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p-group Galois covers of curves in characteristic p. II
Jedrzej Garnek

Abstract. Let k be an algebraically closed field of characteristic p > 0 and let G be a finite p-
group. The results of Harbater, Katz and Gabber associate to every k-linear action of G on k[¢]
an HKG-cover, i.e. a G-cover of the projective line ramified only over co. In this paper we relate
the HKG-covers to the classical problem of determining the equivariant structure of cohomologies
of a curve with an action of G. To this end, we present a new way of computing cohomologies of
HKG-covers. As an application of our results, we compute the equivariant structure of the de Rham
cohomology of Klein four covers in characteristic 2.

1. Introduction

Studying the equivariant structure of the cohomologies of a curve X over a field k with
an action of a finite group G is a natural and well-researched topic. In the classical case,
that is, when char k } #G, the equivariant structure of the module of holomorphic dif-
ferentials was completely determined by Chevalley and Weil using the character theory
of finite groups, cf. [5]. When chark = p > 0 and p|#G, the structure of H%(X, Qy)
becomes much more complicated. Recall that in this setting the character theory is of
limited use and classifying indecomposable representations is a “wild” problem. Even
indecomposable representations of G = Z/p x Z/ p in characteristic p > 2 are thought
to be impossible to classify (cf. [4]). In the tame or weakly ramification case, one may
obtain some information on the image of H%(X, Qx) in the K-theory of G, cf. e.g. [10].
Moreover, there are several results for specific groups (see e.g. [2,27,33]) or curves (cf.
[8,15,25,26]). Most of those results are proven by giving an explicit basis of the coho-
mology of X. In this article and in its prequel [12] we propose a different strategy for
investigating the equivariant structure of cohomologies in the case when G is a p-group.

From now on, we assume that k is an algebraically closed field of characteristic p
and G is a finite p-group. Let X be a smooth projective curve over k with an action of G.
As explained in [12], we predict that the Hodge cohomology

Hyjyo(X) := HO(X,Qx) & H'(X. Ox)

and the de Rham cohomology H j,(X) should decompose as k[G]-modules into certain
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global and local parts:

Hjy,(X) = (global part) & €D Hiiyy 0
QeY (k)

HJo(X) = (global part) & €D Hyy o-
QeY(k)

where 7: X — X /G =Y is the quotient morphism. More precisely, the global part should
depend only on the “topology” of the cover m (i.e. on the curve Y and the stabilizer
subgroups) and be the same for both cohomologies. Moreover, for any given point Q €
Y (k) the local parts Hyy, o» Hig o should depend only on the ring

@X,Q = (7+0x)0 ®oy, @Y,Q,

where @Y,Q denotes completion of the ring Oy, with respect to the ideal my,g.

The goal of this article is to propose a new way of computing the local parts, by estab-
lishing a connection with the Harbater—Katz—Gabber covers (in short: HKG-covers). The
HKG-covers proved to be an important tool in the study of local actions and the deforma-
tion theory of curves with automorphisms, see e.g. [3,6,7,22,28-30]. For any Q € Y(k),
one may construct an HKG-cover Xo — P! that approximates the cover r: X — Y locally
over Q, see below for a precise definition. It is natural to try to relate its cohomology with
the postulated local parts H}lldg,Q, H le, 0 of the cohomologies of X. Such a result would
reduce investigation of cohomologies of G-covers to HKG-covers. We show that this phi-
losophy is correct for generic p-group covers.

Letk, G and w: X — Y be as above. Denote by gy the genus of Y and by B C Y (k)
the branch locus of 7. For any P € X(k) denote by Gp ; the i -th ramification group at P
and let:

dp =Y (#Gp;—1). dp:=Y (#Gp;—1). dp:=>» (#Gp;—1).
i>0 i>1 i=2
Note that dp is the exponent of the different of k(X)/k(Y) at P. We assume that the
cover r satisfies the following assumptions, introduced in [12]:

(A) the stabilizer Gp of P in G is a normal subgroup of G for every P € X(k),

(B) there exists a function z € k(X) (a “magical element”) satisfying ordp (z) > —d},
forevery P € X(k) and try,;y (z) # 0.

Recall that a generic p-group cover satisfies (A) and (B) (cf. [12, Theorem 1.5]). By
the assumption (A), for QO € Y(k) we may denote Gp := Gp and dg := dp for any
P e 1(Q).

Results of Harbater (cf. [16]) and of Katz and Gabber (cf. [20]) imply that for any
G-Galois algebra B over k [x] there exists a unique G-cover X — P! ramified only over
oo and such that there exists an isomorphism @x,oo =~ B of k[G]-algebras. The cover
X — P! is called the Harbater—Katz—Gabber cover associated to (B, G). Suppose now
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that w: X — Y is as above. Then @X,Q is a G-Galois algebra over @Y,Q = k[x] for any
Q € Y(k). Denote by X9 — P! the corresponding HKG-cover. Note that it might be
disconnected. In fact, Xg = |_|G/GQ Dsz where DC°Q — P! is a (connected) Go-HKG-
cover. We give now an example of computation of Xo.

Example 1.1. Let p =2,k =F, and G = Vy, the Klein-four group. Let Y be the elliptic
curve with the affine equation w? 4+ w = u> over the field k. Consider the V4-cover
m: X — Y given by the equations:

1 1
2 3 2 5
Yotyo=wi4 gyt =wlt g

The cover 7 is branched over the points Q;, Q, € Y(k), where Q1 = (0,0) € Y(k)
and Q> is the point at infinity of Y. We give now the equations of Xp, and X¢,. Since
ordg, (w) = 3, we have w = x~3 for some element x € @Y,Qn ordg, (x) = —1. By
Hensel’s lemma, there exist sg, 51 € (§Y,Q1 such that sg +50=x"2, sf +51=x17 Let
Zo := Yo + S0, Z1 := Yo + Y1 + So + 51. One easily checks that

2 21 2
zZg+zo=x"", zi+z1=0.

These equations define X g, . Note that X g, = X3, U X5 , where X{, 125 +zo = x*'isa
Z/2-cover of P!. Similarly, using the fact that ordg, (w3 + #) =—9and ordg, (w° + ﬁ)
= —15, one can show that Xo, = onz is given by the equations:

2 9 2 15
Zgtzo=x", zi+tz1=x".

Note that Xop = |_]?=1 P! is a trivial V4-cover of P! for any Q € Y(k) \ {01, 0,}.
For any k[G]-module V', we write V'V for the dual k[G]-module. Let
Ig = {Zaggek[G] : Zag =0}
geG geG

be the augmentation ideal of the group G. For any subgroup H < G we consider also the
relative augmentation ideal Ig g = Ind[G{ Iy, which can be treated as a submodule of
k[G] (see Section 4). Finally, the k[G]-module Ix,y is defined by:

Iy)y = ker(z: @ IG,GQ — IG).
QeY(k)
The following is the main result of the paper.

Theorem 1.2. Keep the above assumptions. We have the following isomorphisms of k[G]-
modules:

H(X.Qx) = k[G]®*" @ Ix;y & €D H(Xo.Qx,).
QeB
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H'(X.0x) = k[G]®*" @ I}y & @D H' (Xo. Ox,).
QeB
Hip(X) = K[GI®*®" @ Ixyy @ Iy & @D Hix(Xo).
QeB

Moreover, one can further decompose the local terms as follows:
0 ~ G 0 (o
H°(Xg.Qx,) 2 Indg, H(XY. Qxs)).
1 ~ G 1 o
H (XQ,(DXQ) :IndGQH ( Q’(DDCOQ)’
~ G o
Hik (X0) 2 IndG, Hix(0).

In the paper [12] we showed a statement similar to Theorem 1.2, but with a different
form of the local parts (cf. ibid, Theorem 1.1). The new result surpasses it in two aspects.
Firstly, the local parts in [12] depended not only on the local rings, but also on the element
z € k(X) from the condition (B). The local parts given in Theorem 1.2 depend only on
the completed local rings, as they come from cohomologies of X . Secondly, as the local
parts in [12] were defined as quotients of certain infinitely dimensional vector spaces,
their computation for concrete examples was considerably challenging. The local parts
in Theorem 1.2 can be computed by giving bases of cohomologies of Xg, which seems
much easier than giving bases of cohomologies of X. We present this strategy for Klein
four covers in characteristic 2, see below. In order to prove Theorem 1.2, we use [12,
Theorem 1.1] together with a new description of the cohomologies of a HKG-cover (cf.
Theorem 3.2 in Section 3).

