxC

M 0X
iD1

Ei �
�
Œh01=x

i ��0 dxC y0Si .x/dxC Ti .x/dx
�
D 0 in H 0.X;�X/:

Note that the leading term of Œh01=x
i ��0 dx is xM�1�i dx. But by Theorem 7.3, for any

i 2 ¹1; : : : ;M 0º, the form xM�1�i dx is not in the k-linear span of the forms xj dx for
j < M � 1� i and y0xl dx for l D 0; : : : ;M0 � 1. Thus Ei D 0 for any i . Analogously,
Theorem 7.3 implies that A0 D � � � D AM 0�1 D 0.

Corollary 7.5. The images of the elements .ai /i2I1 , .bi /i2I1 , .ci /i2I1 , .ei /i2I2 , .fi /i2I2 ,
.gi /i2I2 , .ui /i2I3 , .vi /i2I3 form a basis of H 1

dR.X/.

Proof. Note that the number of listed elements is

3 � jI1j C 3 � jI2j C 2 � jI3j D 3 �m
0
C 3 �m0 C 2 � .M �m/ D 2gX:

Thus it suffices to show that the listed elements are linearly independent. Suppose to the
contrary that for some Ai ; Bi ; Ci ; Ei ; Fi ; Gi ; Ui ; Vi 2 k:

0 D
X
i2I1

.Ai � ai C Bi � bi C Ci � ci /C
X
i2I2

.Ei � ei C Fi � fi CGi � gi /

C

X
i2I3

.Ui � ui C Vi � vi /:

Then, by applying .� � id/ we obtain by Lemma 7.2:

0 D
X
i2I1

Ci � ai C
X
i2I2

Gi � ei C
X
i2I3

Vi � ui :

Therefore by Lemma 7.4 Ci DGi D Vi D 0. Analogously, by applying .� � id/ we obtain
Bi D 0. Hence we obtain:

0 D
X
i2I1

Ai � ai C
X
i2I2

.Ei � ei C Fi � fi /C
X
i2I3

Ui � ui :

The proof follows by applying Lemma 7.4 one more time.
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Proof of Proposition 6.5. Lemma 7.2 shows that the maps:

N2;0 ! H 1
dR.X/; .1; 0/ 7! ui ; .0; 1/ 7! vi ; for any i 2 I1;

M3;1 ! H 1
dR.X/; .1; 0; 0/ 7! ai ; .0; 1; 0/ 7! bi ; .0; 0; 1/ 7! ci ; for any i 2 I2;

M3;2 ! H 1
dR.X/; .1; 0; 0/ 7! ei ; .0; 1; 0/ 7! fi ; .0; 0; 1/ 7! gi ; for any i 2 I3:

are equivariant. The direct sum of those maps is a kŒV4�-linear map:

NM�m
2;0 ˚Mm0

3;1 ˚M
m0

3;2 ! H 1
dR.X/;

which is an isomorphism by Corollary 7.5.
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