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Generation time for biexact functors and Koszul objects
in triangulated categories

Janina C. Letz and Marc Stephan

Abstract. This paper concerns the generation time that measures the number of cones necessary
to obtain an object in a triangulated category from another object. This invariant is called level. We
establish level inequalities for enhanced triangulated categories: One inequality concerns biexact
functors of topological triangulated categories, another Koszul objects. In particular, this extends
inequalities for the derived tensor product from commutative algebra to enhanced tensor triangulated
categories. We include many examples.

1. Introduction
Triangulated categories appear in many areas, such as algebraic topology, representation
theory or commutative algebra. One approach to understand a triangulated category is to
study how objects generate each other. An object X generates an object Y , if Y can be
obtained from X by taking cones, suspensions and retracts.

Following [2] we call the generation time level. Loosely speaking the X -level mea-
sures the number of cones required to build objects from X . It generalizes some well-
known invariants: When T D D.Mod.R// the derived category of modules over a ring R,
then the R-level of a module coincides with its projective dimensionC1; see for example
[12]. For a local ring R with residue field k, the k-level of a module coincides with its
Loewy length. The k-level of a perfect complex F has been used in [2] to establish a rank
inequality for the homology of F .

Further, level is closely connected to the Rouquier dimension of a triangulated cate-
gory introduced in [35]. For triangulated categories with finite Rouquier dimension, there
are some Brown representability theorems; see [7, 27, 35]. For many examples of trian-
gulated categories it is known whether the Rouquier dimension is finite or infinite, but in
the former case the exact value is rarely known. We expect that studying level will help
computing the Rouquier dimension.

Besides the properties following from the definition [2, Lemma 2.4], not much is
known about the behavior of level. Many estimates for level are rather rough. For example
the transitivity of finite building yields a product inequality for level. In this paper we give
a refinement for biexact functors. The following inequality is optimal in that equality can
be achieved.
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Theorem A. Let FW � � T ! U be a biexact functor of topological triangulated cate-
gories. Then

levelF.X;X
0/

U

�
F.Y; Y 0/

�
� levelX� .Y /C levelX

0

T .Y
0/ � 1

for X; Y 2 � and X 0; Y 0 2 T .

For this result see Theorems 3.6 and 6.4. Theorem A extends and generalizes [3,
Lemma 2.4] where the inequality is shown for � D T D U D D.Mod.R// the derived
category of a commutative ring R, F the derived tensor product and X D X 0 D R. In Sec-
tion 7 we provide many examples of biexact functors and triangulated categories for which
the above inequality holds. These include the tensor product on the derived category of
a commutative ring or a group ring, on the stable module category of a cocommutative
Hopf algebra, and on various categories of spectra.

In the proof of Theorem A we construct the triangles building F.Y; Y 0/ by taking
homotopy pushouts. In a general triangulated category one does not have enough control
over the homotopy pushout and its compatibilities, since it is neither a honest pushout nor
captures the full homotopical information. For this reason we work with biexact functors
that admit a strong Verdier structure; see [24, Theorem 3.5] and [1, Definition 3.31]. This
extra structure ensures that the homotopy pushout in 3 � 3 diagrams induced by applying
the biexact functor to exact triangles in each component has the desired compatibilities.

In practice, many biexact functors of triangulated categories admit a strong Verdier
structure. We show that whenever a triangulated category has an enhancement and the
biexact functor respects the enhancement, the biexact functor admits a strong Verdier
structure. For monoidal products this was shown by [16, 18, 31]. We consider general
bifunctors. Explicitly, we prove that for any biexact functor of stable cofibration cate-
gories the induced bifunctor on the homotopy categories is biexact and admits a strong
Verdier structure; see Theorem 6.4. Stable cofibration categories provide a convenient set-
ting, since their homotopy categories are precisely the topological triangulated categories
[37], and the homotopy theory of cofibration categories is equivalent to the homotopy
theory of finitely cocomplete1-categories [39].

We review cofibration categories in Section 5 and combine arguments of May and
Schwede to establish the strong Verdier structure for biexact functors induced by biexact
functors on stable cofibration categories in Section 6. A further application is a new proof
that the homotopy category of any symmetric monoidal stable model category is tensor
triangulated. Moreover, we show that in addition to the derived monoidal product, the
derived internal hom functor admits a strong Verdier structure as well; see Theorem 6.21.

An essential class of biexact functors on triangulated categories is the class of actions
of a tensor triangulated category .� ;˝; 1/ on a triangulated category T . If the action
is induced by a biexact functor of stable cofibration categories, we say that the action is
topological. Any graded endomorphism of the unit 1 in � induces a natural transformation
on T , which is compatible with the suspension. In fact, this yields a ring homomorphism
from the graded endomorphism ring of 1 in � to the center of T .
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For a sequence of elements in the center, one can define a Koszul object. This gen-
eralizes the Koszul complex over a ring. For Koszul objects we show the following level
inequality. Again, the bound can be achieved.

Theorem B. Let ˛1; : : : ; ˛c be elements in the center of a topological triangulated cate-
gory T that are induced by a topological action on T . Then

levelXT
�
X==.˛1; : : : ; ˛c/

�
� c C 1

for any X 2 T .

This result is contained in Theorem 4.10 combined with Theorem 6.4. Koszul objects
have been used to obtain bounds of Rouquier dimension in [6], and they are connected to
support [5, Section 5].

2. Homotopy cartesian squares

We fix a triangulated category T with suspension functor †. We consider T op as a trian-
gulated category in which X

f op

��! Y
gop

��! Z
hop

��! †�1X is an exact triangle in T op if and
only if †�1X

�h
��! Z

�g
��! Y

�f
��! X is an exact triangle in T . While this convention is

not significant in this section, it ensures that the internal hom functor of a closed tensor
triangulated category is biexact in Section 6.15.

2.1. Following [33, Definition 1.4.1], we call a commutative square

T V

U X

g

f f 0

g 0

(2.1.1)

homotopy cartesian, if there is an exact triangle

T

�
f
�g

�
����! U ˚ V

. g 0 f 0 /
�����! X

@
�! †T:

We say @ is a connecting morphism of the homotopy cartesian square; other sources use
the term differential.

The homotopy cartesian property is symmetric in that the square (2.1.1) is homotopy
cartesian if and only if its reflection

T U

V X

f

g g 0

f 0
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is homotopy cartesian. However, if @ is a connecting morphism of the homotopy cartesian
square (2.1.1), then �@ is a connecting morphism of the reflected square.

Further, the homotopy cartesian property is self-dual; that is, a square (2.1.1) is homo-
topy cartesian in T if and only if its dual is homotopy cartesian in T op.

Homotopy cartesian squares are strongly connected to morphisms of triangles in which
one morphism is the identity morphism.

2.2. Given a morphism of exact triangles

T V Z †T

U X Z †U

D

where the first square is homotopy cartesian, a connecting morphism is given by the com-
posite

@ D .X ! Z ! †T /:

If either the morphism X ! Z or Z ! †T is not given, it can be constructed such
that the diagram is a morphism of triangles; see [33, Lemma 1.4.4]. Similarly, if either the
morphism V ! X or T ! U is not given, it can be constructed such that the diagram
commutes and the first square is homotopy cartesian; see [33, Lemma 1.4.3].

While homotopy cartesian squares are in general neither pullback nor pushout squares,
they still satisfy a weakened pasting property.

2.3. Consider two commutative squares and their composition:

T V

U X

g

f f 0

g 0

(2.3.1a)
V Y

X Z

h

f 0 f 00

h0

(2.3.1b)
T Y

U Z

hg

f f 00

h0g 0

(2.3.1c)

(1) If (2.3.1a & 2.3.1b) are homotopy cartesian, then (2.3.1c) is homotopy cartesian;
see [13, Proposition 6.11].

