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Weak Dynkin type and the universality of non-negative
Coxeter-regular integral quadratic forms

Andrzej Mróz and Katarzyna Zając

Abstract. An integral quadratic form is called Coxeter-regular if its integer coefficients satisfy a
divisibility condition equivalent to the fact that the associated Coxeter transformation and Weyl
group are integral. Such forms are known to be useful in the study of finite-dimensional associative
algebras, Lie algebras and certain singularities. We show that a non-negative (connected) Coxeter-
regular form q is universal (that is, q represents all non-negative integers) if and only if q represents
the integers 1; 2; 3; 7 and 14. This may be viewed as a specialization (and, actually, an extension) of
the Conway–Schneeberger/Bhargava “15 Theorem”. As one of the main tools we provide a complete
classification, up to Z-equivalence, of all non-negative Coxeter-regular forms by means of so-called
weak Dynkin type, which is a certain equivalence class of a Dynkin (bi)graph. In this way, we
obtain a generalization of the known result of Barot-de la Peña for unit forms and simply-laced
Dynkin diagrams.

1. Introduction

An integral quadratic form (of dimension n � 1) is a mapping qWZn ! Z defined by a
homogeneous polynomial of the second degree

q.x1; x2; : : : ; xn/ D

nX
iD1

qix
2
i C

X
i<j

qijxixj ; (1.1)

with integer coefficients qi , qij 2 Z. Such forms appear in many mathematical contexts,
especially in number theory, algebra and geometry, and their study has been a guiding
light in mathematics for many years. For instance, the following two natural problems
related with integral forms inspired the developments of modern algebraic number theory
and the geometry of numbers:

(P1) Given an integral form qWZn ! Z and an integer d 2 Z, verify whether q rep-
resents d , that is, whether the Diophantine equation

q.x1; : : : ; xn/ D d; (1.2)

Mathematics Subject Classification 2020: 11E25 (primary); 11E20, 11H55, 15A63, 15A21,
20F55 (secondary).
Keywords: integral quadratic form, universal quadratic form, unit form, Cox-regular quadratic form,
Diophantine equation, Dynkin type, Dynkin diagram.

https://creativecommons.org/licenses/by/4.0/


A. Mróz and K. Zając 246

has an integral solution x1; : : : ; xn 2 Z. Recall that if q represents all integers
(or all non-negative integers in case q is non-negative) then q is called universal,
cf. [6, 10].

(P2) Provide a classification of integral quadratic forms (from a given class) up to the
Z-equivalence� defined as q� q0 if and only if q0D q ıT for some T 2Gln.Z/.

Both problems have a long history and in the full generality they are highly non-trivial.
Regarding (P2), recall the works of Gauss [15] on the classification of binary forms, or
the results of Minkowski [30] on integral quadratic forms of small dimensions (see also
[11, Chapter 15]), which later gave rise to the well-known Hasse–Minkowski–Witt the-
ory of rational quadratic forms. Note that integral quadratic forms were considered to be
“inherently unclassifiable” in dimension n � 24, see [11, p. 353].

In the context of problem (P1) we should mention the classical works of, among others,
Fermat, Legendre and Lagrange on the representation of an integer as a sum of squares.
For example, the known Lagrange “Four-Squares Theorem” states that the (positive) inte-
gral form q.x1; x2; x3; x4/ D

P4
iD1 x

2
i is universal. Note that the representation problem

may be viewed as studying the integral points on the affine variety in Cn defined by the
polynomial equation (1.2). More general universality problems were considered later by
many authors, for instance, we recall the classification of 4-dimensional (positive) diag-
onal forms due to Ramanujan [39]. Another remarkable result, which is one of the main
inspirations for our study, is the celebrated “15 Theorem” of Bhargava, Conway, Schnee-
berger [6, 10] stating that a positive integral quadratic form q having an integer Gram
matrix Gq (that is, an integral form (1.1) with qij

2
2 Z for every i < j ) is universal if

and only if it represents the integers 1, 2, 3, 5, 6, 7, 10, 14, and 15. We also refer to the
unpublished manuscript “Universal quadratic forms and the 290-theorem” of Bhargava
and Hanke containing a more general criterion for positive forms. These results provide
in some sense a general solution to the universality problem. However, it is still interest-
ing to study certain more specialized variants of this problem, especially if they embrace
quadratic forms which are not positive.

In the present paper we address both problems (P1) and (P2) for Coxeter-regular forms
(shortly, Cox-regular forms [23]), that is, integral forms q as in (1.1) such that qi > 0 for
each i D 1; : : : ; n and additionally

qij

qi
;
qij

qj
2 Z; (1.3)

for all i < j . This class of integral forms has algebraic origins, cf. [3, 13, 23, 41, 48].
Namely, the condition (1.3) is equivalent to the integrality of the associated Coxeter trans-
formation, Weyl group and Weyl roots (see Proposition 4.4 for the precise statement).
This may be viewed as a fundamental “reason” that the following integral quadratic forms
associated to algebraic structures are often Cox-regular: Euler or Tits quadratic forms of
a finite-dimensional associative algebra [1,7,9,12,13,20,40], or integral form induced by
the Killing form of a Lie algebra [3, 18, 21], cf. [5, 37]. Observe that in this context prob-
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lems (P1) and (P2) have relevant interpretation. Namely, if two algebras of finite global
dimension are derived equivalent then their Euler forms are Z-equivalent, see [17, 33],
see also Remark 4.9. Moreover, in certain cases positive solutions of the equation (1.2)
for small d ’s (usually d D 0 and 1) for the Euler or Tits form qA of an algebra A are
related with classifications of indecomposable A-modules, see [9,12,20,40]. On the other
hand, Cox-regular forms are closely related to the so-called quasi-Cartan matrices in the
sense of Barot–Geiss–Zelevinsky [3] defined in the context of cluster algebras (see [25]
for more details, cf. [27, 37, 38, 48]), and generalized intersection matrices in the sense
of Slodowy [50]. The latter matrices were successfully used in the classification of ratio-
nal singularities, in particular in the celebrated Arnold A-D-E classification of the simple
hypersurface singularities (see Gabrielov [14] for the details, cf. Simson [48]).

Nevertheless, the class of Cox-regular forms is still not well understood and besides
a few papers of the Ukrainian school (see, e.g., [35, 41, 53]) there are not many known
results concerning general (especially number-theoretic) properties of these forms, see
also [13,23,34] and references therein. More effort has been put in understanding the very
special case of Cox-regular forms, namely, the unit forms, which by the definition are the
integral forms (1.1) with q1 D � � � D qn D 1. Classification of all non-negative unit forms
with respect to � was given by Barot-de la Peña in [2] by means of the Dynkin type, that
is, the unique simply-laced Dynkin diagram Dyn.q/ 2 ¹Am;Dm;E6;E7;E8º associated
to a unit form q. We refer also to [46,49] for an alternative classification, and the results on
(weakly) positive unit forms of Ovsienko [35], von Höhne [51,52] and Simson [43,44,48].

In this paper we present two main results on Cox-regular forms related to problems
(P1) and (P2), respectively. The first main result of the paper may be viewed as a special-
ized variant of the Conway–Schneeberger/Bhargava “15 Theorem”, extended (in a quite
natural way) to non-negative forms. We refer to Section 2 for the detailed definitions.

Theorem 1. Let qWZn ! Z be a non-negative connected irreducible Coxeter-regular
form of rank r D rk.q/ WD rk.Gq/ � 0. Then the following conditions are equivalent.

(a) The form q is universal.

(b) The rank r is at least 4.

(c) The form q represents the integers 2; 3; 7 and 14.

Note that obviously if a quadratic form q is universal then it is irreducible, cf. Section 2
and Corollary 8.4. We emphasize that Theorem 1 is independent of the “15 Theorem” in
the sense that we do not apply the latter in our proof. On the other hand, note that “15
Theorem” does not admit a counterpart of the condition (b) since, e.g., the class of all
diagonal positive forms of dimension 4 contains universal as well as non-universal forms,
see [39], cf. Remark 8.5.

The proof of Theorem 1 is given in Section 8.1. It applies, among others, the follow-
ing classification of non-negative Cox-regular forms which we treat as the second main
contribution of the paper. It generalizes the main theorem of Barot-de la Peña [2] from
unit forms to Cox-regular forms.
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Theorem 2. Let qWZn ! Z be a non-negative connected irreducible Coxeter-regular
form of rank r D rk.q/ � 1. Then the following holds.

(a) There exists a Z-invertible transformation T WZn ! Zn such that

q ı T .x1; : : : ; xn/ D qDr .x1; : : : ; xr /; (1.4)

where qDr WZ
r ! Z is the integral form associated to a Dynkin bigraph Dr 2

¹Ar ;Br ;Cr ;Dr ;E6;E7;E8;F4;G2º (see Table 1), which is uniquely determined
by q up to Z-equivalence �.

(b) There exists a positive connected irreducible restriction Oq of q such that Oq � qDr .

The class wDyn.q/ WD ŒDr ��d of Dynkin bigraphs Z-equivalent with Dr is called
the weak Dynkin type of q, see Definition 7.3 and Remark 7.7. Observe that Theorem 2
provides a complete classification of non-negative Cox-regular forms (of arbitrary dimen-
sion) up to Z-equivalence, and the right-hand side of (1.4) (see also (7.1)) may be seen
as a kind of a canonical “reduced” form of q, cf. Corollaries 7.6 and 7.10. The proof of
Theorem 2 is given in Section 7.1. It applies the proven existence of a certain special basis
of the radical ker q of q (see Theorem 6.2) and our earlier results concerning positive and
principal Cox-regular forms [25,27,34] (see also [28,35,53]) and the so-called Gabrielov
equivalence �G , a stronger (than �) equivalence of Cox-regular forms having its origins
in Lie theory and singularity theory (cf. [5, 14, 37, 50] and Remark 4.9).

The paper contains seven sections following this introduction. Sections 2-5 have a
preparatory character. In Section 2 we recall basic definitions and facts used in the paper.
Next, in Section 3 we develop techniques related with the so-called omissible vertices
and special bases for arbitrary (i.e., not necessarily Cox-regular) non-negative integral
quadratic forms. These techniques allow us to perform certain reductions and inductive
reasoning in the main proofs later. In Section 4 (resp. Section 5) we survey the main
properties of Cox-regular forms and their transformations (resp. the distinguished classes
of Cox-regular forms related to Dynkin and Euclidean bigraphs), and we supplement a few
new facts. In Section 6 we prove the key technical result on the existence of the above-
mentioned special basis of kerq. The last Sections 7 and 8 contain the proofs of Theorems
2 and 1, respectively, together with related facts and some consequences and remarks.

