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Adjoints and canonical forms of polypols

Kathlén Kohn, Ragni Piene, Kristian Ranestad, Felix Rydell,
Boris Shapiro, Rainer Sinn, Miruna-Ştefana Sorea, and Simon Telen

Abstract. Polypols are natural generalizations of polytopes, with boundaries given by non-linear
algebraic hypersurfaces. We describe polypols in the plane and in 3-space that admit a unique adjoint
hypersurface and study them from an algebro-geometric perspective. We relate planar polypols to
positive geometries introduced originally in particle physics, and identify the adjoint curve of a
planar polypol with the numerator of the canonical differential form associated with the positive
geometry. We settle several cases of a conjecture by Wachspress claiming that the adjoint curve of a
regular planar polypol does not intersect its interior. In particular, we provide a complete character-
ization of the real topology of the adjoint curve for arbitrary convex polygons. Finally, we determine
all types of planar polypols such that the rational map sending a polypol to its adjoint is finite, and
explore connections of our topic with algebraic statistics.
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1. Introduction

Polytopes are very familiar geometric objects, with boundaries given by linear equations.
Their beautiful and important properties have been extensively studied from different per-
spectives and have numerous applications. The present paper studies several more general
classes of real domains/shapes with non-linear algebraic boundaries, known as polypols,
polycons, polypoldra, positive geometries, etc., in the existing literature. They share some
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Figure 1. Three polypols (shaded in orange) and their adjoints (purple). The boundary curves and
the vertices of the polypols are shown in black. The singular points and “outside” intersection points
of the boundary curves are purple.

of their properties with polytopes, but, in general, are quite different from the latter. They
find applications for example in finite element methods, quantum physics, and algebraic
statistics. Unlike the case of polytopes, mathematical properties of such objects are still
relatively unexplored, and a rigorous theoretical framework is currently largely missing.
This paper summarizes the recent efforts of our reading group, and its main goal is to
establish polypols as a separate topic of study, from the perspective of complex and
real algebraic geometry. We focus on polypols in the plane and in 3-space. Motivated
by applications, we mainly study the existence, uniqueness, and real topology of adjoint
hypersurfaces associated with polypols, as well as formulas for their canonical differential
forms. But obviously, we have barely even scratched the surface of a large terra incognita.

1.1. Previous studies

In the 1970’s, E. Wachspress introduced polypols as bounded semi-algebraic subsets of
Rn that generalize polytopes [36, 38]. He aimed to generalize barycentric coordinates
from simplices to arbitrary polytopes and further to polypols. Wachspress’s work mainly
focused on planar polypols with rational boundary curves. To define barycentric coordin-
ates on such a rational polypolP in R2, he introduced the adjoint curveAP as the minimal
degree curve that passes through both the singular points of the boundary curves and their
intersection points that are “outside” of P ; see Figure 1 for examples. As he mentions in
the introduction to his early book [36], a more ambitious goal of his study was to extend
the finite element method (which at that time and ever since has been extremely popular
in numerical methods) by using both arbitrary polytopes and polypols as basic approxim-
ating elements for multi-dimensional domains.

Several years ago, N. Arkani-Hamed, Yu. Bai, and T. Lam [3] introduced positive
geometries in their studies of scattering amplitudes in particle physics. These are given by
a real semi-algebraic subsetP of an n-dimensional complex variety together with a unique
rational canonical n-form �.P / that is recursively defined via the boundary components
of P . Important motivating examples that led to the introduction of positive geometries
include both the amplituhedron [5] and the ABHY associahedron [2]. The push-forward
formula expresses their canonical form as a global residue over the solutions to a system
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of rational function equations [4, Sec. 7]. Recently, these equations were identified as
the likelihood equations for positive statistical models, relating positive geometries to
algebraic statistics [34, Sec. 6].

Usual polytopes are the easiest examples of both polypols and positive geometries.
The adjoint hypersurface AP and canonical form �.P / of a polytope P are known to be
unique; see [21] resp. [3]. In particular, unpublished lecture notes by C. Gaetz show that
the rational canonical form of a polytope P has its poles along the boundary @P and its
zeros along the adjoint hypersurface AP .

Observe that in complex algebraic geometry, there is a classical notion of adjoints of a
hypersurface. Namely, the holomorphic .n� 1/-forms on a nonsingular hypersurfaceX in
Pn are all residues of rational n-forms on Pn with simple poles along X and zeros along
an adjoint hypersurface AX to X ; see the adjunction formula in [15, p. 147]. When X has
degree d , the adjoint hypersurfaces are all hypersurfaces of degree d � n � 1. When X
is singular, then the holomorphic .n � 1/-forms on a resolution of singularities X 0 ! X

are obtained from the rational n-forms on Pn with zeros along adjoint hypersurfaces that
pass through singularities of X . The adjoints we discuss in the present paper are slightly
different; they pass through some, but not all, singularities of the boundary hypersurface.

1.2. Main results and outline

We focus on the basic definitions and general properties of rational polypols. In Section 2,
we introduce quasi-regular rational polypols in R2 and show that they are examples of
planar positive geometries. We formally define and establish the uniqueness of both the
adjoint curve AP and the canonical form �.P / of such a polypol P � R2. Moreover,
we provide an explicit formula for �.P / in terms of defining equations of AP and the
boundary curves of the polypol P (Theorem 2.15): As in the polytopal case, the rational
canonical form �.P / has its poles along the boundary @P and its zeros along the adjoint
curve AP .

E. Wachspress used the adjoint curve AP of a regular rational polypol P in R2 to
define barycentric coordinates on P . These coordinates should be rational functions that
are positive on the interior ofP and have poles on the adjoint curveAP . For several simple
polypols, such as convex polygons, the rational functions suggested by E. Wachspress
indeed enjoy these properties, but for his coordinates to make sense for regular rational
polypols P in general, he conjectured that the adjoint curve AP does not pass through
the interior of P (Conjecture 3.4). This intriguing claim is at present widely open. In
Section 3, we define regular polypols and discuss Wachspress’s conjecture. In particular,
for the case of convex polygons, we show that the adjoint curve is hyperbolic and provide
an explicit description of its nested ovals (Theorem 3.8). Further, for polypols defined by
three ellipses, which is the first unsolved case of Wachspress’s conjecture, we identify all
possible topological types of triples of ellipses and prove Wachspress’s conjecture for 33
out of all 44 of them (Theorem 3.14). These 33 cases include all types of maximal real
intersection, i.e., where the ellipses meet pairwise in four real points. The proof, which is
deferred to Appendix A, requires careful cataloging of these 44 configurations.
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In Section 4, we study the map that associates to a given planar polypol P its adjoint
curve AP . We identify all types of planar polypols for which this map is finite (The-
orem 4.2). Using numerical monodromy computations, we calculate the degree of the
adjoint map in the case of heptagons, answering a question posted in [22]: our com-
putations indicate that a general quartic curve is the adjoint of 864 distinct heptagons
(Proposition 4.7).

In Section 5, we recall the connection between positive geometries and positive mod-
els in algebraic statistics. An essential role is played by the push-forward formula for
canonical forms, see Heuristic 5.5. For the toric models studied in [1], this gives an expli-
cit rational expression for a global residue over all the critical points of the log-likelihood
function (Proposition 5.8). In Section 5.3, we propose to use this as a numerical trace test
to verify the completeness of a set of numerically obtained approximate critical points.
Moreover, Example 5.10 illustrates how the explicit formula from Theorem 2.15 can be
used to design a family of trace tests for any 2-dimensional toric model.

In Section 6, we discuss three-dimensional polypols. We provide general criteria for a
complex algebraic surface to be the algebraic boundary of a polypol P � R3, and give a
number of examples where all boundary components are quadric surfaces such that these
criteria are sufficient to have a unique adjoint surface AP .

2. Adjoints and canonical forms of planar polypols

In Section 2.1, we start by defining rational polypols in the complex projective plane and
showing that they have unique adjoint curves. In Section 2.2, we define positive geo-
metries and their canonical forms and compare planar positive geometries with rational
polypols. In Section 2.3, we show that quasi-regular rational polypols are always positive
geometries and we provide an explicit formula for the canonical form of such a polypol in
terms of its adjoint and boundary curves. In Section 2.4, we see that unions and differences
of quasi-regular rational polypols provide examples of positive geometries with a unique
canonical form, but no unique adjoint curve. For this, we introduce pseudo-positive geo-
metries, following [3], and show the additivity of their canonical forms in dimensions one
and two.

2.1. The adjoint curve of a rational polypol

Let C � P2 be a complex plane curve with k � 2 irreducible components C1; : : : ; Ck .
Assume there are k points v12 2 C1 \ C2, . . ., vk1 2 Ck \ C1 such that vij is nonsingular
on Ci and Cj , and that Ci and Cj intersect transversally at vij . Then we say that the
irreducible curves Ci and the points vij form a polypol P . The set of points V.P / WD ¹vij º
is called the vertices of P , and the complement R.P / WD SingC n V.P / of the vertices
in the singular locus of C is called the set of residual points of C . We say that the polypol
P is rational if the curves C1; : : : ; Ck are rational. All examples in Figure 1 are rational
polypols such that all vertices (black) and all residual points (purple) are real.
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We consider the partial normalization � W Z ! C of C , obtained by desingularizing
all the residual points R.P / � C . One can construct Z as the strict transform of C under
the sequence of blow-ups X ! P2 of all points in, and infinitely near, R.P /. Let !Z
(resp. !C ) denote the dualizing sheaf of Z (resp. C ). It follows from [30] that the trace
map Tr� W ��!Z ! !C induces an isomorphism

��!Z
�
! C�!C ;

where the sheaf of ideals C� is the conductor of �. This result goes back to D. Gorenstein
and M. Rosenlicht [31], in the case when � W Z ! C is the normalization map.

Definition 2.1. Set di WD degCi and d WD
Pk
iD1 di . An adjoint curveAP of the polypolP

is a curve defined by a polynomial ˛P 2 H 0.P2;OP2.d � 3// which maps to a non-zero
element in H 0.C;C�!C / � H

0.C; !C / under the restriction map

� W H 0
�
P2; �2P2 ˝OP2.C /

�
D H 0

�
P2;OP2.d � 3/

�
! H 0.C; !C /;

obtained from the short exact sequence 0! �2
P2
! �2

P2
˝OP2.C /! !C ! 0.

Note that an element inH 0.P2;OP2.d�3//which maps to an element inH 0.C;C�!C/

defines a curve of degree d � 3which contains the 0-dimensional subscheme of C defined
by C� �OC . In particular, if all residual points are nodes on C , then C� is just the product
of the maximal ideals mC;p � OC;p for p 2 R.P /, and therefore an adjoint curve is a
curve passing through all the residual points of P .

Proposition 2.2. A rational polypol has precisely one adjoint curve. Moreover, the adjoint
curve does not contain any of the boundary curves and does not pass through any of the
vertices.

Proof. Since H 0.P2; �2
P2
/ D H 1.P2; �2

P2
/ D 0, the restriction map � is an isomorph-

ism. Hence, to show the first statement, it suffices to show that h0.C;C�!C / D 1, since
then dim��1H 0.C;C�!C /D 1. We have Z D

Sk
iD1
zCi , where the zCi ! Ci are the nor-

malization maps, and where the only singularities of Z are the points above V.P /. By the
arithmetic genus formula for the reducible curve Z [18, Thm. 3, p. 190], we have

ga.Z/ D

kX
iD1

ga. zCi /C #V.P / � .k � 1/ D 0C k � k C 1 D 1:

SoZ has arithmetic genus 1; hence we have h1.Z;OZ/D1 and, by duality, h0.Z; !Z/D1.
SinceH 0.C;C�!C /DH

0.C;��!Z/ andH 0.C;��!Z/DH
0.Z;!Z/, we conclude that

h0.C;C�!C / D 1.
To show the second statement, we observe that since the arithmetic genus of the curve

Z is 1, h0.Z; !Z/ D 1 and any non-zero section � of !Z is nowhere vanishing. Since
H 0.Z;!Z/DH

0.C;C�!C /�H
0.C;!C /, the lift ���2H 0.P2;OP2.d�3// defines the

adjoint curve. Since � was nowhere vanishing on Z, ��� cannot vanish on any boundary
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curve Ci . Similarly, if ��� had a zero at a vertex, then � would vanish at the point of Z
mapping to that vertex.

Example 2.3. Here is a more direct proof of the existence of an adjoint curve, under the
assumption that all the residual points are nodes. Namely, assume that the boundary curves
Ci are rational nodal curves that intersect transversally. Then an adjoint AP is a curve of
degree d � 3 that passes through the residual points R.P /.

There are two types of residual points: the singularities (nodes) of each boundary
curve Ci , and the intersection points of the boundary curves that are not one of the k
vertices of the polypol P . Since Ci is rational, it has

�
di�1
2

�
nodes. The total number of

intersection points of the curves Ci is
P
1�i<j�k didj . Hence, the number of residual

points of P is

#R.P / D
kX
iD1

�
di � 1

2

�
C

X
1�i<j�k

didj � k D
1

2

kX
iD1

.d2i � 3di /C
X

1�i<j�k

didj :

This is the same as the dimension of the space of curves of degree d � 3:

h0
�
P2;OP2.d � 3/

�
� 1 D

�
d � 1

2

�
� 1 D

1

2
.d2 � 3d/ D

1

2

�� kX
iD1

di

�2
� 3

kX
iD1

di

�
D
1

2

� kX
iD1

d2i C 2
X

1�i<j�k

didj

�
�
3

2

kX
iD1

di

D
1

2

kX
iD1

.d2i � 3di /C
X

1�i<j�k

didj :

Since the condition to pass through a point is linear, this shows that there exists at least
one adjoint curve.

Remark 2.4. E. Wachspress gave a more explicit and intuitive, but less formal, con-
struction of the adjoint in comparison to the above proof of Proposition 2.2. For rational
polypols with boundary curves that intersect non-transversally or have more complicated
singularities than nodes, he required the adjoint curve to have appropriate multiplicities at
the resulting residual points [38].

Remark 2.5. A more general notion than polypols, as we defined them above, include
semi-algebraic subsets P of the plane with an irreducible boundary curve C . If C is a
rational nodal curve and P has exactly one of the nodes on its Euclidean boundary, then
there is a unique adjoint curve of degree deg.C /� 3 passing through the remaining nodes.
For example, for the ampersand curve in Figure 2, if we let P be one of the two regions
with exactly one of the three nodes on its boundary, then the adjoint is the line passing
through the two other nodes. As in our discussion above, there is also a unique adjoint
curve if the rational curve C has more complicated singularities.
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Figure 2. The ampersand curve given by .y2 � x2/.x � 1/.2x � 3/ � 4.x2 C y2 � 2x/2 D 0

bounds a semi-algebraic set with a unique adjoint line.

Figure 3. Polypol defined by three conics and vertices A, B , C . The adjoint curve is the union of
three lines.

Remark 2.6. One might hope that the adjoint curve is nonsingular as long as the boundary
curves intersect transversally and have only nodes as singularities. However, this is not
true, as the following example demonstrates.

A rational polypol with boundary consisting of three conics has a cubic adjoint curve
passing through the nine singular points that are not vertices of the polypol. Figure 3 shows
an example with vertices A;B; C , where the adjoint curve is the union of three lines. To
think of the polypol as a real semi-algebraic set, one needs to specify on each conic which
segment is part of the boundary. With a choice of two segments for each conic, there
are 8 different real polypols with vertices A; B; C and boundary on the three conics. In
particular, this example shows that cubics passing through 9-tuples of intersection points
of 3 conics behave differently than cubics passing through 9-tuples of general points.
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2.2. Positive geometries and their canonical forms

We begin by defining positive geometries and their canonical forms, following [3]. Let
X be a projective, complex, irreducible, n-dimensional variety, n � 0, defined over R.
Moreover, letX�0 �X.R/ be a non-empty closed semi-algebraic subset of the real part of
X such that its Euclidean interior X>0 is an open oriented n-dimensional manifold whose
Euclidean closure is again X�0. We also assume that X>0 is contained in the nonsingular
part of X , but we do not assume that X is normal. We write @X�0 WD X�0 n X>0 for
the Euclidean boundary of X�0 and denote by @X the Zariski closure of @X�0 in X . Let
C1; C2; : : : ; Ck be the irreducible components of @X . For each component Ci , we denote
by Ci;�0 the Euclidean closure of the interior of Ci \ X�0 in the subspace topology on
Ci .R/.

Definition 2.7. .X; X�0/ is a positive geometry if there is a unique non-zero rational n-
form �.X;X�0/, called its canonical form, satisfying the following recursive axioms:

(a) If n D 0, then X D X�0 is a point and we define �.X;X�0/ WD ˙1, depending
on the orientation of the point.

(b) If n > 0, we require for every i D 1; 2; : : : ; k that the boundary component
.Ci ; Ci;�0/ is a positive geometry whose canonical form is the residue of
�.X;X�0/ along Ci :

ResCi�.X;X�0/ D �.Ci ; Ci;�0/;

and that �.X;X�0/ is holomorphic on X n
Sk
iD1 Ci .

In particular, for a positive geometry .X; X�0/, the variety X cannot have non-zero
holomorphic n-forms, because otherwise�.X;X�0/ could not be unique. Conversely, the
uniqueness of the canonical form follows immediately if X has no non-zero holomorphic
differential forms: if � and �0 are canonical forms, then their difference � � �0 is a
holomorphic form on X , and hence it must vanish identically.

Example 2.8. Let n D 1 and let .X;X�0/ be a one-dimensional positive geometry. Then
X must be a rational curve as these are the only projective complex curves X without
non-zero holomorphic 1-forms. Moreover,X�0 can neither be the empty set nor the whole
X.R/, as otherwise @X D ;, but we do not allow the empty set to be a positive geometry.
Hence, X�0 must be a finite disjoint union of closed segments in X.R/, where each open
segment in X>0 is nonsingular.

Conversely, any finite disjoint union of closed, real segments in a rational curve X ,
such that the open segments are nonsingular, is a positive geometry. Any such segment
can be rationally and birationally parameterized by a closed interval Œa; b� WD ¹.1 W t / 2
P1.R/ j a � t � bº. Its canonical form can be identified with the canonical form of the
interval Œa; b� � P1.R/, which is equal to

�
�
P1; Œa; b�

�
D

1

t � a
dt �

1

t � b
dt D

b � a

.t � a/.b � t /
dt; (2.1)
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where t is the coordinate on the affine chart ¹.1 W t /º � P1.R/. This holds because we have
Resa�.P1; Œa; b�/ D b�a

b�t
jtDa D 1 and Resb �.P1; Œa; b�/ D �b�at�a

jtDb D �1. Here the
interval Œa; b� is oriented along the increasing t -direction. The canonical form of a disjoint
union of closed intervals is the sum of the individual canonical forms (see Lemma 2.16).

We now move to dimension two and study positive geometries .X;X�0/ in the plane
X DP2. By Example 2.8, each boundary component .Ci ;Ci;�0/ is a union of closed (real)
segments on a rational curve Ci such that each open segment (in Ci;>0) is nonsingular. We
call the endpoints of the closed segments the vertices of the positive geometry.

Definition 2.9. A real polypol P is a polypol with real boundary curves Ci , real ver-
tices vi�1;i 2 Ci�1 \ Ci , and a given choice of segments connecting vi�1;i to vi;iC1 in
Ci .R/, called the sides of the polypol, and a closed semi-algebraic set P�0 such that each
connected component of its interior is simply connected and its boundary is exactly the
union of the sides of the polypol. A quasi-regular polypol is a real polypol whose sides
are contained in the nonsingular locus of Ci .

Example 2.10. There are eight real polypols in Figure 3 as discussed in Remark 2.6, all
of which are quasi-regular.

Proposition 2.11. If .P2; X�0/ is a positive geometry with k � 2 boundary components
.Ci ; Ci;�0/, Ci ¤ Cj for i ¤ j , and k vertices v12 2 C1 \ C2; : : : , vk1 2 Ck \ C1 such
that Ci and Cj intersect transversally at vij , then the curves Ci and vertices vij define a
quasi-regular rational polypol with sides Ci;�0.

Proof. The assumption that X>0 is orientable implies in P2.R/ that it is a union of disks,
i.e., simply connected sets. Since the boundary components .Ci ; Ci;�0/ are positive geo-
metries themselves, each boundary curve Ci is rational by Example 2.8, and the open
segments between consecutive vertices are nonsingular. Since the curves Ci are pairwise
distinct, the curve

S
i Ci and the vertices vij form a quasi-regular rational polypol with

sides Ci;�0.

Remark 2.12. There are more positive geometries .P2; X�0/ than quasi-regular rational
polypols. Such other positive geometries can be as follows:

(1) there is a single rational boundary curve C as in Remark 2.5, or

(2) some vertices are either singular on their boundary curves (see Figure 4 for an
example) or they are non-transversal intersections of the boundary curves, or

(3) at least one rational boundary curve Ci contributes to several parts of the bound-
ary, i.e., Ci;>0 is a union of at least two disjoint nonsingular intervals, as in
Example 2.13.

A positive geometry may also be the union of these, see Section 2.4.