(2) If (2.3.1a & 2.3.1c) are homotopy cartesian, then there exists a morphismX
Qh0

�!Z,
such that the square

V Y

X Z

f 0

h

f 00

Qh0

is homotopy cartesian, and h0g0 D Qh0g0; see [36, Lemma 9].
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(3) If (2.3.1b & 2.3.1c) are homotopy cartesian, then there exists a morphism T
Qg
�! V

such that the square

T V

U X

Qg

f f 0

g 0

is homotopy cartesian, and hg D h Qg; this is (2) in T op.

If the squares (2.3.1a–2.3.1c) are homotopy cartesian, then there exist connecting mor-
phisms @1, @2 and @3, respectively, such that

@3h
0
D @1 and .†f /@3 D @2:

2.4. Homotopy pushouts

If (2.1.1) is homotopy cartesian, we sayX is the homotopy pushout of the spanU T!V,
and we writeXDUCT V . A homotopy pushout is equipped with morphismsU!UCT V

and V ! U CT V . Just as the cone of a morphism, the homotopy pushout is unique up
to non-canonical isomorphism; in fact we have U CT 0 D cone.T ! U/.

We emphasize that a homotopy pushout is typically not a pushout. In fact given mor-
phisms U !Z and V !Z that coincide after pre-composition with T ! U and T ! V ,
respectively, with each other, there exists a non-unique morphism U CT V ! Z. Later
we investigate situations in which there exists a morphism U CT V ! Z with a cone
compatible with a given 3� 3 diagram containing the square with T , U , V andZ. We say
such situations “admit a (strong) Verdier structure”; see Section 3.2.

2.5. We take the homotopy pushout of spans U  S ! V and V  T !W , and obtain
the commutative diagram

T W

S V V CT W .

U U CS V

In this diagram we complete the square in the lower right corner to a homotopy cartesian
square. Then all rectangles, in particular the horizontal and vertical one, are homotopy
cartesian by Section 2.3, and we obtain

.U CS V /CT W D .U CS V /CV .V CT W / D U CS .V CT W /:

That is, the construction of the homotopy pushout is associative.
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Lemma 2.6. For any diagram X  U  S ! V ! Y there exists a morphism U CS
V ! X CS Y such that its cone is cone.U ! X/˚ cone.V ! Y /.

Proof. We consider the commutative diagram

S U ˚ V U CS V †S

S X ˚ Y X CS Y †S

D D

in which the rows are exact triangles. By Section 2.2, the dashed arrow exists such that
the diagram is a morphism of exact triangles and the second square is homotopy cartesian.
Then the dashed arrow is the desired morphism and, by Section 2.2, it has the desired
cone.

Alternatively, we can change the base of the span.

Lemma 2.7. Given S ! T and a spanX  T ! Y , then there exists a morphismX CS
Y ! X CT Y such that its cone is † cone.S ! T /.

Proof. We consider the commutative diagram

S X ˚ Y X CS Y †S

T X ˚ Y X CT Y †T

D

in which the rows are exact triangles. By Section 2.2, the dashed arrow exists such that the
diagram is a morphism of exact triangles and the third square is homotopy cartesian. Then
the dashed arrow is the desired morphism and, by Section 2.2, it has the desired cone.

Remark 2.8. Given a commutative diagram

T V

U X

there exists a morphismU CT V !X such that the compositionsU !U CT V !X and
V ! U CT V !X recover the given morphisms. Using Section 2.2 we obtain homotopy
cartesian squares

U CT V cone.T ! V /

X cone.U ! X/

and
U CT V cone.T ! U/

X cone.V ! X/ .

In particular, this yields that the dashed vertical arrows have the same cone by Section 2.2.
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In general, morphisms cone.T ! V / ! cone.U ! X/ and cone.T ! U/ !

cone.V ! X/ that are compatible with the commutative square need not have the same
cone. In the next section we discuss a setting in which there is a natural choice for these
morphisms, and there exists a morphismU CT V !X that is compatible with this natural
choice.

3. Biexact functors between triangulated categories

In this section we show the level inequality for a biexact functor F. If we apply the biexact
functor F to a triangle in each component, we obtain a 3 � 3 diagram in which each row
and each column is an exact triangle. In general, this is not enough to be able to construct
a compatible morphism as discussed in Remark 2.8. This will be resolved by the notion
of a strong Verdier structure.

3.1. Recall that an exact functor FW � ! T of triangulated categories is equipped with a
natural isomorphism � W F†! †F such that for any exact triangle

X
f
�! Y

g
�! Z

h
�! †X

in � the triangle

F.X/
F.f /
���! F.Y /

F.g/
��! F.Z/

�F.h/
���! †F.X/

is exact in T .
We call a bifunctor FW � � T ! U of triangulated categories biexact, if it is equipped

with natural isomorphisms

# W F.†�;�/! †F.�;�/ and �W F.�; †�/! †F.�;�/

such that

(1) for any X 2 � the functor F.X;�/ with �.X;�/ is exact,

(2) for any X 0 2 T the functor F.�; X 0/ with #.�; X 0/ is exact, and

(3) the following square anti-commutes

F.†X;†X 0/ †F.X;†X 0/

†F.†X;X 0/ †2F.X;X 0/ .

#

� .�1/ †�

†#

(3.1.1)

In [23, Definition 10.3.6] such a functor is called a triangulated bifunctor.

3.2. Following [24, Theorem 3.5] and [1, Definition 3.31], we say a biexact functor FW� �
T ! U admits a Verdier structure, if for all exact triangles

X
f
�! Y

g
�! Z

h
�! †X and X 0

f 0

�! Y 0
g 0

�! Z0
h0

�! †X 0 (3.2.1)
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in � and T , respectively, there exists an object W 2 U and exact triangles

F.X; Y 0/ W F.Z;X 0/ †F.X; Y 0/ ,

W F.Y; Y 0/ F.Z;Z0/ †W ,

F.Y;X 0/ W F.X;Z0/ †F.Y;X 0/ ,

j q #F.h;f 0/

i F.g;g 0/ p

j 0 q0 �F.f;h0/

(3.2.2)

such that the following diagram commutes

F.X;X 0/ F.Y;X 0/ F.Z;X 0/ †F.X;X 0/

W

W

F.X; Y 0/ F.Y; Y 0/ F.Z; Y 0/ †F.X; Y 0/

W

†W

F.X;Z0/ F.Y;Z0/ F.Z;Z0/ †F.X;Z0/

†W

†W .�1/

†F.X;X 0/ †F.Y;X 0/ †F.Z;X 0/ †2F.X;X 0/ .

(I)
(iv)

(iii)
(II)

(ii)

(i)
(IV)

(III)

(V)
(vi)

(v)
(VI)

(3.2.3)

In the diagram all rows and columns are the exact triangles obtained by applying F to
(3.2.2). The anti-commutativity of the bottom right square is due to (3.1.1). The mor-
phisms involving W are those that appear in the triangles (3.2.2), or the suspension of
those; this means for example that the morphism†W !†F.X;Z0/ is the morphism†q0.

Abridged, the commutativity of (3.2.3) means the squares (I)–(VI) and the triangles
(i)–(vi) commute.

Further, we say F admits a strong Verdier structure, if the squares (I)–(VI) are homo-
topy cartesian; for (VI) we mean it is homotopy cartesian after we replace any one of the
morphisms by its negative.

If F admits a strong Verdier structure, then the connecting morphisms are given by the
appropriate compositions of morphisms in (3.2.2); cf. Section 2.2.

