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On the algebra of equal-input matrices
in time-inhomogeneous Markov flows

Michael Baake and Jeremy Sumner

Abstract. Markov matrices of equal-input type constitute a widely used model class. The corres-
ponding equal-input generators span an interesting subalgebra of the real matrices with zero row
sums. Here, we summarise some of their amazing properties and discuss the corresponding Markov
embedding problem, both homogeneous and inhomogeneous in time. In particular, we derive exact
and explicit solutions for time-inhomogeneous Markov flows with non-commuting generator famil-
ies of equal-input type and beyond.

1. Introduction

Markov processes are fundamental throughout probability theory and its applications.
They often show up as Markov chains, both in discrete and in continuous time; see
[18] for a comprehensive exposition. When the state space is finite, one most effectively
works with Markov matrices (non-negative matrices with unit row sums) or Markov semi-
groups. In the case of continuous time, the formulation is usually based on a Markov
generator, Q say, and the relevant (commutative) semigroup is written as ¹M.t/ W t > 0º

withM.t/D etQ. Markov generators have non-negative off-diagonal entries and zero row
sums, and are also known as rate matrices (we will use both terms synonymously). When
only a single Markov matrix M is given, it is then a natural question whether it can occur
in such a semigroup, which is known as the Markov embedding problem; see [11, 16] for
early work and [3, 10] and references therein for some recent developments.

While this already is a hard problem, and far from being solved in sufficient generality,
it has one drawback in that it only asks for the embedding into a time-homogeneous pro-
cess. In reality, there is often no good reason for the assumption that a time-independent
generator should exist. Further, in the time-dependent case of commuting matrices, one
faces the issue of common eigenvectors, and hence strong restrictions on the possible
equilibria. Indeed, some experimental evidence [8] around non-stationarity thus points
towards the need for time-dependent generators that do not commute with one another.
Consequently, one should also look at the embeddability into a time-inhomogeneous pro-
cess with, in general, non-commuting generators. For finite state spaces, a partial answer
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is given by Johansen’s theorem [15], which states that any Markov matrix that is embed-
dable in such a Markov flow can be approximated arbitrarily well by the product of finitely
many homogeneously embeddable matrices.

While analysing part of this in previous work [4,5], it became clear that there currently
is a rather limited understanding of the structure of Markov flows, and increasingly so with
growing dimension. In particular, when we look at the Cauchy problem PM D MQ with
M.0/ D 1, which is the Kolmogorov forward equation of the underlying process, there
are hardly any explicit results beyond the case where the matrices Q.t/ all commute with
one another, in which case the flow is given by M.t/ D exp.

R t
0
Q.�/ d�/ with t > 0, as

is straightforward to verify. Once again, there is usually no good reason for the commut-
ativity assumption, and the main goal of this paper is to derive some solvable cases that
go beyond, where we start from some models that are widely used in applications. Here,
we also aim at a better understanding of the corresponding Markov flows.

Now, the existence of a solution to the Cauchy problem, as well as its uniqueness
under some standard continuity assumptions on the generator family, is guaranteed by the
Picard–Lindelöf theorem of ordinary differential equations (ODEs); see [1,20] for classic
sources. Also, one can use the Peano–Baker series (PBS) to write down a convergent series
expansion of the solution, which can be quite helpful in understanding various aspects of
the solution; see [2] and references therein for a summary. In addition, there is another
approach via the Magnus expansion (ME), see [6, 17], which harvests the observation
that, since M.0/ D 1 possesses a real matrix logarithm (in fact, the principal one), this
will remain true at least for small values of t > 0. So, one can writeM.t/D exp.R.t// for
some interval Œ0; T �, with T > 0 andR.0/D 0, and derive an ODE for the matrix function
R from it.

This is possible via some underlying Lie theory, as summarised in [6], and the rel-
evant ODE is based on a series expansion in terms of iterated matrix commutators (or
Lie brackets). As with the PBS, beyond the trivial case of commuting generators, it is
rarely possible to compute this series explicitly, but there are instances known where it
is; compare [6] and references therein. It is perhaps surprising that our featured model
class of equal-input matrices, which we take from applications in phylogenetics [19], has
a sufficiently strong algebraic structure (see Fact 2.3 below) that leads to a natural and
wide class of non-commuting families where an explicit solution is also possible. In fact,
already in [4], we highlighted this structure, when we demonstrated that the equal-input
matrices allow for an explicit formula of the Baker–Campbell–Hausdorff (BCH) formula
in this class, where we refer to the WIKIPEDIA for some background on BCH. Below, we
employ the PBS and the ME to derive some explicit solutions in closed form.

The paper is organised as follows. We collect some notions and results, in particular
around equal-input matrices, in Section 2, before we solve the Cauchy problem for the case
that the generator family consists solely of general equal-input matrices (Section 3). Gen-
erically, these matrices do not commute with one another, but have a sufficiently strong
algebraic structure to enable an explicit solution. A close inspection of the algebraic struc-
ture reveals that even more is possible, due to a particular ideal within the algebra of zero
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row sum matrices. This leads to two more general classes where we obtain a full solution,
which are treated step by step in Section 4. As we proceed, for the sake of readability,
we sometimes employ a style of presentation where we first derive the results prior to
their formal statement as a theorem. Some material on the PBS and the ME is briefly
summarised in the appendix.

2. Notation and preliminaries

For a row vector x D .x1; : : : ; xd / 2 Rd , we define the equal-rows matrix

Cx WD

0B@x1 � � � xd
:::

: : :
:::

x1 � � � xd

1CA ;
which has rank 0 for x D 0 and rank 1 otherwise. Its spectrum is �.Cx/ D ¹x; 0; : : : ; 0º

in multi-set notation, with

x WD tr.Cx/ D x1 C � � � C xd

denoting the summatory parameter of Cx , while x is called the parameter vector of Cx .
Note that x D 0 is possible for x ¤ 0. An important relation is

CxCy D xCy ; (2.1)

which holds for arbitrary x;y 2 Rd and has the following consequence.