Example 2.13. Let us consider two real irreducible conics C1; C2 in the plane that inter-
sect in four real points v1; : : : ; v4, and let X�0 be the simply connected semi-algebraic
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Figure 4. A positive geometry bounded by a parabola and a cubic with a cusp which is a vertex.
The canonical form is equal to x2CxyCy2Cx

.y�x2/.x2�y3/
dx ^ dy. Note that the adjoint curve is tangent to

the cusp.

Figure 5. Positive geometry with 2 boundary curves and 4 vertices.

subset of P2.R/ that has all four points v1; : : : ; v4 on its Euclidean boundary; see Figure 5.
We will see in Example 2.20 that .P2; X�0/ is a positive geometry with canonical form

˛Q

f1f2
dx ^ dy; (2.2)

where fi is a defining equation of the conic Ci and ˛Q is a defining equation of the adjoint
line AQ of the quadrangle Q that is the convex hull of v1; : : : ; v4. Notice that C1 [ C2
together with the four vertices vi do not form a rational polypol since each curve contains
more than two vertices. Since C1 [C2 has no other singularities than the vertices, there is
no unique adjoint curve in the sense that there is no unique line passing through the empty
set. The numerator of the unique rational canonical 2-form, however, is an adjoint whose
unicity follows from the residue condition at the vertices. In this particular example, it
may also be characterized as the unique adjoint of the convex hull of the four vertices.
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The numerator of the canonical form of a positive geometry is in fact always an adjoint
curve in the sense that it passes through the singular points on the boundary curve that are
not vertices (but it is not necessarily the only such curve).

Proposition 2.14. Let .P2;X�0/ be a positive geometry in the plane, with boundary curve
@X � P2. Assume all singularities of @X are nodes. Let�.P2;X�0/ be its rational canon-
ical form. It has poles along @X and zeros along some curveA. ThenA is an adjoint curve
to @X , i.e., degA D deg @X � 3, and A passes through the singular points of @X that are
not vertices of the positive geometry.

We defer the proof to the end of Section 2.3.

2.3. The canonical form of a quasi-regular rational polypol

As a converse to Proposition 2.11, we show now that every quasi-regular rational polypol
is a positive geometry, and we provide an explicit formula for its canonical form. Let
P be a quasi-regular rational polypol, defined by real rational curves C D

Sk
iD1 Ci and

real vertices V.P / D ¹v12; : : : ; vk1º, and with sides being chosen real segments of Ci .R/
connecting vi�1;i to vi;iC1 for each i and bounding a closed semi-algebraic set P�0.

To work in an affine chart, we fix a line L1 that does not contain any of the vertices
vi�1;i and intersects C transversally. Let .x; y/ be affine coordinates on C2 D P2 n L1.
We denote by fi 2 RŒx; y� a defining polynomial for Ci \ C2 and by ˛P 2 CŒx; y� a
defining polynomial for the adjoint AP \C2 of the polypol P .

Consider the meromorphic differential form

�.P / WD
˛P

f1 � � � fk
dx ^ dy:

Note that �.P / is uniquely defined (up to multiplication by a non-zero constant). Write
fi� D @fi=@�. We may assume the coordinates are chosen such that fiy is non-zero. Then
we have dx ^ dfi D dx ^ .fixdx C fiydy/ D fiydx ^ dy, so that

�.P / D
˛P

f1 � � � Ofi � � � fkfiy
dx ^

dfi

fi
:

Hence, its residue along Ci is equal to the restriction of
˛P

f1 � � � Ofi � � � fkfiy
dx

to Ci . Moreover, we have

dfiC1 ^ dfi D �.fixdx C fiydy/ ^ .fiC1;xdx C fiC1;ydy/ D �Jfi ;fiC1 dx ^ dy;

where Jfi ;fiC1 D fixfiC1;y � fiC1;xfiy is the Jacobian of fi ; fiC1. Hence, the residue of
ResCi �.P / at the vertex vi;iC1 is equal to the constant

ci;iC1 WD
�˛P .vi;iC1/

f1.vi;iC1/ � � � Ofi OfiC1 � � � fk.vi;iC1/Jfi ;fiC1.vi;iC1/
:
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To fix the multiplicative scaling of �.P /, let us now replace ˛P by �c�11;2 ˛P , so that the
residue at v1;2, considered as the last vertex of the first side, becomes �1.

Theorem 2.15. Let P be a quasi-regular rational polypol. Then .P2; P�0/ is a positive
geometry, and its canonical form is the meromorphic 2-form �.P / defined above: its
numerator is an equation of the adjoint curve, its denominator is an equation of the curve
C , and its residues at the vertices of P are˙1.

Proof. We must show that for each i , ResCi �.P / is the canonical form on the side Ci
(with vertices vi�1;i and vi;iC1).

The adjoint curve AP is a curve of degree d � 3 that passes through all singular points
ofC other than the vertices V.P /; more precisely, the adjoint curve contains the fat points,
defined by the conductor ideal at each singular point of C , except the vertices of P . Let
P1 ! Ci � C � P2 be a (birational) parameterization of Ci : Using affine coordinates,
we write x.t/ D r.t/

h.t/
and y.t/ D s.t/

h.t/
, where r; s; h are polynomials of degree di . We can

then write the restriction of ResCi �.P / to Ci as

�i .t/ WD
˛P
�
x.t/; y.t/

�
x0.t/

f1
�
x.t/; y.t/

�
� � � Ofi � � � fk

�
x.t/; y.t/

�
fiy
�
x.t/; y.t/

� dt:
In the numerator, h.t/�1 appears to the power d � 3 in ˛P and to the power 2 in x0.t/.
In the denominator, it appears to the power d � di C di � 1. So the h.t/’s cancel, and we
are left with polynomials in t both in the numerator and in the denominator.

Let ai ; bi 2 R be such that vi�1;i D .x.ai /; y.ai // and vi;iC1 D .x.bi /; y.bi //. The
canonical form of the positive geometry .P1; Œai ; bi �/ is given in (2.1). So we must show
that �i .t/ D �.P1; Œai ; bi �/.

We observe that the numerator of x0.t/ D h.t/r 0.t/�h0.t/r.t/

h.t/2
is a polynomial of degree

2di � 2, since the highest terms of the two products cancel. It follows that, after can-
celation of the powers of h.t/, the numerator of �i .t/ is a polynomial in t of degree
di .d � 3/C 2di � 2D di .d � 1/� 2, whereas the denominator has degree di .d � di /C
di .di � 1/ D di .d � 1/. Moreover, the denominator contains .t � ai /.bi � t / as a factor
since t D ai ; bi are roots of fi�1.x.t/; y.t// and fiC1.x.t/; y.t//, respectively. Hence,
we can write

�i .t/ D
F.t/

G.t/.t � ai /.bi � t /
dt;

where F and G both have degree di .d � 1/ � 2. We need to show that F and G have the
same roots, with the same multiplicities.

Indeed, assume that p D .x.c/; y.c// 2 Ci is a singular point of C . Let Ci1 ; : : : ; Cir
be the other components of C that contain p. The Jacobian ideal of C at p is˝

.fi � g/x ; .fi � g/y
˛
D hfix � g C fi � gx ; fiy � g C fi � gyi;

where g WD
Qr
jD1 fij . Restricted to Ci this ideal is generated by fix � g and fiy � g. We

may assume (by switching x and y if necessary) that fiy � g generates the pullback of
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the Jacobian ideal in the local ring CŒt �.t�c/. We know that ˛P .x.t/; y.t// pulls back to
generate the conductor ideal in CŒt �.t�c/ and x0.t/ to the ramification ideal of the para-
meterization. Hence the product is the pullback of the Jacobian ideal of the singularity
[29, p. 261], which is the same as the pullback of the ideal generated by fiy � g. Hence the
zeros and poles of �i .t/ cancel above this point.

Hence the roots of F and G are the same, with the same multiplicities, and so F.t/
G.t/

is a constant. Therefore we can write �i .t/ D 
i �.P1; Œai ; bi �/, for some constant 
i .
Since Resbi �.P

1; Œai ; bi �/D �1, we have that Resbi �i .t/D �
i . Moreover, because of
Resai �.P

1; Œai ; bi �/ D 1, we have Resai �i .t/ D 
i . We now claim that the constant 
i
is the same for all i D 1; : : : ; k. This can be seen as follows.

The vertex vi;iC1 can be regarded as the last vertex of the i th side of P and as the first
vertex of the .i C 1/th side of P . The value of Resvi;iC1 �.P / D Resbi �i .t/ given above
corresponds to first taking the residue along Ci and then the residue at the last vertex
vi;iC1 of the i th side. If we instead first take the residue along CiC1 and then the residue
at the first vertex vi;iC1 of the .i C 1/th side (i.e., we switch the roles of Ci and CiC1), we
get �Resbi �i .t/ D ResaiC1 �iC1.t/ D 
iC1, hence 
iC1 D �.�
i / D 
i . Continuing
along all sides of P , we see that the constant 
i is the same for all i D 1; : : : ; k.

As we scaled ˛P so that Resb1 �1.t/ D �1, we get 
i D 1 and thus

�i .t/ D �
�
P1; Œai ; bi �

�
for all i D 1; : : : ; k:

This shows that �.P / is the canonical form of P . The uniqueness of �.P / follows from
the fact that P2 does not admit non-zero holomorphic 2-forms.

Proof of Proposition 2.14. We follow the argument suggested in [3, Sec. 7.1]. Let q 2 @X
be a singular point that is not a vertex and assume thatC � @X is an irreducible component
containing q. Then the residue ResC �.P2; X�0/ has poles only at the vertices on C , so
�.P2; X�0/ can have a pole of order at most one at q. But locally,

�.P2; X�0/ D
f

g
dx ^ dy;

with coprime polynomials f and g such that C � ¹g D 0º and ¹g D 0º has multiplicity at
least two at q, so AD ¹f D 0ºmust have multiplicity at least one for the rational function
f
g

to have a pole of order at most one at q.
To show that degADdeg@X�3we reverse the argument in the proof of Theorem 2.15.

Assume thatAD¹f D 0º, aD degA and @X D¹g1g2D 0º, where degg1D b, degg2D c
and C D ¹g2 D 0º is an irreducible rational curve parameterized by x.t/ D r.t/=h.t/,
y.t/D s.t/=h.t/ where r.t/, s.t/, h.t/ are polynomials of degree c in t with no common
zeros. The points ¹h.t/ D 0º are mapped to the line at infinity in the affine plane. We
may choose a parameterization such that ResC �.P2; X�0/ has no poles or zeros in these
points. Substituting the parameterization as in the proof of Theorem 2.15, h appears with
exponent bC c � 1 in the numerator and exponent aC 2 in the denominator of the 1-form
ResC �.P2; X�0/. Since this form has no zeros or poles on ¹h.t/ D 0º, the factor h must
cancel, in particular aC 2 D b C c � 1, i.e., a D b C c � 3 or degA D deg @X � 3.



K. Kohn, R. Piene, K. Ranestad, F. Rydell, B. Shapiro, R. Sinn, M.-Ş. Sorea, and S. Telen 288

2.4. Additivity of the canonical form

The set of positive geometries has a certain additivity property that allows construction
of new ones. This additivity is discussed in general terms in [5, Sec. 3], and the key
observation is additivity of canonical forms when two positive geometries are disjoint
or share part of their boundary. Wachspress’s arguments [36, Thm. 5.1, p. 98] show that
the canonical form of rational polypols with boundary curves of degree � 2 are additive.
The argument uses M. Noether’s fundamental theorem and can be extended to the case of
boundary curves of arbitrary degree. Here, we use only the uniqueness of the canonical
form to show additivity in more general cases in dimensions one and two.

First, let us show additivity in dimension one. Let X be a rational curve with points
v1; v2; v3; v4 2 X.R/. Assume that the segments X1;�0 of X.R/ between v1 and v2 and
X2;�0 between v3 and v4 are nonsingular. As in Example 2.8, these segments give positive
geometries .X; X1;�0/ and .X; X2;�0/. If ' W P1.R/ Ü X.R/ is a rational, birational
parameterization such that '.a/D v1, '.b/D v2, '.c/D v3, '.d/D v4 for a < b� c < d ,
then the canonical forms �.X;X1;�0/ and �.X;X2;�0/ are as in (2.1).

Lemma 2.16. Let X�0 D X1;�0 [X2;�0 be the union of the two segments on X . If either
v2 ¤ v3, or v2 D v3 and the open segment from v1 to v4 is nonsingular, then .X;X�0/ is
a positive geometry with canonical form

�.X;X�0/ D �.X;X1;�0/C�.X;X2;�0/:

Proof. If v2 ¤ v3, then X�0 is the union of two disjoint segments on X . The sum of the
canonical forms

�.X;X1;�0/C�.X;X2;�0/ D
b � a

.t � a/.b � t /
dt C

d � c

.t � c/.d � t /
dt

has poles with residues˙1 at the endpoints of these segments.
If v2 D v3 and the open segment from v1 to v4 is nonsingular, then b D c and X�0 is

a nonsingular segment on X . The sum of the canonical forms is given by

�.X;X1;�0/C�.X;X2;�0/D
b � a

.t �a/.b� t /
dtC

d � c

.t �c/.d � t /
dt D

d � a

.t �a/.d � t /
dt:

It has poles only at the endpoints of X�0 with residues that coincide with the residues of
�.X;X1;�0/ and �.X;X2;�0/, respectively. In both cases, the assertion follows.

Now, to show additivity in the plane, we introduce pseudo-positive geometries, as
in [3]. Let .X; X�0/ be a pair as described in the beginning of Section 2.2, except that
we allow X�0 to be empty. The main difference between positive and pseudo-positive
geometries is that we now allow zero canonical forms.

Definition 2.17. .X; X�0/ is a pseudo-positive geometry if there is a unique rational n-
form �.X; X�0/, called its canonical form, such that �.X; X�0/ D 0 if X�0 D ; and
that otherwise satisfies the recursive axioms Definition 2.7 (a) and (b), except that we only
require in (b) that the boundary components are pseudo-positive geometries.
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For positive geometries in the plane, the uniqueness of the canonical form together
with Lemma 2.16 allow an additivity property that we now describe. By Theorem 2.15,
quasi-regular rational polypols are positive geometries, so it follows that by taking unions
and differences, we can use quasi-regular rational polypols as building blocks to con-
struct new positive or pseudo-positive geometries. Two illustrative examples are given in
Examples 2.19 and 2.20.

Let .P2; X�0/ and .P2; Y�0/ be positive geometries in the plane with a fixed orienta-
tion. We write the Euclidean boundary of X�0 as

@X�0 D
[

.i;j /2IX

Ci;j ;

where the Ci;j are disjoint segments on the rational boundary curve Ci and IX is the
index set such that for each i , the set ¹Ci;j j .i; j / 2 IXº consists of the segments of
Ci that are in Ci;�0. Analogously, we write @Y�0 D

S
.i;j /2IY

Di;j . Moreover, we define
IX .Y / WD ¹.i; j / j 9 .l;m/ s.t. Ci;j �Dl;mº, and similarly for IY .X/. By definition of pos-
itive geometries, the interiors of all segments Ci;j andDi;j are nonsingular. The canonical
1-form

�.Ci ; Ci;�0/ D ResCi �.X;X�0/

is the sum of the canonical forms of the disjoint segments Ci;j , with poles at the two
vertices of each Ci;j .

Proposition 2.18. Let .P2; X�0/ and .P2; Y�0/ be positive geometries. We consider the
following three cases:

(1) X�0 \ Y�0 D ;,

(2) X�0 \ Y�0 D @X�0 \ @Y�0 D
S
.i;j /2IX .Y /

Ci;j D
S
.l;m/2IY .X/

Dl;m,

(3) X�0 � Y�0 and @X�0 \ @Y�0 D
S
.i;j /2IX .Y /

Ci;j . Additionally, if Ci;j andDl;m
are boundary segments ofX�0 and Y�0, respectively, on the same boundary curve
Ci D Dl , then either Ci;j � Dl;m or Ci;j \Dl;m D ;.

We have the following:

(1) .P2; Z�0/ with Z�0 WD X�0 [ Y�0 is a positive geometry with canonical form
�.P2; Z�0/ D �.P2; X�0/C�.P2; Y�0/.

(2) .P2;Z�0/ with Z�0 WD X�0 [ Y�0 is a pseudo-positive geometry with canonical
form �.P2; Z�0/ D �.P2; X�0/C�.P2; Y�0/.

(3) .P2; Z�0/ with Z�0 WD Y�0 nX�0 is a pseudo-positive geometry with canonical
form �.P2; Z�0/ D �.P2; Y�0/ ��.P2; X�0/.

Proof. In case (1) it suffices to note that�.P2;X�0/C�.P2; Y�0/ has poles along @X [
@Y whose residues along segments Ci;j or Di;j coincides with those of �.P2; X�0/ and
�.P2; Y�0/, respectively.

In case (2) we note that Z�0 is semi-algebraic, that its boundary

@Z�0 D .@X�0 [ @Y�0/ n .@X�0 \ @Y�0/
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is the connected union of rational curve segments, and that the rational form�.P2;X�0/C
�.P2; Y�0/ has poles along each of these boundary segments. Furthermore, its residue
along each of these segments coincides with the residues of �.P2; X�0/ or �.P2; Y�0/
depending on whether the segment is in @X�0 or @Y�0.

For each segmentCi;j DDl;m� @X�0 \ @Y�0, the induced orientations fromX>0 and
Y>0 have different signs. Therefore, the residue of�.P2;X�0/ along Ci;j and the residue
of �.P2; Y�0/ along Dl;m are 1-forms with residues that sum to zero at the vertices of
the segment. So the sum of 1-forms has no poles on the segment. By Lemma 2.16, if we
consider the rational curve Ci D Dl , then the residue �.Ci ; Ci;�0/ of �.P2; X�0/ along
Ci is a sum of canonical 1-forms with poles at endpoints of the segments Ci;j :

�.Ci ; Ci;�0/ D
X
j

�.Ci ; Ci;j /:

Similarly, �.Dl ; Dl;�0/ D
P
m �.Dl ; Dl;m/. The sum of these forms has no poles at

the vertices of common segments Ci;j , .i; j / 2 IX .Y /, but poles at the vertices of the
remaining segments:

�.Ci ;Ci;�0/C�.Dl ;Dl;�0/D
X

.i;j /2IXnIX .Y /

�.Ci ;Ci;j /C
X

.l;m/2IY nIY .X/

�.Dl ;Dl;m/;

where the two summations are over segments in Ci and Dl , respectively, that are not
in the intersection @X�0 \ @Y�0. If there are no such segments, then .Ci ; Ci;�0/ and
.Dl ; Dl;�0/ coincide as positive geometries with opposite signs for their canonical form.
In this case the 2-form �.P2; X�0/C�.P2; Y�0/ has no poles along Ci . We conclude
that the 2-form �.P2; X�0/C �.P2; Y�0/ has poles along the union @X [ @Y , except
along the curves Ci D Dl for which Ci;�0 D Dl;�0. It has residues along each boundary
segment coinciding with the residue of �.P2; X�0/ or �.P2; Y�0/, when the segment
is on the boundary @X�0 or @Y�0, respectively. In conclusion, .P2; Z�0/ with canonical
form �.P2; Z�0/ D �.P2; X�0/C�.P2; Y�0/, is a pseudo-positive geometry.

Case (3) is similar to case (2), with set difference instead of union between X�0 and
Y�0, but the underlying geometry needs more attention. The segments of @Z�0 are of three
kinds. The two first kinds are the segments of @Y�0 that do not contain segments of @X�0
and the segments of @X�0 that are not contained in segments of @Y�0. The third kind are
segments in Dl;m n Ci;j , whenever Ci;j ¨ Dl;m. Each endpoint of a segment of the third
kind is an endpoint of Dl;m or an endpoint of a segment Ci;j contained in Dl;m but not
both, by the additional condition on segments Ci;j and Dl;m. Of course, the vertices of
Z�0 are simply the set of endpoints of these three kinds of segments.

Clearly�.P2;Y�0/��.P2;X�0/ has poles along any curve in @Y n @X and @X n @Y .
Note that since X�0 � Y�0, their orientations coincide on X>0. In particular, along any
segment in the common boundary @Y \ @X , the orientation coincides. The difference
between the canonical forms �.P2; Y�0/ � �.P2; X�0/ will therefore have vanishing
residue at vertices that are vertices of both X�0 and Y�0, similar to the additive case (2).
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For segments of the third kind, only one of the canonical forms has a non-zero residue at
each vertex, so the difference has residue ˙1. In particular, �.P2; Y�0/ � �.P2; X�0/
would have poles along a common boundary curve only if it contains segments of the
third kind. In conclusion, .P2; Z�0/ with canonical form �.P2; Z�0/ D �.P2; Y�0/ �
�.P2; X�0/, is a pseudo-positive geometry.

In the next examples, we use the additivity property described in the proposition to
find positive geometries in the plane whose boundary curve, unlike the rational polypol
case, does not have a unique adjoint through its residual points. The numerator of the
canonical form is still an adjoint to the boundary curve in this sense (see Proposition 2.14),
but when there is more than one adjoint, the numerator cannot be characterized only by
the condition of being a curve passing through the residual points. Non-unique adjoints
appear when there are fewer boundary components than vertices, or when the boundary
forms several cycles and not one as in the rational polypol case.