As an application of Theorem 1.2, we describe the equivariant structure of the de Rham
cohomology of Klein four covers of projective line in characteristic 2. Keep the above
notation with p = 2 and G = V4 = {e, 0, 7, o t}. Recall that the indecomposable k[Vy]-
modules are completely classified (cf. [1] or [2, Appendix]). In the sequel we will need five
indecomposable k[V4]-modules apart from k (i.e. the trivial representation) and k[Vy], cf.
Table 1.2. Note that in order to construct a k[V4]-module of dimension n, we have to give
a pair of commuting square matrices of order at most 2 in Gl,, (k), corresponding to the
action of o and 7.

The Klein four covers in characteristic 2 were studied in several articles, including
[13, 14]. As shown recently in [2], there exist infinitely many isomorphism classes of
indecomposable k[V4]-modules that may appear as a direct summand of the module of
holomorphic differentials of a V4-cover in characteristic 2. As we will see, this remains in
stark contrast with the case of the de Rham cohomology.

Theorem 1.3. Let k be an algebraically closed field of characteristic 2. Suppose that
w: X — Y is a V4-cover of smooth projective curves over k that satisfies the condition (B)
(this holds automatically for example if Y = P1). There exist 7 isomorphism classes of
indecomposable k[V4]-modules that may appear as a direct summand of H le (X):

k, k[V4]v N2,07 N2,1, NZ,OOa M3,1 and M3,2.
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Module T Dual module
1 1 1 0
N2 (0 1) (0 1) Nz
1 0 1 1
N> 1 (0 1) (0 1) N>
1 1 1 1
N2,oo (0 1) (0 1) N2,oo
1 0 1 1 1 0
JUER 01 0 010 Ms»
0 0 1 0 0 1
1 0 1 1 00
M; 01 0 0 1 1 M;
0 0 1 0 0 1

Table 1.2. k[V4]-modules used in the article.

In fact, we provide a more precise result. Namely, in Theorem 6.1 we give a decompo-
sition of H j, (X) into indecomposable summands in terms of local invariants of the cover
for curves satisfying the assumptions of Theorem 1.3. It seems that it would be much
harder to obtain this result using [12, Theorem 1.1].

Example 1.4. Let 7: X — Y be as in Example 1.1. We compute now the equivariant
structure of H R(X ). In order to compute Iy, y, note that /g Go, = = Ig. Hence:

Ix)y =ker(lg,Go, ® 16,69, = 16) = 16,6y, -
By [12, Corollary 1.2], dR(DC )= IgQZ? and hence:
Hix(Xo,) = IndG, Hi(XY,) = I8, -

One shows that /6,6, = Ig’GQl 2= N 0, see the proof of Lemma 6.4. By computing an
explicit basis of the de Rham cohomology of X g, (see Proposition 6.5), one proves that:
Hix(Xo,) = N3¢ & M3} & M3
It turns out that X satisfies the condition (B), cf. Example 6.2. Hence by Theorem 1.2:

Hyp(X) = k[Va]®* @ 16,0, ® 1§ 0, ® Hir(Xo,) ® Hiz(Xo,)
= k[V4]®* @ N2 @ N3 & MP & ME
Outline of the paper

In Section 2 we discuss preliminaries on algebraic curves. Section 3 is devoted to a new
description of the cohomologies of HKG-covers. In Section 4 we prove Theorem 1.2. Sec-
tion 5 recalls basic facts concerning V4-covers. In Section 6, we compute the equivariant
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structure of the de Rham cohomologies of Klein four covers, assuming a result on the
cohomologies of V4-HKG covers (Proposition 6.5). Proposition 6.5 is proven in the last
section.

2. Preliminaries

In this section we introduce notation concerning algebraic curves and recall basic facts
used throughout the paper. For an arbitrary smooth projective curve Y over a field k we
denote by k(Y) the function field of Y and by gy its genus. Also, we write ordg (f)
for the order of vanishing of a function f € k(Y) at a point Q € Y (k). Let mj, 0=
{f €k():ordp(f) > n}forany n € Z. To simplify notation, we write Qy, Qxy) and
H{x (Y) instead of Qyk, Qu(y)/k and Hjx (Y / k). We often identify a finite set S C Y (k)
with a reduced divisor in Div(Y'). Thus e.g. Qy (S) will denote the sheaf of logarithmic
differential forms with poles in S. In the sequel we often use residues of differential forms,
see e.g. [17, Remark II1.7.14] for relevant facts.

Let G be a finite group and 7: X — Y be a finite separable G-cover of smooth projec-
tive curves over a field k. We identify Qy) with a submodule of Q¢ (x) and k(Y') with a
subfield of k(X). We denote the ramification index of 7 at P € X(k) by ex,y,p and by
Gp,; the i-th ramification group of 7 at P, i.e.

Gp, :={0 € G:0(f) = f mod my forevery f € Ox,p}.
Also, we use the following notation:

dxjyp =) (#Gpi—1). dyyypi=Y (#Gp;—1). dy,yp:=) (#Gp;—1)

i>0 i>1 i>2

(dx v, p is the exponent of the different of k(X )/k(Y') at P, cf. [31, Proposition IV.§1.4]).
Recall that for any P € X(k) and w € Qg (y):

ordp(w) = ex/y,p - ordy(p)(®) + dx/v,p 2.1

(see e.g. [17, Proposition IV.2.2 (b)]). For any sheaf ¥ on X and Q € Y (k) we abbreviate
(m+F ) o to Fg and (7+F ) o Roy , Ov,0 to Fo. We write briefly try,y for the trace

Ur(x)/k(¥): k(X) — k(Y)
Note that it induces a map
Q) = k(X) By i) = Qi)
which we also denote by try,y. Recall that for any € Qp(x) and Q € Y (k):
Z resp(n) = resg (trX/y(n)) 2.2)
Pex~1(Q)
(see [18, Proposition 1.6] or [32, p. 154, (R¢)]).
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In the sequel we use also the following description of cohomologies on a smooth
projective curve Y. Let S C Y (k) be a finite non-empty set. Write U := Y \ S and let 5
be the generic point of Y. For any locally free sheaf ¥ of finite rank we have a natural
isomorphism (cf. [12, Lemma 5.2]):

H'(Y. %) = coker (F (U) > €P F2/%0). (2.3)
QeS

d
Similarly, if #* = (¥° — F!) is a cochain complex of locally free @y -modules of finite
rank with a k-linear differential then (cf. [12, Lemma 6.2]):

HYY,F°) = ZL(F*)/Bs(F°), (2.4)
where

Zg(F°) == {(w.(hg)ges) :w € F'(U). hg € F,). 0 —dhg € F, VO € S},
B§(F°) :={(dh,(h + hg)ges) : h € F°(U), hQ € FyVOeS).

Suppose now that Y = | |I_, ¥; is a disjoint union of smooth projective curves. Note that
HO(Y, Qy) = @;:1 HO(Y,', QY:’)’ HI(Y, Oy) = @;:1 HI(Y,', (9Yi)’ etc. By abuse of
notation, we will denote by k(Y) the total fraction field of Y, i.e. k(Y) := @;_, k(Y;).

3. Cohomology of HKG-covers

Let k and G be as in Section 1. Suppose B is a k-algebra with a k-linear action of G
such that A := B¢ equals k[x]. Results of Harbater (cf. [16]) and of Katz and Gabber
(cf. [20]) imply that there exists a unique G-cover 7: X — P! ramified only over oo and
such that there exists an isomorphism (’9\X,Q = B of k[G]-algebras. We call : X — P! the
Harbater—Katz—Gabber cover (in short: HKG-cover) associated to (B, G). The following
natural question arises.

Question 3.1. How to describe the invariants of the curve X (e.g. its Hodge and de Rham
cohomologies) in terms of B?