Fact 2.1. Any matrix Cx with x D tr.Cx/ D 0 is nilpotent, with C0 D 0 and nilpotency
degree 2 in all other cases. When x ¤ 0, the null space of Cx has dimension d � 1.
Whenever x ¤ 0, Cx is diagonalisable. Otherwise, if x ¤ 0 but d > 2 and x D 0, the
Jordan normal form of Cx has precisely one elementary Jordan block of the form

�
0 1
0 0

�
and is diagonal otherwise.

Proof. The first claim follows immediately from (2.1) by taking y D x. When x ¤ 0, the
relation .v1; : : : ; vd /Cx D 0 is satisfied precisely by all v with v1 C � � � C vd D 0, which
form a subspace of Rd of dimension .d � 1/. When x ¤ 0, hence also x ¤ 0, we get one
extra eigenvector for the eigenvalue x, and thus diagonalisability of Cx . In the remaining
case, the consequence on the Jordan normal form is clear.

When x D 1 and all entries of x are non-negative, Cx is a Markov matrix, but of little
interest as it is singular for d > 2. A more interesting set of Markov matrices for d > 2,
with numerous applications in phylogeny [19] for instance, is defined by

Mx D .1 � x/1C Cx (2.2)
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when x > 0 (meaning xi > 0 for all 1 6 i 6 d ) with 1C xi > x for all i . By slight abuse
of notation, x is called the summatory parameter of Mx . The condition that all row sums
are 1 is satisfied automatically. These are the well-known equal-input Markov matrices,
which have d degrees of freedom and form a closed convex set. Let us describe them in
a little more detail. The non-negativity condition of the matrix elements restricts x to the
interval Œ0; d

d�1
�, with the maximal value being attained at x1 D x2 D � � � D xd D 1

d�1
.

This implies the following result, where 1 WD .1; : : : ; 1/ and ei denotes the standard unit
row vector with 1 in position i and 0 everywhere else; see [4, Lem. 2.8].

Fact 2.2. The equal-input Markov matrices for fixed d > 2 form a d -dimensional convex
set that is closed and has d C 2 extremal elements, namely the matricesCei with 16 i 6 d
together with 1 and 1

d�1
.C1 � 1/.

The matricesMx where all entries of x are equal are called the constant-input matrices.
Note that in (2.2), independently of whether Mx is Markov or not, one always has the
spectrum �.Mx/ D ¹1; 1 � x; : : : ; 1 � xº and thus det.Mx/ D .1 � x/

d�1.
Of particular interest are the equal-input counterparts with zero row sums, as defined

by
Qx D �x1C Cx; (2.3)

which satisfy �Qx D Q�x for all � 2 R and x 2 Rd . These matrices all lie in the non-
unital, real matrix algebra of zero row sum matrices,

A0 D A
.d/
0 WD

²
A 2 Mat.d;R/ W

dX
jD1

Aij D 0 for all 1 6 i 6 d

³
:

In fact, all matrices of the form (2.3),

E0 D E
.d/
0 WD ¹Qx W x 2 Rd

º;

form a d -dimensional subalgebra of A
.d/
0 with interesting properties.1 Since 0 2 E0, the

vector space property of E0 is clear, while (2.1) and (2.3) together give

QxQy D �yQx; (2.4)

which implies that E0 is an algebra. It is not unital, because it has no two-sided unit,
though it has right units [7], which are precisely the matricesQx with x D �1, as follows
from (2.4). Within E0, one also has the special class of constant-input matrices that are the
multiples of Jd � 1, where Jd D 1

d
C1. They will show up a number of times. Another

important subset, comprising nilpotent elements only, is

E 00 WD ¹Qx 2 E0 W x D 0º D
®
Cx W x 2 Rd and tr.Cx/ D 0

¯
;

1From now on, whenever the dimension is arbitrary but fixed, we shall simply write A0 and E0.
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which is a subalgebra of A0. Clearly, for any Cx 2 E 00, one has ACx D 0 2 E 00 for all
A 2 A0. Also, if we write A 2 A0 as a collection of column vectors, A D .aT

1; : : : ; a
T
d
/,

we get CxA D Cy with yi D x � aT
i . Since tr.CxA/ D tr.ACx/ D tr.0/ D 0, we see that

Cy 2 E 00. Further, for elements from E 00, (2.1) simplifies to CxCy D 0. Together, this
shows the following.

Fact 2.3. The subalgebra E 00 is a two-sided nil ideal, both in E0 and in A0. Further, for
any A 2 A0 and C 2 E 00, one has AC D 0.

A special case of (2.4) is Q2
x D �xQx , and hence Qn

x D .�x/n�1Qx for n 2 N,
which results in a simple formula for its time-scaled exponential,

M.t/ WD etQx D 1C
1X
nD1

tn

nŠ
.�x/n�1Qx D 1C

1 � e�tx

x
Qx

D e�tx1C
1 � e�tx

x
Cx DMc.t/; (2.5)

with c.t/ D 1�e�tx
x

x and c.t/ D 1 � e�tx . This formula also holds when x D 0, then
with the appropriate limits via de l’Hospital’s rule. So, eachM.t/ is an equal-input matrix
with row sum 1 and (time-dependent) summatory parameter c.t/D 1� e�tx . In particular,
whenQx is a Markov generator, which happens if and only if x > 0, the set ¹M.t/ W t > 0º

defines a (commutative) semigroup of Markov matrices. Since M.0/ D 1, it is actually a
monoid.

Let us mention an interesting property of equal-input matrices in the context of the
BCH formula. Given Qx; Qy 2 E0, they will generally not commute, and neither will
their exponentials. However, the product eQx eQy is still of equal-input type and has a
real logarithm, which can be given explicitly as a linear combination in Qx and Qy ; see
[4, Thm. 2.15]. To formulate it, we define the positive function h on R by h.u/ D 1�e�u

u

for u ¤ 0 and h.0/ D 1, which is the continuous extension to u D 0.