Example 2.19. Let .P2;X�0/ and .P2; Y�0/ be positive geometries, where X�0 and Y�0
are disjoint triangles in the plane. Then .P2;Z�0/, whereZ�0 DX�0 [ Y�0, is a positive
geometry with canonical form

�.P2; Z�0/ D �.P
2; X�0/C�.P

2; Y�0/ D
f1 C f2

f1f2
dx ^ dy;

where f1 and f2 are cubic forms that define the triangles @X and @Y . The cubic curve
¹f1 C f2 D 0º lies in the pencil of curves generated by the two triangles. The sextic curve
@X [ @Y has 9 D 3 � 3 residual points, namely the pairwise intersections of a line on @X
with a line on @Y . Hence, all cubic curves in the pencil generated by the two triangles are
adjoints to the sextic curve.

Example 2.20. We now return to Example 2.13 and show that the canonical form of
.P2; X�0/ in Figure 5 is as claimed in (2.2). As in Figure 5, we denote by Xij;�0 the
(simply connected region of the) polypol with vertices vi and vj . Its adjoint is the line
Llm spanned by vl and vm where ¹i; j; l;mº D ¹1; 2; 3; 4º. By Theorem 2.15, .P2;Xij;�0/
is a positive geometry with canonical form ˛lm

f1f2
dx ^ dy, where fi is a defining equation

of the conic Ci and ˛lm is a defining equation of the adjoint line Llm.
Consider the rational polypol Yij;�0 D X�0 [ Xij;�0 with vertices vl and vm. Its

unique adjoint is the line Lij . By Theorem 2.15, .P2; Yij;�0/ is a positive geometry with
canonical form ˛ij

f1f2
dx ^ dy. By Proposition 2.18 (3),

�.P2; X�0/ D �.P
2; Y12;�0/ ��.P

2; X12;�0/ D
˛12 � ˛34

f1f2
dx ^ dy;

so the numerator defines a line in the pencil generated by L12 and L34, i.e., a line that
passes through their intersection point r1; see Figure 5. Similarly,

�.P2; X�0/ D
˛14 � ˛23

f1f2
dx ^ dy;
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so the numerator defines a line that is also in the pencil generated by L14 and L23, i.e.,
that passes through their intersection point r2. Hence, the unique line in both pencils is the
adjoint line to the quadrangle that is the convex hull of the four vertices.

Note that in this case, there are no residual points. Therefore, any line is an adjoint
curve, passing through the empty set of residual points. An ad hoc argument characterizes
the numerator of the canonical form as a particular adjoint curve.

3. Real topology of adjoint curves

In finite element computation, one seeks basis functions for the elements which achieve a
certain degree of approximation within each element while maintaining global continuity.
This was a main motivation for E. Wachspress to prove that the adjoint curve of a real
rational polypol P is a common denominator for a rational basis on P , which can be
generated to achieve any specified degree of approximation within P while maintaining
global continuity [36].

At present, except for the case of polygonal/polytopal elements, the latter rational ele-
ments have limited applicability. This is primarily due to the complexity of integrations
required for generation of finite element equations, see for instance [36, p. 33]. Addi-
tionally, their practical value depends upon the validity of Wachspress’s conjecture (see
Conjecture 3.4), which is only settled in very few cases. It was originally stated for poly-
cons, i.e., polypols with lines and conics for boundary curves.

In Section 3.1, we present his extension of the conjecture to the case of polypols, see
[37]. The statement is known to hold in the case of convex polygons. We give a complete
characterization of the real topology of the adjoint in this case in Section 3.2. In particular,
we prove that the adjoint is strictly hyperbolic and show that an analogous statement fails
to hold in higher dimensions. Finally, in Section 3.3, we consider polycons defined by
three ellipses, which is the first unsolved case of Wachspress’s conjecture. We prove the
conjecture for 33 out of 44 topological classes of configurations, including all cases of
maximal real intersection, that is to say all cases where the ellipses meet pairwise in four
real points.

3.1. Regular polypols and Wachspress’s conjecture

Let P be a quasi-regular rational polypol defined by real curves Ci , real vertices vij , and
given sides. Recall that the sides of P are segments of Ci .R/ going from vi�1;i to vi;iC1
that bound a closed semi-algebraic region P�0 in P2.R/.

Definition 3.1. We say that a quasi-regular polypol P is regular if all points on the sides
of P except the vertices are nonsingular on C D

Sk
iD1 Ci and C does not intersect the

interior of P�0.

This definition generalizes Wachspress’s notion of well-set polycons from [36, p. 9]
and captures his notion of a regular algebraic element in [37]. It implies that a regu-
lar polypol has no residual points contained in P�0. Moreover, the union of the sides is
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Figure 6. A non-convex polygon for which the adjoint curve intersects the interior.

homeomorphic to the circle S1, so the complement has a simply connected component
which is the interior of the set P�0.

Example 3.2. A polygon is a regular polypol if and only if it is convex.

Example 3.3. All three polypols in Figure 1 are regular. Of the eight quasi-regular poly-
pols in Figure 3 (discussed in Remark 2.6), none are regular. However, there are four
choices of triples of vertices and sides in Figure 3 that define a regular polypol, namely
the four “triangles” (one adjacent to each A, B , C , and one in the middle).

Conjecture 3.4 (see [36, pp. 153–154], [37]). The adjoint curve of a regular rational
polypol P does not intersect the interior of P�0.

The regularity assumption is needed in this conjecture, which we can already see in
the case of linear boundary. Indeed, a non-convex polygon is a quasi-regular polypol but
its adjoint can intersect the interior, see Figure 6.

Wachspress himself claims that it is easy to show that the adjoint curve cannot inter-
sect the sides of a regular rational polypol P , see [37, p. 396]. However he presents no
supporting arguments. For the sake of completeness, we prove this statement below.

Let p 2 C be a singular point on a plane curve C . Recall that the ı-invariant (or
genus discrepancy) of C at p is defined as ıp WD dim O0=O, where O WD OC;p is the local
ring of C at p and O0 its normalization. The difference between the arithmetic genus and
geometric genus of C is equal to

P
p2SingC ıp .

Lemma 3.5. Let P be a rational polypol defined by boundary curves C1; : : : ; Ck that
intersect transversely. Then the adjoint curve AP intersects Ci only at the residual points,
with intersection multiplicity equal to 2ıp at each singular point p 2 Ci and with intersec-
tion multiplicity one at each of the remaining residual points. In particular, if P is regular,
then the adjoint curve does not contain any points on the sides of P .
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Proof. Let di D degCi and d D d1C � � �C dk . There are di .d � di /� 2 residual points on
Ci that are intersection points with the other boundary curves. The adjoint curveAP has to
intersect Ci at these points with multiplicity at least one. Note that by Proposition 2.2, no
Ci is a component of AP . Since the genus of Ci is zero, we have

P
p2SingCi ıp D

�
di�1
2

�
.

By [10, Cor. 4.7.3], the intersection multiplicity of Ci and AP at p 2 SingCi is equal to
2ıp . Therefore, the total intersection number of AP and Ci is at least

di .d � di / � 2C 2

�
di � 1

2

�
D di .d � 3/ D di � degAP :

By Bézout’s theorem, there cannot be any further intersection points.

Remark 3.6. The lemma holds without the assumption that the boundary curves intersect
transversally: The adjoint curve AP intersects the total boundary curve C only at the
residual points, with multiplicity 2ıp at each such point p. Indeed, by [18, Thm. 2, p. 190],

ga.C / D
X

g.Ci /C
X

p2R.P/

ıp C k � .k � 1/ D
X

p2R.P/

ıp C 1;

hence 2
P
p2R.P/ ıp D 2ga.C /� 2D d.d � 3/. By [10, Cor. 4.7.3], the total intersection

number of AP and C is at least 2
P
p2R.P/ ıp , so by Bézout’s theorem, there cannot be

any further intersection points.

Lemma 3.5 is insufficient to show Wachspress’s conjecture (i.e., that the adjoint is
outside of a regular rational polypol) since the adjoint curve might have an oval (or a
singular oval) contained strictly inside P�0. However, it is enough for polypols of total
degree at most 5, as E. Wachspress observed already, see [38, Sec. 5.3].

Proposition 3.7. Wachspress’s conjecture holds for polypols of total degree at most 5.

Proof. If the total degree of the polypol P is 4, the degree of the adjoint is 1, so it is a
real line in the projective plane. In particular, its real locus is P1.R/. However, the region
P�0 cannot contain a real line that does not intersect the bounding sides and therefore the
adjoint cannot pass through the polypol by Lemma 3.5.

If the total degree of the polypol P is 5, the degree of the adjoint is 2 and hence its real
locus is always connected. It can either be an acnode or it is connected of dimension 1.
Using Lemma 3.5, the conjecture follows by showing that there is always a real residual
point, which is outside of P�0 by regularity, so that there is a real point of the adjoint
outside of the polypol.

The possible degrees of the bounding curves are the following: .1; 4/, .2; 3/, .1; 1; 3/,
.1; 2; 2/, .1; 1; 1; 2/, and .1; 1; 1; 1; 1/. In the first case, the rational real quartic curve has
at least one real singularity, which is a residual point. The second and third case are the
same because the real rational cubic also has a real singularity. In the next two cases with
a conic, one of the lines intersects the conic in a vertex, so a real point, which means that
the other intersection point is a real residual point. The last case is a convex pentagon with
five real residual points.
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3.2. Convex polygons

In the case of convex polygons, which are precisely regular polypols with lines as bound-
ary curves, Wachspress proved that the adjoint polynomial does not vanish within the
polygon; see [36, pp. 96, 147, and 154].

Let P�0 � R2 be a convex k-gon for k 2 N, k � 4. We label its edges E1; : : : ; Ek
cyclically around the boundary of P�0 and write Ci WD Ei for their Zariski closure in P2.
Our main result in this section is a complete description of the real topology of the adjoint
curve of a convex polygon.

Theorem 3.8. The adjoint curve AP of a convex k-gon P�0 is hyperbolic with respect
to every point e 2 P�0. Moreover, it is strictly hyperbolic, i.e., it does not have any real
singularities.

More precisely, AP has bk�3
2
c disjoint nested ovals. If the total degree k is even, there

is additionally a pseudoline contained in the region in the complement of the ovals that is
not simply connected. In this case, the residual intersection point of Ci and CiCk=2 lies on
the pseudoline component (where the index should be read modulo k). In general, for k
even or odd, the residual intersection point of Ci and CiC1Cm for a positive integer m <
k
2
� 1 lies on the m-th oval counting from the inside (that is to say from P�0 outwards).

Here, a pseudoline of a smooth real algebraic curveX � P2 is a connected component
S of X.R/ such that P2.R/ n S is connected. An oval of X is a connected component S
of X.R/ such that P2.R/ n S has two connected components. In that case, one connected
component of P2.R/ n S is contractible while the other is a Möbius strip. An oval S1 of
X is nested in another oval S2 if S1 is contained in the contractible connected component
of P2.R/ n S2.

The adjoint curves of a convex heptagon and octagon are illustrated in Figure 7. Note
that in particular, Theorem 3.8 implies Conjecture 3.4 for polygons. In the sequel we give
some auxiliary lemmas that we need for proving Theorem 3.8. The following result is
common knowledge in the literature of hyperplane arrangements.

Figure 7. The adjoint of a heptagon and an octagon. See Lemma 3.9.
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Lemma 3.9. Let P�0 � R2 be a convex k-gon for k � 4. Then the set P2.R/ n
Sk
iD1 Ci

has exactly the following connected components:

(1) the interior of the polygon P�0;
(2) for every i D 1; : : : ; k, a connected component bounded by the three lines Ci�1,

Ci , CiC1; note that this component is the interior of a triangle bounded by the
edge Ei ;

(3) for every pair of vertices vi�1;i and vj�1;j with cyclic distance at least two, there
is a connected component bounded by the four lines Ci�1, Ci , Cj�1, and Cj .

Proof. We first note that on every line Ci , the intersection points with the other lines
appear in the order vi1; vi2; : : : ; vik , where we leave out vi i in that list. Since each line Ci
contains the edge Œvi�1;i ; vi;iC1�, this claim follows from the fact that P�0 is convex.

For example, in the case of the heptagon (see Figure 7) on the line C2, we have the
consecutive points: v21; v23; v24; v25; v26; v27. The figure also illustrates the k D 8 case.

A union of connected components of P2.R/ n
Sk
iD1 Ci is bounded by intervals on

the lines Ci adjacent to the region between intersection points vi;j and vi;l such that we
have a cyclic ordering of these intersection points vi1;i2 ; vi2;i3 ; : : : ; vil�1;il ; vil ;i1 . This is a
connected component of the complement of the lines Ci if there are no intersection points
in the interval between two intersection points vij and vil on line Ci , which is to say that
l D j C 1 or l D j � 1. The cyclic ordering follows from the assumption that the k-gon
P�0 is convex. The statement of the lemma is now a combinatorial case analysis.

Lemma 3.10. LetP�0 �R2 be a convex k-gon for k � 4. The real locusAP .R/�P2.R/
of the adjoint curve AP has at least bk�3

2
c disjoint nested ovals.

Proof. The main idea of the proof is that we can determine the sign of the adjoint poly-
nomial on every interval on every line Ci . For this, fix a homogeneous polynomial ˛P of
degree k � 3 defining the adjoint curve AP .

Throughout the proof one should keep in mind that there is a case distinction: if k is
even, then the adjoint has odd degree and the position of the line at infinity with respect to
the polygon matters for sign considerations. In particular, the adjoint polynomial changes
sign along the line at infinity. For k odd, the adjoint has even degree and a well-defined
sign on P2.R/ so that the position of the line at infinity relative to P�0 does not matter.
Nevertheless, without loss of generality we assume that the polygon is in general posi-
tion: Namely, no two lines Ci and Cj intersect at infinity and the line at infinity does not
intersect the interior of the polygon P�0.

Step 1 (Existence of the ovals). Let us fix a line L WD Ci that is the Zariski closure of an
edge of P�0. Then there are lines Ci�1 and CiC1 whose intersection points with L lie in
the boundary of P�0. The intersections with the other k � 3 lines Cj (j … ¹i � 1; i; i C 1º)
lie on AP . By Lemma 3.5, the adjoint curve meets each boundary line only at the residual
points. Thus, the line L is not entirely contained in AP and the k � 3 intersection points
of L with the lines Cj are the roots of the restriction of ˛P to L. So they are all simple
roots and the sign of ˛P jL changes in each of these points, and only at these points.
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This argument determines the sign of ˛P (up to a global change of signs) on all the
k lines C1; : : : ; Ck . By changing the sign of ˛P , if necessary, we can assume that p̨ is
positive on every edge of P�0.

We now look at the regions in the complement of the line arrangement C1; : : : ; Ck
described in Lemma 3.9 and the sign of ˛P on the bounding edges.

By our choice of sign of ˛P , it is positive on all edges bounding regions of type 1 and
2 in Lemma 3.9. We look at regions of type 3 that have four bounding line segments. For
these regions, the equation ˛P is positive on two of these line segments and negative on
the other two. Therefore ˛P has a connected component inside this region which passes
through two intersection points Cj1 \ Cj2 , respectively Cl1 \ Cl2 in the boundary of this
region. If the line at infinity intersects the region, we have to modify this argument slightly:
Even in this case, there are two residual points where the adjoint curve locally around this
point enters the bounded region. So we also conclude in this case that each of the regions
of type 3 intersects at least one connected component of the real locus of the adjoint curve
that divides it into two 2-dimensional parts.

Step 2 (Computing the number of ovals). Let us now count how many ovals one can
construct as shown in Step 1 above. Consider a region of type 3 in Lemma 3.9 which is a
4-gon with edges from vi�1;j�1 to vi�1;j on Ci�1, from vi�1;j to vi;j on Cj , from vi;j
to vi;j�1 on Ci , and from vi;j�1 to vi�1;j�1 on Cj�1. Since the adjoint polynomial has
the same sign on the intervals on the curves Ci�1 and Cj and a different sign on the other
two intervals on Cj�1 and Ci , it has to change sign inside the region. Therefore, there is at
least one branch of the real locus inside this region. By moving the indices cyclically, these
regions arrange in a circle around the polygon (one example shown in pink in Figure 7). In
particular, two regions of type 3 determined by the vertices vi�1;i and vj�1;j , resp. vk�1;k
and vl�1;l belong to the same circle of regions if the cyclic distances between the indices
i and j and the indices k and l are equal. Overall, we have bk�3

2
c such circles of regions

for vertices of cyclic distance less than k
2

.
If we take a line L through the interior of the polygon that does not contain a residual

point, it must therefore pass through at least 2bk�3
2
c such regions, two for each circle. By

the sign argument above, it has at least one real intersection point with the adjoint in each
region. Such a line intersects the adjoint curve therefore in k � 3 real points if k � 3 is
even, hence all intersection points with the adjoint are real. Otherwise, we have k � 4 real
intersection points and the only missing one must therefore also be real.

A posteriori we conclude, that there is precisely one branch of the adjoint curve in
every region of type 3 determined by vertices vi�1;i and vj�1;j of cyclic distance less than
k
2

. This branch contains the residual points vi�1;j�1 and vi;j . Moreover, these branches,
by shifting the indices cyclically, glue to a real oval of the adjoint.

Example 3.11. In the case of the octagon (k D 8) from Figure 8, the sign sequence on any
line Ci is, up to cyclic permutation, .C;�;C;C;C;�;C;�/. Whereas for the heptagon
(k D 7) we obtain the sign sequence .C;�;C;C;C;�;C/.
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Figure 8. The adjoint polynomial of an octagon changes sign on every line Ci , i D 1; : : : ; k, when
Ci crosses the line at infinity. On the red line segments the adjoint polynomial is positive, whereas
on the blue line segments it is negative.

We are now ready to prove Theorem 3.8.

Proof of Theorem 3.8. By Lemma 3.10 , the adjoint curve has at least bk�3
2
c disjoint nes-

ted ovals and k � 3 is the degree of the adjoint curve AP . By [35, Cor. 1.3 (C)], AP has no
other ovals besides the ones we counted above. Therefore (see for instance [17, Thm. 5.2]),
the adjoint AP is hyperbolic with respect to every point in the interior of the region in the
complement of the adjoint curve in P2.R/ containing the polygon P�0. The fact that the
curve is strictly hyperbolic now follows from Bézout’s Theorem by contradiction: If it had
a real singularity, a line spanned by the singularity and an interior point of the polygon
would intersect the adjoint in more than its degree many points.

Remark 3.12. The hyperbolicity of the adjoint of convex polygons does not generalize
to higher-dimensional polytopes, as Example 3.13 shows. The adjoint hypersurface of a
polytope can be defined via an analogous vanishing condition as discussed in Section 2.1;
see [21]. Let P�0 � Pn.R/ be a polytope with k facets. Its residual arrangement consists
of all linear spaces that are intersections of hyperplanes spanned by facets of P�0 but that
do not contain any face of P�0. If the hyperplane arrangement spanned by the facets of
P�0 is simple (i.e., through any point in Pn.R/ pass at most n hyperplanes), the adjoint
hypersurface of P�0 is the unique hypersurface of degree k � n � 1 that passes through
its residual arrangement.

Example 3.13. Figure 9 shows a three-dimensional convex polytope whose adjoint sur-
face is not hyperbolic. The combinatorial type of the polytope is a cube with a vertex cut
off. However, its vertices are perturbed such that the plane arrangement spanned by the
seven facets of the polytope is simple. Its residual arrangement consists of six lines and
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Figure 9. Non-hyperbolic adjoint surface of a convex polytope.

one isolated point. The adjoint is the unique surface of degree three passing through the
six lines and the point. In this example, it is a smooth surface (see [21, Exm. 4.12]). Since
hyperbolic cubic surfaces contain exactly three real lines, the adjoint surface of the poly-
tope cannot be hyperbolic; see [33, Ch. 5] – the hyperbolic type is case (5.4.5) on page
134 in Silhol’s book.

3.3. Three conics

The first non-trivial case of Conjecture 3.4 when a polypol is bounded by curves of degree
greater than one is the case of three real conics; see Proposition 3.7. Polycons of total
degree six have recently been discussed by his grandson J. Wachspress in [39], but his
arguments are non-conclusive. Below we attempt to settle the same case. Firstly, we clas-
sify all regular polycons bounded by three ellipses that meet transversally. Secondly, for
almost all such polycons (including the cases of completely real intersections, the M -
case), we show that the adjoint curve lies strictly outside of the polycon. Thirdly, for
each of the remaining cases, we find a representing triple of ellipses (with a polycon) and
compute the equation of its adjoint. In every example we have constructed, Wachspress’s
conjecture turns out to hold, but a formal argument which settles these cases in complete
generality is currently still missing. Additionally, we observe that, in contrast to the case of
polygons discussed in Section 3.2, there are configurations of three ellipses and a polycon
for which the adjoint curve is not hyperbolic; see Remark A.7.

Theorem 3.14. There are exactly 44 topologically non-equivalent configurations of three
ellipses in R2 such that each pair of ellipses intersects each other transversally and in at
least two real points, and all three of them do not intersect at a common real point. In 33
of these configurations, the adjoint curve of any regular polycon P in the configuration
does not intersect the interior of P�0.