Remark 3.3. If a biexact functor F admits a (strong) Verdier structure, then the diagram
(3.2.3) can be extended in any direction by rotation. In particular, a biexact functor F
admits a (strong) Verdier structure if and only if F.†�;�/, or equivalently F.�; †�/,
does.

A bifunctor FW� � T !U of triangulated categories is biexact if and only if its oppo-
site FopW �op � T op ! Uop is biexact. Moreover, a biexact functor F admits a (strong)
Verdier structure if and only if Fop does.
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The symmetric monoidal product of a tensor triangulated category is a special case of
a biexact functor. In this situation, Section 3.2 is (TC3) of [31]. May provided an informal
argument for establishing this condition if the tensor triangulated category comes from
a symmetric monoidal, stable model category and checked it for certain families of such
model categories. In [16], the same condition was shown for tensor triangulated categories
induced by a stable monoidal derivator. In Section 6, we show that any biexact functor
between stable cofibration categories induces a biexact functor admitting a strong Verdier
structure on homotopy categories. In particular, this includes many bifunctors on algebraic
triangulated categories; for examples see Section 7.4.

Remark 3.4. For any biexact functor FW� � T !U and exact triangle X ! Y ! Z !

†X in � , any morphism X 0 ! Y 0 in T induces a morphism of exact triangles in U.
This morphism of exact triangles is middling good in the sense of [32, Definition 2.4].
Moreover, if F admits a Verdier structure, then the morphism of exact triangles is Verdier
good in the sense of [13, Definition 3.1].

Before we establish the level inequality for a biexact functor, we recall the definition
of level.

3.5. For an object X of T , we denote by thick0T .X/ the full subcategory of zero objects.
We denote the smallest full subcategory that containsXand is closed under (de)suspension,
finite coproducts, and retracts by thick1T .X/. For n � 2 we inductively set

thicknT .X/ WD

´
Y 2 T

ˇ̌̌̌
ˇ

there is an exact triangle

Y 0 ! Y ˚ zY ! Y 00 ! †Y 0

with Y 0 2 thick1T .X/ and Y 00 2 thickn�1T .X/

µ
:

The subcategories give an exhaustive filtration of the smallest thick subcategory contain-
ing X . The construction of these subcategories is robust: In the definition we may assume
that Y 0 2 thickiT .X/ and Y 00 2 thickj

T
.X/ for any i C j D n. Moreover, if Y 2 thicknT .X/,

then it is enough to take a retract in the last step.
The subcategories thicknT .X/ were first introduced in [7, Section 2.2] where they were

denoted by hXin. With the notation thicknT .X/ we follow [2, Section 2.2].

Let X; Y 2 T . The X -level of Y is

levelXT .Y / WD inf
®
n � 0 j Y 2 thicknT .X/

¯
I

see [2, Section 2.3].

Theorem 3.6. Let FW� � T !U be a biexact functor that admits a strong Verdier struc-
ture. Then

levelF.X;X
0/

U

�
F.Y; Y 0/

�
� levelX� .Y /C levelX

0

T .Y
0/ � 1

for any X; Y in � and X 0; Y 0 in T .
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Proof. For i; j � 1, let

Yi�1 Yi Xi †Yi�1

Y 0j�1 Y 0j X 0j †Y 0j�1
with

Xi 2 thick1� .X/;

X 0i 2 thick1T .X
0/

(3.6.1)

be exact triangles in � and T , respectively, with Y0 D 0 and Y 00 D 0. We set Zi;j WD
F.Yi ; Y 0j /. Since F admits a strong Verdier structure, there exists a homotopy pushout of
the span Zi�1;j  Zi�1;j�1 ! Zi;j�1 that fits into an exact triangle

.Zi�1;j CZi�1;j�1 Zi;j�1/! Zi;j ! F.Xi ; X 0j /! †.Zi�1;j CZi�1;j�1 Zi;j�1/

and makes the following diagram commute

Zi�1;j�1 Zi;j�1

Zi�1;j Zi�1;j CZi�1;j�1 Zi;j�1

Zi;j .

(3.6.2)

We let

Wk WD Z1;k CZ1;k�1 Z2;k�1 CZ2;k�2 � � � CZk�1;1 Zk;1 for k � 1

be the iterated homotopy pushout over the diagonal i C j D k C 1. By the associativity
of the homotopy pushout we can write

Wk D Z1;k CZ1;k .Z1;k CZ1;k�1 Z2;k�1/CZ2;k�1 � � �

CZk�1;2 .Zk�1;2 CZk�1;1 Zk;1/CZk;1 Zk;1:

Expressed in this way Wk is an iterated homotopy pushout over the same bases as WkC1.
Since (3.6.2) commutes, we can inductively apply Lemma 2.6 to obtain a morphismWk!

WkC1 with

cone.Wk ! WkC1/ D
M

iCjDkC2

F.Xi ; X 0j / 2 thick1U
�
F.X;X 0/

�
:

As W1 D F.X1; X 01/ 2 thick1U.F.X;X
0//, it follows that

levelF.X;X
0/

U
.Wk/ � k:

Now we use this inequality to establish the claim. We may assume thatm WD levelX� .Y /
and n WD levelX

0

T .Y
0/ are finite. Then there exist sequences of triangles (3.6.1), such that Y

is a retract of Ym, and Y 0 is a retract of Y 0n, and the sequences stabilize afterwards: Yi D Ym
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andXiC1D 0 for i �m and Y 0j D Y
0
n andX 0jC1D 0 for j � n. In particular, the morphisms

Zi�1;j !Zi;j are identities for i >m and the morphismsZi;j�1!Zi;j are identities for
j > n. Thus the iterated homotopy pushout WmCn�1 simplifies to WmCn�1 D F.Ym; Y 0n/.
It follows that levelF.X;X

0/

U
.F.Y; Y 0// � mC n � 1.

We will treat cofibration categories in Section 5 to provide a large class of examples
of biexact functors admitting a strong Verdier structure in Section 6 and hence where
Theorem 3.6 holds. Concrete examples are given in Sections 6 and 7. First we establish
another level inequality in a closely related setting.

4. Koszul objects

Koszul objects generalize Koszul complexes to triangulated categories. They are defined
for a sequence of elements in a ring that acts on the triangulated category.

4.1. The (graded) center of a triangulated category T is

Z�.T / WD
M
d2Z

®
˛W idT ! †d j ˛† D .�1/d†˛

¯
:

This is a graded-commutative graded ring; that means

.†j˛jˇ/ ı ˛ D .�1/j˛jjˇ j.†jˇ j˛/ ı ˇI

see [11]. An action of a graded-commutative graded ring R on T is equivalent to a graded
ring homomorphism R! Z�.T /.

4.2. For X 2 T and a sequence ˛ D ˛1; : : : ; ˛c in Z�.T /, the Koszul object of ˛ on X is

X==˛ WD

8̂̂<̂
:̂
X c D 0;

cone
�
X

˛1.X/
����! †j˛1jX

�
c D 1;�

X==.˛1; : : : ; ˛c�1/
�
==˛c c > 1:

The Koszul object is unique up to non-unique isomorphism.

From the construction of the Koszul object we immediately get the inequality

levelXT
�
X==.˛1; : : : ; ˛c/

�
� 2c :

We can improve this bound when the elements ˛i arise from an action of a monoidal
triangulated category on T .