2. Basic notions and facts

By Z (resp. Q, R) we denote the ring of integers, the fields of rational and real numbers,
respectively. Given n � 1, by n we denote the set n D ¹1; 2; : : : ; nº � Z. For a ring R
or the abelian group 1

2
Z D ¹n

2
W n 2 Zº, by Mn.R/ we denote the set of n � n matrices

with coefficients in R. For M 2Mn.R/, by M tr we denote the transpose of M . We often
identify automorphisms of the abelian group Zn (whose elements are viewed as column
vectors) with their matrices in Gln.Z/ WD ¹M 2Mn.Z/ W det.M/ D ˙1º written in the
standard basis e1 D e.n/1 D Œ1; 0; : : : ; 0�

tr; : : : ; en D e.n/n D Œ0; : : : ; 0; 1�tr of Zn. Conversely,
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each matrix M 2 Gln.Z/ induces the automorphism of Zn given by v 7!M.v/ DM � v

for each v 2Zn. We apply similar conventions for Gln.R/ WD ¹M 2Mn.R/ W det.M/¤ 0º

and linear automorphisms inRn forRDQ;R. We say that a vector vD Œv1; : : : ;vn�tr 2Zn

is sincere (resp. positive) if vi ¤ 0 for all i 2 n (resp. if v¤ 0 and vi � 0 for all i 2 n). Note
that v 2 Zn is positive and sincere iff Œ1; 1; : : : ; 1�tr � v, where � denotes the coordinate-
wise partial order in Zn.

An integral quadratic form qWZn ! Z as in (1.1) is viewed as q.x/ D
Pn
iD1 qix

2
i CP

i<j qijxixj for x D Œx1; : : : ; xn�tr 2 Zn. We set qj i WD qij for all i < j . Recall that if
q1 D � � � D qn D 1 then q is called unitary (or a unit form). Moreover, we say that q is
irreducible if q D ˛q0 implies that ˛ D˙1, for each ˛ 2 Z and an integral quadratic form
q0WZn! Z. We say that q is positive (resp. non-negative) if q.v/ > 0 (resp. q.v/ � 0) for
all 0 ¤ v 2 Zn.

The unique symmetric matrixGq 2Mn.
1
2
Z/ such that q.x/D xtrGqx for each x 2Zn

is called the (symmetric) Gram matrix of q. Note that Gq 2Mn.Z/ iff qij
2
2 Z for every

i < j , cf. [10]. By q.�;�/WZn � Zn ! 1
2
Z we denote the polarization of q, that is, the

symmetric bilinear form given by q.x; y/ D 1
2
.q.x C y/ � q.x/ � q.y// D xtrGqy, for

x; y 2 Zn.
Given d 2 Z, elements of the set

Rq.d/ WD q
�1.d/ D

®
x 2 Zn W q.x/ D d

¯
(2.1)

are called d -roots of q. The set of 0-roots ker q WD Rq.0/ is called the kernel of q. The
subgroup

rad q WD
®
x 2 Zn W q.�; x/ D 0

¯
D ¹x 2 Zn W Gqx D 0º � Zn (2.2)

is called the radical of q. Clearly, rad q � ker q. We recall that non-negative forms have
the following nice properties.

Lemma 2.3. Let qWZn ! Z be a non-negative integral quadratic form. Then:

(a) rad q D ker q; in particular, ker q is a subgroup of Zn,

(b) q.x C h/ D q.x/ for each x 2 Zn and h 2 ker q,

(c) ker q is a pure subgroup of Zn (that is, ˛h 2 ker q implies h 2 ker q for each
h 2 Zn and 0 ¤ ˛ 2 Z); in particular, Zn= ker q is free and ker q is a direct
summand of Zn.

Proof. For the proof of (a) we refer to [42, Proposition 2.8]. For claim (b) note that

q.x C h/ D q.x C h; x C h/ D q.x; x/C 2q.x; h/C q.h; h/ D q.x/

by (a) and (2.2).
To see (c) note that q.˛h/D ˛2q.h/ so clearly kerq is pure and Zn=kerq is a torsion-

free (finitely generated) abelian group, hence it is free. This also implies that ZnD kerq˚
V for the subgroup V WD Zv1 ˚ � � � ˚ Zvt � Zn where ¹viºtiD1 � Zn are chosen such
that ¹vi C ker qºtiD1 is a basis of Zn= ker q, cf. [4, Proposition 4.1].
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By the rank (resp. corank) of an integral quadratic form qWZn! Z we mean the rank
rk.q/ WD rk.Gq/ of the Gram matrix of q (resp. its corank crk.q/ WD n � rk.q/). If q is
non-negative, then crk.q/ equals the rank of the subgroup ker q, see Lemma 2.3 (a). In
particular, in this case q is positive if and only if crk.q/ D 0, equivalently, if rk.q/ D n.
If crk.q/ D 1 then q is called principal.

We say that two integral quadratic forms q; q0W Zn ! Z are Z-equivalent (or Z-
congruent) if q0 D q ı T , i.e., q0.v/D q.T .v// for each v 2 Zn (equivalently, q0.v;w/D
q.T .v/;T .w// for all v;w 2 Zn), for some T 2 Gln.Z/. We write then q � q0 or q �T q0.
We say that q and q0 are trivially equivalent and we write q Š q0 if q �P q0, for some
permutation automorphism (matrix) P 2 Gln.Z/, that is, P.ei / D e�.i/ for all i 2 n and
some permutation �Wn! n (in this case we write P D P �).

The following fact is straightforward (cf. [32, Proposition 2.5]).

Lemma 2.4. Given T 2 Gln.Z/ and two integral quadratic forms q; q0W Zn ! Z, T
induces the Z-equivalence q �T q0 if and only if Gq0 D T trGqT . In this case

(a) T induces a bijection Tj W Rq0.d/! Rq.d/ for every d 2 Z,

(b) q is non-negative iff so is q0, and in this case crk.q/ D crk.q0/; in particular, q
is positive (resp. principal) iff so is q0.

Fix n� 1 and a subset J D ¹j1 < j2 < � � �< jrº � n. Let �J WZr!Zn be the inclusion
given by e.r/t 7! e.n/jt for all 1 � t � r . We also consider the projection �J WZn ! Zr

defined as �J WD �trJ , that is, �J .x1; : : : ; xn/ D .xj1 ; : : : ; xjr /. Clearly, �J ı �J D idZr ,
and �J ı �J .h/ D h only if �nnJ .h/ D 0 (that is, hi D 0 for all i 2 n n J ).

Given an integral quadratic form qWZn!Z we define the restriction qJ WZr !Z of q
to J by setting qJ .y/ WD q.�J .y// for every y 2 Zr . Given j 2 n we write q.j / WD qnn¹j º.
Form � 1 and a quadratic form q0WZm! Z we define the direct sum q ˚ q0WZnCm! Z
as the quadratic form given by

.q ˚ q0/.x1; : : : ; xnCm/ WD q.x1; : : : ; xn/C q
0.xnC1; : : : ; xnCm/:

Observe that Gq˚q0 D Gq ˚Gq0 WD
�Gq 0

0 Gq0

�
.

We say that q is connected if q is not trivially equivalent to a direct sum of integral
quadratic forms.

Lemma 2.5. Let qWZn ! Z be an integral quadratic form. Then

(a) if q is non-negative then for every subset J � n:

(a1) the restriction qJ is non-negative,

(a2) �J .ker qJ / � ker q, so crk.qJ / � crk.q/,
(a3) �nnJ .h/ D 0 implies �J .h/ 2 ker qJ , for each h 2 ker q,

(a4) �nnJ .h/ D 0 if and only if h 2 �J .ker qJ /, for each h 2 ker q;

(b) if q D q0 ˚ q00 then q is non-negative if and only if so are q0 and q00; in this case
crk.q/ D crk.q0/C crk.q00/.
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Proof. The assertions on non-negativity in (a) and (b) are obvious. Claim (a2) follows
from the fact that qJ D q ı �J and �J is a monomorphism. To show (a3) recall that
�nnJ .h/ D 0 implies that �J .�J .h// D h. Thus qJ .�J .h// D q.�J .�J .h/// D q.h/ D 0,
so �J .h/ 2 ker qJ . This also means that h D �J .�J .h// belongs to �J .ker qJ / which
proves the implication “)” in (a4). The implication “(” in (a4) follows directly from
the definition of �J .

To show crk.q/ D crk.q0/C crk.q00/ in (b) observe that qI D q0 and qJ D q00 for
I D k and J D n n k, where k is the dimension of q0. Thus �I .kerq0/˚ �J .kerq00/� kerq
by (a2). On the other hand, if h D �I .h1/C �J .h2/ 2 ker q for h1 2 Zk and h2 2 Zn�k

then 0 D q.h/ D q0.h1/ C q00.h2/ so h1 2 ker q0 and h2 2 ker q00 since q0 and q00 are
non-negative. Therefore ker q D �I .ker q0/˚ �J .ker q00/ Š ker q0 ˚ ker q00.

Following [2,23], with an integral form qWZn!Z as in (1.1) we associate the bigraph
� D �q , i.e., � D .�0; �1/ is an undirected multigraph with the set of vertices �0 WD
n D ¹1; : : : ; nº and the (multi)set �1 of edges of two kinds: solid edges and dotted edges,
defined as follows. For vertices i ¤ j the set �1 contains jqij j edges between i and j .
These edges are solid if qij < 0 or dotted if qij > 0. Moreover, for every vertex i 2 �0
there are jqi � 1j solid loops (resp. dotted loops) at i if qi � 0 (resp. qi > 0). Given a
bigraph�D .�0 D n;�1/, by q�WZn! Z we denote the unique integral quadratic form
such that �q� D � (we assume that each pair of vertices in � is joined by edges of the
same kind, see [23, 25] for the details). We often identify � with q�, in particular, given
two bigraphs �, �0 we often write � � �0 instead of q� � q�0 .

Remark 2.6. Basic properties of quadratic forms have the following obvious interpre-
tation in terms of their bigraphs. An integral form q is connected (resp. unitary) if and
only if �q is a connected bigraph (resp. �q is loop-free). Moreover, the bigraph �q˚q0
of a direct sum q ˚ q0 is the disjoint union �q t�q0 (up to suitable renumbering of the
vertices). The bigraph �qJ of a restriction qJ coincides with the full subbigraph �J of
� D �q induced by the vertices from J . In particular, given j 2 n, �q.j / is the bigraph
�.j / obtained from � D �q by removing the vertex j and all the edges incident with j .
Note that trivial equivalences of quadratic forms correspond to bigraph isomorphisms.

The following useful observation states that given a non-negative form q, if a vertex i
in�q has a single solid loop then i is an isolated vertex, cf. [19, Lemma 3.2]. By �WZ!Z
we denote the zero form of dimension 1 given by �.x1/ D 0.

Lemma 2.7. Let qWZn ! Z be a non-negative integral quadratic form as in (1.1). If
qi D 0 for some i 2 n then qij D 0 for all j 2 n, j ¤ i . In particular, q is disconnected
and not positive, and q Š q0 ˚ � for some non-negative integral form q0WZn�1 ! Z of
crk.q0/ D crk.q/ � 1.

Proof. If qi D 0, then ei 2 ker q. Therefore, ei 2 rad q since q is non-negative, see
Lemma 2.3 (a). It means that 0 D q.ei ; ej / D etr

i Gqej D 1
2
qij for all j ¤ i , cf. (2.2).