Fact 2.4. Let Qx; Qy 2 E0. Then, the product of their exponentials has a unique real
logarithm of equal-input type. The latter is the principal matrix logarithm and reads

log.eQx eQy / D
1

h.x C y/

�
h.x/e�yQx C h.y/Qy

�
:

Proof. Since eQx D 1 C h.x/Qx and eQy D 1 C h.y/Qy by (2.5), with our previous
convention for x and y, one finds

eQx eQy D 1C h.x/Qx C h.y/Qy C h.x/h.y/QxQy

(2.4)
D 1C h.x/e�yQx C h.y/Qy D 1CQz

with the new parameters

z D h.x/e�yx C h.y/y and z D 1 � e�.xCy/:
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Recall that Qn
z D .�z/n�1Qz holds for n 2 N. Then, for jzj < 1, which holds when

x C y > 0, we can compute

log.1CQz/ D
X
n>1

zn�1

n
Qz D

log.1 � z/
�z

Qz D
1

h.x C y/
Qz D Qz=h.xCy/;

which is of the form claimed. This now has to be extended to all x and y.
Since �.1 C Qz/ D ¹1; e�.xCy/; : : : ; e�.xCy/º � RC, we immediately know from

Culver’s theorem [9, Thm. 1] that a real logarithm exists. In particular, the principal matrix
logarithm is well defined for these matrices, which can be given in integral form [13,
Thm. 11.1] as

log.1CQz/ D

Z 1

0

Qz.1C �Qz/
�1 d�:

The resulting matrix is again Qz=h.xCy/, as follows from our previous calculation in con-
junction with a standard analytic continuation argument. Further, the claimed uniqueness
follows from the observation that Qa D Qb in (2.3) is only possible for a D b.

The real logarithm of 1CQz in the last proof will not be unique when d > 3, as there
are degeneracies in the spectrum, but no other real logarithm can be of equal-input form,
which follows from [4, Lem. 2.14].

This is a rare case of non-commuting matrices where one can give a closed expression
for the BCH formula.2 Indeed, via this route, one would find

log.eQx eQy / D

�
1 �

y

2
C
y.y � x/

12
C
xy2

24
C � � �

�
Qx

C

�
1C

x

2
C
x.x � y/

12
�
x2y

24
C � � �

�
Qy

where the dots indicate higher order terms that would stem from fourfold or higher com-
mutators in the BCH expansion. The Taylor expansion of the formula in Fact 2.4 to third
order agrees with this, as it must, because no other logarithm of equal-input type can exist.

3. Inhomogeneous flow

Consider the Cauchy problem defined by PM D MQ with M.0/ D 1, where Q D Q.t/
with t > 0 is a (possibly piecewise) continuous family of equal-input matrices from E0.

Lemma 3.1. Assume thatQ.t/ 2 E0 for all t > 0, and thatQ.t/ is piecewise continuous.
Then, the Cauchy problem

PM DMQ with M.0/ D 1

has a unique solution, where each M.t/ with t > 0 is a real matrix with row sum 1 that
has equal-input form. Further, if all Q.t/ are rate matrices, ¹M.t/ W t > 0º is a flow of
equal-input Markov matrices.

2We refer to the WIKIPEDIA entry on the BCH formula for a suitable summary with references.
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Proof. Assume first thatQ.t/ is continuous, but not necessarily of equal-input type. When
ŒQ.t/;Q.s/� D 0 for all t; s > 0, we get the solution in closed form as

M.t/ DM.0/ exp
�Z t

0

Q.�/ d�
�
D exp

�Z t

0

Q.�/ d�
�

(3.1)

by classic ODE theory [1, 20]. Within E0, (2.3) implies that the easy case of commuting
matrices only occurs when Q.t/ D �.t/Q0 with a fixed Q0. Then, the solution (3.1)
simplifies to M.t/ D exp

�
u.t/Q0

�
with u.t/ D

R t
0
�.�/ d� , and the claim on the equal-

input nature of M.t/ is obvious from the fact that Q2
0 is a scalar multiple of Q0.

Alternatively, one can see it from the convergent series expansion of the matrix expo-
nential in (3.1). Indeed, when allQ.t/ lie in E0, we have

R t
0
Q.�/d� 2 E0 for every t > 0,

and if all Q.�/ are rate matrices, then so is the integral. Since the algebra E0 is closed
under multiplication and under taking limits, the equal-input structure is preserved and
then inherited by M.t/.

In the general case with non-commuting Q.t/, we can represent the solution of the
Cauchy problem by the PBS [2]; see [5] for a formulation that is tailored to our present
setting, and the appendix for a brief summary. Each summand of the PBS (except the first,
which is 1) lies in E0. As the series is compactly converging, it then admits the same line
of conclusions.

When Q.t/ is piecewise continuous, the locations of the potential jumps are isolated,
and one can solve the Cauchy problem for each continuity stretch individually, then with
the last value of M.t/ as the new initial condition, modifying (3.1) or the PBS in the
obvious way. Harvesting the semigroup property of the (convex) set of equal-input Markov
matrices from [4], we can put the pieces together and obtain the claimed properties for the
entire flow.

With this result, we can use the parametrising vectors to reduce the problem to an ODE
for vectors in Rd as follows. Assume that we have Q.t/ D Qq.t/ D �q.t/1C Cq.t/ for
t > 0, with q.t/ being piecewise continuous. By Lemma 3.1, we know that the solution
exists and must be of the formM.t/DMx.t/D .1� x.t//1CCx.t/, for all t > 0. Clearly,
we then have PM.t/ D �Px.t/1C C Px.t/, which is to be compared with

M.t/Q.t/ D
�
x.t/ � 1

�
q.t/1C Cq.t/�q.t/x.t/;

as follows from a short calculation that uses CxCq D xCq . Since 1 62 E0, this leads to the
simpler Cauchy problem

Px C qx D q with x.0/ D 0:

This inhomogeneous, linear first order ODE can be solved by the standard variation of
constants method [1, Thm. 11.13 and Rem. 11.14], which results in

x.t/ D exp
�
�

Z t

0

q.�/ d�
�Z t

0

q.�/ exp
�Z �

0

q.�/ d�
�

d�: (3.2)
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Clearly, this gives x.0/ D 0, and also the scalar counterpart of the vector-valued ODE,
namely Px C qx D q together with x.0/ D 0, which is also needed to satisfy the original
Cauchy problem. We have thus established the following result.