For the proof of Theorem 3.14, we refer the reader to the appendix in Section A,
where the 44 admissible configurations of three ellipses are presented in a catalog; see
Sections A.1–A.3. Moreover, for 28 of these configurations (and all polycons existing
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in these configurations) we prove Wachspress’s conjecture by showing that the adjoint
curve has to be hyperbolic with the oval lying strictly outside of the polycon; see Proposi-
tion A.3. Thus, we are left with 16 problematic configurations. Finally, in Proposition A.4
we give a more intricate argument for 5 of the problematic configurations. We also com-
pute the adjoint curve for example instances of the problematic polycons in the remaining
11 configurations, see Figure 37.

4. Finite adjoint maps

The adjoint of a heptagon is a quartic curve, which has 14 degrees of freedom. Moreover,
the adjoint is parametrized by the 14 vertex coordinates of the heptagon. It has been
observed in [22] that the adjoint map, taking the vertices to the adjoint, is finite for hep-
tagons and the authors posed the question to determine its degree. In this section, we
conjecture that a general quartic curve is the adjoint of 864 heptagons and give numerical
evidence. Moreover, we introduce an analogous adjoint map for arbitrary rational polypols
and identify all cases in which it is generically finite.

We fix positive integers d1; : : : ; dk for k � 2 to denote the degrees of the boundary
curves of a polypol. Let Rdi be the space of complex rational plane curves of degree di .
We consider the space Yı

d1;:::;dk
� Rd1 � � � � �Rdk � .P

2/k given by

Yıd1;:::;dk D

´
.C1; : : : ; Ck ; v12; : : : ; vk1/

ˇ̌̌̌
ˇ
Ci 2 Rdi is nodal, Ci and Cj for i ¤ j
intersect transversally; vij 2 Ci \ Cj
is a nonsingular point on Ci and Cj

µ
;

and its Zariski closure Yd1;:::;dk D Yı
d1;:::;dk

in Rd1 � � � � �Rdk � .P
2/k .

Lemma 4.1. The variety Yd1;:::;dk has dimension 3d � k, where d D d1 C � � � C dk .

Proof. The image of the projection Yı
d1;:::;dk

! Rd1 � � � � �Rdk is dense and has finite
fibers (of cardinality d21 d

2
2 � � � d

2
k

). Therefore

dim Yd1;:::;dk D dim Yıd1;:::;dk D dim.Rd1 � � � � �Rdk / D 3d � k:

The adjoint map is the rational map

˛d1;:::;dk W Yd1;:::;dk Ü P
�
CŒx; y; z�d�3

�
;

that takes a rational polypol to a defining equation of its adjoint curve.

Theorem 4.2. The adjoint map ˛d1;:::;dk is dominant and generically finite precisely in
the following cases, up to cyclic permutations, and up to reversing the order:

.d1; : : : ; dk/ D .2; 2; 2; 2/; .1; 2; 2; 3/; .1; 2; 3; 2/; .1; 1; 3; 3/; .1; 1; 2; 4/;

.1; 2; 1; 4/; .1; 1; 1; 5/; .1; 1; 1; 1; 1; 1; 1/: (4.1)
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Figure 10. Four vertices and six residual points parameterizing Yı
d1;d2;d3;d4

for all types in
Lemma 4.3 with k D 4.

To prove Theorem 4.2, we need the following lemma.

Lemma 4.3. For all types listed in (4.1), as well as .d1; : : : ; d4/D .1; 3; 1; 3/, the variety
Yd1;:::;dk is irreducible.

Proof. To prove this, we give explicit rational parameterizations of Yı
d1;:::;dk

for all types
in (4.1) and for .d1; : : : ; d4/ D .1; 3; 1; 3/. In each of the cases with k D 4, the paramet-
erization is given by .P2/10 Ü Yı

d1;d2;d3;d4
, taking 6 residual points r1; : : : ; r6 and the

four vertices v12; v23; v34; v41 to a polypol. This is illustrated in Figure 10.
For instance, for type .2; 2; 2; 2/ we get four conics in the following way. Let C1,

respectively C4, be the unique conic passing through ¹r1; r2; r3º and ¹v12; v41º, respect-
ively ¹v34; v41º. Similarly, let C2, respectively C3, be the conic uniquely determined by
¹r4; r5; r6º and ¹v12; v23º, respectively ¹v23; v34º. The parameterization of all other k D 4
cases can be deduced from Figure 10.

In the case .d1; : : : ; d7/ D .1; 1; 1; 1; 1; 1; 1/, the boundary curves are straight lines
and given 7 points in the plane we find the equations for the 7 lines defining this polygon.
This gives a rational parameterization .P2/7 Ü Yı1;1;1;1;1;1;1.

Proof of Theorem 4.2. For ˛d1;:::;dk to be dominant and generically finite, we must have
dim Yd1;:::;dk D dim P .CŒx; y; z�d�3/ D

�
d�1
2

�
� 1. Using Lemma 4.1, we obtain

3d � k D

�
d � 1

2

�
� 1: (4.2)
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To find all integer solutions of this equation where d � k, we write (4.2) as d2 � 9d C
2k D 0. Hence, the solutions are

d D
9

2
˙
1

2

p
81 � 8k:

We have positive integer solutions if and only if k 2 ¹4; 7; 9; 10º. Considering the con-
straint d � k, the only possible solutions are .k; d/ 2 ¹.4; 8/; .7; 7/º. It follows that, based
on this dimension count, the 9 possible candidates for .d1; : : : ; dk/ such that the adjoint
map can be dominant and generically finite are given in Lemma 4.3. Below, in Proposi-
tion 4.5, we will show that generic finiteness fails for .d1; : : : ; dk/ D .1; 3; 1; 3/.

We now show that for the types listed in (4.1), the adjoint map is dominant and has
generically finite fibers. Since both domain and codomain of the adjoint map are irre-
ducible by Lemma 4.3 and of the same dimension, by [26, Ch. 1, Sec. 8, Thm. 2 and
Cor. 1], it suffices to show that there is an isolated point in ˛�1

d1;:::;dk
.˛P / for some adjoint

˛P 2 P .CŒx; y; z�d�3/. We do this for the cases in (4.1) via certified numerical computa-
tion. We sketch these computations and work out an example for .d1; : : : ;d4/D .2;2;2;2/
below (Example 4.4). In what follows, we write shortly Yı;Y for Yı

d1;:::;dk
;Yd1;:::;dk .

The variety Y is embedded in the space Rd1 � � � � �Rdk � .P
2/k of tuples of bound-

ary curves and vertices. In order to write down explicit polynomial equations, we work in
a larger ambient space which also keeps track of residual points and the adjoint. The resid-
ual points come in groups of size didj � 1 for .i; j / 2 	 WD ¹.1; 2/; : : : ; .k � 1; k/; .1; k/º

and didj for .i; j / 2 � n 	 where � WD ¹.i; j / j 1 � i < j � kº. Hence, a point P 2 Yı

corresponds to a rational polypol with ordered tuple of residual points

R.P / 2 W WD
Y

.i;j /2�n	

.P2/didj �
Y

.i;j /2	

.P2/didj�1

and with a unique adjoint ˛P 2 P .CŒx; y; z�d�3/.
We consider the subset of�

Rd1 � � � � �Rdk � .P
2/k
�
�W � P

�
CŒx; y; z�d�3

�
(4.3)

consisting of all points .P;R.P /; p̨/ such that

(i) P 2 Yı,

(ii) ˛P .p/ D 0 for any projection p of R.P / onto a factor of W ,

(iii) p 2 Ci for p 2 ¹vi�1;i ; vi;iC1º and for p equal to any of the relevant residual
points.

The Zariski closure of this set in (4.3) is denoted by yY. It is clear that generic finiteness
of the projection yY ! P .CŒx; y; z�d�3/ is equivalent to generic finiteness of ˛d1;:::;dk .
With this setup, yY is contained in the variety given by the incidences (ii) and (iii). For all
.d1; : : : ; dk/ from (4.1), this gives a system of polynomial equations F.P;R.P /I˛P /D 0
with as many equations as unknowns (the coordinates of P , R.P /), parameterized by the
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coefficients of the adjoint ˛P ; see Example 4.4 for an illustration. The solution set for a
general ˛P contains the fiber of yY ! P .CŒx; y; z�d�3/ over ˛P . We proceed as follows.

(1) Fix a polypol P 2 Yı.

(2) Compute its residual points R.P / and its adjoint ˛P .

(3) Verify that .P;R.P // is a regular, isolated solution of F.P;R.P /I˛P /D 0. Here,
by a regular, isolated solution we mean an isolated solution of multiplicity one.
Equivalently, these are solutions at which the Jacobian matrix of the square poly-
nomial system has full rank.

(4) Conclude that yY! P .CŒx;y;z�d�3/ is dominant and has generically finite fibers.

Step 2 is performed using the software HomotopyContinuation.jl (v2.3.1) [8] and
EigenvalueSolver.jl [6]. Although this only leads to numerical approximations of
R.P / and ˛P , using certification in Step 3 leads to a rigorous proof that we found a
regular, isolated solution. For this, we used the certification method proposed in [7] and
implemented in HomotopyContinuation.jl. The certificates obtained from this com-
putation will be made available at httpsW//mathrepo.mis.mpg.de.

Example 4.4 (The case of .2; 2; 2; 2/-polypols). To illustrate how we compute fibers of
yY ! P .CŒx; y; z�d�3/ in the proof of Theorem 4.2, we work out the case .d1; : : : ; d4/ D
.2; 2; 2; 2/ explicitly. We have k D 4 and d D 8. To describe the variety yY, we consider the
incidence variety given by all points .C1IC2IC3IC4I v12; v23; v34; v41I r1; : : : ; r20I ˛P /
in R2 �R2 �R2 �R2 � .P2/4 � .P2/20 � P .CŒx; y; z�5/ satisfying

˛P .ri / D 0; i D 1; : : : ; 20;

f1.v14/ D f1.v12/ D 0; f1.ri / D 0; i D 1; 2; 3; 7; 8; 9; 13; 14; 15; 16;

f2.v12/ D f2.v23/ D 0; f2.ri / D 0; i D 4; 5; 6; 7; 8; 9; 17; 18; 19; 20;

f3.v23/ D f3.v34/ D 0; f3.ri / D 0; i D 4; 5; 6; 10; 11; 12; 13; 14; 15; 16;

f4.v34/ D f4.v41/ D 0; f4.ri / D 0; i D 1; 2; 3; 10; 11; 12; 17; 18; 19; 20;

(4.4)

where fi is a defining equation of Ci . The 20 residual points .r1; : : : ; r20/ 2 .P2/20 are
subdivided into

¹r1; r2; r3º � C1 \ C4; ¹r4; r5; r6º � C2 \ C3;

¹r7; r8; r9º � C1 \ C2; ¹r10; r11; r12º � C3 \ C4;

¹r13; r14; r15; r16º � C1 \ C3; ¹r17; r18; r19; r20º � C2 \ C4:

(4.5)

For instance, for the .2; 2; 2; 2/-polypol in Figure 10, the two groups of residual points
in C1 \ C4 and C2 \ C3 are marked by purple dots. The points r7; : : : ; r12 are the
non-marked intersection points, and r13; : : : ; r20 are complex. The 68 equations (4.4)
define a variety in the 88-dimensional space R2 �R2 �R2 �R2 � .P2/4 � .P2/20 �
P .CŒx; y; z�5/.

https://mathrepo.mis.mpg.de
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Figure 11. Two regular (2,2,2,2)-polypols that share the same adjoint. (The adjoint is nonsingular,
even though it here looks singular.)

This variety contains the 20-dimensional yY. We view (4.4) as a system of 68 poly-
nomial equations on the 68-dimensional space R2 �R2 �R2 �R2 � .P2/4 � .P2/20,
parameterized by the coefficients of ˛P . The fiber of yY ! P .CŒx; y; z�5/ over a generic
quintic plane curve ˛P consists of all solutions to these equations.

Theorem 4.2 implies that yY ! P .CŒx; y; z�5/ is a branched covering, which means
that once we found a solution to (4.4), we can use it as a seed for a monodromy computa-
tion [12]. This allows us to compute different polypols with the same adjoint. An example
obtainedusing the monodromy_solve command in HomotopyContinuation.jl isgiven
in Figure 11.

Theorem 4.2 covers all types of polypols in Lemma 4.3, except .1; 3; 1; 3/. The fol-
lowing result implies that the set of quintic plane curves that are the adjoint curve of a
.1; 3; 1; 3/-polypol is a lower-dimensional subvariety of P .CŒx; y; z�5/.

Proposition 4.5. The adjoint map ˛1;3;1;3 W Y1;3;1;3 Ü P .CŒx; y; z�5/ that takes a poly-
pol of type .1; 3; 1; 3/ to its adjoint curve is not dominant.

Proof. By Lemma 4.3, the source and target are irreducible of the same dimension, so the
map is dominant only if the general quintic curve is an adjoint for finitely many polypols.
Thus, if the map is dominant, then the general adjoint curve would be nonsingular.

So let A be a nonsingular quintic plane curve, adjoint to a rational polypol of type
.1;3;1;3/. We claim thatA is the adjoint curve of a positive-dimensional family of rational
polypols of type .1; 3; 1; 3/.

Let C1 and C3 be the lines and C2 and C4 the irreducible nodal cubic curves of the
polypol for which A is the adjoint. Let r1 be the intersection point of the two lines,
r2 and r4 the nodes of C2 and C4 respectively, and let C1 \ C2 D ¹r3; r5; v12º; C2 \
C3 D ¹r6; r7; v23º; C1 \ C4 D ¹r8; r9; v14º; C3 \ C4 D ¹r10; r11; v34º and C2 \ C4 D
¹r12; : : : ; r20º. Then the quintic curve A passes through the points r1; : : : ; r20.

On A the points r12; : : : ; r20 form a divisor of degree 9. It is non-special, since a
canonical divisor of A is the intersection with a conic and the 9 points r12; : : : ; r20 are
not contained in a conic section. Therefore, by Riemann–Roch, it moves in a complete
linear system L of projective dimension 3. Now C2 belongs to the linear system jC2j of
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cubic curves with a node at r2 and passing through the four points r3; r5; r6; r7 which
has dimension at least 2. Similarly C4 belongs to the linear system jC4j of cubic curves
with a node at r4 and passing through the four points r8; r9; r10; r11, also of dimension at
least 2. These two linear systems of curves restrict to linear systems of divisors L2 and
L4 of degree 15 on A that have dimension at least 2. Both L2 and L4 have a fixed part
of degree 6 and a moving part of degree 9. The fixed part of L2 is r2 with multiplicity
2 and r3; r5; r6; r7. Similarly r4 and r8; r9; r10; r11 is the fixed part of L4. In both cases,
r12; : : : ; r20 belong to the moving part. So the moving part M2 of L2 and the moving part
M4 of L4 are subsystems of L. For dimension reasons they must meet at least in a pencil.
Each divisor r 012; : : : ; r

0
20 in that pencil is the intersection of nodal cubic curves C 02 and

C 04 that together with C1 and C3 define a rational polypol whose adjoint curve is A. This
concludes the proof of the claim, and thereby the proposition.

The proof of Proposition 4.5 does not exclude that the (closure of the) image of the
adjoint map ˛1;3;1;3 is the discriminant locus of P .CŒx; y; z�5/. The following example
shows that almost all quintic curves adjoint to a .1; 3; 1; 3/-polypol are nonsingular.

Example 4.6. The image of the .1; 3; 1; 3/-polypol with vertices v12 D .1 W �1 W 1/; v23 D
.1 W 1 W 1/; v34 D .�1 W 1 W 1/; v14 D .�1 W �1 W 1/ and boundary curves given by

f1 D y C z; f2 D �x
3
� x2y C xy2 � y3 C x2z C 2xyz C 3y2z C 8xz2 � 12z3;

f3 D y � z; f4 D x
3
� x2y � xy2 � y3 C x2z � 2xyz C 3y2z � 8xz2 � 12z3

under the adjoint map ˛1;3;1;3 is the nonsingular quintic curve given by

3x2y3 C 5y5 C x4z � 3x2y2z � 14y4z � 5x2yz2

C y3z2 � 16x2z3 C 48y2z3 C 12yz4 C 48z5 D 0:

In the light of Theorem 4.2, the next natural question is to compute the degree of the
adjoint map in the cases (4.1).

Using monodromy_solve in HomotopyContinuation.jl, we found the following
answer for heptagons.

Proposition 4.7. A generic quartic curve is the adjoint of at least 864 complex 7-gons.

Proof. There is a 1-1 correspondence between heptagons and their dual heptagons. We
consider the rational map taking a heptagon to the adjoint of its dual, which has the same
degree as the adjoint map ˛1;1;1;1;1;1;1. In general, the adjoint of the dual of a polytope
P � Rn is given by Warren’s formula [21, 40]:

˛.t/ D
X

�2�.P /

vol.�/
Y

v2V.P /nV.�/

`v.t/;

where �.P / is a triangulation of P that uses only the vertices of P , V.P / denotes the set
of vertices of P , V.�/ is the set of vertices of the simplex � , and `v.t/D 1� v1t1 � � � � �
vntn. Therefore, we map the 7 vertices of a heptagon to the adjoint of its dual using this
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Figure 12. Two heptagons (green and black) and their shared quartic adjoint (purple), zoomed out
and zoomed in.

formula, giving us a polynomial map. We get the same heptagon if we act on the vertices
with the dihedral groupD7. Using the command monodromy_solve with a random seed,
we find 12096 D 14 � 864 different points in the fiber. Certification guarantees that all of
these are distinct, regular, isolated solutions. Since jD7j D 14, the statement follows. The
certificates will be available at httpsW//mathrepo.mis.mpg.de.

Our numerical computations consistently gave the same answer for different random
seeds in the monodromy computations. This supports the following conjecture.

Conjecture 4.8. A generic quartic curve is the adjoint of precisely 864 complex 7-gons.

As an illustration of the monodromy computations for the heptagon case, Figure 12
shows two different heptagons with the same adjoint curve.

Remark 4.9. For the cases in (4.1) with k D 4, it is much more challenging to compute
the degree of the adjoint map. One difficulty comes from the large symmetry groups acting
on the fibers in the polynomial systems constructed as in (4.4). An orbit in the .2; 2; 2; 2/
case consists of jS3j4 � jS4j2 D 64 � 242 D 746496 points, since the residual points come in
4 groups of size 3 and 2 groups of size 4, see (4.5). The command monodromy_solve can
take these group actions into account via the option group_action. Using this we found
14095 points in a general fiber of ˛2;2;2;2, each representing an orbit of size 746496. More
solutions can be found, but we interrupted the computation after 72 hours.

5. Statistics and push-forward

As mentioned in the introduction, the study of positive geometries and their canonical
forms was originally motivated by their connection to scattering amplitudes in particle
physics [3]. Prominent geometries in this context are the amplituhedron [5], whose canon-
ical form describes N D 4 SYM amplitudes, and the ABHY associahedron [2], which
plays the same role in bi-adjoint scalar �3 theories. In the latter setting, the amplitude can

https://mathrepo.mis.mpg.de
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alternatively be computed as a global residue over the solutions to the scattering equa-
tions [9]. The connection between these two descriptions is given by the push-forward
formula (Heuristic 5.5).

In [34], it was observed that the scattering equations are the likelihood equations for
the moduli space M0;n of genus 0 curves with n marked points, interpreted as a statistical
model. It was also established that many other statistical models (called positive models,
see Definition 5.1) admit a natural definition for a statistical amplitude. This amplitude is
the rational function defining the canonical form�.X�0/ of a positive geometryX�0, nat-
urally associated to a positive model X. It may be obtained, via the push-forward formula,
as a sum over the critical points of the log-likelihood function.

In the next subsection, we recall the basics of likelihood estimation in algebraic statist-
ics. For a more detailed exposition, see [20]. In Section 5.2 we recall the definition of the
push-forward of a differential form and state a heuristic from [3]. Finally, in Section 5.3,
we make the connection between the push-forward formula and likelihood estimation. We
propose to use canonical forms as a trace test to detect whether a set of approximate solu-
tions to the likelihood equations is complete. Example 5.10 presents a regular polypol with
non-linear boundary whose canonical form is given by a global residue over the solutions
to the likelihood equations of a toric statistical model.

5.1. Likelihood equations

In algebraic statistics, a statistical model X is a subvariety of Pn, whose intersection
with the probability simplex Pn>0 D ¹.p0 W � � � W pn/ 2 Pn.R/ j pi ¤ 0; sign.p0/ D � � � D
sign.pn/º is non-empty. The points X \ Pn>0 represent feasible probability distributions
for a discrete random variable with n C 1 states. In our context, a statistical model X

of dimension d will arise via a parametrization .p0.x1; : : : ; xd / W � � � W pn.x1; : : : ; xd //,
where pi .x1; : : : ; xd / are functions that sum to one.