The remaining assertions are simple consequences of this fact and Lemma 2.5 (b).
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3. Omissible vertices and special bases

Similar methods to these presented in this section were discussed for unit forms in [4,
Section 3.4] and [16, 47]. One checks that the arguments can be quite easily extended for
the general case. For the completeness we present short proofs. We also provide some new
examples at the end.

Let qWZn! Z be a non-negative integral quadratic form. Following [2,4], we say that
s 2 ¹1; : : : ; nº D �0 for � D �q is an omissible vertex of q (or of �) if there exists a
vector h 2 ker q such that hs D 1.

Lemma 3.1. Let qWZn ! Z be a non-negative integral quadratic form. Then:

(a) 0 � crk.q/ � crk.q.s// � 1 for each vertex s 2 n,

(b) crk.q.s// D crk.q/ � 1, provided s is an omissible vertex of q.

Proof. (a) The first inequality follows from Lemma 2.5 (a2). To show the second one take
the inclusion �s WD �nn¹sºWZ

n�1 ! Zn (cf. Section 2), and fix a Z-basis v1; : : : ; vc 2
Zn�1 of ker q.s/, where c D crk.q.s//. Observe that �s.ker q.s// is a pure subgroup of
ker q, hence the basis w1 D �s.v1/; : : : ; wc D �s.vc/ of �s.ker q.s// may be completed to
a basis w1; : : : ; wc ; wcC1; : : : ; wc

0

2 Zn of ker q, where c0 D crk.q/, see Lemma 2.3 (c),
cf. [4, Proposition 4.1]. Assume that c0 > c C 1. Then the coefficients ˛ WD wc

0�1
s and

ˇ WD wc
0

s are non-zero and .ˇwc
0�1 � ˛wc

0

/s D 0 hence ˇwc
0�1 � ˛wc

0

2 �s.ker q.s//
by Lemma 2.5 (a4). Thus ˇwc

0�1 � ˛wc
0

D
Pc
iD1 ˛iw

i for some ˛i 2 Z. This gives a
contradiction with the linear independence of w1; : : : ; wc

0

. Therefore c0 � c � 1.
(b) Fix h 2 ker q such that hs D 1 and consider the group homomorphism ıs WZn !

Zn given by ıs.x/ D xsh. Since hs D 1 then ıs induces the epimorphism ı0s W ker q �
Zh � kerq yielding the group direct sum decomposition kerq D Zh˚ ker ı0s . Now again
using that hs D 1 we verify that the inclusion �s WZn�1 ! Zn induces the isomorphism
ker q.s/ Š ker ı0s . Thus crk.q.s// D rk.ker ı0s/ D crk.q/ � 1.

Let H be a subgroup in Zn of rank c. Following [16, 46, 47] we say that a Z-basis
h1; : : : ; hc 2 Zn of H is a special basis if there exists a set of indices S WD ¹s1 < s2 <
� � � < scº � n such that hisi D 1 and hisj D 0 for all i D 1; : : : ; c and j ¤ i . We also say
that such basis is an S -special basis of H . Observe that in this case the subgroup H is
pure and

Zn D
�M
j2J

Zej
�
˚H (3.2)

for J WD n n S , cf. Lemma 2.3 (c). It should be emphasized that not every pure subgroup
of Zn admits a special basis, see Example 3.7 (e). Given an integral form qWZn ! Z and
a subset S � n, we use the following notation for the restriction of q to n n S

q.S/ WD qnnS D q ı �nnS WZ
n�jS j

! Z: (3.3)

Note that the bigraph �q0 of q0 D q.S/ is the bigraph �.S/ obtained from � D �q by
removing all vertices from S � n D �0 (and all the edges incident with them).
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The following fact generalizes [16, Theorem 3.2 (b), (c)] and the claims in [46, pp. 28–
29].

Proposition 3.4. Let qWZn ! Z be a non-negative integral quadratic form of corank
c D crk.q/ � 1. Assume that the subgroup ker q admits an S -special basis for S � n.
Then the following holds.

(a) crk.q. yS// D c � j yS j and ker q. yS/ admits an .S n yS/-special basis (up to suitable
renumbering of S n yS ), for every subset yS � S ,

(b) q.S/ is positive,

(c) q�q0 implies q.S/�q0.S
0/ for each non-negative integral quadratic form q0WZn!

Z whose kernel ker q0 admits an S 0-special basis,

(d) if q and q0 are principal forms then q � q0 implies q.s/ � q0.s
0/ for all omissible

vertices s and s0 of q and q0, respectively.

Proof. (a) Let S D ¹s1 < � � � < scº � n and fix an S -special basis h1; : : : ; hc � Zn of
ker q. Observe that all the elements of S are omissible vertices of q, by the definition of a
special basis. To show the first part we proceed by induction on t WD j yS j � 1 for yS � S .
If t D 1 then crk.q. yS// D c � 1 D c � j yS j by Lemma 3.1 (b). Assume that t � 2 and fix
sk 2 yS . Then by the inductive assumption we have crk.q.S1// D c � jS1j D c � t C 1

where S1 WD yS n ¹skº. Using Lemma 2.5 (a3) we check that Ohk WD �nnS1.hk/ belongs
to ker q.S1/. Since Ohksk D 1 it follows that sk is omissible in q.S1/. So again applying
Lemma 3.1 (b) we get crk.q. yS// D crk..q.S1//.sk// D c � t .

To show the second part we verify directly by applying Lemma 2.5 (a) that the set®
�
nn yS

.hi / W si 2 S n yS
¯
� ker q. yS/

is linearly independent, it generates ker q. yS/, and it satisfies the definition of an .S n yS/-
special basis. (Actually, this can also serve as an alternative argument for the first part of
(a)). Assertion (b) follows obviously from (a) applied for yS WD S .

(c) Fix T 2Gln.Z/ such that q �T q0, that is, q0 D q ı T . Note that T .H 0/DH where
H WD ker q and H 0 WD ker q0. Consider the mapping F D F Sq WZ

r ! Zn=H defined as
F.u/ WD �.S/.u/CH , where r WD n � c and �.S/ WD �nnS WZr ! Zn is the inclusion as
in Section 2. Since ker q admits an S -special basis then using the decomposition (3.2)
we show that the mapping F is a group isomorphism (indeed, note that F induces a
bijection on Z-bases ¹e.r/t º1�t�r and ¹e.n/j CH ºj2nnS of Zr and Zn=H , respectively).
Moreover, using Lemma 2.3 (a), (b) we check that the mapping NqWZn=H ! Z given by
Nq.v CH/ WD q.v/ is well defined. Additionally, observe that

Nq ı F.u/ D Nq
�
�.S/.u/CH

�
D q

�
�.S/.u/

�
D q.S/.u/ (3.5)

for u 2 Zr . Analogously we define the group isomorphism F 0 D F S
0

q0 WZ
r ! Zn=H 0 and

the mapping Nq0WZn=H 0 ! Z.
Let xT WZn=H 0!Zn=H be the quotient mapping defined by xT .vCH 0/ WD T .v/CH .

Taking into account that T .H 0/ D H we check that xT is a well-defined group isomor-



A. Mróz and K. Zając 254

phism. Now consider the composition X WD F �1 ı xT ı F 0WZr ! Zr of the constructed
isomorphisms. Using (3.5) for q and q0 we check that:

q.S/ ıX D
�
q.S/ ı .F Sq /

�1
�
ı xT ı F S

0

q0 D . Nq ı
xT / ı F S

0

q0 D Nq
0
ı F S

0

q0 D q
0.S 0/;

thus X defines the equivalence q.S/ �X q0.S
0/.

(d) Note that if s is an omissible vertex of a principal form q, then there is a generator
h of ker q with hs D 1 and ¹hº forms an ¹sº-special basis. Hence (d) follows from (c).

Remark 3.6. Given a non-negative integral quadratic form qWZn ! Z of corank c � 1,
the induced mapping NqWZn= ker q ! Z as in the proof of Proposition 3.4 (c) is always
well defined and by construction Nq. Nv/ > 0 for each Nv ¤ 0. If ker q admits an S -special
basis then Nq ı F D q.S/ as in (3.5). One can say that a special basis yields a “constructive
realization” of the mapping Nq.

Example 3.7. Consider the following examples of omissible vertices of integral forms
and induced restrictions.

(a) Take the unit form qWZ3 ! Z given by

q.x1; x2; x3/ D x
2
1 C x

2
2 C x

2
3 � 2x1x2 � x1x3 C x2x3

with the associated bigraph � D �q :

1

3

2

Then q is principal with kerq DZŒ1; 1; 0�tr, hence the vertices 1 and 2 are omissi-
ble but 3 is not. We check that�.1/ � A2 and�.2/ D A2 are positive and�.3/ D
zA1 is principal (cf. Tables 1 and 2). In other words, crk.q/ D crk.q.3// D 1 and
crk.q.1//Dcrk.q.2//D0. Note that��zA2 and Euc.q/DzA2, see Definition 5.10.

(b) Take the Euclidean bigraph � D zF41 from Table 2. Then � has two omissible
vertices 1 and 5, cf. Lemma 5.1 (c). So by Proposition 3.4 (d) we get�.1/ ��.5/.
Observe that �.1/ D F4 and �.5/ D C4, cf. Lemma 5.3 (a) and Table 1.

(c) Take now the Euclidean bigraph�D zF42. Then� has only one omissible vertex
5. Observe that �.1/ D B4 and �.5/ D F4 but B4 6� F4 by Lemma 5.3 (c). This
shows the importance of the assumption of Proposition 3.4 (d) that both vertices
are omissible.

(d) [2, Proposition 2.5] shows that if q is a connected non-negative unit form then
�
.s/
q is connected for any omissible vertex s. It is no longer true for non-unit

forms. Take � D zBn for a fixed n � 2. Then every vertex of � is omissible but,
e.g., �.2/ is disconnected.

(e) Not every non-negative integral quadratic form has an omissible vertex. Take
q.x1; x2/ D 4x

2
1 C 9x

2
2 � 12x1x2 D .2x1 � 3x2/

2 � 0. The form q is principal
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with ker q D ZŒ3; 2�tr. Later we distinguish a class of integral forms in which
every non-negative form has an omissible vertex, see Theorem 6.2.

4. Reflections, Gabrielov transformations and Cox-regular forms
Fix n � 1, an integral quadratic form qWZn ! Z as in (1.1) and the associated polariza-
tion q.�;�/WZn � Zn ! 1

2
Z. Then q and q.�;�/ induce the mappings qWRn ! R and

q.�;�/WRn � Rn ! R which we denote by the same symbols. Given u 2 Rn such that
q.u/ ¤ 0, the linear isomorphism �u D �

q
u WRn ! Rn defined by

�qu .w/ D w �
2q.u;w/

q.u/
� u; (4.1)

for w 2Rn, is called the reflection at u 2 Zn with respect to q, see [18]. Note that �2u D id
and q ı �u D q. In particular, if �u 2Mn.Z/ (that is, the matrix of �u in the standard basis
has integral coefficients) then q ��u q.