4.3. Action by monoidal categories

We recall the definition and fix notation for a monoidal structure on a triangulated cate-
gory; see [20, Definition A.2.1]. For details on the coherence axioms see [28, Section XI.1]
and also [25].
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4.4. A monoidal triangulated category .� ;˝; 1/ consists of a triangulated category �

with a monoidal product .˝;1/ where ˝W � � � ! � is a biexact functor and 1 2 � the
unit object. This means there are isomorphisms

˛WX ˝ .Y ˝Z/! .X ˝ Y /˝Z; �W1˝X ! X and �WX ˝ 1! X;

that are natural transformations of exact functors in each variable satisfying the coherence
axioms of a monoidal category.

A monoidal triangulated category .� ;˝; 1/ is symmetric if it is equipped with an
isomorphism

� WX ˝ Y ! Y ˝X

that is a natural transformation of exact functors in each variable satisfying the coherence
axioms of a symmetric monoidal category. Symmetric monoidal triangulated categories
are also called tensor triangulated categories. Some sources additionally assume that the
monoidal structure is closed; we discuss closed monoidal structures on triangulated cate-
gories in 6.20.

4.5. Let .� ;˝;1/ be a monoidal triangulated category. A (left) action of � on a triangu-
lated category T consists of a biexact bifunctor FW� � T ! T together with isomorphisms

˛W F.X; F.Y;Z//! F.X ˝ Y;Z/ and �W F.1; Z/! Z;

that are natural transformations of exact functors in each variable satisfying coherence ax-
ioms analogous to the ones of a monoidal category; see for example [19, Definition 4.1.6]
and [10, Section 1] for details. In particular, any monoidal triangulated category .� ;˝;1/
acts on itself via the tensor product˝W � � � ! � .

4.6. Let .� ;˝;1/ be a monoidal triangulated category and F an action of � on a triangu-
lated category T . We denote by

End�� .X/ WD
M
n2Z

�.X;†nX/

the graded endomorphism ring. Then the monoidal structure induces a homomorphism of
graded rings

End�� .1/! Z�.T /; f 7! f̨ WD
�
X Š F.1; X/

F.f;X/
����! F.†jf j1; X/ Š †jf jX

�
I

see for example [10, Proposition 2.1]. The isomorphisms involve � from the �-action and
# from 3.1. We say ˛ 2 Z�.T / is induced by F, if ˛ D f̨ for some f 2 End�� .1/. We can
choose

X== f̨ D F
�

cone.f /; X
�

(4.6.1)

as the Koszul object of f̨ on X ; in particular the Koszul object is functorial in X for f̨ .
Moreover, for f; g 2 End�� .1/ we have an isomorphism

X==. f̨ ; ˛g/ Š F
�

cone.g/; F.cone.f /; X/
�
Š F

�
cone.g/˝ cone.f /; X

�
Š F

�
cone.f /˝ cone.g/; X

�
Š X==.˛g ; f̨ /:
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If the monoidal product is symmetric, then this isomorphism is induced by the natural
isomorphism � . Otherwise, the isomorphism cone.g/˝ cone.f / Š cone.f /˝ cone.g/
is not canonical, though its existence follows from the 3� 3 diagram obtained by applying
˝ to the triangles involving f and g.

In general, the objects X==.˛; ˇ/ and X==.ˇ; ˛/ need not be isomorphic, as illustrated
by the following example.

Example 4.7. Let k be a field and A D kŒx�=.x2/. By [26, Proposition 5.4], the center
of Db.mod.A// is the trivial extension ring kŒ�� Ë

Q
r>0 k where � is of degree 2 if the

characteristic of k is not 2 and of degree 1 if k is of characteristic 2, and k D kŒ��=.�/ as
a kŒ��-module. The ring kŒ�� is the Hochschild cohomology of A over kŒx� and the ele-
ments of kŒ�� are induced by a bifunctor; we discuss the action of Hochschild cohomology
in Example 7.10. We focus on the elements in the center coming from

Q
r>0 k. The cate-

gory Db.mod.A// is a Krull–Schmidt category where the indecomposable objects are the
complexes Anm that have A in degrees m � d � n connected by differentials xidA and are
zero elsewhere. We take �0; �1 2

Q
r>0 k determined by

�r .A
n
m/ D

´
xnm n �m D r;

0 n �m ¤ 0;

where xnm is the morphism with .xnm/m D xidA and zero otherwise. This morphism is not
homotopic to zero or idA. For these objects we obtain

Ann==�0 D A
nC1
n and Ann==�1 D A

n
n ˚†A

n
n:

In particular, we obtain

Ann==.�0; �1/ D A
nC2
n ˚ AnC1nC1 6Š A

nC1
n ˚†AnC1n D Ann==.�1; �0/:

Moreover, we have

Ann==.�0 C �1/ D A
nC1
n and .�0 C �1/

�
Ann==.�0 C �1/

�
D xnC1n ¤ 0:

Thus elements in the center of T are not necessarily trivial on their Koszul objects.

4.8. Level inequalities involving Koszul objects

For Koszul objects, that are induced by an action, we obtain the following.

Lemma 4.9. Let T be a triangulated category and ˛D ˛1; : : : ; ˛c a sequence of elements
in Z�.T / each induced by an action of a monoidal triangulated category Fi W�i � T ! T .
Then

levelX==˛
T

.Y==˛/ � levelXT .Y /

for any objects X and Y in T .



J. C. Letz and M. Stephan 392

Proof. Let ˛ D f̨ be an element induced by an action F. Then by (4.6.1) we have

levelX==˛
T

.Y==˛/ D levelF.cone.f /;X/
T

�
F.cone.f /; Y /

�
� levelXT .Y /;

since F.cone.f /;�/ is an exact functor. Hence the desired inequality holds by induction
on c.

Theorem 4.10. Let T be a triangulated category and ˛ D ˛1; : : : ; ˛c a sequence of
elements in Z�.T / each induced by an action of a monoidal triangulated category Fi W�i �
T ! T . If each Fi admits a strong Verdier structure, then

levelXT
�
Y==.˛1; : : : ; ˛c/

�
� levelXT .Y /C c

for any X; Y 2 T .

Proof. By induction, it suffices to establish the inequality

levelXT .Y==˛/ � levelXT .Y /C 1

for just one element ˛ D f̨ induced by an action of a monoidal triangulated category
FW � � T ! T admitting a strong Verdier structure.

Since X Š F.1; X/ and Y==˛ D F.cone.f /; Y /, the desired inequality follows from
Theorem 3.6 using that level1� .cone.f // � 2.

Example 4.11. Let R be a commutative ring. Then there is a natural embedding R !
Z�.D.Mod.R///. For x1; : : : ; xc 2R we denote by KosR.x1; : : : ; xc/ the Koszul complex
on x1; : : : ; xc . Then

Y==.x1; : : : ; xc/ D Y ˝
L
R KosR.x1; : : : ; xc/

for any Y 2 D.Mod.R//. The inequality in Theorem 4.10 yields

levelX
�
Y ˝L

R KosR.x1; : : : ; xc/
�
� levelX .Y /C c:

When Y is an R-module and x1; : : : ; xc is a Y -regular sequence, then

Y ˝L
R KosR.x1; : : : ; xc/ ' Y=.x1; : : : ; xc/:

Thus we recover the inequality

projdimR

�
Y=.x1; : : : ; xc/

�
� projdimR.Y /C c

for X D R; see for example [9, Exercise 1.3.6].