This problem was studied in several papers, see e.g. [19,23,24]. The listed articles give
for instance a way of computing H°(X, Q). However, this description depends on the
choice of the Artin—Schreier tower and thus is impractical for our purposes. We offer an
alternative approach using certain distinguished elements in the total fraction field of B.

We start by introducing the needed notation. Let £ be the total fraction field of B.
Then B = []/_, k[#] and £ = []/_, k((#)). Similarly, let X = k((x)) be the fraction
field of A and m 4 := (x) be the maximal ideal of A. Let m; = (#;) be the unique maximal
ideal of k[#;]; we will identify it with the corresponding ideal of B. Also, let mg :=
(i m; be the Jacobson radical of B and let ordy,: £ — Z U {00} be the composition
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of the valuation k((#;)) — Z U {00} associated to mi; with the surjection £ — k((z;)). We
denote by G, (m; /m 4) the jth ramification group of m; over m 4. Note that in particular,
Go(m; /my) = Gal(k((z;))/X) is the decomposition group of mt; over mu 4. From now
on we make the following assumption:

(%) Go(m/my) is a normal subgroup of G.

This implies in particular, that all the extensions k((t1))/X, ..., k((¢+)) /X are isomorphic
and Go(m/m 4) is the decomposition group of m; over mu 4 foreveryi = 1,...,r. Thus
we may identify £ with HG/GO k((t1)). We denote also from now on G; := G;(tug/my).
Lete = e(m; /m ) := #G( be the ramification index of m; over m 4. Similarly, let

d:=Y (#Gi—1), d':=) #G —1), d":=) (#G;—1).

i>0 i>1 i>2

For any topological k-algebra C, denote by Q¢ the module of continuous k-linear Kéhler
differentials. In particular, Q4 = k[x] dx, Qx = k((x))dx, Qs = D;_,; Bdt;, QL =
B;_, £ dt;. Similarly, let
1 1
Q% =—Qu Q= ——— Q.
AT A A
be the logarithmic Kihler differentials.
Write R = 77! (c0) for the ramification set of = and denote U := P! \ {oo}, V :=
7~ 1(U). For a future use, note that:

X = Indg, X°, (3.1

where X° — P! is the HKG-cover associated to (k[#1], Go) and Indgo X° is the disjoint
union | |4 /Go X° with the natural action of G. The Riemann—Hurwitz formula (cf. [17,
Corollary IV.2.4]) for the cover X° — P! implies that gy = %d .

We say that z € £ is a magical element for the extension £ /X, if ordy, (z) > —d’ for
everyi =1,...,randtrg ;4 (z) € A*.In this context, we denote by zV the dual element of
z with respect to the trace pairing. In other words, z" is defined by the following equalities
forall g1, g, € G:

I, 81 = &2,
res (gl(Z) ' gZ(ZV)) B {0 otherwise

The following is the main result of this section.

Theorem 3.2. Keep the above notation. In particular, let X — P! be the HKG-cover
corresponding to (B, G). Suppose that z € L is a magical element. Then we have the
following isomorphisms of k[G|-modules:

log
Q2 B

H'X, Qy) = ——3 |
Dgec gH(QE
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*(zV)m
HY (X, 0y) = Deca 8 EDma
me
Q *(zV)m
HE(X) =~ {(w,v) € < o X Dyeg 87(ma cw—dv e sz;‘;g}.
@geG g*(Z)QA ms

For future use, recall that for any f € £:

treoc(f) € m%, (3.2)

where o := min;—,,  ,|(ordw; (f) + d)/e]. For the proof see [21, Lemma 1.4 (b)].

We list now some properties of magical elements. Note that if z € £ is a magical
element for £/X then there exists 1 <i < r such that ordy, (z) = —d’. Indeed, if we
would have ordy; (z) > —d' fori =1,...,r, thentrg o (z) € my4 by (3.2), which would
yield a contradiction. We prove now a partial converse of this fact.

Lemma 3.3. Keep the above assumptions. If z € L satisfies ordy, (z) > —d' forall i =
1,...,r and equality holds for precisely one i, then z is a magical element for £ /X.

Proof. Letz=(zy,...,z;,)€L=[]i_, k((t;)). Suppose that ordy, (z) =—d’ and ordyy, ()
> —d’ fori =2,...,r. Note that by (3.2) we have trz/x(z1) € A and trg /5 (z;) € my
fori =2,....r.Let K =Ko CK; C--- C K, = k((t1)) be a tower of Z/ p-extensions.
Note that K; is a field with a discrete valuation ordy;. Let K;1/XK; be given by the
Artin—Schreier equation:

yip—yizh,-EfKi fori =0,...,n—1.

Note that ordg; (h;) < O for every i = 0,...,n — 1, since otherwise X;;; would not
be a field. Without loss of generality, we may assume that p } ordy; (;) for every i =
1,...,r. Inthis context one often says that yy,. .., y, are the Artin—Schreier generators for

k((t1))/X in standard form. Then [12, Lemmas 7.2 and 8.1] show that z’ := yf’_l e
y,f_l satisfies trg / (z') ==1 and ordy, (z') =—d’. Thus, for some c €k, ordu, (z1 —cz’)
> —d’. But this implies by (3.2) that tr; /5 (z1 — cz’) € m 4. Therefore tr; /5 (z1) = ¢ #
0 (mod my) and trg /o (2) =D ;_; k() % (zi) €A\ g =A*. This ends the proof. =

Corollary 3.4. Every étale G-Galois algebra L /X satisfying (x) has a magical element.

Proof. Let z := (tl_d,, 0,...,0) € £L =[[i_; k((#:)). Then z is a magical element for
L/X by Lemma 3.3. u

In case when £ is a field, the definition of a magical element simplifies.

Corollary 3.5. Suppose that Gy = G (i.e. L =k((t1))). Then z € L is a magical element
Sor L/X if and only if ordy,, (z) = —d’.

Proof. Lemma 3.3 implies that if ordy, (z) = —d’, then trz 5 (z) € A*. For the converse
implication, note that if ordy, (z) > —d’, then trz 5 (z) € m4 by (3.2). |
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The following result will be crucial in the proof of Theorem 3.2.

Proposition 3.6. Keep the assumptions of Theorem 3.2. Then:

Q= P @ HO(V. Q).
geG

We prove Proposition 3.6 by induction on #G . Before the proof we need two auxiliary
results.

Lemma 3.7. Keep the assumptions of Theorem 3.2. Then for any H < G, the extension
LH /K satisfies the condition () and has zg = trp, o1 (2) as a magical element.

Proof. Note that the maximal ideals of BH are miH fori =1,...,r.Since Go < G, we
have Go(miH/mA) = GoH/H < G/H.Thus £ /XK also satisfies the condition (*). By
the transitivity of the different (cf. [31, §111.4, Proposition 8]):

d'(my/my) = d'(my /it + e(uy /it - @' (b jmy).
By (3.2) we see that fori = 1,...,r:

—d'(my/my) + d(my/mi)
e(ml/mfl)

ord ) = | | ==ttt

Moreover, trpu 5 (z) = trgac(z) € A*. This ends the proof. |
Lemma 3.8. H%(V, Q) is a free k[G]-module.