Given s 2 n, if qs D q.es/ ¤ 0 then �s WD �es is called the simple reflection (at s).
If qs ¤ 0 for all s 2 n then by Wq we denote the subgroup of Gln.R/ generated by all
simple reflections. Wq is called the Weyl group of q, cf. [18, 41]. A composition of all
simple reflections �1�2 � � � �n�1�n 2 Wq (in this particular order, cf. [34, p. 221] and
[13, p. 8]) is called the Coxeter transformation associated with q.

Lemma 4.2 ([34, Proposition 4.5]). For an integral quadratic form qW Zn ! Z with
qs ¤ 0 for all s 2 n, the Coxeter transformation is given by the Coxeter matrix ˆq WD
� LG�1q

LG tr
q 2 Gln.Q/, where LGq 2Mn.Z/ is the unique upper-triangular matrix such that

Gq D
1
2
. LG tr

q C
LGq/.

A vector v 2Rn is called a Weyl root if vD �.ek/ for some � 2Wq and k 2 n. Denote
by R�q � Rn the set of all Weyl roots of q. Note that v 2 R�q iff v D �i1�i2 � � � �it .ek/ for
some t � 0 and i1; : : : ; it ; k 2 n.

Let qWZn!Z with n� 1, be an integral quadratic form given by q.x/D
Pn
iD1 qix

2
i CP

i<j qijxixj as in (1.1). Recall that q is called a Coxeter-regular form (shortly, Cox-
regular form) if qi > 0 for each i 2 n, and qij

qi
;
qij
qj
2 Z, for all i ¤ j , cf. [23, 24, 41].

Remark 4.3. The following properties follow easily from definitions.

(a) If an integral quadratic form qWZn ! Z is Cox-regular then so is its multiple
˛q, for each integer ˛ � 1. A Cox-regular form q is irreducible if and only if
gcd.q1; : : : ; qn/ D 1. Each Cox-regular form q is an integer multiple of a unique
irreducible Cox-regular Lq.

(b) Each unit form is irreducible and Cox-regular.
(c) Each restriction qJ of a Cox-regular form q is also Cox-regular. However, for an

irreducible q, its restriction qJ is not necessarily irreducible.

We note that Roiter in [41] calls Cox-regular forms simply “integral quadratic forms”,
see also [53]. For this reason sometimes Cox-regular forms are called Roiter’s integral
quadratic forms, cf. [34].
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The following characterization of Cox-regular forms is one of our main motivations
for their study.

Proposition 4.4. Let qWZn! Z be an integral quadratic form with qi > 0 for each i 2 n.
Then the following conditions are equivalent.

(a) The form q is Cox-regular.

(b) The Weyl group Wq of q is a subgroup of Gln.Z/.

(c) The set of Weyl roots R�q is contained in Zn.

(d) The Coxeter matrix ˆq of q has integer coefficients, i.e., ˆq 2 Gln.Z/.

Proof. Observe that �i .ej /Dej �
qij
qi

ei for any i¤j . Thus the equivalences (a),(b),(c)
hold easily by the definitions, cf. [34, Remark 4.4]. The implication (b))(d) follows from
Lemma 4.2. Whereas (d))(a) is shown in [23, Theorem 3.8], cf. [34, Corollary 4.7].

We refer to [34] for a more detailed study of Weyl roots of Cox-regular forms.
Fix a Cox-regular form qWZn ! Z and i; j 2 n, i ¤ j . Let Tij D T

q
ij WZ

n ! Zn be
the linear transformation defined as follows:

Tij .ek/ D

´
ek ; if k ¤ j;
�i .ej / D ej �

qij
qi

ei ; if k D j:
(4.5)

T
q
ij is called the Gabrielov transformation (of q) at .i; j /, cf. [40, 53]. If qij > 0 (resp.
qij < 0) then T qij is called an inflation (resp. deflation), cf. [2, 22, 44].

The following properties of Gabrielov transformations are known and easy to check
from the definition, cf. [53, p. 3631], [34, Lemma 4.9] and [28, (2.2)].

Lemma 4.6. Let qWZn ! Z be a Cox-regular form, and let T D T
q
ij be a Gabrielov

transformation of q for fixed i ¤ j . The composite mapping q0 WD q ı T qij WZ
n ! Z has

the following properties:

(a) q0 is a Cox-regular form,

(b) q0 is connected (resp. irreducible) if and only if so is q,

(c) .T
q
ij /
�1 D T

q0

ij is a Gabrielov transformation of q0; moreover, T qij is an inflation

(resp. deflation) iff T q
0

ij is a deflation (resp. inflation),

(d) q0ij D �qij and q0s D qs for each s 2 n; moreover,

q0k` D

´
qk`; if k ¤ ` and k ¤ j ¤ `;
qkj �

qkiqij
qi

; if i ¤ k ¤ ` D j:
(4.7)

Given n � 1 and s 2 n, we consider the sign inversion at s, i.e., the automorphism
Ts 2 Gln.Z/ defined by Ts.es/ D �es and Ts.ei / D ei for i ¤ s. If qW Zn ! Z is a
(irreducible, connected) Cox-regular form then clearly so is q0 WD q ı Ts .

As in [5, 37, 53] we consider the following equivalence relation on the set of Cox-
regular forms, induced by Gabrielov transformations, sign inversions and trivial equiva-
lences.
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Definition 4.8. Given n � 1, we say that two Cox-regular forms q; q0W Zn ! Z are
Gabrielov equivalent or shortly, G-equivalent, if there exist t � 1 and a sequence of Cox-
regular forms

q D q0; q1; : : : ; qt D q0

and Z-automorphisms T 1; : : : ; T t 2 Gln.Z/ such that qs D qs�1 ı T s and the auto-
morphism T s is either a Gabrielov transformation T s D T q

s�1

isjs
of qs�1, a sign-inversion

T s D Tis , or a permutation matrix T s D P , for each s D 1; : : : ; t . In particular, q0 D q ı T
(i.e., q �T q0) for T WD T 1 � � � � � T t . We write q �G q0 or q �TG q

0.

Remark 4.9. G-equivalence �G has its origins and relevant interpretation in Lie theory
and singularity theory. For instance, we recall from [5,37,50] that for unit forms as well as
positive Cox-regular forms G-equivalence corresponds to isomorphism of the associated
Lie algebras (by means of Serre-type relations induced by quasi-Cartan and intersection
matrices related with quadratic forms). Moreover, G-equivalences preserve Weyl roots of
(not necessarily non-negative) Cox-regular forms, see [34, Proposition 5.1]. We refer also
to [3, 14, 38, 48, 50] for related results from singularity theory and the theory of cluster
algebras.

Corollary 4.10. If two Cox-regular forms q;q0WZn!Z are G-equivalent then there exists
a permutation �Wn! n such that q0i D q�.i/ for each i 2 n. In particular, q is a unit form
if and only if so is q0.

Proof. Follows from Lemma 4.6 (d) and obvious properties of sign inversions and trivial
equivalences.

Remark 4.11. It is known that in the class of connected, non-negative unit forms the
relations � and �G coincide, see [5, Proposition 1.2], cf. [2]. This is no longer true for
non-unitary Cox-regular forms, see Lemmata 5.3 and 5.8.

We finish this section with the following useful fact.

Proposition 4.12 ([26, Theorem 5.3 (b)]). Let qWZn ! Z be a non-negative irreducible
Cox-regular form. Then there exists at least one diagonal coefficient qi of q with qi D 1.

We refer to [26] for a more extensive discussion on the coefficients of non-negative
irreducible Cox-regular forms and related quasi-Cartan matrices.

5. Positive and principal Cox-regular forms

In this section we focus on the properties of non-negative Cox-regular forms of corank 0
and 1. It is known that they are classified by means of Dynkin and Euclidean bigraphs,
respectively, presented in Tables 1 and 2, see Theorem 5.9 and Corollary 5.11. These
bigraphs correspond to the well-known Dynkin and Euclidean diagrams, see [8,13,18,21,
31], see also [34, Remark 2.6 (c)] and [25] for details of this correspondence.
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An W
n � 1 �1 �2 �3 � Jn �n

Bn W

n � 2 �1 �2 �3 � Jn �n

Dn W
n � 4

�1

�2

�3 �4 � Jn �n

Cn W
n � 2 �1 �2 �3 � Jn �n

E6 W
�1 �2 �3

�4

�5 �6

F4 W
�1 �2 �3 �4

E7 W
�1 �2 �3

�4

�5 �6 �7

G2 W �1 �2

E8 W
�1 �2 �3

�4

�5 �6 �7 �8

Table 1. Dynkin bigraphs. The indices denote a chosen numbering of the vertices fixed in the paper.
We set Jn WD n � 1. Note that B2 Š C2.

zAn W
n � 1

11 12 1 Jn 1n

1 Kn

zE6 W

11 22 33

24

15

26 17

zDn W
n � 4

11

12

23 24 2 Jn 1n

1 Kn

zE7 W

11 22 33 44

25

36 27 18

zE8 W

21 42 63

34

55 46 37 28 19

zBn W
n � 2 11 12 13 1n 1 Kn

zA11 W 11 22

zCn W
n � 2 11 22 23 2n 1 Kn

zF41 W
11 22 33 24 15

eBCn W
n � 2

11 22 23 2n 2 Kn
zF42 W

21 42 33 24 15

eBDn W
n � 3

11

12

23 24 2n 2 Kn

zG21 W 11 22 13

eCDn W
n � 3

11

12

23 24 2n 1 Kn

zG22 W 11 22 33

Table 2. Euclidean bigraphs. Vertices contain the coordinates of the positive generator of ker qD
for a given Euclidean bigraph D (see Lemma 5.1 (c)). The indices denote the chosen numbering of
the vertices fixed in the paper. We set Jn WD n � 1 and Kn WD nC 1.
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By a direct check, one obtains the following fact, see [23], [29, Lemma 2.1], cf. [13,
21]. Recall that an integral quadratic form q is called classic if qij � 0 for all i ¤ j ,
cf. [41, 53].

Lemma 5.1. Let q D qD WZm! Z be the integral quadratic form associated to a Dynkin
or Euclidean bigraph D from Tables 1 and 2. Then the following holds.

(a) The quadratic form qD is an irreducible, connected, classic Cox-regular form.

(b) If D is a Dynkin bigraph then qD is positive.

(c) If D is a Euclidean bigraph then qD is principal and the kernel ker qD D Zh is
generated by the vector h D hD 2 Zm whose coefficients are depicted in Table 2
in the corresponding vertices.

Recall that the quadratic forms associated to Dynkin and Euclidean bigraphs are actu-
ally the only non-negative classic Cox-regular forms, i.e., the following holds (see [13,
Proposition 1.2], cf. [29, Proposition 2.8]).

Proposition 5.2. Let qWZn!Z be a connected, irreducible and non-negative Cox-regular
form. Assume that q is classic. Then

(a) q is positive if and only if q is (up to trivial equivalence) the quadratic form
associated with one of the Dynkin bigraphs,

(b) if q is not positive then q is principal,

(c) q is principal if and only if q is (up to trivial equivalence) the quadratic form
associated with one of the Euclidean bigraphs.