Proposition 3.2. The Cauchy problem of Lemma 3.1 has the solution M.t/ D Mx.t/ for
t > 0, with the Rd -valued vector function x from (3.2).

We have det.M.t//D.1� x.t//d�1, where x.0/D0matches det.M.0//Ddet.1/D1.
Since d

dt det.M.t// D det.M.t// tr.Q.t// by Liouville’s theorem [1, Prop. 11.4], we get

det
�
M.t/

�
D exp

�Z t

0

tr
�
Q.�/

�
d�
�
; (3.3)

which never vanishes. But this implies that x.t/, which starts at 0, can never take the
value 1, as this would make M.t/ singular. With x.0/ D 0, this implies x.t/ < 1 for all
t > 0. Note that all eigenvalues of M.t/ are positive real numbers in this case.

Remark 3.3. Liouville’s theorem actually implies that det.M.t// is either identically 0
or never vanishes [1, Cor. 11.5]. Indeed, when we admit more general initial conditions,
the formula from (3.3) is simply replaced by

det
�
M.t/

�
D det

�
M.0/

�
exp

�Z t

0

tr
�
Q.�/

�
d�
�
;

where Q.t/ D �q.t/1C Cq.t/ with tr.Cq.t// D q.t/, hence tr.Q.t// D �.d � 1/q.t/. In
particular, the exponential factor is strictly positive for all t > 0. Recall that det.M.0// D
.1 � x.0//d�1. Consequently, the three possible cases now are x.0/ < 1 (which means
det.M.t// > 0 for all t > 0 and includes the case treated above), x.0/ D 1 (which forces
det.M.t// � 0), and x.0/ > 1. The last case either implies det.M.t// > 0 or otherwise
det.M.t// < 0 for all t > 0, depending on whether d is odd or even, respectively. This
distinction naturally occurs in the treatment of equal-input matrices [3]. If the determinant
is negative, it remains so, which is consistent with the grading of the monoid of equal-
input Markov matrices by the sign of 1 � x, and thus by the determinant for even d , as
detailed in [4, Prop. 2.6].

When all Q.t/ D Qq.t/ are rate matrices, which is equivalent with q.t/ > 0, we also
know that x.t/> 0 together with x.0/D 0 from (3.2), and then get the stronger inequality
jx.t/j < 1 for all t > 0. Consequently, the spectral radius of A.t/ D M.t/ � 1 is always
less than 1, and

R.t/ WD log
�
1C A.t/

�
D

1X
nD1

.�1/n�1

n
A.t/n

is a convergent series. Observing that A.t/n D .�x.t//n�1A.t/ holds for all n 2 N, one
finds

R.t/ D
log
�
1 � x.t/

�
�x.t/

A.t/ D
� log

�
1 � x.t/

�
x.t/

Qx.t/ (3.4)
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with R.0/ D 0 and R.t/ D 0 whenever x.t/ D 0, via an argument of de l’Hospital type,
because the latter case is only possible for x.t/ D 0 under our assumption that Q is a
family of rate matrices. Further, R.t/ is a Markov generator if x.t/ > 0, asQx.t/ then is a
rate matrix and the prefactor is non-negative. Here, R.t/ is a real logarithm of the solution
function, hence M.t/ D eR.t/, and it is actually the principal logarithm; see [12–14] for
background.

More generally, the principal matrix logarithm exists for all (real or complex) matrices
with positive spectrum, and is defined as the unique logarithm whose eigenvalues all lie in
the strip ¹z 2 C W �� < Im.z/ < �º. One general formula follows from [13, Thm. 11.1]
and reads

log
�
M.t/

�
D

Z 1

0

�
M.t/ � 1

��
�.M.t/ � 1/C 1

��1 d�;

which is applicable for all of the above cases with x.t/ < 1. It is a consequence of analytic
continuation that the formula from (3.4) is the correct one also in this more general case.

SinceM.t/ is of equal-input form, its spectrum will generally be degenerate (certainly
for d > 3). In view of Fact 2.1, M.t/ can never be cyclic for d > 3 (meaning that charac-
teristic and minimal polynomial cannot agree), though for d D 3 with x D 0, we can have
(non-Markov) equal-input matrices with Jordan normal form 1 ˚

�
1 1
0 1

�
, in which case

the real logarithm is still unique. In general, however, there will be other real logarithms,
compare [9], but none of equal-input form. Putting the pieces together, the derived result
reads as follows; see [4] for previous results on the embedding problem.

Theorem 3.4. The Cauchy problem of Lemma 3.1 defines a forward flow ¹M.t/ W t > 0º of
equal-input matrices with unit row sums, where each M.t/ possesses a real logarithm. In
particular, we have M.t/ D eR.t/ with the matrix function R from (3.4) and (3.2), where
R.t/ is the unique real logarithm of M.t/ of equal-input form.

Further, when allQ.t/ are Markov generators (of equal-input type), soQ.t/ DQq.t/

with q.t/ > 0 for all t > 0, the forward flow consists of Markov matrices only. Then,
every R.t/ is a Markov generator of equal-input type as well, and each individual M.t/
is also embeddable in a time-homogeneous Markov semigroup that is generated by an
equal-input Markov generator.