Proof. Let V° be the preimage of P! \ {oo} on X°. Using Riemann—Roch theorem, one
sees that H%(X°, Oxe(d’ - R)) # H°(X°, Ox-((d' — 1) - R)), since deg(d’ - R) = d’ >
2gxe —2=d" —2.Letz € H°(X°, Ox-(d'- R))\ H°(X°, Ox-((d’ — 1) - R)). Then z
is regular on V° and trye/p1(z) # 0 by Corollary 3.5. Therefore z is a normal element for
k((t1))/X by [12, Proposition 3.1] and 7+ Qx- |y = P g% (2)Qp1|y as subsheaves
of the constant sheaf 4 Q2 (xe) on P 1 Thus:

g€Gy

H(V.Qy) = Ind§ HO(V°, Qx°) = Indg, @ g*(2)H(U, Qp1)
g€Go
~ k[G]H° (U, Qp1). "

Proof of Proposition 3.6. We prove this by induction on #G. Denote:

Sg(2) = @ g*(z)Qlﬁg.

geG

For #G = 1 this is true, as then z € k™ and Proposition 3.6 comes down to the equality:

1 dt
k((1))dt = ;k[[t]] dt @ k[l/’]t_z'
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Suppose now that #G > 1. Let H = (h) < G be a central subgroup of order p (it exists by
[9, Chapter 6, Theorem 1 (1)]). Denote X' := X/H and G’ = G/H = {g1H,...,g-H}.
Then X’ — P! is the HKG-cover associated to (B, G'). Suppose to the contrary that w €
Sg(z) N Ho(V,Qx), w # 0. Let i > 0 be the largest number for which (A — 1)’ - @ # 0
(note that (h — 1)? = 0, thus there exists such a number). Denote w’ := (& — 1)' - @. Then
(h—1)-@' =0,ie o € Q). On the other hand, w’ € H(V, Qx) clearly implies
' € HO(V', Qx), where V' is the image of V through X — X'. Let zg := trgcu(2).
Note that zj7 is a magical element for the extension £ /K by Lemma 3.7. We show now
that ’ € Sg/(zg). Let ' = deG g (2)wy, where wy, € Qlj‘){g for every g € G. The
condition (') = ' implies that a);h = w, forany g € G. Thus we can define @} := w,
for any g € g; H. We have:

W'=Y @, =) o Y &) =) ¢ Cnw;eSezn).
j=1

geG gegiH j=1
This shows that o’ € Sg/(zg) N H°(V’, Q). But by induction hypothesis,
Se'(zg) N HO(V/, Q) = {0}.

Thus Sg(z) N H°(V, Qx) = {0).

Denote:
Qg

¢ Se@e B2
We will show now that @ = {0}. Suppose to the contrary that v € Q. has non-zero
image in @. Let i > 0 be the largest number such that (2 — 1)’ - @ # 0 in @ and denote
o' := (h—1)" -@. Then ' € @ . Using the long exact sequence of group cohomology
for

0> Sg(z)® H(V,Qx) > Qe > Q@ —0

we obtain:

0> Se)¥ @ H (V. Q) - Qfl ¥
— H'(H,Sg(z) ® H*(V, Q). (3.3)

Note that H'(H, Sg(z)) = 0, since Sg(z) is a free k[G]-module and hence also a free
k[H]-module. On the other hand, using Lemma 3.8 we see that H'(H, H°(V, Qx)) = 0.
Thus (3.3) implies that Q2 ,» = Qf — @# is a surjection. Therefore, without loss of
generality we may assume that o’ € Q . u. By induction hypothesis, o’ € Sg/(zg) &
H%(V', Q). But this implies that ' = 0 in @! Indeed, H°(V', Q) € H°(V, Q) and
ifn=7>3"7_,8 (zu)n; € Sg'(zm) forn; € Qﬁg, then

N

p—1
=2 n»_ &h)* @) € Sc),

j=1 =0

i.e. Sg/(zg) C Sg(z) Contradiction ends the proof. |
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Proof of Theorem 3.2. Denote the right-hand sides in Theorem 3.2 by H°(z), H'(z),
H le (z) respectively. Let Sg(z) be defined as in the proof of Proposition 3.6 and denote:

Sez) =P g*(z")ma.
geG

The quotients in Theorem 3.2 are well defined. Indeed, [12, Lemma 3.2] implies that
Sc(z) C Qgg and [12, Lemma 3.4] yields ms C S%(z).
Proposition 3.6 implies that

Q5 = Sg(2) ® HO(X, 2x(R)),

since Sg(z) C Ql,gg and HO(V, Qx) N Ql,;g = H°(X, Qx(R)). Moreover, the residue
theorem (cf. [32, Corollary after Theorem 3]) implies that H?(X, Qx(R)) = H°(X, Qx).
Thus we obtain the desired isomorphism:

lo,

Qo '
S¢(2)
In the sequel we will use (2.3) and (2.4) for the sheaf 7,Ox and the complex 7,5
on P! with § = {co}. Note that since 7 is affine, H'(X, Oy) = H' (P!, 7,Ox) and
Hle (X) = H' (P!, 4 2%). Moreover, if we denote by 7 the generic point of P!, then
(+Ox)y = k(X). The pairing

k(X) x Qrexy = k,  (fiw) =165 (trx/]l)l(f -a)))
induces both the Serre’s duality H®(X, Q)Y = H'(X, Ox) and the duality between
ngg/SG (z) and Sy (z)/mg (cf. [12, Lemma 3.5 (1)]). This proves that

H'(X,0x) = S&(z)/msp.

Recall that H%(X, Qy) = H(X, Qx(R)) and H' (X, Ox) = H'(X, Ox(—R)). Hence,
by the exact sequence [12, (6.2)], the de Rham cohomology of X might be computed as

H(X, Qy) =

the hypercohomology of the complex (O (—R) i Qx(R)). We obtain:

{(@.v) € H'(V.Qx) x k(X) : 0 —dv € Qx(R)}
{(df. f+v): feOx(V),veEOx(—R)o)

N {(@.v) € HO(V.Qx) x (%Ck((fxlg)m tw —dv € Qx(R)}

B {@df. f): f e 0x(V)}

N {(@,v) € HO(V,Qu) x = 1w —dv € Qi)

B {@df.f): f e0x(V))

(we used the isomorphism & (X)/Ox(—R)s = L£/mp for the last equality). By Proposi-
tion 3.6 HO(V, Q2x) may be identified with <24~ . Thus we may identify:

56
Sg(2)

Hle (X) =

= (o 1000 5 i,
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The inclusion:
HO(V,Qx) x S&(z) = H°(V,Qx) x £

induces a homomorphism H le (z) - H le (X). Thus we obtain a commutative diagram:

0 — H%z) — Hi(z) —— HY(z) —— 0

| ! |

0 —— H'(X,Qy) —— HLH(X) —— H'(X,0x) — 0,

in which rows are exact and the left and right arrows are isomorphisms. Thus the middle
arrow is also an isomorphism. This ends the proof. |

4. p-group covers

In this section we assume that k, G and 7: X — Y are as in Theorem 1.2. Recall that
B C Y (k) denotes the set of branch points of 7 and let R := 7! (B) be the ramification
locus. Also, by abuse of notation, for Q € Y(k) we write Gg; := Gp,, eg := ex,v,p,
do := dy,y,p etc. forany P € 77 1(Q). Note that these quantities do not depend on the
choice of P by the condition (A).

Denote for any Q € B:

o x(B)o
¢ Bpec 8”2 (Blo’

Hl . @gEG g*(ZV)(QY(—B)Q
Q -— 9

Ox(=R)g
Haro 1= {(w V) € ii9) % Deec 87()0r(=B)g |
wo , @geG g*(z)QY(B)Q OX(_R)Q
w—dv e QX(B)Q}.

Proof of Theorem 1.2. Recall that by [12, Theorem 1.1] we have the following isomor-
phisms of k[G]-modules:

H°(X,Qx) = k[G]®¥" & Ix/y @ @ Hj.
QeB

H'(X.0x) = k[G1®* @ I}},y & €P H}.
Q€B

Hix(X) = k[G]®*Y @ Ix)y ® Iy )y @ @ Hgg o-
QeB

Fix Q € B and let x € k(Y) be a uniformizer at Q. We prove now that

Hp = H°(Xg, Quxyp).
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Let A = @Y,Q and B := @X,Q. From now on, we use the notation of Section 3. In par-
ticular, denote by X and £ the total fraction fields of A and B. Note that X = k((x))
and £ is a G-Galois étale algebra over K. The inclusion Qg (x) <> €2 induces a natural
morphism:

Qx (R)o Qpt
HY = — ~ H°Xp,Qx,) @.1)
T Byo O Blo | @, oq 8" (2 ot

(we used Theorem 3.2 for the last isomorphism). The map (4.1) is injective, since if

0= g"()og € %R N (De* 2

geG geG

then wg = try/y (g*(zY) - ) € Qiyy N 2 = Qy(B)g for every ¢ € G and thus
w € EBgGG g*(z2)Qy(B)g. We prove now that the map “4.1) is surjectlve Note that
for any w € Q¢ there exists o’ € Qp(x) with w — o' € @geGg (Z)Q°g Indeed, if
0 =) ccc & (2)wg then it suffices to take ©’ 1= Y, ¢ g (z)a) , where for n =
Y ez aix' dx € Qu = k((x))dx, we put n=0 := Y, _, a;x" dx. This proves that (4.1)
is an isomorphism.