Note that assertion (b) of the proposition is not true for non-classic Cox-regular forms.
In particular, there exist non-negative Cox-regular forms of arbitrary corank, see [25, 26].

The following equivalences between Dynkin bigraphs were observed in [24].

Lemma 5.3. The following relations between quadratic forms associated to Dynkin bi-
graphs hold:

(a) G2 � A2, C3 � A3 and C4 � F4,

(b) Cn � Dn for all n � 4 (in particular, C4 � F4 � D4),

(c) there are no non-trivial equivalences between Dynkin bigraphs other than these
from (a)–(b).

Proof. We refer to [24, Proposition 2.4] for the explicit shapes of all the equivalences
from (a) and (b). Alternatively, one can prove the existence of the desired equivalences
by applying Proposition 3.4 (d) to Euclidean bigraphs zG21, zF41 and eCDn for n � 3, as in
Example 3.7 (b).

To show (c) note that if q �B q0 for B 2 Gln.Z/ then det.Gq0/ D det.B trGqB/ D

det.Gq/. Now (c) follows from the inspection of the known determinants of the Gram
matrices of Dynkin bigraphs, see [34, (3.6)], cf. [18, p. 63].
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It is useful to have the following analogous fact for the Euclidean bigraphs.

Lemma 5.4. The following relations between quadratic forms associated to Euclidean
bigraphs hold:

(a) zA1 � zA11, zA2 � zG21 � zG22 and zB2 �
zC2 �eBC2,

(b) zA3 � zC3 � eCD3 and zC4 � zF41 � zF42,

(c) zBn �
eBCn � eBDn for all n � 3,

(d) zCn � zDn � eCDn for all n � 4 (in particular, zC4 � zF41 � zF42 � zD4 � eCD4),

(e) there are no non-trivial equivalences between Euclidean bigraphs other than
these from (a)–(d).

Proof. In the proof we take Euclidean bigraphs with the vertices ordered as in Table 2.
(a)+(b) Consider the following Z-invertible matrices:

A D

�
1 0

1 1

�
; B D

241 0 0

1 0 1

0 1 0

35 ; C D

241 0 0

1 0 1

0 1 1

35 ;

D D

26664
1 O1 0 0

0 0 O1 1

1 0 O1 0

0 0 0 O1

37775 ; E D

2666664
0 0 0 0 1

1 0 0 0 0

0 1 0 0 O1

0 0 1 0 O1

0 0 0 1 O1

3777775 ;
(5.5)

where O1 WD �1. We check directly that AtrGqA D Gq0 for q D q zA11
and q0 D qzA1

that is,

A defines the equivalence zA11 �
A zA1. Similarly, we check that zG21 �B zA2, zG22 �C zG21,

zC2 �
B zB2 �

X2 eBC2, zA3 �D zC3 �T3 eCD3 and zF41 �E zF42, where X2 2 Gl3.Z/ and
T3 2 Gl4.Z/ are the matrices given in (5.6) below. For zC4 � zF41 see [34, Example 3.4].

(c)+(d) Consider the following four families of Z-invertible matrices:

Xl D

26666666664

O1 0 0 � � � 0 0

O1 0 0
: : : 1 O1

::: 0 0
: : : 0 O1

O1 0 1 � � � 0 O1
O1 1 0 � � � 0 O1

1 0 0 � � � 0 O1

37777777775
; Yl D

26666666664

O1 0 0 � � � 0 0

O1 0 0
: : : 1 O1

::: 0 0
: : : 0 O1

O1 0 1 � � � 0 O1

0 1 0 � � � 0 O1

1 0 0 � � � 0 O1

37777777775
;

Zl D IlC1 C E2;1
lC1
C El;lC1

lC1
; Tl D IlC1 C E2;1

lC1

(5.6)

of size l C 1 � 3, where It ;E
i;j
t 2Mt .Z/ denote the identity matrix and the matrix with

1 at .i; j /-th entry and zeros elsewhere, respectively. We verify that eBDn �
Y �1n zBn �

Xn

eBCn for all n � 3, and eCDn �
T�1n zCn �

Zn zDn for all n � 4.
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(e) For each Euclidean bigraph D we chose one omissible vertex s D sD 2 D0. We
take szE8 D 9, s zF42 D 5, s zG21 D 3 and sD D 1 for the remaining bigraphs D, see Table 2.
Then we check that D.s/ are as follows:

D zAn zDn zE6 zE7 zE8 zA11
zBn
zCn eBCn eBDn

eCDn
zF41 zF42 zG21 zG22

D.s/ An Dn E6 E7 E8 A1 Bn Cn Bn Bn Cn F4 F4 G2 G2
(5.7)

By inspection of table (5.7) and Lemma 5.3 we observe that every pair of (non-isomorphic)
Euclidean bigraphsD;D0 satisfyingD.sD/�D0.sD0 / is one of the congruent pairs described
in (a)–(d). Therefore, by applying Proposition 3.4 (d) we get claim (e).

It appears that the G-equivalence �G (in contrast to �) separates distinct Dynkin
(resp. Euclidean) bigraphs. The explicit proof of the following fact is given in [34, Corol-
lary 4.17].

Lemma 5.8. Given two Dynkin or Euclidean bigraphs D and D0, the G-equivalence
qD �G qD0 holds if and only if D D D0 (up to isomorphism).

We recall the following known�G-classification of positive and principal Cox-regular
forms.

Theorem 5.9. Let qWZn ! Z be a connected, irreducible and non-negative Cox-regular
form.

(a) q is positive if and only if q �G qD for a Dynkin bigraph D.

(b) q is principal if and only if q �G qD for a Euclidean bigraph D.

Proof. Assertion (a) can be derived from the results of Ovsienko [35]. Explicit proof can
be found in [36, Theorem 2.1] or in [29, Theorem 1.12 (c)]. Assertion (b) follows from [28,
Theorem 1.4] or [25, Theorem 5.4]. It can also be deduced from [53]. Note that all these
proofs provide a concrete sequence of Gabrielov transformations (in fact, it is enough to
apply inflations only) and sign inversions that induce the desired G-equivalences. We refer
also to [25,27] where new and more efficient algorithms for these tasks are presented.

Lemma 5.8 guarantees that the Dynkin (resp. Euclidean) bigraph D in (a) (resp. (b))
in the above theorem is unique for q (up to bigraph isomorphism). Hence the following
notions are well defined, cf. [28, 29, 34].

Definition 5.10. Let qWZn!Z be a connected, irreducible and non-negative Cox-regular
form.

(a) If q is positive, then the unique Dynkin bigraph D from Table 1 such that q �G
qD is called the Dynkin type of q and it is denoted by D D Dyn.q/.

(b) If q is principal, then the unique Euclidean bigraph D from Table 2 such that
q �G qD is called the Euclidean type of q and it is denoted by D D Euc.q/.
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Corollary 5.11. Let q; q0WZn ! Z be two connected, irreducible and non-negative Cox-
regular forms. Then

(a) q �G q
0 if and only if Dyn.q/ D Dyn.q0/, in case q and q0 are positive,

(b) q �G q
0 if and only if Euc.q/ D Euc.q0/, in case q and q0 are principal.

6. Existence of a special basis

Existence of an omissible vertex as well as a special basis of the kernel of a non-negative
integral quadratic form is a non-obvious problem, cf. Example 3.7 (e). Even more, for our
purposes we need to have a special basis with the following additional properties (we use
notation of Section 2 and (3.3)).

Definition 6.1. Let qWZn! Z be a non-negative connected irreducible integral quadratic
form.

(a) An omissible vertex s 2 n of q is called strictly omissible if q.s/ is irreducible and
connected.

(b) An S -special basis of ker q is called strictly special if q.S/ is irreducible and
connected.

Recall that not every omissible vertex of a non-negative Cox-regular form is strictly
omissible, see Example 3.7 (d). But there always exists at least one such a vertex, as the
following theorem shows. This is a crucial ingredient for our main results in the next
sections.

Theorem 6.2. Let qWZn ! Z be a non-negative connected irreducible Cox-regular form
of corank c D crk.q/ � 1. Then

(a) q has a strictly omissible vertex,

(b) ker q admits a strictly special basis.

Proof. Note that n � 2 since c � 1. We divide the proof of (a) into three steps.

Step 1o. Assume that c D 1 and q is classic. Then q Š qD for a Euclidean bigraph D by
Proposition 5.2 (c). Then as in the proof of Lemma 5.4 (e) we observe that each D has an
omissible vertex s D sD 2 D0 with D.s/ as in table (5.7). Moreover, since every D.s/ in
the bottom row of (5.7) is irreducible and connected it follows that in all cases the chosen
vertex s is strictly omissible. Actually, every omissible vertex s0 of a Euclidean bigraphD
is strictly omissible except the case D D zBn�1 and s0 2 ¹2; : : : ; n � 1º, see Table 2.

Step 2o. Assume that c D 1 and q is not classic. Consider two cases.

Case 2.1o. The vector h 2 kerq, such that kerqDZh, is sincere. Applying sign inversions
Ti1 ; : : : ; Tik for all i1; : : : ; ik such that hi1 < 0; : : : ; hik < 0 we obtain Œ1; : : : ; 1�tr � h0 WD
Ti1 ı � � � ı Tik .h/ 2 ker q0 with q0 WD q ı Ti1 ı � � � ı Tik � q. Note that ker q0 D Zh0. If q0
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is classic, then by Step 1o, q0 has a strictly omissible vertex s. Since the sign inversions
do not change the underlying multigraph of �q , we conclude that s is a strictly omissible
vertex of q.

In the case when q0 is not classic, there is a sequence of inflations Ta1b1 ; : : : ; Tambm ,
for some m � 1 and ai ; bi 2 n, ai ¤ bi for 1 � i � m, such that q00 WD q0 ı Ta1b1 ı � � � ı
Tambm is classic, i.e., q00 Š qD for a Euclidean bigraph D, see [25, Theorem 5.4 (a), (b)],
cf. Proposition 5.2 (c) and [28, Theorem 1.4 (a)]. Since Tasbs ’s are inflations, it follows
that

h00 WD T �1ambm ı � � � ı T
�1
a1b1

.h0/ > h0 � Œ1; : : : ; 1�tr;

cf. (4.5). Therefore, since ker q00 D Zh00, by inspection of Table 2 we see thatD is neither
isomorphic to zAn�1 nor to zBn�1. Moreover, there are vertices j1; : : : ; j`, for ` � 1 such
that h00j1 D � � � D h

00
j`
D 1 and by the arguments in Step 1o all of them are strictly omissible

for q00. Observe that h0j1 D h
00
j1
D 1; : : : ;h0j` D h

00
j`
D 1, and ¹a1; : : : ; amº \ ¹j1; : : : ; j`º D ;

since h00a1 > 1; : : : ; h
00
am
> 1. In particular, each of j1; : : : ; j` is an omissible vertex for q0.