Remark 4.12. The upper bound in Theorem 4.10 can be achieved. In fact, [6, Theo-
rem 3.3] provides conditions such that

levelXT
�
X==.˛1; : : : ; ˛c/

�
� c C 1

for some sequence ˛1; : : : ; ˛c .
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5. Stable cofibration categories and their homotopy categories

We are interested in triangulated categories that arise as homotopy categories of stable
cofibration categories. Such triangulated categories are called topological and they encom-
pass all algebraic triangulated categories. Similar to Quillen model categories, cofibration
categories are a model for homotopy theory. They are dual to Brown’s notion of cate-
gories of fibrant objects in [8, Section I.1] and correspond to precofibration categories in
which all objects are cofibrant in the terminology of [34]. Szumiło proved in [39] that the
homotopy theory of cofibration categories is equivalent to the homotopy theory of finitely
cocomplete1-categories. In this section we discuss definitions and important properties
of cofibration categories and stable cofibration categories; for a general reference see [37].
Schwede proved that the homotopy category of a stable cofibration category is triangu-
lated. We will supplement his proof in Proposition 5.8 to show that the triangulation is
strong in the sense of May [31]. Lemma 5.7 extends [31, Lemma 5.7] to relate pushouts in
a stable cofibration category to homotopy pushouts in the associated triangulated category.

5.1. Any cofibration category C comes with two classes of morphisms; a class of cofi-
brations and a class of weak equivalences. These are subject to the following axioms:

(1) Every isomorphism is a weak equivalence and weak equivalences satisfy the 2-
out-of-3 property: For composable morphisms f and g, if two out of f , g, gf
are weak equivalences, then so is the third.

(2) Every isomorphism is a cofibration and cofibrations are closed under composition.

(3) Any diagram Y  X!Z in which Y  X is a cofibration has a pushout Y [X Z
and the morphismZ! Y [X Z is a cofibration. If additionally, Y  X is a weak
equivalence then so is Z ! Y [X Z.

(4) The category C has an initial object and every morphism from an initial object is
a cofibration.

(5) Any morphism X ! Y in C can be factored as a cofibration followed by a weak
equivalence.

We write X � Y for a cofibration and X
�
�! Y for a weak equivalence. Maps that are

both cofibrations and weak equivalences are called acyclic cofibrations. We denote the
localization of C at the weak equivalences by 
 WC ! Ho.C/; see [15, Section I.1]. Given
a zig-zag

Y1
s1
 � X1

f1
�! Y2

s2
 � X2 ! � � �  Xn

fn
�! Yn

in C , where each si is a weak equivalence, we write



�
Y1

�
 � X1 ! Y2

�
 � X2 ! � � �

�
 � Xn ! Yn

�
for the composite 
.fn/ : : : 
.s2/�1
.f1/
.s1/�1 in Ho.C/.

Remark 5.2. The homotopy category Ho.C/ of a cofibration category may not be locally
small; see [37, Remark A.2]. For any model category M, the full subcategory of cofi-
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brant objects together with the cofibrations and weak equivalences of M between cofibrant
objects is a cofibration category. This is the main family of examples of interest for us.
In this case, the homotopy category is locally small, since the homotopy category of cofi-
brant objects in M is equivalent to the homotopy category of M and the latter is locally
small.

Let C be a pointed cofibration category. Pointed means that every initial object is also
a terminal object. We write � for the terminal object. When X ! Y is a cofibration we
write Y=X for the pushout Y [X �.

5.3. An object C is weakly contractible if C ! � is a weak equivalence. A cofibration
X ! C with C weakly contractible is called a cone (of X ).

A morphism between objects extends to a morphism between cones in the following
way: For any morphism f WX ! Y and cones X ! CX and Y ! CY in C , there exists a
morphism Nf WCX ! xC and an acyclic cofibration sWCY ! xC such that

X Y

CX xC CY

f

Nf
s

�

commutes in C and CX [X CY ! xC is a cofibration; see [37, Lemma A.3]. The pair
. Nf ; s/ is called a cone extension of f WX ! Y . Instead of . Nf ; s/ we often say xC is the
cone extension. Note, that if f is a cofibration, then so is Nf . The composite



�
CX=X

Nf =f
���! xC=Y

s=idY
 ��� CY =Y

�
in the homotopy category is independent of the chosen cone extension.

5.4. In a pointed cofibration category C we fix a cone X ! CX for every object X .
The suspension of X is †X WD CX=X . By [37, Proposition A.4] this defines a functor
†WC ! Ho.C/ which is given on morphisms as

†.X
f
�! Y / WD 
.CX=X ! xC=Y  CY=Y /

where xC is a cone extension of f . Moreover, the suspension functor † takes weak equiv-
alences to isomorphisms and thus induces a functor †WHo.C/! Ho.C/.

5.5. Let f WX � Y be a cofibration in C . The connecting morphism of f is

ı.f / WD 
.Y=X
�
 � CX [X Y ! †X/:

We call
X


.f /
���! Y ! Y=X

ı.f /
���! †X

an elementary exact triangle.
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We will use repeatedly that the connecting morphism is natural in the sense of [37,
Proposition A.11]: For any commutative square

X Y

X 0 Y 0

f

f 0

in C , where f and f 0 are cofibrations, the diagram

Y=X †X

Y 0=X 0 †X 0

ı.f /

ı.f 0/

commutes in Ho.C/.

5.6. Stable cofibration categories

If the induced endofunctor † on Ho.C/ is an equivalence, then the pointed cofibration
category C is said to be stable. Schwede proved in [37, Theorem A.12] that the homotopy
category of any stable cofibration category is triangulated where the exact triangles are
those isomorphic to an elementary exact triangle.

May [31, Lemma 5.7] proved for some families of stable model categories that a
pushout square of cofibrant objects, where two parallel morphisms are cofibrations, in-
duces a homotopy cartesian square in the homotopy category. Groth, Ponto, and Shulman
established the result for stable derivators in [17, Theorem 6.1], in particular extending
May’s result to all stable model categories. Combining May’s arguments with Schwede’s
results we provide a proof of the analogous result for stable cofibration categories so that
there is no need to change frameworks.

Lemma 5.7. Let

X Y

Z P

f

g f 0

g 0

be a pushout square in a stable cofibration category C with f WX! Y a cofibration. Then
its image in Ho.C/ is a homotopy cartesian square.

Proof. By rotation, it is enough to construct an exact triangle

Y ˚Z
. g 0 f 0 /
�����! P

@
�! †X

†
�
�f
g

�
�����! †.Y ˚Z/:

Let cyl.X/ be a cylinder object for X ; that is we factor the fold map X t X ! X into a
cofibration followed by a weak equivalence

X tX cyl.X/ X I
.i0;i1/ q

�
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see for example [34, Section 1.5]. Let

M.f; g/ WD cyl.X/ [XtX .Y tZ/ D Y [X cyl.X/ [X Z

be the double mapping cylinder of .f; g/. The gluing lemma applied to

cyl.X/ [X Z cyl.X/ X Y

Z X Y

�

i0 f

D D

g f

provides a weak equivalence M.f; g/
�
�! P ; see [34, Lemma 1.4.1 (1)(b)]. Moreover,

M.f; g/=.Y tZ/ Š cyl.X/=.X tX/

and we have weak equivalences

cyl.X/=.X tX/ D � [X cyl.X/ [X �
�
 � � [X cyl.X/ [X CX

�
�! � [X CX D †X:

It follows that the elementary exact triangle arising from the cofibration Y t Z�
M.f; g/ yields an exact triangle

Y ˚Z
. g 0 f 0 /
�����! P ! †X

ı
�! †.Y ˚Z/:

It remains to check that ı is the suspension of .�f; g/T WX ! Y ˚ Z. We show that its
projection to †Y is �†f . Choosing a cone extension CX ! C  CZ of gWX ! Z,
this follows from the naturality of the connecting morphism in Section 5.5 applied to

Y tZ Y [X cyl.X/ [X Z

Y t C Y [X cyl.X/ [X C

Y Y [X cyl.X/ [X CX

Y Y [X X [X CX .

idY[q[X idCX

The connecting morphism of the cofibration Y ! Y [X CX is indeed �†f by the proof
of the rotation axiom in [37, Theorem A.12].