Similarly, the inclusion k(X) < £ induces an isomorphism:

Dieec 87 (2V)0y(=B)o N Deecc &7 )msp
Ox(—R)o my

Hj = =~ H'(Xg.0Ox,).

For the de Rham cohomology, by Theorem 3.2 the inclusion Qg x) X k(X) < Qg x £
induces a map Hj, o~ H 4= (Xo), which fits in the commutative diagram with exact
TOWS:

~+
(=)

0 1 \ 1
0 ——— HY ——— Hk > H),

| | |

0 — H(Xg.Qx,) — H{r(Xg) — H'(Xg,Ox,) — 0.

Since the outer two arrows are isomorphisms, we deduce that the map H g o~ H R (Xo)
is also an isomorphism.
Finally, note that by (3.1) Xg = Indg 0 DC"Q, which easily leads to the isomorphisms:

H®(Xg.Qx,) = Indg, H*(Xp. Quxs)
HI(DCQ,(%CQ);Indg H'(X? . Oxz)
Hr(Xo) = Indg ) Hir(X).

This ends the proof. ]
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For later use, we prove a lemma that simplifies computation of Ix,y . In the sequel we
identify the relative augmentation ideal /G g (as defined in Section 1) with:

I,H ={Zaggek[G]: Z ag =0Vg0€G}.
geG gegoH

Forany Q € Band g € G, let gg € @y k[G] be the element with g on the Q-th compo-
nent and 0 on other components.

Lemma 4.1. Suppose that S C B is such that for every Q € B there exists Q' € S such
that Gg C Ggr. Then:
Iyyy = @ oo ® 1(5).
QeB\S

where 1(S) = ker(Z: D ges 16,60 —~ 16)-

Proof. We prove it by induction on |B \ S|. For B = § this is straightforward. To prove
the induction step, it suffices to show that if S = S’ U {Qo} and Gg, C Go, for some
Q1 € S8/, then:

I1(S) =~ IG,GQO @ I1(S).
We treat both sides as submodules of Qg k[G]. The isomorphisms are given by:
®:1(S) = 16,60, ® 1(S),
Zan 8o ZaQog 800 +ZaQ0g g0, + Z Zan 80>
QeS’ 8
‘I’:]G’GQO @ I1(S") — I1(S),

ZagQ gQHZaQog "800 — ZaQog 80, t+ Z Zan 80

Qes' g
(we abbreviate Y peg 10D g and Y, to ). ). Note that @ is well defined. Indeed, for
any > ¢ 40g - 80 € 1(S):
* 2gdQig 8 € I6,6o, C 16,6y,
* D .2400g " 801 T X pes d0g - 8o € ker(By k[G] — k[G]), since

ZaQog g+z Z agg - g—Z(Zan)~g-
g QeS§ g QeS
and ) 5 . apego € ker(Pg k[G] — k[G]).

Analogously one checks that W is well defined. It is easy to check that ® and W are
equivariant and mutually inverse. ]
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5. Klein four covers

In this section we recall basic facts concerning V4-covers in characteristic 2. Keep pre-
vious notation with p = 2 and G = V4 = {e, 0, 7, 0t}. Write Hy = (t), H1 = (0),
Ho, = (ot). Let also for any subgroup H < Vj:

B(H):={Q € B:Gg = H},
B'(H):={Q € B:Gg, = H, Gg,i+1 = {e} forsome i}.

We discuss now how to find B(V,), B(H;), B'(H;) and dg, given the equations defin-
ing X . Recall that the function field of X is given by equations of the form:

v+ yo="ho, Y4y =h, (5.1)

where ho, h1 € k(Y), 0(y0) = yo + 1, a(y1) = y1 and 7(yo) = yo, T(y1) = y1 + L.
Denote yoo := Yo + V1, hico := ho + h1.

We say that the equations (5.1) are in standard form at a point Q € Y (k), if the function
h; is either regular at Q or has a pole of odd order for every i = 0, 1, co. Note that any
equation can be brought to the standard form at a given point by successively subtracting
powers of a uniformizer. Moreover, if Y = P!, one can find an equation of the form (5.1),
which is in standard form at any Q € Y (k).

The article [2] defined two local invariants m g and Mg of the cover  associated to
every Q € Y(k) as follows. The number m ¢ is the minimum of the lower ramification
jumps of the covers X /H; — Y fori € {0, 1, 0o} at Q. Similarly, M is the maximum of
those jumps. Note that for any i € {0, 1, co} the cover X/H; — Y is given by the equation
yl.2 + yi = h;. Its lower ramification jump at Q equals poleg (h;) (cf. [11, Lemma 4.2]),
where pole () := max{0, —ordg (h)} for any i € k(Y). Therefore:

mg := min { pole (ho).poley (h1). poleg (hoo)}.
Mg := max { pole (ho), poleg (h1). poleg (hoo)}-

In order to simplify the formulation of Theorem 6.1, we modify these definitions slightly.
Namely, we replace m g by max{l,mg} and Mo by max{l, Mg}. In other words, if
Go # V4, then we put mg = 1 (instead of 0) and if Gg = {e}, then also Mg = 1.

The discussion above easily allows to determine the sets B(H ), B'(H) forany H <G:

*  We have Q € B(Vy) if and only if hg, /1, heo have poles at Q. In this case, Q €
B'(H,) if and only if mg # Mo and mg = —ordg (h,). Moreover, Q € B'(V,) if
and only if mg = My, i.e. ordg (hg) = ordg(h;) = ordg (heo) < 0.

* We have Q € B(H,) if and only if &, € Oy,p and hp, h. have a pole at Q for
{a,b,c} =1{0,1, c0}.

* Wehave Q & B ifandonly if A, h1, hoo € Oy, 0.
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By [34, Section 3] for any Q € B(V4):

Va=Goo="=Gomy >Gomp+1 ="
= Gomg+2(Mg-mg) > Gomo+2(Mg-mg)+1 = {€}
and for Q € B(H,):
Vo> Hs =Goo=-=Gomy >Gomy+1 = {e}.
In particular,
mo +2Mg +3, Gg = Vg,
do =1 Mgy +1, #Go =2,
0, Q¢B.
Moreover, if Q € B(V4) N B'(H,), 7~ 1(Q) = {P} then ordp (hy) = —4mo, ordp (y,) =
—2mg and ordp (hp) = —4Mg, ordp(yp) = —2Mg for b # a.

Proposition 5.1. Keep the above notation and suppose that Y = P1. Then there exists
z € k(X) satisfying (B).

Proof. Suppose that X is given by the equations (5.1), which are in standard form at every
Q € PY(k). Thenfor P € Randi € {0, 1}:

ordp (y;) > —dp. (5.2)

Indeed, if Gp = V4, then ordp (y;) > —2M¢o > —(2M¢g + mg) = —d},. If Gp = H,,
then ordp (y;) > —Mg = —dp.

Forany Q € B,letzg € k(X) be an element such that try,y (zg) = 1 and ordp (zp) >
—d, forevery P € 771(Q). Note that such an element zg exists by Corollary 3.4. The
elements 1, yo, y1, yoy1 form the k(Y)-linear basis of k(X) and try,y (1) = trx;y (yo) =
try;y (¥1) = 0, trx;y (yoy1) = 1. Therefore zp must be of the form:

zg =ag +bgyo+coy1 + yoy1

for some ag,bg,co € k(P'). Let a, b, ¢ € k(P') be functions that are regular outside
of B and such that

a—ag,b—bg,c—cg €0p1 g forevery Q € B. (5.3)

We will show that
z:=a+byy+cyr + yoy1 € k(X)
satisfies (B). Indeed, try;y(z) = 1. Moreover, z is regular outside of B and for every
Q €B:
z=z9+(z—z9)=2zg9+(@—ag)+ (b—=>bg)yo+ (c —co)y

has valuation at least —d /Q by (5.2) and (5.3) and by the definition of zgp. This ends the
proof. ]



J. Garnek 364
6. The de Rham cohomology of V,-covers

In this section we prove a more precise version of Theorem 1.3. Keep notation from the
previous section. Suppose that  satisfies condition (B). Since (Gg : Q € B) = V, by
[12, Lemma 3.6], we may distinguish three cases:

e Casel: B(Vy) # @,

* Case2: B(Vy) = @ and B(Hy), B(H), B(Hx) # O,

* Case3: B(V4) = B(H,;) = @ and B(Hp) = B(H.) # @, where {a,b,c} ={0,1,00}.
We adopt the convention H_; := V4, N5 1 :=0.