We show that they are strictly omissible for q0. To the contrary, assume first that q0.js/ is
disconnected for some 1� s � `. Let�00 WD�q00 and�0 WD�q0 . Then�00.js/ is connected
and �0.js/ is a disjoint union �0.js/ D

:
� t

::
�, so there exist j 0 2

:
�0, j 00 2

::
�0 such

that q0j 0j 00 D 0 but q00j 0j 00 ¤ 0. By the analysis of the formula (4.7) we infer that the only
possibility of creating a new edge connecting j 0 and j 00 in �00 by applying the inflations
Ta1b1 ; : : : ; Tambm to �0 is when js 2 ¹a1; : : : ; amº. Hence, we get the contradiction. This
shows that �0.js/ is connected, and similarly so are �0.jt / for the remaining 1 � t � `.
Since the inflations do not affect q0i ; i 2 n, and q00.j1/; : : : ; q00.j`/ are irreducible, so are
q0.j1/; : : : ; q0.j`/ (see Lemma 4.6 (d) and Remark 4.3 (a)). Therefore, any s 2 ¹j1; : : : ; j`º
is a strictly omissible vertex for q0, and obviously, for q.

Case 2.2o. The vector 0¤ h2 kerq generating kerq is not sincere. Let qJ D q ı �J WZp!
Z be the restriction of q to the set J WD ¹i 2 n W hi ¤ 0º with p WD jJ j � 1. Then the
non-zero vector hJ WD �J .h/ 2 ker qJ is sincere and qJ is principal with ker qJ D ZhJ ,
see Lemma 2.5 (a3). Observe that qJ is connected. Indeed, otherwise, qJ ı P D q0 ˚ q00

for some permutation matrix P and integral forms q0 and q00. Thus .q0 ˚ q00/.P�1hJ / D
0 for sincere P�1hJ , which implies that crk.q0/; crk.q00/ � 1 by the non-negativity of
q0 and q00. So by Lemma 2.5 (b) we get that 1 D crk.qJ / D crk.q0/ C crk.q00/ � 2, a
contradiction.

Since q is Cox-regular, then so is qJ . Hence, there exist an integer ˛ � 1 and a
connected principal irreducible Cox-regular form Lq such that qJ D ˛ Lq (if qJ is irre-
ducible then ˛ D 1 and Lq D qJ ), cf. Remark 4.3 (a). Moreover, hJ 2 ker Lq is sincere
and ker Lq D ZhJ , so by Case 2.1o and Step 1o, Lq has a strictly omissible vertex s. In par-
ticular, Lq.s/ and .qJ /.s/ are connected. Now we show that s is a strictly omissible vertex of
q (here for simplicity we identify the vertices ¹1; : : : ; pº of qJ with the set J � n via the
inclusion �J WZp ! Zn). To show that q.s/ is connected, assume to the contrary that there
exist

:
�;

::
� such that�.s/q D

:
�t

::
� and�.s/

qJ
�
:
�. Since q and qJ are connected there exist

k 2 J n ¹sº �
:
�0 and k0 2

::
�0 such that qks ¤ 0 and qk0s ¤ 0. Then by Lemma 2.3 (b)
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and Lemma 2.5 we get

q.ek C ek0 C es/ D q.ek C ek0 C es � hs � h/ D qJ .ek C es � hs � hJ /C q
::
�0.ek0/

D qJ .ek C es/C qk0 D qk C qs C qks C qk0 : (6.3)

On the other hand, q.ek C ek0 C es/ D qk C qk0 C qs C qks C qk0s , which implies that
qk0s D 0, a contradiction. To show that q.s/ is irreducible, we recall that qJ D ˛ Lq, where
˛ � 1 and Lq is an irreducible connected Cox-regular form. If qJ is irreducible, then ˛ D 1
and .qJ /.s/D Lq.s/ is irreducible and so is q.s/. In the case when ˛� 2, by Proposition 4.12,
there is at least one i 2 n n J such that qi D 1, that is, q.s/ is irreducible (since s 2 J ,
cf. Remark 4.3 (a)). Therefore, s is a strictly omissible vertex of q.

Step 3o. Assume that c � 2. First observe that given arbitrary connected (bi)graph�, there
exist at least two distinct vertices s; t 2 �0 such that both �.s/ and �.t/ are connected.
Indeed, take for instance two distinct leaves of a spanning tree of�. Using this observation
we can find an order ¹t1; t2; : : : ; tnº D n of the vertices�0 D n of the bigraph�D �q of
q such that all the subbigraphs�.t1/ ��.t1;t2/ ��.t1;t2;t3/ � � � � ��.t1;t2;:::;tn�1/ obtained
from� by removing consecutive vertices t1; t2; : : : ; tn�1 are connected, and tn 2�0 is the
vertex such that qtn D q.etn/D 1, see Proposition 4.12. Then by Lemma 3.1 (a) there exists
1 � ` � n � 2 such that �0 WD �.t1;t2;:::;t`/ has corank 1, cf. Lemma 2.5 (a1). Moreover,
q0 WD q.t1;t2;:::;t`/ is irreducible since�0 contains the loop-free vertex tn, cf. Remark 4.3 (a).
Thus q0 has a strictly omissible vertex s 2 �00 by Steps 1o and 2o. Fix h0 2 ker q0 with
h0s D 1. Then h WD �J .h

0/ 2 ker q, for J D n n ¹t1; t2; : : : ; t`º by Lemma 2.5 (a2). In
particular, s (treated as an element of J via �J ) is omissible for q. We show that s is
strictly omissible in q.

First observe that since q0.s/ is irreducible then so is q.s/, cf. Remark 4.3 (a) (note
that j�00j � 2). We show that q.s/ is connected by applying analogous arguments as in
Case 2.2o. That is, assume to the contrary that q.s/ is disconnected, i.e., there exist

:
�;

::
�

such that�.s/q D
:
�t

::
� and�0.s/ �

:
�. Since� and�0 are connected there exist k 2�0.s/0

and k0 2
::
�0 such that qks ¤ 0 and qk0s ¤ 0. Since hs D 1, analogously to (6.3) we get

q.ek C ek0 C es/ D q.ek C ek0 C es � h/ D q0.ek C es � h0/C qk0

D q0.ek C es/C qk0 D qk C qs C qks C qk0 : (6.4)

But q.ek C ek0 C es/ D qk C qk0 C qs C qks C qk0s which implies that qk0s D 0, a con-
tradiction. This shows that q.s/ is connected so s is strictly omissible for q.

To prove (b) we proceed by induction on c D crk.q/ � 1. Assume first that c D 1.
By (a) q has a strictly omissible vertex s. In the principal case it means that there is a
generator h of ker q with hs D 1 and it is clear that ¹hº forms an ¹sº-special basis, thus
we get the claim.

Now assume that c � 2. By (a) q has a strictly omissible vertex s 2 n. Take h 2
ker q with hs D 1. It follows that Oq WD q.s/ is irreducible, connected and Oq has corank
c � 1 by Lemma 3.1 (b). So by the inductive assumption there exists a strictly special
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yS -basis Oh1; : : : ; Ohc�1 of ker Oq for a subset yS D ¹s1; : : : ; sc�1º � n n ¹sº (we identify
the set n n ¹sº with ¹1; : : : ; n � 1º). Then the vectors hi WD �s. Oh

i / belong to ker q for
each i D 1; : : : ; c � 1, where �s D �nn¹sºWZn�1 ! Zn is the corresponding inclusion, see
Lemma 2.5 (a2). Then clearly the set H WD ¹h1; : : : ;hc�1;hc WD hº is linearly independent.
To show that H generates ker q take y 2 ker q. Then Oy WD �s.y � ysh/ belongs to ker Oq
by Lemma 2.5 (a3), so Oy D ˛1 Oh1 C � � � C ˛c�1 Ohc�1 for some ˛i 2 Z. Thus applying the
identity �s�s.y � ysh/ D y � ysh we infer that y D ˛1h1 C � � � C ˛c�1hc�1 C ysh.

Hence we have constructed a basis H of ker q. We modify it to obtain a special basis.
Set H 0 WD .H n ¹hº/ [ ¹h0º where h0 WD h � hs1h

1 � hs2h
2 � � � � � hsc�1h

c�1. Note that
H 0 is also a basis of kerq. Moreover, by construction and the shapes of vectors hi D �s. Ohi /
it follows that h0s D 1 and h0si D 0 for i D 1; : : : ; c � 1. This shows that H 0 is an S -special
basis of ker q for S WD yS [ ¹sº. In fact, H is strictly special since q.S/ D .q.s//. yS/ is
irreducible and connected.

7. Weak Dynkin type

Having the results of previous sections we are ready to prove Theorem 2 formulated in
Introduction. Observe that given T 2 Gln.Z/, the equality

q ı T .x1; : : : ; xn/ D qDr .x1; : : : ; xr /

(see (1.4)) is equivalent with
q �T qDr ˚ �

c (7.1)

for the zero form �c WZc ! Z with c D n � r .

7.1. Proof of Theorem 2

Let qWZn ! Z be a non-negative connected irreducible Cox-regular form of rank r D
rk.q/ � 1 and corank c D crk.q/ � 0, that is, n D r C c. If c D 0 then q is positive and
both assertions (a) and (b) follow trivially by Theorem 5.9 (a). Assume then that c � 1.

By Theorem 6.2 (b), there exist a subset

S D ¹s1 < s2 < � � � < scº � n

and a strictly S -special basis h1; : : : ; hc of ker q. Let Oq WD q.S/WZr ! Z be the induced
positive irreducible connected restriction of q, cf. Proposition 3.4 (b). Take D D Dr WD
Dyn. Oq/ and fixB2Glr .Z/ such that Oq�BG qD , see Definition 5.10 (a) and Theorem 5.9 (a).
Next, let P D P � 2 Gln.Z/ be the matrix of the permutation �W n! n given by �.si /D
r C i for i D 1; : : : ; c, and �.ji /D i for i D 1; : : : ; r , where n n S D¹j1 < � � � < jrº.
Then clearly q0 WD q ı P tr is a non-negative connected irreducible Cox-regular form of
corank c. Moreover, it is easy to check that h01 WD Ph1; : : : ; h0c WD Phc is a strictly S 0-
special basis of ker q0, where S 0 D ¹r C 1; : : : ; n � 1; nº. Let Oq0 WD q0.S

0/WZr ! Z be
the induced irreducible connected restriction. Then Oq0 �B

0

Oq for some B 0 2 Glr .Z/ by
Proposition 3.4 (c).
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Consider the Z-invertible matrix H D Œe1j � � � jer jh01j � � � jh0c � 2 Gln.Z/, cf. (3.2). By
Lemma 2.3 (a) and (2.2) we have that q0.y; h0/ D q0.h0; y/ D h0trGq0y D 0 for h0 2 ker q0

and y 2 Zn. Hence, we check that

H trGq0H D

"
etr
i Gq0ej etr

i Gq0h
0k

h0k
tr
Gq0ej h0k

tr
Gq0h

0l

#
D

�
G Oq0 0

0 0

�
;

for 1 � i; j � r and 1 � k; l � c. This means that q0 ıH D Oq0 ˚ �c . Summarizing, we
obtain the following sequence of Z-equivalences

q �P
tr
q0 �H Oq0 ˚ �c �B

0˚Ic Oq ˚ �c �B˚Ic qD ˚ �
c ; (7.2)

thus T WDP trH.B 0B ˚ Ic/2Gln.Z/ is the desired Z-equivalence q�T qD ˚ �c , cf. (7.1).
To show the uniqueness (up to �) of D D Dr assume that there exists other Dynkin

bigraph D0 D D0r such that qD ˚ �c � qD0 ˚ �c . It is clear that the canonical vectors
erC1; : : : ; en�1; en form an S 00-special basis of ker qD ˚ �c as well as of ker qD0 ˚ �c , for
S 00 D ¹r C 1; : : : ; n � 1; nº. So again applying Proposition 3.4 (c) we get that

qD D .qD ˚ �
c/.S

00/
� .qD0 ˚ �

c/.S
00/
D qD0 :

To show the remaining assertion (b) note that the restriction Oq D q.S/ of q defined in the
proof of (a) satisfies the required properties. This finishes the proof of Theorem 2.