Let us look at two particular limiting cases that we will need again later for a com-
parison of our two different example classes at their intersection. First, if we assume
Q.t/ 2 E 00 for all t > 0, we have Q.t/ D Qq.t/ D Cq.t/ with q.t/ � 0. Then, (3.2) sim-
plifies to x.t/ D

R t
0

q.�/ d� with x.t/ � 0, and (3.4) becomes

R.t/ D Qx.t/ D Cx.t/ (3.5)

after an application of de l’Hospital’s rule. This is one special limiting case.
Next, more generally, let us write R.t/ from (3.4) in a different way. EachQ 2 E0 can

uniquely be written as a sum of a constant-input matrix (compare (2.3) and the paragraph
before it) and one from the ideal E 00, namely as Q D Qq D qJd C Cr with the matrix
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Jd D
1
d
C1 and r D q � q

d
1. Setting Q0 D Jd , we now write

Q.t/ D Qq.t/ D �.t/Q0 C Cr.t/ (3.6)

with the scalar function �.t/ D q.t/ and r.t/ D q.t/ � q.t/
d

1. In particular, one then has
r.t/ � 0. Setting u.t/ D

R t
0
�.�/ d� , so that u.0/ D 0, (3.2) simplifies to

x.t/ D e�u.t/
Z t

0

eu.�/q.�/ d�:

Its scalar counterpart then is x.t/ D 1 � e�u.t/, where we used that
R t
0

eu.�/�.�/ d� D
eu.t/ � 1. With f .x/ D x

ex�1 , which will appear many times from now on, (3.4) becomes

R.t/ D f
�
u.t/

�
eu.t/Qx.t/ D f

�
u.t/

� Z t

0

eu.�/Qq.�/ d�

D f
�
u.t/

� Z t

0

eu.�/Q.�/ d�: (3.7)

This givesR.t/ as a weighted integral over the original generator family from (3.6), which
thus is a direct generalisation of Fact 2.4.

4. Two generalisations and their exact solutions

The decomposition of (3.6) suggests that a little more might be possible than such a sum
with Q0 a constant-input matrix. Indeed, we will establish that the algebraic structure of
equal-input matrices from Fact 2.3 is strong enough to allow for a significant extension.
So, let Q0 now be any fixed rate matrix, and consider the matrix family defined by

Q.t/ D �.t/Q0 C Cq.t/ (4.1)

subject to the assumption that q.t/ D tr.Cq.t// D 0 for all t > 0, so Cq.t/ 2 E 00. Here, �
is a strictly positive scalar function, assumed continuous, which has the interpretation of a
time-dependent global rate change for Q0, and Cq.t/ is a time-dependent modification in
the form of a traceless equal-input matrix, also assuming that q is continuous.3 Here, in
line with Fact 2.3, we have

Q0Cq.t/ D 0; Cq.t/Cq.t 0/ D q.t/Cq.t 0/ D 0 and Cq.t/Q0 2 E 00 (4.2)

for all t; t 0 > 0 under our assumptions. This implies that we can compute the summands
In.t/ of the PBS for the solution of the Cauchy problem PM DMQ with M.0/ D 1 more
explicitly.

Let us begin with the following observation.

3The continuity assumptions can later be generalised to local integrability of � and q, if one replaces
the ODE for the flow with the corresponding Volterra integral equation. Also, the strict positivity of � can
be slightly relaxed, but we suppress further details on this aspect.
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Fact 4.1. Let � be a locally integrable function and define u.t/ D
R t
0
�.�/ d� . Then,Z t

0

u.�/n�.�/ d� D
u.t/nC1

nC 1

holds for all n 2 N, and one also obtains the iterated integralZ t

0

Z t1

0

� � �

Z tn�1

0

�.t1/�.t2/ � � ��.tn/ dtn � � � dt2 dt1 D
u.t/n

nŠ
:

Proof. For the first claim, since u.0/ D 0, we employ integration by parts to obtainZ t

0

u.�/n�.�/ d� D u.t/nC1 � n
Z t

0

u.�/n�.�/ d�

and solve for the integral, where the integrability of un� is clear by standard arguments.
The second claim is true for n D 1, by the very definition of u.t/. Then, for n 2 N,

we get Z t

0

Z t1

0

� � �

Z tn

0

�.t1/�.t2/ � � ��.tnC1/ dtnC1 � � � dt2 dt1

D

Z t

0

�.t1/
u.t1/

n

nŠ
dt1 D

u.t/nC1

.nC 1/Š
;

which uses the first claim, and settles the second inductively.

For the PBS, we have

I1.t/ D

Z t

0

Q.�/ d� D u.t/Q0 C Cq.1/.t/ with q.1/.t/ D

Z t

0

q.�/ d�:

Then, defining q.nC1/.t/ D
R t
0
�.�/q.n/.�/ d� for n 2 N, one inductively finds

InC1.t/ D

Z t

0

In.�/Q.�/ d� D
u.t/nC1

.nC 1/Š
QnC1
0 C Cq.nC1/.t/Q

n
0 (4.3)

by an application of Fact 4.1 and the observation that all other terms vanish as a result of
(4.2). Note that the last term in (4.3), for any t > 0, is an element of E 00 due to Fact 2.3.
Putting all this together, we get the following result.

Proposition 4.2. Consider the Cauchy problem PM D MQ with M.0/ D 1 for the con-
tinuous matrix family defined by (4.1). Then, the PBS for its solution has the additive form
M.t/ D 1C A.t/ D 1C A0.t/C A4.t/ with Q0

0 D 1 and

A0.t/ D eu.t/Q0 � 1 and A
4
.t/ D

1X
nD1

Cq.n/.t/Q
n�1
0 ;

where A0.t/ 2A0 and A
4
.t/ 2 E 00 for all t > 0. The infinite sum is compactly converging,

and the spectral radius of A.t/, for all sufficiently small t , satisfies %A.t/ < 1.
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Proof. One has M.t/ D 1C
P
n>1 In.t/ from the PBS, which is compactly converging

by [2, Thm. 1]. Evaluating the sum with the terms from (4.3) gives the decomposition into
contributions from A0 and E 00 as stated.

Since A.0/ D 0, the claim on the spectral radius is clear by continuity.