Similarly, the projection of ıW†X ! †.Y ˚ Z/ to †Z is †g. The sign of �†g
cancels with the sign arising from


.†X D � [X CX
�
 � CX [X CX

�
�! CX [X � D †X/ D �id†X I

see [37, Proposition A.8 (iii)].
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The following supplements the proof of the octahedral axiom in Ho.C/; see [37, The-
orem A.12]. In particular, we show that the triangulation of Ho.C/ is strong in the sense
of [31, Definition 3.8].

Proposition 5.8. Let X Y Z
f g

be a composition of cofibrations in a stable cofi-
bration category C . Then

Y Y=X

Z Z=X


.g/ and
Z=X †X

Z=Y †Y

ı.gf /

†f

ı.g/

are homotopy pushout squares in Ho.C/.

Proof. The first square considered in C fits into a commutative diagram

X Y Z

� Y=X Z=X

and it follows from the pasting lemma for pushouts that it is a pushout square. Thus its
image is a homotopy pushout square in Ho.C/ by Lemma 5.7.

We show that the second square is homotopy cartesian. We pick a cone extension xC
of f . This fits into a diagram

Z=X CX [X Z CX=X

Z=Y xC [Y Z xC=Y

Z=Y CY [Y Z CY=Y

�

�

D

�

� �

consisting of four commutative squares in C . Since weak equivalences become isomor-
phisms in Ho.C/, it is enough to show that the upper right-hand square is homotopy
cartesian in Ho.C/. We will show that it is a pushout square in C and that CX [X Z !
xC [Y Z is a cofibration in order to apply Lemma 5.7.

The pasting lemma for pushouts yields diagrams of pushout squares

X Z �

CX CX [X Z †X

and

Y Z �

CX [X Z †X

xC xC [Y Z xC=Y .
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By Section 5.3, the morphism CX [X CY ! xC is a cofibration, and hence so is CX [X
Y ! xC . We apply [34, Lemma 1.4.1 (1)(a)] to

CX X Z

xC Y Z

D

and obtain that CX [X Z ! xC [Y Z is a cofibration. Thus Lemma 5.7 applied to the
square with corners CX [X Z, xC [Y Z,†X , xC=Y provides the desired homotopy carte-
sian square.

Corollary 5.9. The homotopy category of a stable cofibration category is a strongly tri-
angulated category in the sense of [31, Definition 3.8].

Proof. By the same argument as in the proof of the octahedral axiom in [37, Theo-
rem A.12] it is enough to consider a compositionX

f
�! Y

g
�! Z in the homotopy category

where f D 
.f 0/ and g D 
.g0/ for cofibrations f 0 and g0. Then the claim holds by
Proposition 5.8.

6. Biexact functors between stable cofibration categories

In this section we show that a biexact functor between stable cofibration categories induces
a biexact functor of triangulated categories and that the induced functor admits a strong
Verdier structure; see Theorem 6.4. Analogous results have been proved for monoidal
products; for some families of monoidal stable model categories see May [31, Section 6]
and for strong, stable monoidal derivators see [16, Theorem 6.2]. In particular, we show
that May’s arguments extend to any Quillen bifunctor between stable model categories as
the bifunctors can be restricted to biexact functors between categories of cofibrant objects.

6.1. A functor FW C ! D between cofibration categories is exact if it preserves initial
objects, cofibrations, weak equivalences, and pushouts of diagrams, where one leg is a
cofibration. Since F preserves weak equivalences, it induces a functor Ho.F/WHo.C/!
Ho.D/ on the homotopy categories. If C and D are stable, then Ho.F/ is an exact functor
of triangulated categories by [37, Proposition A.14].

The natural isomorphism � WHo.F/†! †Ho.F/ is given as follows: We fix an object
X and let C be a cone extension of the identity on F.X/ with respect to the cones C F.X/
and F.CX/. Then

�.X/ D 

�
F.CX/=F.X/! C=F.X/

�
 � C F.X/=F.X/

�
:

Lemma 6.2. Let F;GWC!D be exact functors between stable cofibration categories and
�W F! G a natural transformation. Then Ho.�/WHo.F/! Ho.G/ is a natural transforma-
tion of exact functors; that is .†Ho.�//� F D �G.Ho.�/†/.
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Proof. We pick cone extensions CF and CG of the identity on F.X/ and G.X/, respectively,
as above. Then F.CX/! CF and G.CX/! CG are cones, and we pick a cone extension
C of �.CX/ with respect to these cones. Then we obtain a commutative diagram

F.CX/=F.X/ CF=F.X/ C F.X/=F.X/

C=G.X/

G.CX/=G.X/ CG=G.X/ CG.X/=G.X/ .

�

�

�

�

�

�

�

�

It remains to observe, that in Ho.D/ the morphisms in the top and bottom row are � F and
�G, respectively, the morphism in the left column is Ho.�/.†X/ and the morphism in the
right column is †Ho.�/.X/.

Definition 6.3. Let C , D , E be cofibration categories. A functor FWC �D! E is biexact,
if it is exact in each variable and for any morphisms f WX ! Y in C and f 0WX 0 ! Y 0

in D , the induced morphism

F.X; Y 0/ [F.X;X 0/ F.Y;X 0/! F.Y; Y 0/ (6.3.1)

is a cofibration provided that f and f 0 are cofibrations.

A biexact functor FW C � D ! E preserves weak equivalences and thus induces a
functor Ho.F/WHo.C/ � Ho.D/! Ho.E/ which coincides with F on objects.

Theorem 6.4. Let FWC �D ! E be a biexact functor between stable cofibration cate-
gories. Then the induced functor Ho.F/ is a biexact functor of triangulated categories and
Ho.F/ admits a strong Verdier structure.

Proof. By 6.1 and Lemma 6.2, we have natural isomorphisms

# WHo.F/.†�;�/! †Ho.F/.�;�/ and �WHo.F/.�; †�/! †Ho.F/.�;�/:

We will show that Ho.F/ admits a strong Verdier structure. This will imply the compati-
bility condition (3.1.1).

It suffices to establish the strong Verdier structure for elementary exact triangles

X

.f /
���! Y


.g/
���! Z

ı.f /
���! †X and X 0


.f 0/
���! Y 0


.g 0/
���! Z0

ı.f 0/
���! †X 0

in Ho.C/ and Ho.D/, respectively. We make constructions in the stable cofibration cat-
egory and, for readability, we use the labeling of (3.2.3) to refer to the corresponding
squares in the cofibration category.

We set W WD F.X; Y 0/ [F.X;X 0/ F.Y; X 0/. By (6.3.1) the morphism W ! F.Y; Y 0/ is
a cofibration. Using the pasting lemma repeatedly, we obtain the following diagram in
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which every square is a pushout square:

F.X;X 0/ F.Y;X 0/ �

F.X; Y 0/ W F.X;Z0/ �

F.Y; Y 0/ F.Y;Z0/ F.Z;Z0/ .

(I)

(III)

(6.4.1)

This yields the elementary exact triangles

W F.Y; Y 0/ F.Z;Z0/ †W ,

F.Y;X 0/ W F.X;Z0/ †F.Y;X 0/ ,

i pDı.i/

j 0 q0

and similarly, we obtain (II) and an elementary exact triangle

F.X; Y 0/ W F.Z;X 0/ †F.X; Y 0/ .
j q

The dotted arrow in the first triangle is 
.F.g; g0//. In the latter two triangles the dotted
arrows are .†
.F.f; X 0///ı.F.X; f 0// and .†
.F.X; f 0///ı.F.f; X 0//, respectively, by
applying the naturality of the connecting morphism in Section 5.5 to the defining pushout
square of W . Since ı.F.X; f 0// D � Ho.F/.X; ı.f 0//, and similarly for ı.F.f;X 0//, these
are the required triangles (3.2.2).