Theorem 6.1. Let k be an algebraically closed field of characteristic 2. Suppose that

w: X — Y is a V4-cover of smooth projective curves over k that satisfies the condition (B)
(this holds automatically for example if Y = P1). Keep the above notation. Then:

Hg(X) = k[Va®*7 @ Iy)y @ Iy)y

Mg—mg (mg—1)/2 (mo—1)/2
°© @ @ mIrem T em
ie{—1,0,1,00} Q€B'(H;)

where
M;ﬁjllz(v‘;)fl @ N;f)(HO) ® N;ﬁ(Hl) P N;’i()H""), in Case 1,

Ixjy = Ma, ® Nyg 07! @ NFEHD™L g NFEHTL iy Case 2,
k@ N;”'z(Hb)i1 @ N;f(H")_l, in Case 3.
Theorem 6.1 will be proven at the end of this section. Note that Theorem 1.3 is a direct
corollary of Theorem 6.1. We discuss now numerical examples.

Example 6.2. Let 7: X — Y be as in Example 1.1. Thus Y is the elliptic curve with the
affine equation w? + w = u® and X is given by (5.1) with hg = w* + L7 by = w® + L.
Then 7 is unramified outside of {Q1, O»}, since those are the only poles of /¢ and A1,
and is in standard form at O, and at Q5. Hence, since ordg, (w) = 3, ordg, (w) = =3
and /i € Oy,p,, we have:

(mg,.Mg,) = (1.poleg, (h1)) = (1,21),
(mg,. Mg,) = (poleg, (ho). poleg, (1)) = (9,15).

By the discussion in Section 5, Q1 € B(Hw), Q2 € B(V4) N B'(Hp) (hence we are in
Case 1). Moreover, we see that dy,y,0, =22, dx/y,0, = 42. Hence, by Riemann—-Hurwitz
formula:

20gx — 1) =4-2-(1—-1)+2-22 + 42,

i.e. gx = 44. Let X; be the Z/2-cover of Y given by y2 + yoo = hoo. Then dy,/y.0, =
16 (cf. [11, Lemma 4.2]) and gx, = 9. Hence gx, > 2-2-gy and gx > 2-2- gx,.
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By [12, Lemmas 7.2 and 7.3] both covers X — X; and X; — Y have magical elements.
Hence by [12, Lemma 8.1], the cover X — Y also has a magical element. By Theorem 6.1:

Hix(X) = k[V4]®* & NP2 & N & M & M.

Example 6.3. Let7: X — Y be given by the equations (5.1), where Y = P! and hg,h; €
k(Y), ho = x3 +x+ 17,h1 =x3 +x+— Let Q; =1 e P! fori =0,1,00. Then
the branch locus of & 1s contained in {Qy, Q1 O}, as those are the only poles of /g
and /. Moreover,

(poleQO(ho),poler(hl),poleQO(hoo)) = (0,5,5),
(poleg, (ho). poleg, (h1). poley, (hoo)) = (7.0,7),
(poleg  (ho).poleg (h1).poleg  (hoo)) = (3.3.0).

By the discussion in Section 5, Q; € B(H;) fori = 0,1,00 and (Mg,, Mg,. Mg,,) =
(5,7,3). Thus we are in Case 2 and by Theorem 6.1:

Hip(X) = M31 & M3 @ No§ & NP & NP2
We start the proof of Theorem 6.1 by computing the module Iy, y.

Lemma 6.4. Keep the above notation. Then:

MEBOVOL g NFB(HD) g N#BUHD @ N#B(H) iy e |,
Ix)yy = M3, ® N#B(HO) 'o N#B(Hl) 'o N#B(HOO) ', inCase2
k@ N#B(Hb) g N:,lj(HC) ! in Case 3.

Proof. Before the proof note that Iy, = M3 1, which follows by computing the matrices
of 0 and 7 in the basis (¢ + 0 + t + 07,¢ + 0, ¢ + 1) and comparing them with the
matrices in Table 1.2. Moreover, Iy, g, = N, ; for i € {0, 1, co}. Indeed, for example
the matrices of o and 7 acting on /v, H, in the basis (e + 0 + v + 07, e + 7) match the
matrices in Table 1.2.

Case 1. Let Q' € B(Vy). Then, by Lemma 4.1:
Iyyy = P Ivic, @ 1(10})
0+#0’
~ M;llg(vﬂ—l ® N;,lg(HO) D N;ﬁ(Hl) D N:ﬁgHoo) D ker(lv4 - ]V4)
o~ M;‘,Bi(VAt)_l @ NZ#’IS(HO) @ Nz#,Bi(Hl) @ Nz#f;c()Hoo)
Case 2. Suppose that Q; € B(H;) for i € {0, 1, co}. Then, by Lemma 4.1 for S :=
{Q0.01. Qo

Ixjyy = @ Ivig, @ 1(5)
QeB\S

~ N#B(HO) I@N#B(Hl) 1@N;i(3f1w)—1 ® I(S).
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Moreover, one easily checks that the basis of 1(S) is:
e1 1= eg, + 00, + 70y + (07)gy + 0o + 000 + 70 + (07)0c
ey :=eg, +09, + 70, + (07)g, + €0, + 00, + 705 + (07) 0
e3 =09, + (07)g, + 70, + (07) 0, + 00, + T0u-

Then o(e1) = t(e1) = ey, 0(ez) = t(e2) = ez and o(e3) = e3 + e1, T(e3) = e3 + e3.
This shows that Spany (e1, ez, e3) = M35 (cf. Table 1.2).

Case 3. Suppose that Qp € B(Hp), Q. € B(H,.). Using Lemma 4.1 for S := {Qp, O}
analogously as in (a) and (b):

ey 2 NSO 6 N0 6 1(s),

The k[V4]-module /(S) is one-dimensional, which implies it must be the trivial represen-
tation of Vj. [

The following result will be proven in Section 7.

Proposition 6.5. Let k be an algebraically closed field of characteristic2 and G = 7./2 x
7.]2. Suppose that X — P is a V4-HKG-cover and B = B'(H;). Denote m := MY /P 00
M = My p1 o. Then, as k[V4]-modules:

Hle(x) ~ N;I?i(M—m) ® M36531(m—1)/2 ® M?’G’az(m—l)/Z'

‘We show now how Proposition 6.5 together with previous results implies Theorem 6.1.

Proof of Theorem 6.1. Recall thatif Y = P!, the cover 7: X — Y has a magical element
by Proposition 5.1. Using Theorem 1.2:

Hi(X) = k[VI®% @ Iyy @ I,y ® D P Hi(Xo)
ie{—1,0,1,00} Q€eB/'(H;)

The module /x,y was computed in Lemma 6.4. Suppose now that Q € B’(H;). Then, by

Proposition 6.5:
Dd(Mp— ) D -1)/2 a( —-1)/2
Hjp(Xo) = Ny, 2" @ My " &My,

The proof follows. ]

7. HKG-covers for V,

This section will be devoted to the proof of Proposition 6.5. We keep the notation of
Proposition 6.5. Suppose at first that Goo = H;. In particular, m = 1. Then H i (X°) =
k®M=1) 1y [12, Corollary 1.2]. Hence:

Hp(X) = Ind} Hjp (X°) = (Indp} k)®M=D = NPV,

which proves Proposition 6.5 in this case.
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From now on, we assume that Go, = V4. Without loss of generality, we may assume
that ordeo (f9) = —m and ordeo(h1) = —M. Indeed, this is immediate if co € B'(V,),
since then ordeo(f9) = ordeo(h1) = ordeo(fiee) = —m = —M. If 0o € B/(Hy) (resp.
00 € B'(Hy)), then we may twist the action of V4 by swapping t and o (respectively t
and o 7). Under this twist, the module N5 o maps to N, ; (respectively N o).