Theorem 2 (and its proof) justifies the introduction of the following notion.

Definition 7.3. Let qWZn!Z be a non-negative connected irreducible Cox-regular form.
Fix a strictly S -special basis of ker q for some S � n and let q.S/ be the induced positive
irreducible connected restriction of q (if q is positive we take q.S/ WD q). Then the �d -
equivalence class

wDyn.q/ WD
�
Dyn.q.S//

�
�d

(7.4)

is called the weak Dynkin type of q, where �d denotes the relation � restricted to con-
nected irreducible classic positive Cox-regular forms, equivalently, to Dynkin bigraphs
(cf. Proposition 5.2 (a)) and Dyn.q.S// is the Dynkin bigraph associated to q.S/ as in
Definition 5.10 (a).

Lemma 7.5. Let qWZn ! Z be a non-negative connected irreducible Cox-regular form
with r D rk.q/ � 1 and c D crk.q/ � 0.

(a) wDyn.q/ is well defined, in particular, it does not depend on the choice of a
strictly special basis of ker q.

(b) wDyn.q/D ŒDr ��d if and only if q � qDr ˚ �
c , for any Dynkin bigraphDr with

r vertices.

Proof. Fix a subset S � n such that there exists a strictly S -special basis of ker q, see
Theorem 6.2 (b). Then q.S/ is a positive (connected, irreducible) Cox-regular form by
Proposition 3.4 (b). Therefore the associated Dynkin bigraph Dyn.q.S// is defined and
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unique, see Theorem 5.9 (a) and Lemma 5.8. Now, if there exists a strictly S 0-basis of
kerq for another subset S 0 � n, then q.S/ � q.S

0/ by Proposition 3.4 (c), thus Dyn.q.S//�
q.S/ � q.S

0/ � Dyn.q.S 0//. This means that Dyn.q.S// �d Dyn.q.S 0// so (a) holds.
To show (b) recall that wDyn.q/ D ŒD0r ��d , where D0r D Dyn.q.S//, see (7.4). On

the other hand, q � q.S/ ˚ �c by the arguments in the proof of Theorem 2, see (7.2). In
particular, q � qD0r ˚ �

c . So the claim holds by the uniqueness (up to �) of a Dynkin
bigraph in Theorem 2 (a).

Corollary 7.6. Let q; q0WZn! Z be two non-negative connected irreducible Cox-regular
forms. Then q � q0 if and only if wDyn.q/ D wDyn.q0/.

Proof. Set r WD rk.q/, r 0 WD rk.q0/, c WD crk.q/ and c0 WD crk.q0/. Then r C c D n D
r 0 C c0 and by Theorem 2 we get the equivalences q � qDr ˚ �

c and q0 � qD0
r 0
˚ �c

0

for
Dynkin bigraphs Dr and D0r 0 . Hence wDyn.q/ D ŒDr ��d and wDyn.q0/ D ŒD0r 0 ��d by
Lemma 7.5 (b).

If q � q0 then r D r 0 and c D c0, so by the uniqueness (up to�) of a Dynkin bigraph in
Theorem 2 (a) we get that qDr � qD0r . This means that wDyn.q/DwDyn.q0/. Conversely,
if ŒDr ��d D ŒD

0
r 0 ��d then r D r 0 so also c D c0. Therefore,

q � qDr ˚ �
c
� qD0r ˚ �

c
� q0:

Remark 7.7. By Lemma 5.3 it follows that given a non-negative connected irreducible
Cox-regular form q, its weak Dynkin type wDyn.q/ is one of the following (up to trivial
equivalences):

ŒAn��d D ¹Anº; for n D 1 or n � 4I

ŒA2��d D ¹A2;G2ºI ŒA3��d D ¹A3;C3ºI

ŒD4��d D ¹D4;C4;F4ºI

ŒDn��d D ¹Dn;Cnº; for n � 5I

ŒE6��d D ¹E6ºI ŒE7�� D ¹E7ºI ŒE8��d D ¹E8ºI

ŒBn��d D ¹Bnº; for n � 2:

Thus, speaking a bit informally, there is only one family more (namely, ŒBn��d ) of pos-
sible weak Dynkin types of Cox-regular forms in comparison with the (classical) Dynkin
types An;Dn;E6;E7;E8 of unit forms, cf. [2,46]. On the other hand, we see that wDyn.q/
identifies some of the distinct (more precisely, not G-equivalent, cf. Lemma 5.8) Dynkin
types in the positive case. This is the reason we call it “weak” Dynkin type. It is an interest-
ing more specialized open problem to classify of all non-negative (connected, irreducible)
Cox-regular forms with respect to the G-equivalence. Our results in this section may be
viewed as a useful step towards such classification.

The following fact provides a more general version of claim (b) of Theorem 2, com-
pare also with the analogous [2, Corollary 2.5] for unit forms.
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Proposition 7.8. Let qWZn ! Z be a non-negative connected irreducible Cox-regular
form of rank r D rk.q/ � 1 and corank c D crk.q/ � 1. Then for every 0 � Oc � c
there exists a connected irreducible restriction Oq of q with crk. Oq/ D Oc and wDyn. Oq/ D
wDyn.q/.

Proof. Let S � n be a subset such that there exists a strictly S -special basis of ker q,
cf. Theorem 6.2 (b). Since q and q.S/ are connected, we can choose a subset yS � S of size
j yS j D c � Oc such that Oq WD q. yS/ is also connected. Note that Oq is irreducible since so is q.S/,
cf. Remark 4.3. Moreover, by Proposition 3.4 (a) we have crk. Oq/ D Oc and ker Oq admits
an .S n yS/-special basis. This basis is strictly special since Oq.Sn yS/ D q.S/ is connected
and irreducible. Thus by definition wDyn. Oq/ D ŒDyn. Oq.Sn yS//��d D ŒDyn.q.S//��d D
wDyn.q/.

To complete the picture we note that the weak Dynkin types of principal Cox-regular
forms are related with their Euclidean types as follows.

Lemma 7.9. Let qWZn ! Z be a principal connected irreducible Cox-regular form and
D D Euc.q/ its Euclidean type. Then wDyn.q/ D ŒD.s/��d for the Dynkin (sub)bigraph
D.s/ of D as indicated in table (5.7).

Proof. Recall that q � qD by Theorem 5.9 (b), see Definition 5.10 (b). In particular,

wDyn.q/ D wDyn.qD/

by Corollary 7.6. Now observe that since every bigraph D.s/ in the bottom row of (5.7) is
irreducible and connected it follows that in all cases the chosen omissible vertices sD sD 2
D0 in the proof of Lemma 5.4 (e) are strictly omissible. It means that D.s/ 2 wDyn.qD/
by Definition 7.3, since in the principal case a generator h of ker q with hs D 1 forms an
¹sº-special basis.

Finally, observe that given a non-negative connected irreducible Cox-regular form
qWZn ! Z with c D crk.q/ � 1, its canonical form qD ˚ �

c in Theorem 2 (a) is neither
Cox-regular nor connected, since it fails to satisfy qi > 0 for all i 2 n, cf. Lemma 2.7 and
Section 4. However, one may consider a slightly more general class of integral quadratic
forms q such that qi � 0 for all i 2 n, and qij =qi 2 Z (resp. qij =qj 2 Z) for all i < j with
qi ¤ 0 (resp. qj ¤ 0). We call such forms semi-Cox-regular (as an analog of semi-unit
forms in [2]). Obviously, qD ˚ �c as above is semi-Cox-regular. Observe that if a non-
negative semi-Cox-regular form q is connected, then q is Cox-regular, cf. Lemma 2.7.
Moreover, we can extend Theorem 2 (a) to semi-Cox-regular forms as follows.

Corollary 7.10. Let qWZn!Z be a non-negative semi-Cox-regular form (not necessarily
connected or irreducible) of corank cD crk.q/� 0. Then there exist k � 0 and collections
of integers ˛1; : : : ; ˛k � 1 and Dynkin bigraphsD1

r1
; : : : ;Dk

rk
of sizes r1; : : : ; rk � 1 such

that
q � ˛1qD1

r1
˚ � � � ˚ ˛1qDk

rk

˚ �c : (7.11)
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Proof. If r WD rk.q/D 0 then q is a zero form hence q D �n and the claim holds trivially.
Assume that r � 1. Then by Lemma 2.7, the form q is trivially equivalent to q0 ˚ � t for
some 0 � t < n and a non-negative Cox-regular form q0WZn�t ! Z. Moreover, there
exist irreducible connected Cox-regular forms q1; : : : ; qk and integers ˛1; : : : ; ˛k 2 Z
such that q0 Š ˛1q1˚ � � � ˚ ˛kqk , see Remark 4.3 (a). Now applying Theorem 2 (a) to all
qi ’s we get that qi � qDi

ri
˚ �ci where Di

ri
is a Dynkin bigraph of size ri D rk.qi /, and

ci D crk.qi /, for each i D 1; : : : ; k. This gives us decomposition (7.11) since c1 C � � � C
ck C t D c by Lemma 2.5 (b).

8. Universality

Recall that a non-negative integral quadratic form qWZn ! Z is universal if it represents
all non-negative integers, that is, the set Rq.d/ is non-empty for each d � 1, cf. (2.1).
For one of the crucial arguments for Theorem 1 we need to prove the universality of the
following few small Cox-regular forms. Recall that the universality of qA4 and qD4 was
discussed in [43,45]. However, the proof for A4 contains a small gap, see [45, p. 359]. For
the sake of completeness we give a detailed (slightly different) proof also for this case.

Lemma 8.1. The quadratic form qD WZ4 ! Z associated to each of the Dynkin bigraphs
D 2 ¹A4;B4;C4;D4;F4º with 4 vertices is universal.