Suppose that, in an experiment, state i is observed a total number of ui times. We
would like to find a probability distribution .p0 W � � � W pn/ 2X \ Pn>0 that ‘best explains’
these experimental data .u0; : : : ;un/. An approach to this problem coming from likelihood
inference is to consider the probability distribution that maximizes the log-likelihood func-
tionLD u0 logp0C � � � C un logpn on X \ Pn>0. In practice, this can be done by solving
the likelihood equations

@L.x1; : : : ; xd /

@x1
D � � � D

@L.x1; : : : ; xd /

@xd
D 0; (5.1)

whereL.x1; : : : ;xd /D u0 log.p0.x1; : : : ;xd //C � � � Cun log.pn.x1; : : : ;xd //. The num-
ber of complex solutions to (5.1), i.e., the number of critical points of L on X, is an
invariant called the maximum-likelihood degree (ML degree) of X [11]. It measures the
complexity of the maximum likelihood estimation problem for the model X.

For the purposes of this paper, we will consider a particular class of parametrized,
statistical models, introduced in [34]. The definition uses the notion of positive rational
functions, which are fractions of two polynomials with real, positive coefficients.
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Definition 5.1 (Positive models). A model X is called positive if it is parametrized by
.p0 W � � � W pn/ W Cd Ü Pn and pi .x1; : : : ; xd / are positive rational functions that sum
to 1.

Positive models form a rich class of statistical models. For examples, see [34, Sec. 6].
The likelihood estimation problem for positive models leads in a natural way to a morph-
ism of positive geometries. To illustrate how this works, we will focus on the subclass
of toric models. For any Laurent polynomial q D

Pn
iD0 cix

ai (here xai is short for
x
ai;1
1 x

ai;2
2 � � � x

ai;d
d

, ai 2 Zd ) with positive coefficients ci > 0, we obtain a positive stat-
istical model X as the closure of the image of the map Cd Ü Pn given by

x 7!

�
c0x

a0

q.x/
W � � � W

cnx
an

q.x/

�
:

The log-likelihood function is

L.x/ D

nX
iD0

ui log.cixai / �
� nX
iD0

ui

�
log

�
q.x/

�
D

dX
jD1

� nX
iD0

uiai;j

�
log xj �

� nX
iD0

ui

�
log

�
q.x/

�
C

nX
iD0

ui log.ci /;

and the likelihood equations are

vj D

� nX
iD0

ui

�
xj
@q.x/=@xj

q.x/
; j D 1; : : : ; d; (5.2)

with vj D
Pn
iD0 uiai;j . Let X�0 be the Newton polytope of q.x/, dilated by the sample

size
Pn
iD0 ui . The equations (5.2) give a rational map Cd Ü Cd , sending .x1; : : : ; xd /

to .v1; : : : ; vd /, which extends to � W Pd Ü Pd . The restriction of � to Rd>0 is a diffeo-
morphism Rd>0 ! X>0 known as the toric moment map.

Definition 5.2 (Morphism of pseudo-positive geometries). A morphism between two
pseudo-positive geometries .X; X�0/, .Y; Y�0/ is a rational map � W X Ü Y which
restricts to an orientation preserving diffeomorphism �jX>0 W X>0 ! Y>0.

In our toric example, � is a morphism between the positive geometries .Pd ;Pd�0/ and
.Pd ; X�0/, where Pd�0 is the Euclidean closure of Pd>0 in Pd .R/. In the rest of Section 5,
we will see that � is the key ingredient for relating the solutions to the likelihood equations
(5.2) to the canonical form of the polytope X�0.

Example 5.3. Consider the 2-dimensional toric model X given by q.x/ D c0 C c1x C
c2y C c3xy. For general coefficients ci , the ML degree of X is 2 [1]. The associated
positive geometry is the square

X�0 D Œ0; u0 C u1 C u2 C u3�
2
� P2.R/:
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Its interior X>0 is diffeomorphic to R2>0 via the rational map

� W .x; y/ 7!

 � 3X
iD0

ui

�
x

c1 C c3y

c0Cc1xCc2yCc3xy
;

� 3X
iD0

ui

�
y

c2 C c3x

c0Cc1xCc2yCc3xy

!
(5.3)

obtained from the likelihood equations as in (5.2). In this case, v1 and v2 are given by
v1 D u1 C u3 and v2 D u2 C u3 respectively.

5.2. Push-forward

LetX andY be nonsingular projective varieties of the same dimension d. Suppose .X;X�0/
and .Y; Y�0/ are pseudo-positive geometries, and that � W X Ü Y is a rational map that
induces a morphismˆ W .X;X�0/! .Y; Y�0/ of pseudo-positive geometries. LetD � X
and C � Y denote the boundary divisors of .X; X�0/ and .Y; Y�0/. Each irreducible
component of D is mapped either onto an irreducible component of C , or to a smaller-
dimensional subvariety of a component of C , and each component of C is the image
of a component of D, so �.D/ D C . The trace map Tr� W ���dX ! �dY extends to the
pushforward map (see [3, Sec. 4] and [14, II (b), p. 352])

ˆ� W ��M
d
X !Md

Y ;

where MX and MY are the sheaves of meromorphic differentials.
If X D Y D Pd , � W Cd ! Cd is locally given by d rational functions g1; : : : ; gd ,

then the push-forward of ! D h dx1 ^ � � � ^ dxd at a general point v 2 Y is

ˆ�.!/.v/ D
� X
�.x/Dv

h.x/

Jg1;:::;gd .x/

�
dv1 ^ � � � ^ dvd ;

where the sum is over all pre-images x of v under � and Jg1;:::;gd .x/ D det. @gj
@xi
/i;j is the

Jacobian of �.

Example 5.4. Let X D P1 and X�0 D Œ0; a� � R D ¹.1 W t / j t 2 Rº � X . The map
� W P1 ! P1 given by �.x0 W x1/ D .x20 W x

2
1/ is a morphism of the positive geometries

.P1; Œ0; a�/ and .Y; Y�0/ D .P1; Œ0; a2�/. Locally, on C D ¹x0 ¤ 0º � X it is given by
�.x/ D x2. The canonical form of X�0 is �.X�0/ D a=x.a�x/ dx. Note that ��1.v/ D
¹
p
v;�
p
vº. The push-forward is given by

ˆ�
�
�.X�0/

�
.v/ D

� X
�.x/Dv

a

x.a � x/

1

2x

�
dv

D

�
a

p
v.a �

p
v/

1

2
p
v
C

a

�
p
v.aC

p
v/

�1

2
p
v

�
dv

D
a

2v

�
1

a �
p
v
C

1

aC
p
v

�
dv

D
a2

v.a2 � v/
dv D �.Y�0/.v/:
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The following is phrased as a heuristic in [3, Heuristic 4.1, p. 11].

Heuristic 5.5. The map ˆ� takes the canonical form of .X; X�0/ to the canonical form
of .Y; Y�0/.

In dimension one, the intuition behind Heuristic 5.5 comes from the global residue
theorem. We generalize [3, Ex. 7.9 and 7.10] to prove a stronger version of Heuristic 5.5
in this case.

Proposition 5.6. Consider a real interval Œa; b� � R with a < b and let � 2 RŒx� be any
non-constant polynomial. If �.Œa; b�/D Œ�.a/; �.b/�, then�.�.Œa; b�//D ˆ�.�.Œa; b�//.

Note that � need not induce a morphism of Œa; b� and Œ�.a/; �.b/� as positive geomet-
ries.

Proof. Define the rational function

g D
b � a

.x � a/.b � x/
�
�.x/ � y

� D b � a

h
;

where y is a complex parameter. By the global residue theorem, we have for almost all
y 2 C that

resa.g/C resb.g/C
X

x s.t. �.x/Dy

resx.g/ D
b � a

h0.a/
C
b � a

h0.b/
C

X
x s.t. �.x/Dy

b � a

h0.x/
D 0:

Since h0.x/ D �.x � a/.�.x/ � y/ C .b � x/.�.x/ � y/ C .x � a/.b � x/�0.x/, we
obtain

b � a

.b � a/
�
�.b/ � y

� � b � a

.b � a/
�
�.a/ � y

� D X
x s.t. �.x/Dy

b � a

.x � a/.b � x/�0.x/
:

This holds for all but finitely many y 2 C. Therefore, this is an equality of rational func-
tions equivalent to

�
��
�.a/; �.b/

��
D

�.b/ � �.a/�
y � �.a/

��
�.b/ � y

�dy D ˆ����Œa; b���:
Remark 5.7 (Push-forward by birational maps). If � is an isomorphism, the heuristic
clearly works. If � is birational, the map ˆ� is an isomorphism [14, II (b), p. 352], but
even so, the heuristic needs to be proven. An example of an explicit calculation is the
“teardrop” example of the nodal cubic (see [3, Section 5.3.1]). In that case, one computes

ˆ�

�
2a

.a � t /.t C a/u.1 � u/
dt ^ du

�
D

2a

y2 � x2.x C a2/
dx ^ dy:

Note that three of the boundary components of the positive geometry in the source collapse
to the same point in the image. The adjoint curve of the source polypol (a quadrangle) is
the line at infinity.
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More generally, if d D 2 and � W X ! Y is birational, then, since ˆ� is an iso-
morphism, ˆ� commutes with the wedge product. Assume further that for each irredu-
cible boundary curve Di of .Y; Y�0/ there is a unique irreducible boundary curve Ci of
.X;X�0/ such that �.Ci /DDi . Then Heuristic 5.5 works. Indeed, write�.X;X�0/D !
and let x be a local equation for Ci . Then ! D !0 ^ dx

x
C � � � where � � � is holomorphic

near Ci , and ResCi ! D !
0. If y is a local equation for Di , then x D ��y, and we get

ˆ�! D ˆ�!
0
^ˆ�

d��y

��y
C � � � D ˆ�!

0
^
dy

y
C � � � :

Hence
ResDi ˆ�! D .ˆjCi /� ResCi ! D .ˆjCi /��.Ci ; Ci;�0/:

Here we wrote .ˆjCi /� for the push-forward map induced by the restriction �jCi . Since
the heuristic works in dimension 1 (Proposition 5.6), we have .ˆjCi /��.Ci ; Ci;�0/ D
�.Di ;Di;�0/. Hence we have shown that for all boundary components Di , we have

ResDi ˆ��.X;X�0/ D �.Di ;Di;�0/;

hence ˆ��.X;X�0/ D �.Y; Y�0/.

5.3. Canonical forms and trace tests for likelihood problems

We return to the likelihood estimation problem for a toric model X. Recall that the like-
lihood equations (5.2) give a rational map Pd Ü Pd which induces a morphism of the
positive geometries .Pd ;Pd�0/ and .Pd ; X�0/, where X�0 � Rd is the .u0 C � � � C un/-
dilation of the Newton polytope of q.x/. For ease of notation, we will write (5.2) as
vj D gj .x/ in what follows, i.e., � D .g1; : : : ; gd /.

Proposition 5.8. Let X be a toric model of dimension d with associated positive geo-
metry .Pd ; X�0/. Let �.X�0/ D h.v1; : : : ; vd / dv1 ^ � � � ^ dvd . We have the following
identity of rational functions:

h.v1; : : : ; vd / D
X

vjDgj .x/8j

1

x1 � � � xd

1

Jg1;:::;gd .x/
;

where the sum is over all pre-images of .v1; : : : ; vd / under �.

Proof. Heuristic 5.5 works in the case of the toric moment map [3, Thm. 7.12]. The state-
ment follows directly from applying the push-forward formula, taking into account that

�.Pd�0/ D .x1 � � � xd /
�1dx1 ^ � � � ^ dxd :

We point out that this formulation is equivalent to [34, Thm. 16], which uses the
toric Hessian of the log-likelihood function. The rational function h evaluated at vj DPn
iD1 uiai;j , is the amplitude of X [34, Sec. 6]. By Proposition 5.8, and (5.2), it is the

global residue of .x1 � � � xd /�1 over the critical points of the log-likelihood function.
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Numerical approximations for the solutions to the likelihood equations can be obtained
using methods from numerical non-linear algebra. As illustrated in Section 4, these solu-
tions can be certified to prove a lower bound on the ML degree of a model X. Showing
that a set of approximate critical points contains an approximation for all solutions is more
difficult. For witness set computations, trace tests have been developed to give strong
numerical evidence for completeness [25]. Here, we propose to use Proposition 5.8 as a
specialized trace test for likelihood problems coming from toric models. Trace tests for
other positive models can be obtained in a similar way.

Suppose we have computed a set of ` approximate solutions to the likelihood equations
(5.2) for a given set of positive integer data ui . By Proposition 5.8 we can evaluate the
amplitude of X at vj D

Pn
iD1 uiai;j in two different ways. The first is to compute the

canonical form of the dilated Newton polytope of q.x/ and plug in vj D
Pn
iD1 uiai;j in

this rational function. The second is to compute the sum of .x1 � � �xdJg1;:::;gd /
�1 evaluated

at our ` critical points. These numbers should coincide, and if they do, this test gives strong
numerical evidence that the ML degree of X is `.

Example 5.9. We illustrate Proposition 5.8 for the model X in Example 5.3. Consider
.c0; c1; c2; c3/D .15; 2; 8; 23/ and suppose .u0; u1; u2; u3/D .1; 2; 5; 2/ are the collected
data in an experiment. Numerical approximations of the critical points of L.x; y/ are

Crit.L/ D
®
.0:42266; 2:08633/; .�4:11469;�0:18234/

¯
:

These were obtained using the Julia package HomotopyContinuation.jl as outlined in
[34, Sec. 3]. The canonical form of the square X�0 is

�.X�0/ D
100

v1v2.10 � v1/.10 � v2/
dv1 ^ dv2 D h.v1; v2/ dv1 ^ dv2;

where the numerator 100 of h is the square of the sample size, i.e., .u0 C u1 C u2 C
u3/

2. Evaluating the amplitude h at .v1; v2/D .u1C u3; u2C u3/D .4; 7/ gives 25=126.
Evaluating the sum X

.x;y/2Crit.L/

1

xy

1

Jg1;g2.x; y/
;

where g1; g2 are the rational functions from (5.3), at our approximate critical points gives
0:1984126984126981. This agrees with 25/126 up to 15 significant decimal digits, which
is about the unit round-off in double precision floating point arithmetic.

We conclude this section with an example that illustrates how to design alternative
trace tests using canonical forms of polypols with non-linear boundaries in the plane.

Example 5.10. Consider again the model from Examples 5.3 and 5.9. In Example 5.9,
we wrote the rational function giving the canonical form of the square X�0 as a sum
over the critical points of the likelihood function L.x; y/. Here we make the observation
that a similar construction can be applied to other polypols, obtained as the image of the
map � in (5.3) restricted to subgeometries of P2�0. For instance, the image under � of the
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�8 �6 �4 �2 0 2 4
�4

�2

0

2

4

v1

v
2

Figure 13. The polypol from Example 5.10 (shaded in orange), its boundary curves (in black) and
its adjoint line (in purple).

standard simplex T�0 with vertices .0; 0/; .1; 0/; .0; 1/ is the polypol P�0 with boundary
curve C D ¹f1f2f3 D 0º where f1 D v1; f2 D v2 and

f3 D s
2v2c0c

2
1 � s v1v2c0c

2
1 C s

2v1c0c1c2 � s v
2
1c0c1c2 C s

2v2c0c1c2 � s v
2
2c0c1c2

� s3c21c2 C 2 s
2v1c

2
1c2 � s v

2
1c
2
1c2 C s

2v2c
2
1c2 � s v1v2c

2
1c2 C s

2v1c0c
2
2

� s v1v2c0c
2
2 � s

3c1c
2
2 C s

2v1c1c
2
2 C 2 s

2v2c1c
2
2 � s v1v2c1c

2
2 � s v

2
2c1c

2
2

C s v21c
2
0c3 � 2 s v1v2c

2
0c3 C s v

2
2c
2
0c3 � s

2v1c0c1c3 C s v
2
1c0c1c3 C s

2v2c0c1c3

� s v1v2c0c1c3 C s
2v1c0c2c3 � s

2v2c0c2c3 � s v1v2c0c2c3 C s v
2
2c0c2c3

� s3c1c2c3 C s
2v1c1c2c3 C s

2v2c1c2c3 � s v1v2c1c2c3;

where s D u0 C u1 C u2 C u3. With the numerical data from Example 5.9, this evaluates
to f3 D�528000C 383000v1 � 111400v2 � 153480v1v2C 55930v21 C 75670v

2
2 . Using

Theorem 2.15, we find that the canonical form of P�0 is�.P�0/D hP .v1; v2/ dv1 ^ dv2
with

hP D
528000C 65800v1 C 263200v2

v1v2.�528000C 383000v1 � 111400v2 � 153480v1v2 C 55930v
2
1 C 75670v

2
2/
:

The numerator defines the adjoint line AP . This is illustrated in Figure 13. Evaluating
hP at .v1; v2/ D .u1 C u3; u2 C u3/ D .4; 7/ gives 65840=370629. Using the push-
forward formula for ˆ�.�.T�0// with �.T�0/ D 1

xy.xCy�1/
dx ^ dy, we get the altern-

ative expression X
.x;y/2Crit.L/

1

xy.x C y � 1/

1

Jg1;g2.x; y/

for hP . Plugging in our numerically obtained critical points gives the number 0:17764 : : : ;
which has relative error

j0:17764395122885715 � 65840=370629j

65840=370629
� 1:4 � 10�15:
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6. 3D-polypols
Wachspress introduced three-dimensional polypols in R3, called polypoldrons [36, Ch. 7].
They are semi-algebraic sets whose boundary 2-dimensional facets are semi-algebraic
subsets of boundary surfaces, enclosing a simply connected set. The boundary facets inter-
sect on boundary edges that are segments of space curves. The edges meet at the vertices
of the semi-algebraic set.

A polypoldron is simple if the number of facets (F), edges (E) and vertices (V) satisfy
the Euler equation

F �E C V D 2;

and well set if in addition, each vertex is a triple point, the edges and the boundary facets
are nonsingular, and the boundary surfaces have no points in the interior of the polypo-
ldron.

A well-set polypoldron has adjoint surfaces. Such surfaces pass by the triple points
that are not vertices and the curves of double points that do not contain edges. To make
the adjoint surface unique, these restrictions are in general not enough, so Wachspress
adds the condition to pass by a number of additional points on the boundary surface to
assure a unique adjoint to the polypoldron [36, Section 7.5].

In this section, we concentrate on polypols with quadric boundary surfaces and an
adjoint that is unique, without adding conditions beyond passing by certain singularities
of the boundary surface.

The case of polytopes, i.e. with linear boundary components, was made precise and
generalized to any dimension in [21]; see Remark 3.12. We will discuss and give infinite
families of polypols with quadric boundary surfaces in R3.

6.1. Rational quadric 3D-polypols

We start with a definition that differs slightly from the one of polypoldrons. It is a gener-
alization of real polypols in the plane; see Definition 2.9.

Definition 6.1. A polypol P in R3 is a connected compact semi-algebraic set such that:

(1) The Zariski closure of its Euclidean boundary @P is a surface which is a finite
union of irreducible boundary surfaces: S D S1 [ � � � [ Sk .

(2) Each boundary component Si;�0 WD .Si \ @P /o, the Euclidean closure of the
interior of Si \ @P , is a connected semi-algebraic set such that the Zariski clos-
ure of its Euclidean boundary @Si;�0 is a finite union of irreducible edge curves
Ci;j1 [ � � � [ Ci;jdi

, where Ci;jl � Si \ Sjl .

(3) Each edge C.i;j /;�0 WD .Ci;j \ @Si;�0/o is a nonsingular segment in Ci;j , whose
endpoints are two vertices that are nonsingular on Ci;j :

vi;j;l 2 Ci;j \ Ci;l and vi;j;l 0 2 Ci;j \ Ci;l 0 ;

(4) On each boundary component Si;�0, the edges C.i;j1/;�0 [ � � � [ C.i;jdi /;�0 form
a unique cycle of length di , with vertices vi;j1;j2 ; : : : ; vi;jdi ;j1 .
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We denote by S.P / the set of boundary surfaces, by C.P / the set of edge curves,
and by V.P / the set of vertices of the polypol P . We say that P is rational if all the
boundary surfaces Si and the edge curves C 2 C.P / are rational. Moreover, we say that
P is simple if the singular locus of S is reduced, with no points of multiplicity more than
three, and every triple point is ordinary. In the special case when all boundary surfaces Si
are nonsingular quadric surfaces, and all edge curves are nonsingular conic sections, we
call P a quadric polypol.

We consider two special cases of quadric polypols in R3. First, we define polyhedral
polypols. For a convex simple polyhedronH with k facets labelled by ¹1; : : : ; kº, we write
IH � ¹.i; j / j 1 � i < j � kº for its edge set and JH � ¹.l;m; n/ j 1 � l < m < n � kº

for its vertex set.