We may assume that the function field of X is given by equations (5.1) in standard
local form at every Q € P!. Thus &g, h; € k[x] and deg(ho) = m, deg(h;) = M. For
brevity, we write m’ := mT_l, M’ = @, M = @ and My = LZMme_IJ Recall
that gov = %d;} = %(m +2M —3). Let P € X(k) be the point lying over oo € P! (k)
and V := X \ {P}.

Recall that there exists o € k[x] of degree M” such that ordp (y1 + ayg) = —2M + m.
Indeed, by [34, Corollary 3.10 and the proof of Theorem 3.11] there exists o € k(x)
with the desired properties. By taking the polynomial part, we may assume that o € k[x].
Denote the coefficients of ¢ as follows:

a=0g+oy-x+--+ayr M
In order to prove Proposition 6.5 we construct an explicit basis of Hle(DC). Denote by
hy, R the derivatives of the polynomials /¢, i; € k[x]. Note that any rational function
T € k(x) can be uniquely written as a sum 7" = [T]>o + [T]<o, where [T]>¢ € k[x] and
[T]<o is a rational function, whose numerator has lower degree then denominator.
Consider the elements of Q¢ (V') x k(X) given by the following formulas:

e foriel;:=1{0,....m—1}:

a; ;= (xi dx,0),
; Yoyi1x'a
b; := Ydx, ,
i (ylx o h’1+ah6)
; Yoy1x'
= ld 9 b
S ey
o foriel,:={1,....,m}:
h/
o ([.3)
xi >0 xi
% Yo
no= (] e 30)
hy h Yoy1 . i-yiaho
i (e [] o en[ ] an B+ 1)

e foriels:={m+1,....M —1—m'}:
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In the sequel we will need to compute valuations of several functions and forms on X.
To this end we use (2.1) as well as the following relations:

e ordp(dx) =—-8+4+dp =2M +m —5,
e ordp(hg) = —4m,ordp(h,) = —4M,
* ordp(yo) = —2m,ordp(y1) = —2M,
e ordp(y; +ayg) = —2M + m,

e ordp(yoy1 + ahg) = —2M — m.

For the proof of the last relation, note that:
ordp (yoy1 + aho) = ordp (yoy1 + (¥ + yo)) = ordp (yo - ((y1 + ayo) + @)
=-2m—-2M +m = -2M —m.
In the sequel we use also the fact that for any 7' € k(x):
[T(x)]<0 dx, yo- [T(x)]<0 dx, yp- [T(x)]<0 dx € Qux,p. 7.1
Indeed, note that:

ordp ([T(x)]<0 dx) > ordp (yo . [T(x)]<0 dx) > ordp (yl . [T(x)]<0 dx)
>-2M+44+2M +m—-5=m—1>0.

Lemma 7.1. The elements (a;)ier,, (bi)ier,, (¢i)ien, (€)iet,, (fi)ien (8)iel,, (Ui)iers
(vi)iers belong to Z L (7 Q%,).

Proof. In order to show that a pair (@, f) € Qy(V) X k(X) is in le; (4£2%,), one has to
show that  — df € Qx, p. We have:

e a; € Z}g(n*Q&) fori e Iy, since ordp (x’ dx) =m +2M —5—4i > 0,

o b € Zh(m Q%) fori € Iy, since:

i yoyix'a hllxi(YI + ayg) dx xla
idx —d - A N ea
yixdx (h/l—l—ah()) Wtany PO ) € HE

(the first summand has valuation 2m — 4i — 5 > 0, and the second 2M +m —4i — 1
> 0),

e ¢ € Z}g(n*Q;C) for i € I, since:

; yoy1x' x'hy(y1 + ayo) dx x!
Ydx —d = cd| ——— )€
yoxtax (h’1 + ah(,) wrany, PO\ oF

(the first summand has valuation 4M — 2m — 4i — 5>0 and the second 4M — m —
4i —1>0),
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e ¢ € Z};(n*Q&) fori € I and u; € Z}g(n*Qgc) for i € I3, since:

h' h' d
I:—li| dx—d(&):[—l} dx-i-i'%égx’p
X' f>o Xt xt oo Xt

(the first summand is holomorphic at P by (7.1), the second has valuation m + 4i —
1>0),

o fi € Zp(mQ%) fori € I, since:

h' h d
Dol gx—d(2) =2 dx+i- 222 cyp,
x50 xi X oo xit+l ’

(the first summand is holomorphic at P by (7.1), the second has valuation 2M — m +
4i —1>0),

o gi € Zp(miQ%) fori € I, since:

hy h Yoyi . i-yiahg
| = d -1 dx —d 4 g
& [X’Lo x+y0[x’Lo * (X’ +h’1'X’+1)
hy h Yoyi+ahg ahg
—y,-| 2| 4 D gy 200 a2 e
»1 |:Xzi|<0 x+y0|:x’i|<0 x+1 i+l X+i-y1 (h’l-X’+1) X,P

(the first two terms are holomorphic by (7.1), the third term has valuation 4; — 1 and
the fourth term valuation 2M —m + 4i + 3 > 0),

o v € ZL(m. Q%) fori € I3, since:

hy yoyi [h}
— dx —d| ————| —=
yH ¥ (ha+aha[xl

_ |:h/1} ) ho - (y1 + ayo)
>0

[} /x50
x! hy + ahj € P

d -d
X + Yoy1 (hﬁ"‘“hﬁ

([Z—/}]zo is a polynomial of degree M — 1 — i. Hence the first summand has valuation
4i —2m — 1 > 0 and the second one valuation 4i —m + 3 > 0). [

Lemma 7.2. We have the following equalities in Hle(DC):

o(a;) =a;, o(b;y)=b;, o(ci) =c¢i + aj,
t(a;) = a;, t(bi) =b; +a;, 1t(c;) =cy,

oe;) =ei, o(f)=fi o(gi) =g +ei,
t(ei) =ei, t(fi) = fi, ©(gi) = & + fi,

o) =u;, o) =v; +u,

t(u;) =u;, t(v;) =v;.
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Proof. 1t is straightforward that a; is V4-invariant for i € I;. Note now that fori € I;:
ylxioc
ob;j)—b; =0, ———|.
(b)) — by ( 7 +ah,0)

Moreover,

Hence o (b;) = b; in Hjp(X). Similarly:

e 1(b;) = b; + a; fori € I, since:

yoxia .
de [ 227~ VY —oM —4i—4>0.
Orp(h’l+oeh’0) !

e o(c) =ci +a;,1(c;) =cjfori € I, since:

J’1xi .
dp [ 25— ) =2M —4i —4>0,
°”’(hfl+ah;,) =

ap (20~ AM —2m —4i —4>0

or — | = —2m —4i — ,

P\ K, + ahj, -

o o(e))=1t(e;) =ej,0(fi)=1(f;) = fifori € I and o (u;) = t(u;) = u; fori € I3,
since 1/x' € Ox.p,

* o(gi)=gi +ei,t(gi)=gi + fi fori € I, since:

O{ho .
OrdP (W) = 2(M — m) + 4i > 0,

e o(v;) =v; +u;, t(v;) = v; fori € I3, since:

»1 h} »1
ordp [ ——— 1| —Z)>o0,
P(h'1+“h6[x’]zo x’) -

Yo ' .
OrdP 7 7| =4M—2m—4l—420
hy +ahy [ X' ]5

For the first inequality, note that:

L ﬁ _& — yl[h/l/xi]<0 ylah’o
h/1+oéh£) xt -0 xi h/1+06h() (h/1+01h6)-x’”
The first summand has valuation at least 2M at P, the second 4i —2m > 0. -

In the sequel we use the following basis of the holomorphic differentials on X.

Theorem 7.3. The basis of H°(X, Q) is given by the differential forms:
. xidxfori =0,....M — My—2,



p-group Galois covers of curves in characteristic p. I 371
o yox'dxfori=0,...,My—1,
o (y1+ayy)-xidxfori=0,....m—1.