Proof. Consider two integer 4 � 4 matrices

B WD

2664
�1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

3775 and C WD

2664
�1 0 0 1

�1 �1 0 2

0 0 0 2

0 0 �1 1

3775 :
We check directly that qB4

ı B D qLag D qC4 ı C , where

qLag.x1; x2; x3; x4/ D x
2
1 C x

2
2 C x

2
3 C x

2
4

is the Lagrange “four squares” form. Note that det.B/ D �1 so qB4
�B qLag, but C does

not define a Z-equivalence since det.C /D 2. However, since qLag is universal by Lagrange
theorem, we get that for arbitrary integer d > 0 there exists x 2 Z4 such that qLag.x/D d ,
therefore qB4

.Bx/ D d D qC4.Cx/ with Bx;Cx 2 Z4. This shows that qB4
and qC4 are

universal. Moreover, since qC4 � qD4 � qF4 by Lemma 5.3, we get that qD4 and qF4 are
also universal (cf. Lemma 2.4 (a)).

The remaining case D D A4 needs a bit different approach. Take the rational matrix

A WD

2664
1
2

1 0 1
2

1 0 0 1
1
2

0 1 3
2

0 0 0 2

3775 :
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We verify directly that 2.qA4 ı A/ D qRam, where qRamWZ4 ! Z, given by

qRam.y1; y2; y3; y4/ D y
2
1 C 2y

2
2 C 2y

2
3 C 5y

2
4 ;

is one of 54 universal diagonal integral quadratic forms described by Ramanujan in [39].
Now take an arbitrary integer d > 0. By the universality of qRam there exists an integer
vector y D Œy1; y2; y3; y4�tr such that qRam.y/D 2d . This means that qA4.Ay/ D d . So it
remains to show thatAy is an integer vector. To see this, observe thatAyDŒx1;x2;x3;x4�tr,
where

x1 D
1

2
.y1 C 2y2 C y4/;

x2 D y1 C y4;

x3 D
1

2
.y1 C 2y3 C 3y4/;

x4 D 2y4:

(8.2)

Therefore, to finish the proof, it remains to show that x1 and x3 in (8.2) are integers. Since

2d D y21 C 2y
2
2 C 2y

2
3 C 5y

2
4 D 2.y

2
2 C y

2
3 C 2y

2
4/C .y

2
1 C y

2
4/;

the integer y21 C y
2
4 is even. Now, we show that y1 C y4 is even. Assume to the contrary

that there exists k 2 Z such that y1 C y4 D 2k C 1. This assumption yields the contradic-
tion

y21 C y
2
4 D .y1 C y4/

2
� 2y1y4 D 4k

2
C 4k C 1 � 2y1y4 D 2.2k

2
C 2k � y1y4/C 1:

Hence, there exists k0 2 Z such that y1 C y4 D 2k0. Therefore, x1 D 1
2
.y1 C 2y2 C y4/

D k0 C y2 2 Z and x3 D 1
2
.y1 C 2y3 C 3y4/ D k0 C y3 C y4 2 Z, and the proof is

finished.

8.1. Proof of Theorem 1

Let qWZn ! Z be a non-negative connected irreducible Cox-regular form of rank r D
rk.q/ � 0. If r D 0 then the form q is the zero form so the hypothesis of Theorem 1 holds
trivially. Assume then that r � 1. By Theorem 2 (a) there exists a Dynkin bigraphDr with
r vertices such that q � qDr ˚ �

c for the zero form �c WZc ! Z with c D n� r , cf. (7.1).
So clearly, q represents precisely the same integers as qDr (cf. Lemma 2.4 (a)).

We start with the implication “(b))(a)”. Assume that r � 4. Then Dr has at least
4 vertices, so we easily see by inspection of Table 1 that there exists a Dynkin bigraph
D4 2 ¹A4;B4;C4;D4;F4º with 4 vertices which is a full (induced) subbigraph of Dr .
This means that qD4 is a restriction of qDr , that is, qD4 D qDr ı �J for some J � n with
jJ j D 4, cf. Section 2. Now take an arbitrary d > 0. By Lemma 8.1 there exists x 2 Z4

such that qD4.x/ D d . Thus d D qD4.x/ D qDr .�J .x//. This shows that qDr is universal,
and so is q.
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The implication “(a))(c)” is trivial. Therefore, to finish the proof, it remains to show
that “(c))(b)”. To prove this implication, assume to the contrary that r < 4. Then Dr
is one of the Dynkin bigraphs A1;A2;A3;B2;B3;C2;C3; G2. Case by case verification
shows that the truants (i.e., the smallest not represented positive integers) for integral
forms associated with these bigraphs are as follows:

D truant.qD/
A1 2

A2;G2 2

B2;C2 3

B3 7

A3;C3 14

(8.3)

One verifies (8.3) easily by hand, cf. Lemma 5.3. One can also use a simple computer
search applying the general known fact stating that: every solution x 2 Zn of the equation
q.x/ D d for a positive integral form qWZr ! Z satisfies kxk �

p
d=m, where kxk

denotes the usual Euclidean norm and m WD inf.q.Sr�1// > 0, for a unit sphere Sr�1 WD
¹z 2 Rr W kzk D 1º, see [40, pp. 3–4], cf. [43, Proposition 4.1, Algorithm 4.2].

In particular, (8.3) shows that qDr (equivalently, q) does not represent at least one of the
numbers 2; 3; 7 or 14. This finishes the proof of the remaining implication “(c))(b)”.

To conclude the proof of Theorem 1 we note that its main statement remains valid
under a slightly weaker assumptions provided we add the number 1 to the list of repre-
sented integers. That is, the following fact holds.

Corollary 8.4. Let qWZn ! Z be a non-negative connected (not necessarily irreducible)
Coxeter-regular form. Then q is universal if and only if q represents the integers 1; 2; 3; 7
and 14.

Proof. Note that if q represents 1 then it has to be irreducible. Now apply “(a),(c)” of
Theorem 1.

Remark 8.5. For arbitrary n� 1, the unit form qD qAn WZ
n!Z associated to the Dynkin

graph An satisfies all the assumptions of Theorem 1, that is, qAn is a positive (hence non-
negative), connected, irreducible Cox-regular form. In particular, q is universal if and
only if n � 4. However, for n � 2 the Gram matrix Gq 2Mn.

1
2
Z/ is not integral (since

q12
2
D
�1
2
… Z) hence q is not embraced by “15 Theorem” [6, 10], cf. Section 1.
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[34] A. Mróz and K. Zając, Weyl roots and equivalences of integral quadratic forms. Linear Algebra
Appl. 650 (2022), 210–235 Zbl 1509.11023 MR 4442600

[35] S. A. Ovsienko, Integral weakly positive forms. In Schur matrix problems and quadratic forms,
pp. 3–17, Inst. Mat. Akad. Nauk USSR, 1978

[36] C. Pérez, M. Abarca, and D. Rivera, Cubic algorithm to compute the Dynkin type of a positive
definite quasi-Cartan matrix. Fund. Inform. 158 (2018), no. 4, 369–384 Zbl 1442.65082
MR 3767124

[37] C. Pérez and D. Rivera, Serre type relations for complex semisimple Lie algebras associated
to positive definite quasi-Cartan matrices. Linear Algebra Appl. 567 (2019), 14–44
Zbl 1462.17016 MR 3896960

[38] C. Pérez and D. Rivera, Polynomial-time classification of skew-symmetrizable matrices with
a positive definite quasi-Cartan companion. Fund. Inform. 181 (2021), no. 4, 313–337
Zbl 1520.68228 MR 4312604

[39] S. Ramanujan, On the expression of a number in the form ax2 C by2 C cz2 C dw2. Proc.
Camb. Phil. Soc. 19 (1917), 11–21 Zbl 46.0240.01

[40] C. M. Ringel, Tame algebras and integral quadratic forms. Lecture Notes in Math. 1099,
Springer, Berlin, 1984 Zbl 0546.16013 MR 0774589

https://doi.org/10.3233/FI-2015-1230
https://doi.org/10.3233/FI-2015-1230
https://zbmath.org/?q=an:1335.05144
https://mathscinet.ams.org/mathscinet-getitem?mr=3383583
https://doi.org/10.3233/FI-2015-1231
https://doi.org/10.3233/FI-2015-1231
https://zbmath.org/?q=an:1335.05145
https://mathscinet.ams.org/mathscinet-getitem?mr=3383584
https://doi.org/10.1016/j.laa.2019.06.006
https://zbmath.org/?q=an:1423.15013
https://mathscinet.ams.org/mathscinet-getitem?mr=3979176
https://doi.org/10.1016/j.dam.2020.05.022
https://doi.org/10.1016/j.dam.2020.05.022
https://zbmath.org/?q=an:1473.15043
https://mathscinet.ams.org/mathscinet-getitem?mr=4310486
https://doi.org/10.1090/mcom/3559
https://doi.org/10.1090/mcom/3559
https://zbmath.org/?q=an:1468.15019
https://mathscinet.ams.org/mathscinet-getitem?mr=4166466
https://doi.org/10.1016/j.dam.2017.10.033
https://doi.org/10.1016/j.dam.2017.10.033
https://zbmath.org/?q=an:1401.05137
https://mathscinet.ams.org/mathscinet-getitem?mr=3906726
https://doi.org/10.3233/FI-2017-1545
https://doi.org/10.3233/FI-2017-1545
https://zbmath.org/?q=an:1377.05078
https://mathscinet.ams.org/mathscinet-getitem?mr=3684797
https://doi.org/10.1515/crll.1887.101.196
https://zbmath.org/?q=an:19.0189.01
https://mathscinet.ams.org/mathscinet-getitem?mr=1580123
https://doi.org/10.4153/CJM-1969-158-2
https://zbmath.org/?q=an:0194.34402
https://mathscinet.ams.org/mathscinet-getitem?mr=0255627
https://doi.org/10.3233/FI-2016-1377
https://doi.org/10.3233/FI-2016-1377
https://zbmath.org/?q=an:1367.05106
https://mathscinet.ams.org/mathscinet-getitem?mr=3552385
https://doi.org/10.1016/j.jalgebra.2014.08.017
https://doi.org/10.1016/j.jalgebra.2014.08.017
https://zbmath.org/?q=an:1318.16017
https://mathscinet.ams.org/mathscinet-getitem?mr=3261461
https://doi.org/10.1016/j.laa.2022.06.007
https://zbmath.org/?q=an:1509.11023
https://mathscinet.ams.org/mathscinet-getitem?mr=4442600
https://doi.org/10.3233/fi-2018-1653
https://doi.org/10.3233/fi-2018-1653
https://zbmath.org/?q=an:1442.65082
https://mathscinet.ams.org/mathscinet-getitem?mr=3767124
https://doi.org/10.1016/j.laa.2018.12.032
https://doi.org/10.1016/j.laa.2018.12.032
https://zbmath.org/?q=an:1462.17016
https://mathscinet.ams.org/mathscinet-getitem?mr=3896960
https://doi.org/10.3233/fi-2021-2061
https://doi.org/10.3233/fi-2021-2061
https://zbmath.org/?q=an:1520.68228
https://mathscinet.ams.org/mathscinet-getitem?mr=4312604
https://zbmath.org/?q=an:46.0240.01
https://doi.org/10.1007/BFb0072870
https://zbmath.org/?q=an:0546.16013
https://mathscinet.ams.org/mathscinet-getitem?mr=0774589


A. Mróz and K. Zając 274
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ul. Chopina 12/18, 87-100 Toruń, Poland; zajac@mat.umk.pl
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