Definition 6.2. Let P � R3 be a rational polypol with boundary surface S D S1 [ � � � [
Sk . Then P is polyhedral if there is a convex simple polyhedronH with k facets such that

C.P / D
®
Ci;j � Si \ Sj j .i; j / 2 IH

¯
and

V.P / D
®
vl;m;n � Sl \ Sm \ Sn j .l; m; n/ 2 JH

¯
:

Let P be a quadric polypol, i.e. all boundary surfaces are nonsingular quadric surfaces
and all edge curves are nonsingular conic sections. Complex projective quadric surfaces
are isomorphic to P1 � P1, so any curve on a nonsingular quadric has a bidegree. The
nonsingular intersection of two quadric surfaces is an elliptic curve of bidegree .2; 2/. An
edge curve, i.e. a nonsingular conic section, Ci;j � Si \ Sj is a component of bidegree
.1; 1/ of the singular intersection between two boundary surfaces Si and Sj . On each
boundary surface Si , the edge curves form a cycle and their union defines an elliptic
curve. More precisely, after blowing up the intersections between edge curves other than
the vertices, the strict transform of the edge curves forms a cycle of nonsingular rational
curves. By the adjunction formula [16, Ch. V, Prop. 1.5 and Ex. 1.3], such a cycle has
arithmetic genus 1.

We will be concerned with adjoint surfaces to a quadric polypol. Similarly to the poly-
tope case, these are best understood in the complex projective setting, so from here on we
shall consider the boundary surfaces and the edge curves as complex projective varieties
in P3.

The singular locus of the boundary surface S D
S
i Si � P3 of a quadric polypol P

is the union
S
ij .Si \ Sj /. We define the residual points R.P / of P to be the union of

the curves in
S
ij .Si \ Sj / that are not edge curves and the triple points, where three

boundary surfaces meet, that are not vertices of the polypol.

Theorem 6.3. Let P be a simple quadric polyhedral polypol with boundary surface S D
S1 [ � � � [ Sk . If one of the Si has exactly three edge curves, then there is a unique surface
AP , called the adjoint surface of P , of degree 2k � 4 that contains R.P /.

We postpone the proof to Section 6.2.



K. Kohn, R. Piene, K. Ranestad, F. Rydell, B. Shapiro, R. Sinn, M.-Ş. Sorea, and S. Telen 316

In the construction and analysis of quadric polypols, we observe three possible con-
figurations a triple of edge conics may form.

Lemma 6.4. Let C1, C2, C3 be nonsingular conics in pairwise distinct planes P1, P2,
P3, respectively, and assume any two of the conics intersect in two distinct points. Then
the triple of conics forms one of three possible configurations:

(1) (First kind). The intersection P1 \ P2 \ P3 is a point q that does not lie on any
of the three conics. Then the union of the three conics lies in a unique quadric
surface.

(2) (Second kind). The intersection P1 \ P2 \ P3 is a point q that lies on all three
conics. The union of this kind of three conics lies in a quadric surface if and only
if their tangent lines at the common point q are coplanar.

(3) (Third kind). The intersection P1 \ P2 \ P3 is a line L, and the three pairs of
intersection points coincide. The union of this kind of conics lie in a quadric sur-
face if and only if their tangent lines at both intersection points are coplanar.

Proof. The three possibilities of intersections are clear from the assumptions. To see when
the union C1 [C2 [C3 lies in a quadric surface, we observe that any two of the conics lie
in a pencil of quadric surfaces. In the first case, the general quadric in the pencil intersects
the third conic only in its four intersection points with the first two conics. Therefore, one
quadric in the pencil contains also the third. In the two other cases, the same argument
applies, when the tangent lines at the common intersection point q are coplanar. If they
are not and the three tangent lines span P3, then q would be a singular point on the quadric
surface. But a quadric singular at q cannot contain three nonsingular conics through q that
lie in distinct planes.

Remark 6.5. We show the existence of simple polyhedral quadric polypols with a bound-
ary component containing three edge curves. We do this inductively, and start by showing
the existence of a tetrahedral quadric polypol. Start with a triple of nonsingular conics
C1;2; C2;3; C1;3 of the second kind, with tangent lines at the common intersection point
v4 spanning P3. Each pair C1;2 [ C1;3, C1;2 [ C2;3 and C2;3 [ C1;3 lies in a pencil of
quadric surfaces, of which the general one is nonsingular. So we let S1; S2; S3 be nonsin-
gular quadric surfaces that contain C1;2 [C1;3, C1;2 [C2;3 and C2;3 [C1;3, respectively.
Choose vertices v1; v2; v3 on C2;3, C1;3 and C1;2, respectively, each lying in only one of
the conics.

We have S1 \ S2 D C1;2 [D1;2, whereD1;2 is another conic section. Similarly, Si \
Sj D Ci;j [Di;j for any i ¤ j . By the choice of quadrics Si , we may assume that the
conics Di;j are nonsingular. The intersection S1 \ S2 \ S3 is eight points. Each conic
Ci;j contains four of these, while the triple of conics, being of the second kind, has four
intersection points, one triple and three double. But then exactly one of the eight points
does not lie on any of the conics Ci;j , hence must lie on all three conics Di;j . Therefore
the triple of conics D1;2;D1;3;D2;3 is of the second kind, just as C1;2; C1;3; C2;3.
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Figure 14. A tetrahedral polypol of spheres.

To find S4 and conics C1;4, C2;4, C3;4 for a tetrahedral polypol, we consider the three
quadric cones Q1, Q2, Q3 with vertices at v1, v2, v3 containing the conics D2;3, D1;3,
D1;2, respectively. The intersection Q1 \Q2 \Q3 consists of eight points and includes
the point D2;3 \ D1;3 \ D1;2. We choose one of the other seven points, w, which we
may assume is not on any of the surfaces S1, S2, S3. Consider the three lines l1, l2, l3
spanned by w and the three vertices v1, v2, v3, and let wi D li \Dj;k for each triple of
pairwise distinct indices i , j , k. Then vi , wi , vj , wj span a plane …i;j . Moreover, vi , wi ,
vj , wj lie on Sk , in particular on a conic section Ck;4 D …i;j \ Sk . Thus, we get a triple
of conics C1;4, C2;4, C3;4 of the first kind. Their union has arithmetic genus 4 and lies in
a unique quadric surface that we denote by S4. For a general choice of vertices v1, v2,
v3, the surface S4 and the conic curves Ck;4 may be shown to be nonsingular. Note that
residual to the curves Ck;4 in Sk \ S4, we find conicsDk;4, and that the tripleD1;4,D2;4,
D3;4 is of the third kind.

By this construction, the surface S1 [ � � � [ S4 together with edge curves Ci;j and ver-
tices v1; : : : ; v4 form a tetrahedral quadric polypol. Figure 14 shows a tetrahedral polypol
of spheres. Since any real intersection of spheres is a point or a circle, any four spheres
that have a real curve of intersection between any two form a tetrahedral polypol. The
four spheres all intersect along a common imaginary circle at infinity, so it is not a simple
polypol.

Inductively, starting with any simple polyhedral quadric polypol P and three quadric
boundary surfaces with a common vertex v, we may as above find a triple of conics of the
first kind in these three quadrics that lie in a unique quadric Qv , such that the four form
a tetrahedral quadric polypol. Replacing the common vertex v of the three quadrics, with
the new quadric surface Qv with three conic edge curves and their three new vertices of
intersection, we get a simple polyhedral quadric polypol P 0.

Not all simple quadric polypols are polyhedral, as the following example demon-
strates.
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Figure 15. A cycle of three ellipsoids, whose quadric adjoint has no real point.

Example 6.6. LetP be a polypol formed by three ellipsoids with three edge conicsC1;2 [
C1;3 [ C2;3 and two vertices, the common intersection of the three conics. So the edge
conics form a triple of the third kind. This is illustrated in Figure 15.

P is a simple quadric polypol, but it has only three boundary surfaces so it is not
polyhedral. The residual point set R.P / consists of the three residual conics, a triple of
conics of the first kind that lie in a unique quadric surface. This surface is an adjoint of the
polypol P .

This example generalizes to a family of “almost” polypols that we refer to as cycles of
quadrics. They are certainly not polyhedral, but not quite polypols either: there are more
than three edge curves through the vertices. Otherwise, they fit the definition of quadric
polypols.

Definition 6.7. Let v1; v2 2 P3 be two points, and let S D S1 [ � � � [ Sk , with k � 3,
be a union of nonsingular quadric surfaces whose common intersection includes the two
points v1; v2 when k D 3, and equals the two points when k > 3. Assume furthermore that
there are k edge conics C1; : : : ; Ck passing through v1; v2 such that Ci � Si \ SiC1 for
i D 1; : : : ; k � 1 and Ck � Sk \ S1. Moreover, we assume that the singularities of S are
double points along transverse intersections of pairs of components Si and Sj , ordinary
triple points between triples of components, plus the two ordinary k-tuple points v1; v2.
Then we call S a cycle of quadrics and the two points v1; v2 its poles.

For a cycle of quadrics S , we denote by R.S/ the singular locus of S that is residual
to the set of edge conics, i.e., R.S/ consists of the union of pairwise intersection curves:

R.S/ D
[
i¤j

�
.Si \ Sj / n .C1 [ � � � [ Ck/

�
:

Theorem 6.8. Let S D S1 [ � � � [ Sk be a cycle of quadrics with k � 3. There is a unique
surface AS � P3 of degree 2k � 4 that contains the residual singularities R.S/ of S and
none of the edge conics C1; : : : ; Ck . We call AS the adjoint surface of S . When k > 3, the
surface AS passes through the poles of the cycle.
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Proof. We setRk DB1 [ � � � [Bk [
S
ij Bi;j , whereBi is residual toCi in Si \SiC1 and

Bi;j D Si \ Sj , j ¤ i C 1, and give a proof by induction. In addition to the claim of the
theorem, we show that h1.	Rk .2k � 4//D 0. We start with k D 3, which is Example 6.6.
We give a proof here that is more amenable to induction, so we first consider R3 D B1 [
B2 [ B3. Let S3 D ¹q3 D 0º and consider the exact sequence of ideal sheaves

0! 	R03
�q3
��! 	R3.2/

jS3
��! 	T3;S3.2/! 0;

where 	T3;S3 is the ideal of T3 D B2 [ B3 on S3. Then R03 is the component B1 of R3
that is not in S3. So the first sheaf in the sequence is the ideal sheaf of a conic in P3, and
therefore

h0.	R03/ D h
1.	R03/ D 0:

Clearly T3 is a curve of bidegree .2;2/ on S3, so h0.	T3;S3.2//D 1 and h1.	T3;S3.2//D 0.
Therefore, also h0.	R3.2// D 1 and h1.	R3.2// D 0.

For k > 3, we let Sk D ¹qk D 0º and consider the exact sequence of ideal sheaves

0! 	R0
k
.2k � 6/

�qk
��! 	Rk .2k � 4/

jSk
��! 	Tk ;Sk .2k � 4/! 0; (6.1)

where

Tk D Rk \ Sk D Bk�1 [ Bk [

k�2[
iD2

Bi;k :

Then Tk is a curve of bidegree .2k � 4; 2k � 4/ on Sk , so 	Tk ;Sk .2k � 4/ D OSk . Hence,
h0.	Tk ;Sk .2k � 4// D h

0.Sk ;OSk / D 1 and h1.	Tk ;Sk .2k � 4// D h
1.Sk ;OSk / D 0. To

complete the proof, we show below that

h0
�
	R0

k
.2k � 6/

�
D h1

�
	R0

k
.2k � 6/

�
D 0:

The curve R0
k

is the part of Rk that is not contained in Sk . Assuming for a moment
that

Bk�1;1 D Sk�1 \ S1 D C
0
[ B 0;

where C 0 is a conic that contains v1 and v2 and B 0 is a different plane conic, then S1; : : : ,
Sk�1 is a cycle of quadrics with edge conics C1; : : : ; Ck�2; C 0. Thus,

R0k D Rk�1 [ C
0
D .Rk�1 n B 0/ [ Bk�1;1:

We use the first equality in our induction argument below, and from the latter equality we
see that the argument does not depend on the momentary assumption.

Consider the exact sequences of sheaves

0! 	Rk�1.2k � 6/! OP3.2k � 6/! ORk�1.2k � 6/! 0;

and
0! 	Rk�1[C 0.2k � 6/! OP3.2k � 6/! ORk�1[C 0.2k � 6/! 0:
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By induction, h0.	Rk�1.2k � 6// D 1 and h1.	Rk�1.2k � 6// D 0, so

h0
�
ORk�1.2k � 6/

�
D h0

�
OP3.2k � 6/

�
� 1: (6.2)

Furthermore, the adjoint surface defined by the unique section inH 0.	Rk�1.2k � 6// does
not contain C 0, so h0.	Rk�1[C 0.2k � 6//D 0. Moreover, the intersection Rk�1 \ Sk�1 is
a curve of bidegree .2k � 6; 2k � 6/ on Sk�1, soRk�1 \C 0 is a divisor of degree 4k � 12
on C 0, and hence there is an equivalence of divisors .Rk�1 \ C 0/ Š .2k � 6/H \ C 0

on C 0, whereH is the class of a plane in P3. Now consider the exact sequence of sheaves:

0! ORk�1[C 0 .2k � 6/! ORk�1.2k � 6/˚OC 0.2k � 6/! ORk�1\C 0.2k � 6/! 0:

Since .Rk�1 \ C 0/ Š .2k � 6/H \ C 0, the restriction

H 0
�
OC 0.2k � 6/

�
! H 0

�
ORk�1\C 0.2k � 6/

�
is surjective. Therefore,

h0
�
ORk�1[C 0.2k � 6/

�
D h0

�
ORk�1.2k � 6/

�
C h0

�
OC 0.2k � 6/

�
� .4k � 12/

D h0
�
ORk�1.2k � 6/

�
C 1 D h0

�
OP3.2k � 6/

�
;

where the latter equality was shown in (6.2). This implies that h1.	Rk�1[C 0.2k � 6//D 0.
We finally conclude from the cohomology of the sequence (6.1) that h0.	Rk .2k � 4//D 1
and h1.	Rk .2k � 4// D 0.

Now we show that the adjoint surface AS does not contain the edge conics Ci . The
adjointAS intersects each quadric Si in a curveAiDAS\Si of bidegree .2k�4; 2k�4/.
It contains every curve of intersection Si \ Sj except for the two conics Ci�1 and Ci in
the intersection with Si�1 and SiC1, respectively. The union of these curves has bidegree
.2k � 4; 2k � 4/ on Si , so we get an equality

Ai D
�[
i;j

Si \ Sj

�
n .Ci�1 [ Ci /:

Finally, when k > 3, there are
�
k
2

�
� k D k.k � 3/=2 pairs of the boundary quadrics

that do not share an edge conic, so their intersection passes through the poles. Therefore
also the adjoint surface AS passes through the poles.

Although the existence of a unique adjoint depends only on the complex boundary
surface, the motivation both with the polypols and the positive geometries lies in the
application to a real boundary. Therefore, we provide examples of cycles of quadrics,
where all boundary quadrics are real with a real nonsingular point.

Example 6.9. Let v1; v2 be real points, and assume C1; : : : ; Ck are real nonsingular
ellipses through v1; v2. Furthermore, assume that the Ci lie in distinct planes and that the
tangent lines at a vertex vi of any three of them span R3. Let S1 be a general real quadric
through C1 [ Ck and let Si be a general real quadric through Ci�1 [ Ci for i D 2; : : : ; k.
Then the surface S D S1 [ � � � [ Sk forms a real cycle of quadrics.
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6.2. The adjoint of a quadric polyhedral polypol

Here we will prove Theorem 6.3. We conjecture that the theorem holds for any simple
quadric polypol. In fact, the following lemma applies to any simple quadric polypol. The
idea of the lemma is that the existence of a curve Ai that would be the intersection of the
adjoint AP with the boundary surface Si follows from the definitions.

Lemma 6.10. Let P be a simple quadric polypol with boundary surfaces S1; : : : ; Sk
and edge curves Ci;j � Si \ Sj , and let Ci D Ci;j1 [ � � � [ Ci;jdi be the union of edge
curves on Si . Then there is a unique curve Ai of bidegree .2k � 4; 2k � 4/ on Si with the
following components:

(1) .Si \ Sj / n Ci;j , whenever Ci;j is an edge curve,

(2) Si \ Sj (for i ¤ j ), whenever this intersection does not contain an edge curve,

(3) a residual curve Ai;r of bidegree .di � 2; di � 2/ that intersects Ci exactly in the
singularities of Ci that are not vertices of P .

Moreover, if Zi is the set of singular points on Ci that are not vertices of P , then we have
that h1.Si ;	Zi .di � 2// D 0.

In particular, any adjoint surface AP to P contains no edge curve or vertex on P .

Proof. The restriction Ai D AP \ Si is a curve on Si of bidegree .2k � 4; 2k � 4/ on Si
that contains the intersections Si \ Sj ; i 6D j , except for the edge curves on Si . Assume
there are di edge curves Ci;j on Si . Then Ai contains a component of Si \ Sj for each j .
We denote by Ai;e the union in Ai of the di conic sections .Si \ Sj / n Ci;j where Ci;j is
an edge curve. These conic sections all have bidegree .1; 1/, so Aj;e has bidegree .di ; di /
on Si The curve Ai also contains the intersections Si \ Sj that do not contain an edge
curve. These curves have bidegree .2; 2/. We denote the union of them by Ai;s . So Ai D
Ai;e [ Ai;s [ Ai;r , where Ai;r is a curve that contains no component in the singular locus
of the boundary surface. Since Ai;e consists of di conic sections, the curve Ai;s has degree
4.k � 1 � di / and bidegree .2.k � 1 � di /; 2.k � 1 � di //. So the curve Ai;r has degree
2.2k � 4/ � 2di � 4.k � 1 � di / D 2di � 4 and bidegree .di � 2; di � 2/ on Si . The
uniqueness of Ai is now equivalent to the uniqueness of the curve Ai;r with the given
properties.

Similar to the plane curve case, see Proposition 2.2, the curve Ai;r is an adjoint to Ci
on Si . Let � W zSi ! Si be the blow-up of Si in the singularities of Ci that are not vertices.
The strict transform zCi of Ci on zSi forms a cycle of rational curves. It has arithmetic
genus one, so by adjunction O zCi .

zCi C K zSi / has a unique section with no zeros. Since
h0. zSi ; K zSi / D h

1. zSi ; K zSi / D 0, it follows from cohomology of the exact sequence of
sheaves

0! K zSi ! O zSi .
zCi CK zSi /! O zCi .

zCi CK zSi /! 0

that
h0
�
zSi ;O zSi .

zCi CK zSi /
�
D 1 and h1

�
zSi ;O zSi .

zCi CK zSi /
�
D 0;

and that the unique section inH 0. zSi ;O zSi .
zCiCK zSi // defines a curve zAi;r that has no zeros
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on zCi . Now, KSi is a divisor of bidegree .�2;�2/ on Si , so the image �. zAi;r / of zAi;r on
Si is a curve of bidegree .di � 2;di � 2/ that intersectsCi only in the points blown up. The
cohomology h1.Si ;	Zi .di � 2//D 0 since it is equivalent to h1. zSi ;O zSi .

zCi CK zSi //D 0.
Finally, we assume for contradiction that an adjoint surface AP to P contains an edge

curve Ci;j . Then Ai D Si \ AP contains this curve Ci;j as a component. Let Ai;r � Ai
be the curve residual to the first two kinds of components in the intersections Si \ Sj as in
the lemma. Then Ai;r is a curve of bidegree .di � 2; di � 2/ that contains Ci;j and passes
through all singularities of Ci that are not vertices. Let Ci;l be an edge curve on Si with a
common vertex with Ci;j . Then there are two vertices and 2di � 4 other singularities of Ci
that lie on Ci;l . The curve Ai;r passes through one of the two vertices and therefore has at
least 2di � 3 common points withCi;l , while the intersection numberAi;r �Ci;l D 2di � 4.
Therefore, also Ci;l is a component of Ai;r . Repeating this argument along the cycle of
edge curves on Si , we deduce Ci � Ai;r , which is absurd since the bidegree of Ai;r is
.di � 2; di � 2/, while it is .di ; di / for Ci .

Proof of Theorem 6.3. Let us start with the quadric tetrahedron. Let S D S1 [ S2 [ S3 [
S4 be such that Si \ Sj D Ci;j [Bi;j – two nonsingular conic sections for each i; j – and
such that any three Si intersect transversally in 8 points. Let vi;j;k D Ci;j \ Ci;k \ Cj;k .
So there are six conic curves Cij and four vertices vi;j;k . The residual locus R.P / of the
quadric tetrahedron consists of conic curves Bi;j and some singular points on the edge
curves. Similar to the edge curves Ci;j , there are six conic curves Bi;j . There are 32 triple
points in S , eight for each triple of components. Of these 24 lie on the Bi;j , while the
vertices vi;j;k and four more, p1; : : : ; p4, lie only on the curves Ci;j , i.e., outside the Bi;j .