We need to check, that the morphisms satisfy the compatibility conditions in (3.2.3),
and that the required squares are homotopy cartesian.

By construction (i)–(iv) commute. The triangles (v) and (vi) commute by the naturality
of the connecting morphism in Section 5.5. Further by (6.4.1) and Lemma 5.7 the squares
(I)–(III) commute and are homotopy pushout squares.

Next we show that (VI) is anti-commutative and homotopy cartesian when replacing
one arrow by its negative. Pasting pushouts in the cube

F.Y;X 0/ W

F.X;X 0/ F.X; Y 0/

F.Z;X 0/ F.Z;X 0/ t F.X;Z0/

� F.X;Z0/

shows that W=F.X;X 0/ Š F.Z;X 0/ t F.X;Z0/. By construction the composition

W ! F.Z;X 0/ t F.X;Z0/! F.Z;X 0/ t � Š F.Z;X 0/
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coincides with the morphism W ! F.Z; X 0/ above; and similarly for the second sum-
mand. Thus we have an elementary exact triangle

F.X;X 0/! W ! F.X;Z0/˚ F.Z;X 0/
ı
�! †F.X;X 0/

inHo.E/. It follows from Section 5.5 that the connecting morphism ı restricts to ı.F.X;f 0//
and ı.F.f;X// on the summands F.X;Z0/ and F.Z;X 0/, respectively. Rotating this trian-
gle shows that (VI) anti-commutes, and it is homotopy cartesian if we replace one arrow
by its negative.

Applying Proposition 5.8 to the compositions of cofibrations F.X;Y 0/!W!F.Y;Y 0/
and F.Y; X 0/! W ! F.Y; Y 0/ shows that (IV) and (V) are commutative and homotopy
cartesian, respectively.

It remains to observe, that (3.1.1) is a consequence of (3.2.2) by using the exact trian-
gles

X ! 0! †X
�id†X
����! †X and X 0 ! 0! †X 0

�id†X 0
����! †X 0:

Hence Ho.F/ is a biexact functor that admits a strong Verdier structure.

Remark 6.5. Let X ! Y ! Z! †X and X 0! Y 0! Z0! †X 0 be exact triangles in
Ho.C/, andW the object constructed from these triangles as in the proof of Theorem 6.4.
When we replace the triangle X ! Y ! Z ! †X by Y ! Z ! †X ! †Y (with
appropriate signs) in the proof of Theorem 6.4, we obtain an object V . Then there exist
homotopy pushout squares

V †F.Y;X 0/

F.Z; Y 0/ †W

and
W F.Y; Y 0/

F.X;Z0/˚ F.Z;X 0/ V .

in Ho.C/. By [24, Theorem 4.1], this is also a direct consequence of the strong Verdier
structure and the octahedral axiom.

The second homotopypushout square also appears in [31] as (TC4).Using Lemma 6.10
below, it is straightforward to check that instead of replacing X ! Y ! Z ! †X by
Y !Z!†X!†Y , one can obtain†�1V from†�1Z!X! Y !Z and†�1Z0!
X 0 ! Y 0 ! Z0.

6.6. Naturality

In the proof of Theorem 6.4 we constructed the object W as a pushout in the stable cofi-
bration category. We will show that the strong Verdier structure on the bifunctor on the
homotopy categories inherits some of the naturality from the bifunctor on the stable cofi-
bration categories. These compatibility results may be of interest for future applications,
but we do not use them here.
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6.7. When we work in the homotopy category Ho.C/ of a cofibration category C , it
would be helpful to lift commutative diagrams in Ho.C/ to commutative diagrams in C

to use the structure of C . This works for commutative squares: As in the proof of (T4) in
[37, Theorem A.12], any morphism in Ho.C/ factors as the localization functor 
 WC !
Ho.C/ applied to a cofibration followed by an isomorphism. Thus any commutative square
in Ho.C/ is isomorphic to a commutative square such that two parallel arrows are 
 of
cofibrations. Schwede then shows in the proof of (T3) in [37, Theorem A.12], that any
such commutative square in Ho.C/ is isomorphic to 
 applied to a commutative square in
C in which two parallel arrows are cofibrations.

Lemma 6.8. Let FWC �D ! E be a biexact functor of stable cofibration categories and
let

X1 Y1

X2 Y2

and
X 01 Y 01

X 02 Y 02

be commutative squares in Ho.C/ and Ho.D/, respectively. Then there exist homotopy
pushouts Wi of F.Xi ; Y 0i / F.Xi ; X 0i /! F.Yi ; X 0i / in Ho.E/ satisfying the conditions in
Section 3.2 and a morphismW1!W2 in Ho.E/ that is compatible with the exact triangles
(3.2.2).

Moreover, the cone of the morphism W1 ! W2 is isomorphic to

cone
�
F.X1; Y 01/! F.X2; Y 02/

�
Ccone.F.X1;X 01/!F.X2;X 02//

cone
�
F.Y1; X 01/! F.Y2; X 02/

�
:

Proof. By 6.7, we can assume that the squares lift to commutative squares in C and D ,
respectively, with the horizontal morphisms being cofibrations. Then we obtain the mor-
phismW1!W2 from the morphism of the spans. The pushout property yields morphisms
of the diagrams (6.4.1) and thus a morphism of triangles in Ho.E/.

For the second claim, let C1 be a cone extension of F.X1; X 01/! F.X1; Y 01/ and C2 a
cone extension of F.X1; X 01/! F.Y1; X 01/. We consider the commutative diagram

C1 C F.X1; X 01/ C2

F.X1; Y 01/ F.X1; X 01/ F.Y1; X 01/

F.X2; Y 02/ F.X2; X 02/ F.Y2; X 02/ .

Whether we first take pushouts horizontally and then vertically, or the other way around,
we obtain the same object. By [34, Lemma 1.4.1 (1)(a)] these pushouts exist. In Ho.E/
the former yields cone.W1 ! W2/, and the latter the desired homotopy pushout using
Lemma 5.7.

One should compare the previous Lemma 6.8 to Lemmas 2.6 and 2.7, as the latter treat
special cases, though in a more general setting.
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Next we show that the construction of the strong Verdier structure in Theorem 6.4
is invariant under rotation. Namely, if we rotate the triangle in the first component of
the biexact functor, then the three exact triangles (3.2.2) from the corresponding strong
Verdier structure are up to rotation canonically isomorphic to the three exact triangles
obtained from the strong Verdier structure after rotating the triangle in the second compo-
nent.

We will use Schwede’s proof of the rotation axiom from [37, Theorem A.12].

Remark 6.9. Let f WX ! Y be a cofibration in a stable cofibration category C . Then

X CX [X Y †X †Y

X Y=X †X †Y .

D

ı

D D

�†.f /

is an isomorphism of exact triangles. If CX is another cone for X and xC a cone extension
for CX and CX , then the latter exact triangle is isomorphic to

X Y=X CX=X †Y;
ı

via 
.CX=X ! xC=X  CX=X/ and the identity morphisms on the other objects.