Since u.t/ D O.t/ as t & 0, the result on the spectral radius implies thatM.t/, at least
for all sufficiently small t , possesses a real logarithm in the form of the convergent series

R.t/ D log
�
M.t/

�
D log

�
1C A.t/

�
D

1X
nD1

.�1/n�1

n
A.t/n;

which defines the principal matrix logarithm. So, we know thatM.t/D exp.R.t//, at least
for small t . Since A0.t/ 2A0 and A

4
.t/ 2 E 00, we obtain A0.t/A4.t/D 0 and A

4
.t/2 D 0

from Fact 2.3. This implies

A.t/n D
�
A0.t/C A4.t/

�n
D A0.t/

n
C A

4
.t/A0.t/

n�1 (4.4)

for all n 2 N and t > 0. But this gives R.t/ D R0.t/CR4.t/ with

R
4
.t/ D

1X
nD1

.�1/n�1

n
A
4
.t/A0.t/

n�1;

R0.t/ D

1X
nD1

.�1/n�1

n
A0.t/

n
D log

�
1C A0.t/

�
D u.t/Q0

for sufficiently small t , where one then always hasR
4
.t/2E 00. Note that the latter property

will be preserved when an extension of t beyond the circle of convergence is possible, for
instance via analytic continuation.

Corollary 4.3. For all sufficiently small t > 0, the solution M.t/ from Proposition 4.2
has the form M.t/ D eR.t/ with R.t/ D u.t/Q0 CR4.t/ and R

4
.t/ 2 E 00.

To determine R
4
.t/, we employ tools from the Magnus expansion; see the appendix

for a short summary and further references. In view of the switched order of the matrices
in our ODEs due to the row sum convention for Markov matrices and generators, we use
the (twisted) adjoint of two matrices,

eadA.B/ WD ŒB; A� D �ŒA; B�:

Here, we get

eadR.t/
�
Q.t/

�
D
�
�.t/Q0 C Cq.t/; u.t/Q0 CR4.t/

�
D ��.t/R

4
.t/Q0 C u.t/Cq.t/Q0

D
�
u.t/Q.t/ � �.t/R.t/

�
Q0;
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where all additional terms in the second step vanish due to (4.2), while the last step uses
R0.t/ D u.t/Q0 from above. Next, we need to calculate powers of the adjoint, whereead
nC1

A WD eadA ı ead
n

A for n > 1. One can now repeat the above type of calculation induct-
ively, with the same kind of cancellations, to obtainead

n

R.t/

�
Q.t/

�
D
�
u.t/Q.t/ � �.t/R.t/

�
u.t/n�1Qn

0 (4.5)

for n 2 N, where it is clear from Fact 2.3 that this expression is always an element of E 00,
as can be seen from writing the right-hand side in terms of Cq.t/ and R

4
.t/.

Now, with (4.5) and (A.4) from the appendix, we get

PR.t/ D

1X
nD0

bn

nŠ
ead
n

R.t/

�
Q.t/

�
D Q.t/C

�
u.t/Q.t/ � �.t/R.t/

�f �u.t/Q0� � 1

u.t/

with the well-known meromorphic function

f .x/ D
x

ex � 1
D

1X
nD1

bn

nŠ
xn; with f .0/ D 0;

where the bn denote the Bernoulli numbers, here with b1 D �12 and b2mC1 D 0 for all
m 2 N. The power series of f has 2� as its radius of convergence, so f .u.t/Q0/ is
well defined for small values of t , as is .f .u.t/Q0/ � 1/=u.t/, where we assume u.t/ DR t
0
�.�/ d� > 0 for all t > 0, which really is a consequence of our assumptions on �.
Observing that R.t/ D R0.t/CR4.t/ with PR0.t/ D �.t/Q0 leads to several cancel-

lations, one arrives at the inhomogeneous linear ODE

PR
4
.t/C

�.t/

u.t/
R
4
.t/
�
f .u.t/Q0/ � 1

�
D Cq.t/f

�
u.t/Q0

�
;

which can again be solved by the standard methods used earlier. The result is

R
4
.t/ D

Z t

0

Cq.�/f
�
u.�/Q0

�
exp

�Z �

0

�.�/

u.�/

�
f
�
u.�/Q0

�
� 1

�
d�
�

d�

� exp
�
�

Z t

0

�.�/

u.�/

�
f
�
u.�/Q0

�
� 1

�
d�
�

D

Z t

0

Cq.�/f
�
u.�/Q0

�
exp

�Z u.�/

0

f .#Q0/ � 1

#
d#
�

d�

� exp
�
�

Z u.t/

0

f .�Q0/ � 1

�
d�
�
;

where the second expression emerges from a standard substitution, which is justified when
u is strictly increasing.

The expression for R
4
.t/ can still be simplified further. One idea how to achieve this

comes from the formulaZ t

0

f .�/ � 1

�
d� D �t C log

et � 1
t
D �t � log

�
f .t/

�
; (4.6)



M. Baake and J. Sumner 468

which holds for t > 0. Carefully inspecting the corresponding identities for matrix-valued
integrals, one can come to the following helpful identity.

Lemma 4.4. Let B 2 Mat.d;R/ be fixed. Then, for sufficiently small t > 0, one hasZ t

0

f .�B/ � 1

�
d� D log

�
f .tB/�1e�tB

�
;

where log refers to the principal matrix logarithm.

Proof. Clearly, both sides evaluate to 0 for t D 0, and the spectrum of tB lies inside the
circle of convergence for the power series of f , as long as t is small enough. Also, again
for sufficiently small t , the matrix argument of the logarithm cannot have any negative
eigenvalues, so the principal logarithm is well defined.

Now, we need to check that both sides have the same derivative. On the left, one has

1

t

�
f .tB/ � 1

�
D
f .z/ � 1

z

ˇ̌̌
zDtB

� B D
1C z � ez

z.ez � 1/

ˇ̌̌
zDtB

� B;

with the usual understanding of matrix functions via converging power series. In compar-
ison, the right-hand side gives

d
dz

log
e�z

f .z/

ˇ̌̌
zDtB

� B D
z ez

ez � 1
d

dz
1 � e�z

z

ˇ̌̌
zDtB

� B D
1C z � ez

z.ez � 1/

ˇ̌̌
zDtB

� B;

which agrees with the previous expression and completes the argument.