We now argue that there is at least one quartic surface passing through the six conics
Bi;j and the four triple points p1; : : : ; p4. Notice that two conics Bi;j and Bm;n intersect
in two points if they share an index, and do not intersect at all if they do not. Let li;j be
the linear form defining the plane Pi;j of Bi;j and consider the exact sequence of ideal
sheaves

0! 	B1;2[B1;3[B1;4.2/
�l2;3
��! 	B1;2[B1;3[B1;4[B2;3.3/

jP2;3
���! 	P2;3\.B1;2[B1;3[B1;4[B2;3/.3/! 0:

Then B1;2 [B1;3 [B1;4 is a curve of bidegree .3; 3/ in S1, so h0.	B1;2[B1;3[B1;4.2//D 1
and h1.	B1;2[B1;3[B1;4.2// D 0. The intersection P2;3 \ .B1;2 [ B1;3 [ B1;4 [ B2;3/ is
the union of the conic B2;3 and the two points of intersection P2;3 \ B1;4, so

h0
�
	P2;3\.B1;2[B1;3[B1;4[B2;3/.3/

�
D 1 and h1

�
	P2;3\.B1;2[B1;3[B1;4[B2;3/.3/

�
D 0:

Therefore,

h0
�
	B1;2[B1;3[B1;4[B2;3.3/

�
D 2 and h1

�
	B1;2[B1;3[B1;4[B2;3.3/

�
D 0:

Similarly, by the exact sequence of ideal sheaves

0! 	B1;2[B1;3[B1;4[B2;3.3/
�l2;4
���! 	B 0.4/

jP2;4
���! 	P2;4\B 0.4/! 0;



Adjoints and canonical forms of polypols 323

where B 0 D B1;2 [ B1;3 [ B1;4 [ B2;3 [ B2;4, we conclude that

h0
�
	B 0.4/

�
D 6 and h1

�
	B 0.4/

�
D 0:

Let B D
S
1�i<j�4 Bi;j D B 0 [ B3;4. The conic B3;4 intersects the 5 conics in B 0 in

altogether eight points, so h0.	B.4// � 5 and h1.	B.4// D h0.	B.4// � 5. The points
p1; : : : ;p4 impose at most independent conditions on these sections, so there is at least one
quartic surface containing the six conics Bi;j and the four triple points p1; : : : ; p4, i.e., we
have h0.	R.P/.4//� 1. Now,R.P /DB [ ¹p1; : : : ;p4º, so �.	R.P/.4//D�.	B.4//� 4
while hi .	R.P/.4//D hi .	B.4// for i > 1. Therefore, h1.	R.P/.4//D h0.	R.P/.4//� 1.

To show that h0.	R.P/.4// D 1, we assume for contradiction that there is a pencil of
quartic surfaces containing the Bi;j and the points p1; : : : ; p4. Let A be one of them. On
each surface Si , the intersection A \ Si is a .4; 4/-curve that contains the three .1; 1/-
curves Bi;j and the three triple points on Si that are not on the Bi;j . As the three latter
points cannot be collinear, the intersection A \ Si is independent of the choice of A.
Therefore, in the pencil of surfaces A, there is one that contains the surface Si . But then
it contains, on each of the other surfaces Sj , the four .1; 1/-curves Bj;k (for k ¤ j ) and
Cij in addition to a triple point of intersection on the three surfaces Sk (for k ¤ i ), which
is impossible. So the surface A is unique, i.e. h0.	R.P/.4// D 1 and h1.	R.P/.4// D 0.
Notice that the curve Ai D A \ Si intersects the Ci;j only in triple points different from
the vertices, as in Lemma 6.10.

In the general case, we argue by induction on the number of components k, and want
to prove that h0.	R.P/.2k � 4// D 1 and h1.	R.P/.2k � 4// D 0. We assume that Sk
contains three edge curves and consider removing the surface Sk from the polypol P .

Removing the facet in the k-th hyperplane of the convex polyhedron H that corres-
ponds to the polyhedral polypol P , the remaining facets naturally extend to facets of a
polyhedron H 0. Removing the surface Sk , the remaining surfaces define a polyhedral
polypol Q corresponding to H 0:

The three vertices in Sk lie on three edges that are not in Sk . These three edge curves
intersect in one (or two) points. Either one may be chosen as vertex in Q, we call it vQ.
Thus, the edge curves of Q are the edge curves in P that do not lie in Sk , and the vertices
of Q are vertices of P that are not in Sk and the new vertex vQ.

Consider now the following exact sequence of sheaves, where Sk D ¹qk D 0º:

0! 	R.Q/[vQ.2k � 6/
�qk
��! 	R.P/.2k � 4/

jSk
��! 	R.P/\Sk .2k � 4/! 0:

Using the notation from Lemma 6.10, the intersection R.P / \ Sk is the union of a curve
of bidegree .2k � 2 � dk ; 2k � 2 � dk/ and the set Zk of singularities on Ck that are not
vertices of P . So 	R.P/\Sk .2k � 4/ D 	Z;Sk .dk � 2/, and hence, by Lemma 6.10,

h0
�
	R.P/\Sk .2k � 4/

�
D 1 and h1

�
	R.P/\Sk .2k � 4/

�
D h1

�
	Zk ;Sk .dk � 2/

�
D 0:

By the induction hypothesis, we assume

h0
�
	R.Q/.2k � 6/

�
D 1 and h1

�
	R.Q/.2k � 6/

�
D 0:
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Then, as in Lemma 6.10, the adjoint surfaceAQ does not contain any vertex, including
vQ. So only the zero section in 	R.Q/.2k � 6/ vanishes at vQ. It follows that

h0
�
	R.Q/[vQ.2k � 6/

�
D h1

�
	R.Q/[vQ.2k � 6/

�
D 0;

and therefore

h0
�
	R.P/.2k � 4/

�
D 1 and h1

�
	R.P/.2k � 4/

�
D 0:

The adjoint surface AP is defined by the unique section of 	R.P/.2k � 4/.

7. Outlook
In the previous sections we have studied polypols and positive geometries from the point
of view of algebraic geometry. These efforts have led to several conclusive results, but
they also give rise to a series of natural follow-up questions. With the hope of inspiring
future research directions, we present some of these questions below.

Wachspress’s conjecture. The conjecture by E. Wachspress that the adjoint curve of a
regular rational polypol in the plane does not pass through the interior of the polypol
(Conjecture 3.4) is still widely open. We attempted to prove the first non-trivial case for
regular polycons bounded by three ellipses, but – as explained in Appendix A – a formal
proof is still missing for 11 such polycons.

Hyperbolicity. It was shown in Section 3 that in the case of plane convex polygons the
adjoint curve is always hyperbolic, while for polytopes in higher dimensions as well as
polycons formed by three ellipses it can both be hyperbolic and non-hyperbolic. A nat-
ural question is to find some sufficient conditions on the polypols/polypoldrons which
guarantee the hyperbolicity of the related adjoint hypersurfaces.

Singular adjoints. A more specific (complex) problem related to the previous question
is as follows. Consider the (closure of the) space of pairs consisting of a triple of generic
conics and a 9-tuple of their 12 points of pairwise intersection where we have arbitrarily
removed one point from each pairwise intersection (containing 4 points). For a general
such 9-tuple of points, the unique cubic curve passing through them is nonsingular. An
interesting question is to find a description of 9-tuples coming from triples of conics for
which the respective adjoint curve is singular, i.e., to describe the discriminant in this
space. One can easily observe that this discriminant has several components: The cubic
adjoint curve is singular, for instance, if either all three conics pass through the same point
or if two of the conics are tangent to each other and this point is included in the 9-tuple of
residual points.

Adjoint maps. In Theorem 4.2, we have identified all types of planar polypols with a
finite adjoint map. However, finding the degrees of these maps is a nice computational
challenge, as well as an interesting theoretical question. In particular, can one provide a
theoretical argument for Conjecture 4.8? How many of the 864 heptagons in this conjec-
ture can be real? How many can be convex?
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By Proposition 4.5, the adjoint map ˛1;3;1;3 is not dominant. A natural question to ask
is which quintic curves are the adjoint of a .1; 3; 1; 3/-polypol?

Limits of canonical forms. This topic is mentioned in [3, Ch. 10]. We state it here in the
simplest possible form. Consider a convex real-algebraic lamina ‡ � R2, i.e., a convex
domain whose boundary is an oval of a real algebraic curve. Consider a sequence ¹Pnº
of convex inscribed polygons which exhaust ‡ when n!1. Let �n WD �.Pn/ be the
canonical form of Pn. What is the limit limn!1�n? In particular, does it exist and is it
independent of the sequence ¹Pnº? What is its description in terms of ‡?

Observe that the limit limn!1�n (if it exists) will typically be non-rational. Further-
more, since �n can be interpreted as the scaled moment-generated function of the dual
polygon P �n [3, Sec. 7.4.1], one can hope that limn!1�n exists and coincides with the
scaled moment-generating function for the convex domain ‡� dual to ‡ .

Pushforward conjecture. While the pushforward relation phrased as a heuristic (Heur-
istic 5.5) has been settled in the case of the toric moment map [3, Thm. 7.12] and in the
one-dimensional case (Proposition 5.6), a general argument is still missing. A sketch of
such an argument, based on the commutation of push-forward and taking residues, is given
in [3]. However, the presented results are non-conclusive. Proposition 5.6 suggests that
requiring � to induce a morphism of positive geometries (Definition 5.2) is too restrictive.
It is an important remaining challenge to identify the necessary assumptions on � for the
push-forward relation to hold and to give a rigorous proof.

Higher-dimensional polypols. Our discussion of polypols of dimension at least three is
limited to polypols in R3 with quadric surfaces as boundary components. Clearly, gen-
eralizations to rational boundary components of higher degree and to higher dimensions
would be interesting; in particular, to find the polypols with a unique adjoint.

Fitting these polypols into the theory of positive geometries requires a discussion of
canonical forms. A central question is which real n-dimensional polypols allow a canon-
ical form, and how positive geometries may be obtained from unions and differences of
real polypols as in Section 2.4. The natural candidate for a canonical form is a rational n-
form with poles along the boundary hypersurface and zeros along an adjoint hypersurface
to that hypersurface. These questions are, as far as we know, open already for real quadric
polypols.

A. Wachspress’s conjecture for three ellipses

In what follows, we first create the catalog of the 44 admissible configurations of three
ellipses described in Theorem 3.14; see Sections A.1–A.3. Next, we provide an argument
that proves Wachspress’s conjecture for 28 of these configurations (and all polycons exist-
ing in these configurations) by showing that the adjoint curve has to be hyperbolic with
the oval lying strictly outside of the polycon; see Proposition A.3. This leaves us with 16
problematic configurations. Finally, we provide a more intricate argument for 5 of these
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in Proposition A.4, and compute the adjoint of example instances for the problematic
polycons in the remaining 11 configurations; see Figure 37.

A.1. Creating the catalog

Our first aim is to classify all topologically distinct configurations of three ellipses in
R2 that intersect transversally such that all three of them do not intersect at the same
real point and, additionally, each pair intersects at least twice in R2. By topologically
equivalent configurations we mean configurations which can be obtained from one another
by a diffeomorphism of R2.

We distinguish such configurations of three ellipses by their intersection type: (222) –
all three pairs intersect exactly twice in R2, (224) – precisely one pair of two ellipses
intersects in four real points, (244) – precisely one pair of two ellipses intersects only
twice in R2, and (444) – all pairs of ellipses intersect in four real points.

Remark A.1. In real algebraic geometry, the latter case is usually referred to as the M -
case, see [24]. That article contains, in particular, statistical information about all possible
topological configurations of three real nonsingular conics transversally intersecting in
P2.R/ with intersection type (444), i.e., in the M -case. According to the row 7 of Table
1 of that paper, there exist 105 such configurations. Notice that there are more projective
non-equivalent configurations of three conics than affine configurations of three ellipses.
In particular, a configuration of two ellipses intersecting each other in four real points
is projectively non-equivalent to a configuration consisting of an ellipse and a hyperbola
intersecting each other in four real points.

Below we provide a method/algorithm, consisting of four steps, for finding all possible
non-equivalent configurations of three ellipses in R2 as described in Theorem 3.14. We
note that this method turned out to be sufficient for our purposes, but it might need some
extra steps to solve a similar problem for more than three ellipses. We present the final
outcome of our method in Appendix A.3.

Step 0. Subdivision according to intersection types. Fix an intersection type: (222),
(224), (244), or (444).

Step 1. Obtaining a preliminary excessive catalog. During this step, consisting of three
substeps, we create all possible topological configurations of two ellipses and an oval (that
is not necessarily convex) of the intersection type chosen in Step 0. By an oval we mean
a simple closed curve in R2. (Notice that during this step we enumerate configurations
of two ellipses and an oval, identifying those which can be obtained from one another
by a continuous deformations and global symmetries. As a result we enumerate the latter
configurations up to global diffeomorphisms of R2.)

Step 1(A). Draw two ellipses, one vertical and one horizontal, that intersect each other in
a way consistent with the chosen intersection type. The horizontal ellipse cuts the vertical
one either into two or four arcs.
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Figure 16. Five possible topologically distinct cases of how the third oval can intersect the vertical
ellipse locally; these local intersections are shown by two green segments.

Figure 17. The five subcases of the leftmost case in Figure 16.

Observe that the intersection type determines whether the third oval can intersect the
vertical ellipse in two or four real points. We list all topologically distinct cases of how this
oval can intersect the vertical ellipse locally, i.e., we choose two resp. four short segments
that meet the vertical ellipse in all topologically distinct ways (up to symmetries).

To illustrate Step 1(A), let us provide more details in the (244)-case, see Figure 16.
We start by drawing the vertical and the horizontal ellipses intersecting each other in four
real points. Then we find all ways the third oval can intersect the vertical ellipse locally
in two points. In other words, we are drawing two short segments of the oval where it
intersects the vertical ellipse. Up to symmetry, we get five different cases of possible local
intersections shown in Figure 16.

Step 1(B). Subdivide each case obtained in Step 1(A) further by connecting the short
segments from Step 1(A) in all admissible ways (consistent with the chosen intersection
type) inside the union of the two ellipses. This determines how the third oval intersects the
horizontal ellipse in the interior of the vertical ellipse. For the leftmost case in Figure 16,
all such connections are shown in Figure 17.

Step 1(C). Finally, for each subcase obtained in Step 1(B), complete the curve in all pos-
sible ways to get topologically distinct ovals (recall that an oval here is a simple closed
curve) that intersect the two ellipses we started with according to the chosen intersection
type. For the leftmost subcase in Figure 17, all its possible completions with intersection
type (244) are shown in Figure 18.

Step 2. Reduction. In this step, we determine which configurations found in Step 1 can-
not be realized by three convex ovals, using the following two arguments.1

1In our setting, all configurations that cannot be excluded in this way are realizable as convex config-
urations. We are not aware of a similar criterion for the case of more than three ovals and/or higher degree
curves.
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Figure 18. Up to simple symmetries such as reflection, precisely these thirteen ovals are obtained
in Step 1(C) from the leftmost subcase in Figure 17. We number them from left to right as 1–6 in
the first row and 7–13 in the second row.

First, the intersection of two ellipse interiors must be convex. For instance, this ex-
cludes configurations 1, 3, 4, 6, 9, 10 and 13 from Figure 18.

Second, a line intersects a convex oval in at most two points. This excludes config-
urations 5, 11 and 12 in Figure 18. To see this in configuration 12, consider the 4-sided
convex intersection of the two ellipses and the line L that passes through its lower-right
and upper-left vertex. It is clear that L must intersect the green oval in at least four points.
In configuration 5, we reach the same conclusion if we consider the line spanned by the
two upper left points of the intersection between the horizontal ellipse and the green oval.

It not hard to see that all three out of the eleven configurations shown in Figure 18 that
are left can be drawn with convex ovals. These configurations, 2, 7, and 8, are realized
with ellipses in Figures 28 (j) (middle and right) and 28 (f).

Step 3. Identification. During this step, we decide which configurations of three ovals
found in Step 2 are topologically equivalent and which are distinct. To this end, we
define the outer-arc type of a configuration as follows. Consider the complement of the
interiors of the two ellipses and the oval. Count the boundary arcs of this complement
and how many of them belong to each of the three curves. Finally, order these three
numbers decreasingly. Such a triple is called the outer-arc type of a configuration; see
Figures 26–29. We observe that two configurations with distinct outer-arc types cannot be
topologically equivalent.

It is left to decide which configurations of the same outer-arc type are topologically
equivalent.

If the numbers of polycons inside two configurations differ, then the configurations
are different. Similarly, we can count regions with more than three sides to distinguish
between distinct configurations. Finally, we identify that two configurations are equivalent
by considering all permutations of the three ovals in one of the configurations.

Step 4. Realization. Represent the topological configurations of three ovals remaining
after Step 3 by three ellipses (e.g., by using Geogebra [19]) or show their non-realizability
by ellipses using a method suggested byOrevkov in [27] that we describe in Appendix A.2.
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(a) 544445112222 (b) 4411522212125 (c) 554211121214 (d) 554555522114 (e) 544545542211

Figure 19. Configurations non-realizable by three ellipses. The subcaptions show their �-codes. For
instance, 544445112222 is the shorthand for �5 �4 �4 �4 �4 �5 �1 �1 �2 �2 �2�2.

A.2. Non-realizability of certain configurations of ovals by ellipses

In Step 4 of the method described above, we were able to realize all configurations with
three ellipses, except the 5 configurations of intersection type .444/ in Figure 19.

Further results of this subsection are due to G. M. Polotovskiy.

Proposition A.2. None of the five configurations of three ovals shown in Figure 19 can
be realized as a union of three real conics.

Proof. The argument uses the method based on the theory of braids and links suggested
by S. Orevkov in [27]. This method has become standard in the problems of topology of
reducible real algebraic curves, see e.g., [23, 28]; below we only present its short account
sufficient for the basic understanding of the argument.

Let Cm be a real projective algebraic plane curve of degree m (i.e., a curve defined
by a real homogeneous degree-m polynomial in three variables), all singularities of which
are nodes. We write Cm.R/ for its real part.

Assume that there exists a point p 2 P2.R/ n Cm.R/ such that the pencil Lp of lines
through p is maximal, which means the following:

(a) Lp contains a line l0 that intersects the curve Cm.R/ inm distinct real points. We
call l0 a maximal line.

(b) Every line l 2 Lp intersects Cm.R/ in at least m � 2 distinct real points.

(c) Each line of the pencil has no more than one real point of double intersection with
Cm.R/. Each such critical line is either tangent to Cm.R/ or intersects Cm.R/ at
a (cru)node, i.e., a real node where two real branches intersect each other.

For each configuration in Figure 19 (assuming it could be realized by three conics), a
maximal pencil would obviously exist: the point p can be chosen in the intersection of the
interior of the three ovals (e.g., as in Figure 22 left). With such a choice of p every line in
the pencil Lp intersects the curve in six real points (counting multiplicities). We observe
that condition (c) can always be achieved by a small perturbation of the point p.

Let us now choose affine coordinates .x; y/ in R2 in such a way that the line l0
becomes the line at infinity (which implies that the point p is also located at infinity)
and such that the pencil Lp will become the pencil of parallel lines ¹ltº where lt is the
line given by the equation x D t ; see Figure 20 left, where ¹ltº is shown as parallel lines.
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Figure 20. Constructing a link using a maximal pencil.

Figure 21. Possible symbols of the �-code.

Let ¹lt1 ; : : : ; lts º be the set of critical lines (i.e., lines passing through crunodes or
tangent to Cm.R/), ordered according to the increase of parameter values ti . The scheme
of location of the curve Cm.R/with respect to the pencilLp is coded by the word u1 � � �us
where the letter ui characterizes the local behavior of Cm.R/ near lti and attains one of
the three possible values: �k , �k , �k (k 2 ¹1; : : : ; m � 1º) as explained in Figure 21.

In what follows, we call the coding word the �-code. In the configurations in Figure
19 (assuming they could be realized by three conics), the symbols�k ,�k are unnecessary
since every line from the pencil Lp intersects each of the conics transversally. Thus, their
�-codes contain only the symbols �k for k 2 ¹1; : : : ; 5º.

Next we includeCm.R/ into a bigger one-dimensional singular curveM � P2 defined
asM WDCm.C/\Lp.C/, whereLp.C/ is the complexification of the real pencilLp , i.e.,
we substitute each line in Lp by its complexification in P2. Observe that Lp.C/ is a 3-
dimensional subset of P2 and every complex line fromLp.C/ intersects Cm.C/ in finitely
many points. The union of these points (for all values of the real parameter in Lp running
over P1.R/) forms the curve M � P2 which obviously includes Cm.R/.

The curve M is homeomorphic to a collection of circles, some of which are pairwise
glued together at the nodes of Cm.R/ and at the tangency points of the pencil Lp with this
curve (see Figure 20 center2).

Removing all the gluing points in a standard way (see Figure 20 right), we obtain the
link K.Cm; p/ � Lp.C/. (Geometric details of this resolution are a bit lengthy and can
be found in [27, pp. 13–14].) Let b.Cm; p/ denote a braid with m strands whose closure

2The figure is schematic – the “imaginary axis” v is 2-dimensional.
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Figure 22. The leftmost configuration from Figure 19 in P2.R/ with a line (dashed) that intersects
the three ovals in six real points.

coincides with K.Cm; p/. For what follows it is important to observe3 that condition (b)
guarantees that the braid b.Cm; p/ is uniquely determined (up to conjugation in the group
Bm of braids with m strands) by the relative position of the curve Cm.R/ and the pencil
Lp in P2.R/. Recall that the group Bm has the following standard (co)representation in
terms of the generators �k :˝

�1; : : : ; �m�1 j �i�j D �j�i if ji � j j > 1; �i�j�i D �j�i�j if ji � j j D 1
˛
:

If the initial curve is algebraic, then the obtained braid b.Cm; p/ must be quasiposit-
ive [32], i.e., it has to admit a presentation in the form

Qk
jD1 !j�ij!