Proof. This is basically [2, Lemma 3.6]. The cited article uses the following notation:
U =1Uoo i= Y0, U =Voo := Y1, P :=ho,q :=h1, Teo = 1, Weo(j) = y1 + [@]=p7—j - Yo
for j € Z, where [«]>; := Z;A:z/ a; x* for any ¢ € Z. Thus by [2, Lemma 3.6] the basis of
Xis givenby { f dx : f € B}, where:

B = :800 = :Boo,l UBOO,Z U£00,3’
Boog =X :0<i; <M — My—2},
Boop = {yo-Xx2:0 <i, < My— 1},

. -5
Boo,z = {yl-X’3 10<i3z < {mTJ}

o[22 e[ -

By adding the elements of B> to the elements of B 3, one may replace B3 by
{(y1 +ayg)-x 1 0<i §m’—1}.
This ends the proof. ]

Observe that by (2.2):
] ) | = 1 )
resp (yo—yl dx) = ! ) (7.2)
xt 0, otherwise,

2 2 d
resp (y—o dx) = resp (y—l dx) = resp (_x) =0 (7.3)
x! X! x!

for any i € Z. We recall also that the Serre duality is given by the pairing:
HY X, 0x) x HY(X, Qy) — k,
(f,w) :=resp(f - w).

In order to prove that the elements listed above yield a basis of Hj;(X), we start by
establishing the linear independence of some of them. The idea is to use the Hodge—de
Rham exact sequence:

0— H°(X,Qx) = Hi(X) — H'(X,0x) — 0.

First, we investigate the dependence of the images of the elements in H (X, @) and use
Serre duality along with Theorem 7.3. Then we are left with a dependence in H°(X, Qx)
and we may use Theorem 7.3 for the second time.
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Lemma 7.4. The elements (a;)icr,, (€i)iel,» (fi)iel,, (Ui)iel, are linearly independent
in HX ().

Proof. We extend the definition of a; and e; as follows. Denote a; = (x! dx,0) fori =
m',...,M'—1ande; :=u; fori =m’ +1,...,M’. Note that fori > M"':

h hi
u; = (|:—1] dx, &) = (|:—1:| dx,O) in Hgg (20).
Yl X x 1>0

Moreover, [h/ ]>0 is a polynomial of degree M — 1 — i. Hence:

u; € Spang(a; : j <M —1—i)\Spany(a; : j <M —1—1i).
Therefore it suffices to show that the elements (a; f‘i ,0_ 1 (61)1_1’ ( f,) , are linearly
independent in HdlR (X). Suppose that for some A;, F;, E; € k we have:

M'—1

ZA a,+ZE ei + iFi-ﬁ:o (7.4)

i=1

in H{z (). Then in H'(X, Ox):

M/
ZE,»-%—}-ZF,»-%:O. (1.5)

We divide the proof into four steps.
StepI. For j =1,..., Mo we have E; = 0 and for every j = 1,....m

M//

Fj = Zaz Ejy. (7.6)

Proof of Step 1. Using Theorem 7.3, (7.5) and relations (7.2), (7.3) we obtain for any
je{l,..., My}

+ZF A,yo x/~ 1dx> E;.
i=1

i=1

!/

Analogously, forany j = 1,...,m":

MI
0= (S e DSR2 o]
i=1 i=1
MH
ZZZE:QI'EH+14—f?.
=0

This shows that (7.6) is true.
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StepII. Foranyi =1,...,M":

i—1
Ei- Y. o2t = Ei- 2 +y0- Pi(x) (mod Ox.p), (1.7

1
1=i0i) *
where ig(i) := max(0,i —m’), P; € k[x],deg P; < M" —i.
Proof of Step II. Take P;(x) := E; - ng a; - x'7%. For i < My the equality (7.7) is
immediate, since E; = 0 by Step L. If i > M, then:

i—1 io(i)—1
0 1 1+ ayo 0
E,--Zal-%+Ei-%+yo-Pi(x)=Ei-(%+ ZO([%)
I=io(@@Q) =0

But ordp (XE20) > 4(My + 1) —2M + m > 0. Moreover, for 0 <[ < io(i) — 1 one has

xi

i —1 > m’, which implies that yo/x'~! € Ox,p. This proves (7.7).

Step III. There exist polynomials S;, 7; € k[x], deg 7; < M — i such that in H j, (X):

’ M/
iFi fi = ZEi . (yOSi(x) dx + T; (x) dx, %)
i=1 i=1

Proof of Step III. Using (7.6):

m M"

S F fi= Y- (/o dx. 37

i=1 i=1[=0

Thus substituting ¢t := [ + i:

m’ M" I+m’
YF-fi=Y Y aE; - (lhy/x""z0dx. yo/x")
i=1 1=0t=I+1
m+M" t—1
= > > OtlEt'([h()/Xt_l]zodx, x{i,)
t=1I=ig(t)
M’ t—1
=2Et-(Qt(x)dx, ) al%),
=1 I=io(1)

where Q;(x) := Zf;io(,) ar[hly/x' !0 € k[x]. Moreover, since o; = 0 fori > M", we
have deg Q, < deg[hy/x*M" |59 =m + M" —1—1t. By (7.7):

m’ M’
Y Fifi =Y Ei-(Qi)dx 5 +y0- Pi(x)

i=1 i=1
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=Y Ei (Qitvdx +d(yo- Pi). 35

= Z E;- (yoSi(x) dx + T;(x) dx, %)

where S;(x) := P/(x), T;(x) := Q;(x) + hy(x) - Pi(x),degT; <m+M" —1—i <

M —i.

Step IV. By applying the equality from Step III to (7.4) we obtain:
M'—1 ' M’ '

0= Y Ai-(x"dx,0)+ > E;- ([l /x"]s0dx + yoSi(x) dx + T;(x) dx.0).

i=0 i=1

In other words:

M'—1 4 M’ '

Z Aixtdx + ZE,- -([hy/x")s0dx + yoSi(x)dx + Ti(x)dx) =0 in H*(X,Qx).

i=0 i=1

Note that the leading term of [} /x']so dx is x™ =1~ dx. But by Theorem 7.3, for any

i e{l,..., M}, the form x =17 dx is not in the k-linear span of the forms x/ dx for
j<M—1—iand yoxl dx forl =0,...,My— 1. Thus E; = 0 for any i. Analogously,
Theorem 7.3 implies that A9 = -+ = Ap—1 = 0. [

Corollary 7.5. The images of the elements (a;)icr,, (bi)ier,, (¢i)ier,, (€i)iel,, (fi)iel,
(g1)ien,, (Ui)ier, (Vi)ier, form a basis of Hg(X).
Proof. Note that the number of listed elements is
3-Lh|+3-|L]+2-|5=3-m+3-m"+2-(M—m) =2gx.
Thus it suffices to show that the listed elements are linearly independent. Suppose to the
contrary that for some A4;, B;, C;, E;, F;,G;,U;, Vi € k:
0= (Ai-a; +Bi-bi +Ci-ci)+ Y _(Ei-e; + Fi - fi + Gi - &)
iel i€l
+ > (Ui i + Vi -v).
iels
Then, by applying (o — id) we obtain by Lemma 7.2:
0= Zci'ai+ZGi'€i+ZVi'ui-
iel) ielp iels
Therefore by Lemma 7.4 C; = G; = V; = 0. Analogously, by applying (t — id) we obtain
B; = 0. Hence we obtain:
0= ZA,' -a; + Z(E, e + Fi- fi) + ZU,’ “U;.
iel; iel, i€13

The proof follows by applying Lemma 7.4 one more time. ]
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Proof of Proposition 6.5. Lemma 7.2 shows that the maps:

Nag — Hle(DC), (1,0) > u;, 0,1) > vy, foranyi € I,
Mz — Hi(X), (1,0,0) > a;, (0,1,0) > b;, (0,0,1) > ¢;, foranyi € Iy,
M3, — Hle(DC), (1,0,0) > e¢;, (0,1,0) — f;, (0,0,1)+ g;, foranyi € I5.

are equivariant. The direct sum of those maps is a k[V4]-linear map:
NMT™ @ M & MY, — Hi(X),

which is an isomorphism by Corollary 7.5. ]
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