Using f .t/et D f .�t / and inserting the formula from Lemma 4.4 into our solution
for R

4
.t/ then gives the significantly simpler expression

R
4
.t/ D

Z t

0

Cq.�/e�u.�/Q0 d� � f
�
�u.t/Q0

�
: (4.7)

Let us sum up as follows.

Theorem 4.5. Consider the Cauchy problem PM D MQ with M.0/ D 1 for the matrix
family Q.t/ D �.t/Q0 C Cq.t/ from (4.1), where � is a positive scalar function and
q an Rd -valued function with q.t/ D 0 for all t > 0, both assumed continuous. This
problem has a unique solution in the form of the PBS. For small enough t , it also satisfies
M.t/D eR.t/ with R.t/D u.t/Q0 CR4.t/ and the R

4
.t/ 2 E 00 from (4.7), where u.t/DR t

0
�.�/ d� .
Further, when all Q.t/ are Markov generators, the set ¹M.t/ W t > 0º defines a flow

of Markov matrices. For all sufficiently small t , the real logarithm R.t/ is then a Markov
generator, which means that M.t/, for any fixed t , is a Markov matrix that is also embed-
dable into a time-homogeneous Markov semigroup.

Let us comment on the condition with small t . In our derivation, we have used the
approach to matrix functions via convergent Taylor series as in [13, Thm. 4.7], which lim-
its the eigenvalues of the matrix argument in f .˙u.t/Q0/ to be less than 2� in modulus.
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However, f is a meromorphic function on C, with poles of first order on the imaginary
axis, namely at 2n� i for all 0 ¤ n 2 Z. As long as the spectrum of u.t/Q0 avoids these
poles (which is the generic case), the solution formula (4.7) remains valid, as can be seen
via analytic continuation.

Let us make two consistency calculations. First, with Q0 D 0 in (4.1), we clearly get
Q.t/ 2 E 00 for all t > 0, and (4.7) simplifies to

R
4
.t/ D

Z t

0

Cq.�/ d� D Cx.t/

with x.t/ D
R t
0

q.�/ d� . Since R.t/ D R
4
.t/ in this case, we are back to (3.5).

A little less obvious is the case where Q0 is a constant-input matrix. Let us thus
consider Q.t/ D �.t/Q0 C Cr.t/ with Q0 D Jd and r.t/ � 0. Then, Q2

0 D �Q0 and
Cr.t/Q0 D �Cr.t/, both as a result of (2.4). Consequently, for any function � that is ana-
lytic around 0 and all t; s > 0, we get

Cr.t/�
�
u.s/Q0

�
D �

�
�u.s/

�
Cr.t/;

with the standard restriction on the arguments of � in relation to its radius of convergence,
which can later be lifted by analytic continuation. With this, the formula for R

4
.t/ gives

R
4
.t/ D

Z t

0

Cr.�/ exp
�
�u.�/Q0

�
d� � f

�
�u.t/Q0

�
D

Z t

0

eu.�/Cr.�/f
�
�u.t/Q0

�
d�

D f
�
u.t/

� Z t

0

eu.�/Cr.�/ d�:

Since R0.t/ D u.t/Q0 and

u.t/ D f
�
u.t/

�
.eu.t/ � 1/ D f

�
u.t/

� Z t

0

eu.�/�.�/ d�;

we thus get the simplified formula

R.t/ D f
�
u.t/

� Z t

0

eu.�/
�
�.�/Q0 C Cr.�/

�
d� D f

�
u.t/

� Z t

0

eu.�/Q.�/ d�;

which agrees with (3.7), as it must.
It is possible to generalise our result from Theorem 4.5 even a little further. To do so,

we consider the (assumed continuous) matrix family

Q.t/ D Q0.t/C Cq.t/ (4.8)

with q.t/ D tr.Cq.t// � 0, where the Q0.t/ 2 A0 define a commuting matrix family, that
is, they satisfy �

Q0.t/;Q0.s/
�
D 0 for all t; s > 0:
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We now define the integral

R0.t/ D

Z t

0

Q0.�/ d�;

which satisfiesR0.0/D 0 and ŒR0.t/;Q0.s/�D 0 for all t; s > 0. The PBS for the Cauchy
problem with the matrix family from (4.8) leads to I1.t/ D R0.t/CQ

.1/
4
.t/, where one

has Q.1/
4
.t/ D

R t
0
Cq.�/ d� 2 E 00, and then inductively to

InC1.t/ D
RnC10 .t/

.nC 1/Š
CQ.nC1/

4
.t/ with Q.nC1/

4
.t/ D

Z t

0

Q.n/
4
.�/Q0.�/ d� 2 E 00

for n 2 N. The derivation of the leading term uses the integration identityZ t

0

Rn0.�/Q0.�/ d� D
RnC10 .t/

nC 1
;

which holds for n 2 N0 and is a matrix-valued analogue of Fact 4.1. As we also have�
R0.t/;Q0.t/

�
D 0;

the claimed formula can be verified by differentiation, with PR0 D Q0. As before, this
leads to the solution of the Cauchy problem in the form M.t/ D 1C A0.t/C A4.t/ with
A0.t/ D eR0.t/ � 1 and A

4
.t/ D

P
n>1Q

.n/
4
.t/, which is compactly converging. Here,

one has A0.t/ 2 A0 and A
4
.t/ 2 E 00 for all t > 0, and we get the same formula for the

powers as in (4.4).
Setting M.t/ D exp

�
R.t/

�
, which is at least possible for small t , one gets the decom-

position R.t/ D R0.t/CR4.t/, compare Corollary 4.3, again with

R
4
.t/ D

X
n2N

.�1/n�1

n
A
4
.t/An�10 .t/:

Dropping the notation indicating explicit time dependence for a moment, one can now cal-
culate the iterated adjoint using exactly the same algebraic steps as around (4.7) together
with ŒR0.t/;Q0.t/� D 0. This leads toead

n

R.Q/ D .QqR0 �R4Q0/R
n�1
0 D .QR0 �RQ0/R

n�1
0

for n 2 N, together with ead
0

R.Q/ D Q. This gives the ODE for R via (A.4) as

PR D

1X
nD1

bn

nŠ
ead
n

R.Q/ D Q0 C Cqf .R0/ �R4Q0g.R0/;

with g.z/D f .z/�1
z

. This g is a meromorphic function on C with simple poles at the same
places as f , and with g.0/D �1