�1
j , where !j are

some words in the alphabet ¹�1; : : : ; �m�1; ��11 ; : : : ; ��1m�1º.
As a necessary condition of quasipositivity, Orevkov [27] suggested to use the follow-

ing (for notation see ibid.).

Murasugi–Tristram inequality. If b D
Q
�
ki
i is a quasipositive braid with m strands,

then its closure satisfies the inequalityˇ̌
�.b/

ˇ̌
Cm � e.b/ � n.b/ � 0;

where �.b/ and n.b/ are the signature and the defect of the closure of the braid b, and
e.b/ D

P
ki is the algebraic degree of the braid b.

Recall that the signature and the defect of a link are defined as the signature and defect
of its Seifert matrix (quadratic form) which, by definition, is the intersection matrix of the
cycles on the Seifert surface of the link, see details in e.g., [27, Secs. 2.5–2.6].

For the leftmost configuration in Figure 19, we choose the point p and the line l0 as
shown in Figure 22 left, where the curve is shown in the real projective plane modelled
on the unit disk with pairwise identified opposite points of its boundary circle. For the

3In principle, Orevkov’s method is applicable even in the case when condition (b) does not hold, but in
such situation it is very difficult to present/check all possible occurring links in the complex domain.
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Figure 23. Affine picture of Figure 22 (right) such that all lines through p are vertical.

(a) 110 (a) 111 (a) 211 (a) 222

Figure 26. Intersection type (222). The subcaptions show the outer arc type. Problematic configur-
ations are framed: The unique (up to symmetry) problematic polycon is orange.

convenience of producing the�-code, let us choose the system of coordinates in a different
way – namely, such that l0 becomes the boundary circle as in Figure 22 right. Now using
the affine plane (i.e., sending the line l0 to infinity), we obtain Figure 23 from which
it is easy to obtain the �-code: �5 �4 �4 �4 �4 �5 �1 �1 �2 �2 �2�2. Similarly, we
obtain the �-codes of the remaining four configurations in Figure 19, presented in the
subcaptions.

The computer program written in the early 2000’s by M. Gushchin, allows us to cal-
culate the left-hand side of the Mirasugi–Tristram inequality using the �-code.4 For all
the five �-codes obtained above, the computer results for the left-hand side are equal to 2,
which means that neither of the configurations in Figure 19 can be realized as a union of
three conics.

A.3. The catalog

We present all 44 configurations of three ellipses described in Theorem 3.14 in Figures 26–
29. We found some configurations difficult to draw without having some arcs of the conics
to be very close to each other. We provide topological sketches of these configurations
in Figure 30. In the next subsection, we prove Wachspress’s conjecture for 28 of the 44
configurations. The remaining 16 problematic configurations are framed in Figures 26–29.

4S. Orevkov has written his own code which is partially published in [28]. In all previously tested cases
both programs give the same outcome.
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(a) 110 (b) 111 (c) 211

(d) 220 (e) 221 (f) 321 (g) 332

Figure 27. Intersection type (224). The subcaptions show the outer arc type. Problematic configur-
ations are framed: The unique (up to symmetry) problematic polycon is orange.

We will see that each of these has in fact only one problematic polycon up to symmetry,
shaded in orange in the figures.

A.4. Proving hyperbolicity

The adjoint curve of a polycon defined by three conics is a cubic curve. So there are only
two possible real geometries if the adjoint curve is nonsingular:

(1) The real points are connected, in which case this connected component is a pseudo-
line and its complement in P2.R/ is connected.

(2) The real part of the adjoint has two connected components, in which case it is a
hyperbolic cubic, i.e., it has one connected component that bounds a simply con-
nected region, called the oval, and the other connected component is a pseudoline.

Since the adjoint curve does not intersect the Euclidean boundary of a regular polycon
(cf. Lemma 3.5), the pseudoline component cannot pass through the interior of the poly-
con. The essential question is therefore if the adjoint curve has an oval and, in case that it
does, if we can determine its location. In most cases, we can show by an analysis of the
signs of the adjoint curve – similar to the case of polygons – that the intersection pattern
forces the adjoint curve to be hyperbolic and the oval to be outside of the polycon, which
proves Theorem 3.14 in those cases.
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(a) 110 (b) 111 (c) 222 (d) 322 (e) 422

(f) 433 (g) 211 (h) 220. Right sketched in Fig. 30 (a)

(i) 221 (j) 321

Figure 28. Intersection type (244). The subcaptions show the outer arc type. Problematic configur-
ations are framed: The unique (up to symmetry) problematic polycon is orange.

Proposition A.3. In the 28 configurations of three ellipses depicted without frames in
Figures 26–29, the real part of the adjoint curve of any regular polycon P in the config-
uration is hyperbolic and does not intersect the interior of P�0.

Proof. Each pair of ellipses intersects in four complex points, three of which are residual
points. The adjoint curve intersects each one of the ellipses only in the six residual points
on it by Lemma 3.5. Since the adjoint is a cubic curve, each one of the six points is a simple
root, and we can determine the sign of the adjoint along each conic. We illustrate this in
Figure 31, where the signs are marked as red and blue: The sign changes at every residual
point, so each of them is adjacent to two red arcs and two blue arcs. By Lemma 3.5,
the adjoint has to pass through every residual point, intersecting each of the two conics
transversely and separating the blue from the red arcs. That is to say that every sufficiently
small real circle around a residual point intersects the adjoint in two real points, and the
two red branches of the conics intersect the circle in one of the intervals created by these
intersection points and the blue branches in the other interval.

This local information is enough to determine the location of the oval of the adjoint in
Figure 31: The blue triangle on the right side of the polycon in the picture is surrounded
by an oval of the adjoint because the triangle lies in a simply connected region of the
complement of the red arcs of the conics and the adjoint cannot cross the boundary of
this region. We leave it as an exercise for the reader that the same argument applies to all
regular polycons in the non-framed configurations in Figures 26–29.
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(a) 111. See Fig. 30 (b). (b) 211 (c) 332 (d) 333 (e) 444

(f) 220. Right sketched in Fig. 30 (c). (g) 221. Left sketched in Fig. 30 (b).

(h) 222 (i) 321. Right sketched in Fig. 30 (b).

(j) 322 (k) 422

Figure 29. Intersection type (444). The subcaptions show the outer arc type. Problematic configur-
ations are framed: The unique (up to symmetry) problematic polycon is orange.

(a) Fig. 28 (h), right. (b) Figure 29 (a). (c) Fig. 29 (f), right. (d) Fig. 29 (g), left. (e) Fig. 29 (i), right.

Figure 30. Topological sketches of some configurations of three ellipses.
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Figure 31. A polycon (orange) bounded by three ellipses with intersection type 244 and outer arc
type 211; cf. Figure 28 (g), left. Red and blue distinguish the sign of the adjoint.

A.5. Problematic configurations

For the 16 framed configurations of three ellipses in Figures 26–29, the argument in Pro-
position A.3 does not apply to all regular polycons in the configuration. However, we
invite the reader to check that the argument does in fact apply to all but one problematic
polycon, up to symmetry. The problematic polycon is shaded orange in the figures. For
instance, the configuration in Figure 27 (e) has six regular polycons: Exactly two of those
are problematic (i.e., the argument in Proposition A.3 does not apply), but they are the
same up to the symmetry in the configuration.

We now prove Wachspress’s conjecture for five of the problematic polycons.

Proposition A.4. In the 5 problematic configurations of three ellipses in Figures 28 (d)
and 29, the real part of the adjoint curve of any regular polycon P in the configuration
does not intersect the interior of P�0.

To prove this assertion, we need the following key lemma.

Lemma A.5. Let P be a regular polycon in R2 defined by three ellipses. If for every point
p in the interior of P�0 there is a line passing through p that meets the adjoint curve AP
outside of P�0 at least twice, then AP does not intersect P�0.

Proof. This is a count of intersection points because the adjoint curve does not intersect
the boundary of P�0 by Lemma 3.5. So a connected component of AP .R/ inside P�0
would have to be an oval (possibly singular). In the case of a nonsingular oval, we choose
a point p in its interior, and see that the line from the statement now intersects AP in
at least two additional points. This is not possible since the adjoint is of degree 3. In
the singular case, we choose p to be the singular point of AP inside P�0. Then the line
from the statement passes through p with multiplicity two and we arrive at the same
contradiction.
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(a) Fig. 28 (d). (b) Fig. 29 (j), left. (c) Fig. 29 (j), right. (d) Fig. 29 (k), left. (e) Fig. 29 (k), right.

Figure 32. The five problematic polycons from Proposition A.4. Orange, red and blue are as in
Figure 31. The purple curve segments show the topological behaviour of the adjoint.

 

(a) The adjoint curve segments connect along
the red sides in the left 4-sided region.

  

(b) The two tentacles closest to the polycon are
directly connected.

Figure 33. Example illustrations for the problematic polycon in Figure 32 (e).

The five problematic polycons described in Proposition A.4 are shown in Figure 32,
together with the sign of the adjoint along each ellipse. If the real part of the cubic adjoint
would have an oval or a singularity outside the polycon, then there could be no oval or
isolated node inside the polycon. Thus, no real connected component of the adjoint could
be strictly contained inside the polycon and Lemma 3.5 would imply Wachspress’s conjec-
ture. Hence, in the following we assume that all real residual points lie on one connected
nonsingular pseudoline ofAP . Knowing how the adjoint passes through the residual points
(separating red and blue arcs), we can connect the adjoint in some regions but not in oth-
ers. This local topological behavior of the adjoint is sketched in Figure 32. For each region
bounded by two chains of red and blue arcs for which we have not yet drawn how the
adjoint passes through the interior, there are two nonsingular possibilities how to connect
the adjoint, either “along the red sides” (see Figure 33 (a)) or “along the blue sides” (as in
Figure 33 (b)).

Lemma A.6. If two adjoint curve segments in Figure 32 connect “along the red sides”,
the adjoint curve does not intersect P�0.

Proof. We first observe that if one of the 3 ellipses satisfies that (1) the polycon is in its
interior and (2) the pseudoline of the adjoint separates the ellipse into disjoint regions such
that one residual point p0 on the ellipse lies in a different region than the polycon, then we
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are done by Lemma A.5. This is because for any point p in the polycon, the line segment
from p to p0 is contained inside the ellipse and must intersect the adjoint at least twice:
once at p0 and once where the pseudoline separates the ellipse.

We show now for the problematic polycon in Figure 32 (e) that one of the three ellipses
satisfies (1) and (2) above. The other cases are similar. We consider the unique ellipse C
that has the polycon in its interior. If the adjoint curve connects along the red sides, say in
the left 4-sided region in Figure 33 (a), then there are two possibilities for how to connect
the pseudoline in the upper 4-sided region (marked with the dashed curve segments).
Either way, the interior of the ellipse C is separated into disjoint regions by the pseudoline
as in (2).

For each of the polycons in Figure 32, there are 6 branches of the pseudoline of the
adjoint that leave the configuration of three ellipses. We call these tentacles. We are now
ready to prove Proposition A.4 and thereby finalize the proof of Theorem 3.14.

Proof of Proposition A.4. As previously discussed, we may assume that the adjoint curve
segments in Figure 32 form one connected nonsingular pseudoline. Due to Lemma A.6,
we also assume that the adjoint curve segments connect along the blue sides inside the con-
figuration of the three ellipses. Hence, to conclude the topological picture of the pseudo-
line, it is left to distinguish how the six tentacles connect outside of the configuration and
which tentacles go to infinity. The pseudoline intersects the line at infinity in one or three
points, so its intersection with the affine chart (that is the complement of the line at infin-
ity) has one or three components. This means that the number of connected components of
the pseudoline in the affine chart that intersect the triple of ellipses is one, two or three. In
each case we now argue how the tentacles may connect to form these components. Since
the adjoint curve segments in Figure 32 form one connected nonsingular pseudoline and
cannot intersect the ellipses in any other points, only neighboring tentacles can be directly
connected with each other (i.e., without meeting the line at infinity first). In particular, the
two tentacles that are closest to the polycon are either directly connected or both meet
the line at infinity. They cannot connect to their other direct neighbor because this would
create an oval. This leaves us with the following three cases.

Case 1 (The two tentacles nearest the polycon are directly connected). Let p be any point
in the interior of the problematic polycon. In Figures 32 (d) and 32 (e), the polycon is
outside two of the three ellipses, denoted by C1; C2, and inside the third ellipse C3. Let p0

be any of the three residual points on the intersection of C1 with C2. We consider the line
spanned by p and p0 (depicted in Figure 33 (b)) and split it into three line segments: the
first goes from the point at infinity to p0, the second from p0 to p, and the third from p to
infinity. Since p0 lies on the boundary of the ellipse C1 (resp. C2) and p lies outside of the
ellipse, the line segment from p to infinity intersects neither C1 nor C2. Hence, it has to
leave the polycon via its side on the ellipse C3 and then intersect the adjoint curve segment
that connects the two tentacles closest to the polycon. Thus, the line spanned by p and p0

meets the adjoint outside of the polycon in two points and Wachspress’s conjecture holds
for the polycons in Figures 32 (d) and 32 (e) by Lemma 3.5.
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(a) Example illustration for the problematic polycon
in Figure 32 (e).

(b) Sketch of the contradiction in Case 2 in the proof
of Proposition A.4. The ellipseC would intersect the
lines L1; L2; L3 at the bold points.

Figure 34. All six tentacles meet the line at infinity.

For the other problematic polycons in Figure 32, we change the argument slightly as
follows. In these configurations, the polycon is inside two of the ellipses, now denoted
C1; C2, and outside the third ellipse C3. Let p0 be a real residual point on the intersection
of C1 with C2. We consider the three segments of the line passing through p and p0 as
above. Since this time both p and p0 are inside the ellipse C1 (resp. C2), the line segment
from p to infinity must intersect the boundary of C1 (resp. C2) exactly once. We see from
Figures 32 (a)–32 (c) that the residual point p0 is inside the ellipse C3. Since p lies outside
C3, the line segment from p to infinity does not meet C3. Hence, this line segment leaves
the configuration of three ellipses via one of the two red arcs that lie between the two
residual points on the boundary of the configuration that are closest to the polycon. This
shows that the line segment from p to infinity intersects the adjoint curve segment that
connects the two tentacles closest to the polycon and, as above, we see from Lemma 3.5
that Wachspress’s conjecture holds for the problematic polycons in Figures 32 (a)–32 (c).

Case 2 (All six tentacles meet the line at infinity before connecting to any other tentacle).
In this case, the pseudoline has three branches as illustrated in Figure 34 (a). We assume
for contradiction that there is a point p inside the polycon such that every line through
p meets the pseudoline in exactly one point. The complement of the three (affine) lines
L1; L2; L3 that are spanned by p and one of the three points on the pseudoline at infinity
in the affine chart R2 consists of six “pizza slice” regions; see Figure 34 (b) for a sketch.
The three branches of the pseudoline have to be contained in every other “pizza slice”.
For each of the five problematic polycons in Figure 32, one of its three ellipses, denoted
by C , satisfies the following two conditions: (1) The polycon is outside of the ellipse,
and (2) every blue region has the ellipse on its boundary. Since the pseudoline segments
are connected along the blue sides inside the configuration of the three ellipses, each of
the three branches of the pseudoline goes around one of the three blue regions. Thus, the
ellipse C has to pass through every “pizza slice” containing a branch of the pseudoline.
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If we focus for instance on the top right “pizza slice” sketched in Figure 34 (b), we may
assume by symmetry that the ellipse C enters the “pizza slice” by crossing L1. Since the
point p lies outside of C , the second intersection point of L1 with the ellipse C also has
to lie on the boundary of that same “pizza slice”. This implies for the left “pizza slice”
containing a branch of the pseudoline that C has to meet its boundary half-line on L2
twice. Similarly, we get two intersection points of the ellipse C at the bottom half of L3.
All in all, we obtain the situation sketched in Figure 34 (b), which is a contradiction due
to the convexity of the ellipse C because it does not contain p. Hence, by Lemma A.5,
Wachspress’s conjecture holds in this case.

Case 3 (The two tentacles nearest the polycon meet the line at infinity, and two other
tentacles are directly connected). Recall that only neighboring tentacles can be directly
connected and that their connection should not create an oval. For any of the five prob-
lematic polycons in Figure 32, this leaves only two pairs of tentacles that can be directly
connected. In the following, we distinguish three more subcases, illustrated in Figure 35.
We stress that the following arguments apply to all problematic polycons in Figure 32
although Figure 35 only shows the polycon from Figure 35 (e). This is because their essen-
tial topological properties are the same: Each of the five problematic polycons induces
three blue regions and six tentacles of the pseudoline of the adjoint such that every tentacle
leaves the configuration of the three ellipses at one of the blue regions. Moreover, inside
the configuration, since the pseudoline segments are connected along the blue sides, the
pseudoline encloses each of the three blue regions. The three subcases are:

(a) The remaining pair of tentacles is also directly connected.
This is illustrated in Figure 35 (a). We show that this is impossible by counting
real inflection points of the adjoint curve in this case. A real plane cubic curve has
exactly three real inflection points [13, p. 44]. To give a lower bound, we travel
along the purple adjoint curve in Figure 35 (a) from the bottom left to the top right
branch. To enclose a blue region, the curve must bend to the left. To enclose a red
region (bounded by two intervals on the ellipses) between two of the blue regions,
the curve must bend to the right. In total, we transition four times between these
cases and so we must have at least four (real) inflection points in this picture. This
is impossible for a plane cubic.

(b) The remaining two tentacles meet the line at infinity.

(i) The two tentacles closest to the polycon meet the line at infinity in distinct
points.
In this case, the line at infinity meets the adjoint curve in three real points.
Since only four of the six tentacles of the pseudoline segments intersect the
line at infinity, there has to be another branch of the adjoint curve with two
points at infinity. That branch has to be located as depicted in Figure 35 (b)
(dashed). Indeed, due to the nonsingularity of the pseudoline, the branch
can only be placed in between two of the four tentacles with points at infin-
ity, and the placement of the branch between any two other tentacles than as
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(a) Case 3 (a).

  

 

(b) Case 3 (b) (i).

      

 

(c) Case 3 (b) (ii).

Figure 35. Example illustrations for the proof of Proposition A.4 for the problematic polycon in
Figure 32 (e).

Figure 36. Case (222) – 211 with the adjoint in purple and its polar curve in green. The notation
(222) – 211 denotes intersection type (222) and outer-arc type 211.

shown in the figure would either create an oval or contradict the assumption
in Case (i). Now we can apply the same argument as in Case 1, since Fig-
ure 35 (b) can be obtained from Figure 33 (b) by moving the line at infinity
such that it severs the direct connection between the two tentacles closest
to the polycon.

(ii) The two tentacles closest to the polycon meet the line at infinity in the same
point.
As in the previous case, there has to be another branch of the adjoint curve
that meets the line at infinity twice. This time the branch has to be located
as shown in Figure 35 (c). Now the same argument (counting inflection
points) as in Case 3 (a) applies, since Figure 35 (c) can be obtained from
Figure 35 (a) by moving the line at infinity.

A.6. Examples of adjoint curves for problematic configurations

Figure 37 shows the adjoint curve for one instance of each problematic polycon in Figures
26–29. We see that Wachspress’s conjecture holds in every instance, i.e., the adjoint curve
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(a) (222) – 111 (b) (222) – 211 (c) (224) – 111 (d) (224) – 211

(e) (224) – 221 (f) (224) – 321 (g) (244) – 221

(h) (244) – 321 (i) (244) – 422 (j) (244) – 322

(k) (444) – 322 (l) (444) – 422

Figure 37. Problematic polycons and their adjoint curves, using the same notation as in Figure 36.

does not intersect the interior of the polycon. We proved the conjecture for the last five
polycons in Figure 37. It it still an open problem to provide a formal proof for the first
eleven polycons.

Remark A.7. We stress that the adjoint curve of many problematic polycons is not hyper-
bolic. For instance, this is the case for the polycon in Figure 37 (b). To show that the adjoint
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curve is not hyperbolic, we compute critical points for a projection with center e 2 P2.R/.
If the point is not in the interior of an oval of the real locus of the adjoint, such an oval
produces at least two critical points for this projection. The critical points for the projec-
tion of the curve defined by an equation ˛P away from e are the intersection points with
its polar curve defined by the directional derivative De˛P . This is the curve in green in
Figure 36. The picture shows that there are no critical points on an oval which therefore
cannot exist.

Finally, we note that the adjoint curves of the five problematic polycons addressed in
Proposition A.4 have different behaviors: On the one hand, the adjoint curves in Figures
37 (j), 37 (k) right, and 37 (l) left are “connected along the red sides” (cf. Figure 32) and
so Lemma A.6 implies Wachspress’s conjecture for these polycons. On the other hand, the
adjoint curves in Figures 37 (k) left and 37 (l) right are “connected along the blue sides”
and all their six tentacles go to infinity, so Wachspress’s conjecture holds by Case 2 in the
proof of Proposition A.4.
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