2
. Since PR0 DQ0, we can split off the part for R

4
, which

gives the inhomogeneous linear ODE

PR
4
CR

4
Q0g.R0/ D Cqf .R0/;
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with the solution

R
4
.t/ D

Z t

0

Cq.�/f
�
R0.�/

�
exp

�Z �

0

Q0.�/g
�
R0.�/

�
d�
�

d�

� exp
�
�

Z t

0

Q0.�/g
�
R0.�/

�
d�
�
:

With h.z/ D
R z
0
g.x/ dx D �z � log.f .z//, which satisfies h.0/ D 0, and (4.6), we then

get Z t

0

Q0.�/g
�
R0.�/

�
d� D h

�
R0.t/

�
;

as can easily be verified by differentiation. This is a variant of Lemma 4.4, which now
gives

exp
�
˙h

�
R0.t/

��
D exp

�
�R0.t/

�
f
�
R0.t/

��1
:

Inserting this into the solution formula for R
4
.t/, and using f .x/ex D f .�x/ again, we

obtain

R
4
.t/ D

Z t

0

Cq.�/e�R0.�/ d� � f
�
�R0.t/

�
: (4.9)

In principle, R
4
.t/ is of the form Cx.t/ for some suitable function x. However, no simple

general formula seems possible, unless one makes further assumptions on Q0. We have
thus derived the following extension of Theorem 4.5.

Corollary 4.6. Consider the Cauchy problem PM D MQ with M.0/ D 1 for the matrix
family ¹Q.t/ W t > 0º of (4.8), with Q0.t/ being commuting matrices from A0 and Cq.t/

having zero trace. Then, at least for small t , the solution is of the formM.t/ D exp.R.t//
with R.t/ D R0.t/C R4.t/, where R0.t/ D

R t
0
Q0.�/ d� and R

4
.t/ is the matrix from

(4.9).

One obvious special case emerges via q.t/ � 0. Then, we have R
4
� 0, and the solu-

tion boils down to

M.t/ D exp
�
R0.t/

�
D exp

�Z t

0

Q0.�/ d�
�

as it must, because this is the easy case of commuting matrices.

Appendix: Peano–Baker series and Magnus expansion

Here, we give a quick summary of two helpful tools for the solution of non-autonomous
matrix-valued Cauchy problems of the form

PX.t/ D X.t/A.t/ with X.t0/ D X0; (A.1)

where we consider the forward flow for t > t0. We use this version (withA.t/ on the right)
in view of the applications to Markov flows. In the simple case where ŒA.t/;A.s/�D 0 for
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all t; s> t0, which includes the case that A.t/ is a constant matrix, one gets the solution as

X.t/ D X0 exp
�Z t

t0

A.�/ d�
�
; (A.2)

with uniqueness under the usual constraints on A.t/. This solution is natural from the
Volterra integral equation point of view, where (A.1) is replaced by the integral version

X.t/ D X0 C

Z t

t0

X.�/A.�/ d�: (A.3)

When A.t/ D A for all t , the standard Picard iteration leads to the well-known formula

X.t/ D X0

�
1C .t � t0/AC

.t � t0/
2

2
A2 C

.t � t0/
3

6
A3 C � � �

�
D X0e.t�t0/A;

which is a simple special case of (A.2).
The situation becomes more complicated when the matrices A.t/ no longer com-

mute. There are still two helpful approaches, namely the Peano–Baker series (PBS, which
emerges from a careful application of the Picard iteration) and the Magnus expansion (ME,
which is related to the Baker–Campbell–Hausdorff formula and employs some techniques
from Lie theory).

Let us begin with the PBS. Here, one finds a compactly converging series representa-
tion of the solution in the form X.t/ D X0 �

P1
nD0 In.t/ with

I0.t/ D 1 and InC1.t/ D

Z t

t0

In.�/A.�/ d� for n 2 N0I

see [2] and references therein for background and proofs, and [5] for a formulation in
our present context and a comparison with the time-ordered exponential used in physics,
where it is sometimes called the Dyson series. While it is rare that one can calculate the
In explicitly (unless the A.t/ commute), the PBS is still useful for structural insight, in
particular if the matrices A.t/ come from an algebra.

Another tool is the ME, which approaches linear ODEs via an exponential solution;
see [6] and references therein for an extensive exposition. Here, we again look at the
matrix-valued Cauchy problem from (A.1) where the A.t/ constitute some (sufficiently
nice) matrix family, but need not commute. The flow, at least for small times, is of the
form X.t/ D X0 exp.R.t0; t //, where we now simply write R.t/ and take t0 D 0 for
convenience.

The Poincaré–Hausdorff identity from matrix groups now states that

e�R.t/
d
dt

eR.t/ D A.t/;

from the left-hand side of which one can derive an expression for PR.t/ in the form

PR.t/ D f
�eadR.t/

��
A.t/

�
; (A.4)
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where f is the meromorphic function defined by f .x/ D x
ex�1 and eadC .B/ WD ŒB; C �.

This unusual (twisted) version of the standard adjoint, adC .B/D ŒC;B�, is taken to match
the order of matrix multiplication we have used in the ODE (A.1). Then, powers of ead are
defined recursively, so ead

0

C .B/DB and ead
nC1

C .B/D Œead
n

C .B/;C � for n> 0. The operator
in (A.4) is then defined via the power series of f around 0, which is

f .x/ D

1X
nD0

bn

nŠ
xn D 1 �

x

2
C
x2

12
CO.x4/;

where the bn are the Bernoulli numbers.
While the right-hand side of (A.4) usually cannot be calculated in closed terms, and

is then employed approximately via suitable truncations, this paper has examined several
special situations where the series can be worked out, and then admits the exact computa-
tion of R.t/ via an explicit integration step.
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