Lemma 6.10. Let FWC �D! E be a biexact functor of stable cofibration categories and
f WX!Y and f 0WX 0!Y 0 cofibrations in C and D , respectively. LetW1 be the pushout of

F.X; CX 0 [X 0 Y 0/ F.X; Y 0/! F.Y; Y 0/

and W2 the pushout of

F.CX [X Y;X 0/ F.Y;X 0/! F.Y; Y 0/:

Then there is a canonical isomorphism eWW1 ! W2 in Ho.E/ that yields canonical iso-
morphisms of the exact triangles (3.2.2); that is for Z D Y=X and Z0 D Y 0=X 0 the
following diagrams commute

F.Y; Y 0/ W1 F.X;†X 0/ †F.Y; Y 0/

F.Y; Y 0/ W2 F.†X;X 0/ †F.Y; Y 0/ ,

j 01

D

q01

e Š

�F.f;†f 0/

Š D

j2 q2 #F.†f;f 0/

(6.10.1)

W1 F.Y;Z0/ F.Z;†X 0/ †W1

W2 F.Y;Z0/ †F.Z;X 0/ †W2

i1

e Š

F.g;h0/

D

p1

� Š †e Š

q02 �F.g;h0/ �†j 02

(6.10.2)

and analogously, there is a third isomorphism of exact triangles.
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Proof. Using the pasting lemma we can writeW1 andW2 as pushouts over F.X;X 0/. Then
we obtain the zig-zag of weak equivalences

W1 F.X; CX 0/ [F.X;X 0/ F.Y; Y 0/

F.CX;CX 0/ [F.X;X 0/ F.Y; Y 0/

W2 F.CX;X 0/ [F.X;X 0/ F.Y; Y 0/

D

�

D

�

and we let eWW1 ! W2 be the corresponding isomorphism in the homotopy category. By
a diagram chase one obtains commutativity of (6.10.1).

For (6.10.2) we consider the commutative diagram

W1 F.X; CX 0/ [F.X;X 0/ F.Y; Y 0/ F.Y; CX 0/ [F.Y;X 0/ F.Y; Y 0/

W F.CX;CX 0/ [F.X;X 0/ F.Y; Y 0/ F.CX [X Y; CX 0/ [F.Y;X 0/ F.Y; Y 0/

W2 F.CX;X 0/ [F.X;X 0/ F.Y; Y 0/ F.CX [X Y; CX 0/ [F.Y;X 0/ F.Y; Y 0/ .

D

� �

WD

D

� D

Note that the horizontal arrow in the middle is a cofibration using that F is biexact and [34,
Lemma 1.4.1 (1)(a)]. The morphismW2!W is a pushout of the cofibration F.CX;X 0/!
F.CX;CX 0/ and thus a cofibration as well. Hence their composite, the bottom horizontal
arrow, is a cofibration. We obtain a commutative diagram of connecting morphisms

F.Y=X;CX 0=X 0/ †W1

F.Y=X;CX 0=X 0/ †W

F.CX [X Y; CX 0=X 0/ †W2

ı

D

ı

ı

in Ho.E/ and isomorphisms of three exact triangles. Since F.CX [X Y; CX 0/ is a cone
for F.CX [X Y; X 0/ we can use Remark 6.9 to obtain an isomorphism from the bottom
exact triangle to the exact triangle

W2 F.Y; Y 0=X 0/ †F.CX [X Y;X 0/ †W2;

in which the connecting morphism is �†.F.CX [X Y;X 0/! W2/ and the isomorphism
on the third object is �. Finally, using the weak equivalences CX [X Y !Z and CX 0 [0X
Y 0 ! Z0 we obtain the commutative diagram (6.10.2).
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6.11. Quillen bifunctors

Recall that a bifunctor FWL �M! N between model categories is a Quillen bifunctor if
it has a right adjoint in each variable and it satisfies the pushout-product axiom: For any
cofibrations f WX ! Y in L and f 0WX 0 ! Y 0 in M, the induced morphism

F.X; Y 0/ [F.X;X 0/ F.Y;X 0/! F.Y; Y 0/

is a cofibration which is an acyclic cofibration if f or f 0 is an acyclic cofibration. It
follows that F has a total left derived functor LFWHo.L/ � Ho.M/! Ho.N /; see [19,
Proposition 4.3.1]. For cofibrant objects X of L and Y of M it can be computed by
LF.X; Y / D F.X; Y /.

Remark 6.12. The condition that FWL �M ! N has a right adjoint in each variable
implies, that the right adjoints uniquely extend to bifunctors hom`

WLop � N !M and
homr

WMop �N ! L such that the isomorphisms

L.X; homr .Y;Z// Š N .F.X; Y /;Z/ ŠM.Y; hom`.X;Z//:

are natural in X , Y and Z; see [28, Section IV.7, Theorem 3]. This is called an adjunction
of two variables; see [19, Definition 4.1.12].

If F is a Quillen bifunctor, then so are the cyclic shifts

N op
�L!Mop; .Z;X/ 7! hom`.X;Z/

and
M �N op

! Lop; .Y;Z/ 7! homr .Y;Z/I

see [19, Lemma 4.2.2]. Moreover, the adjunction of two variables induces an adjunction of
two variables .LF;Rhom`;Rhomr / on homotopy categories; see [19, Proposition 4.3.1].

Lemma 6.13. Let FWL�M!N be a Quillen bifunctor between model categories. Then
F restricts to a biexact functor of the corresponding categories of cofibrant objects FWLc �

Mc ! Nc .

Proof. For any cofibrant object X in L, the functor F.X;�/WM ! N is a left Quillen
functor and thus restricts to an exact functor of cofibration categories F.X;�/WMc ! Nc .
Similarly, F.�; Y /WLc!Nc is an exact functor of cofibration categories for any cofibrant
object Y of M. It now follows from the pushout-product axiom that FWLc �Mc ! Nc is
a biexact functor.

Recall that for any pointed model category M the homotopy category is equipped
with a suspension functor †WHo.M/ ! Ho.M/. Moreover, M is called stable if † is
an equivalence. This is equivalent to the condition that the category of cofibrant objects
Mc is stable, as the suspensions commute with the equivalence Ho.Mc/! Ho.M/. If
M is stable, then we use this equivalence to equip Ho.M/ with the triangulated structure
coming from Ho.Mc/. This agrees with the triangulated structure on Ho.M/ from [19,
Section 7]; see the proof of [19, Proposition 6.3.4] to verify that the connecting morphisms
coincide.
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The triangulated structure on Ho.M/ induces a triangulated structure on its opposite
category Ho.M/op. Alternatively, we can equip Ho.M/opŠHo.Mop/with the triangulated
structure coming from Ho..Mop/c/. The cofibrant objects in Mop are the fibrant objects
in M. These two triangulated structures on Ho.M/op agree by [19, Theorem 7.1.11] with
our convention for the triangulated structure on the opposite of a triangulated category.

Corollary 6.14. Let FWL �M ! N be a Quillen bifunctor between stable model cate-
gories. Then the total left derived functor LFWHo.L/ � Ho.M/! Ho.N / is biexact and
admits a strong Verdier structure. Moreover, the functors Rhom` and Rhomr are biexact
and admit strong Verdier structures.

Proof. This follows from Theorem 6.4 and Lemma 6.13.

6.15. Monoidal cofibration categories

Monoidal products on triangulated categories are essential examples of biexact functors.
In Section 7.1 we see that many tensor triangulated categories arise as homotopy cat-
egories of stable, monoidal model categories. The unit of the monoidal product on the
model category is often not a cofibrant object, so that the cofibrant replacement of the unit
takes the role of the unit in the corresponding cofibration category. However, the cofibrant
replacement of the unit need not satisfy the same properties as the unit. This motivates the
following definition.

6.16. A (weakly unital) monoidal cofibration category .C ;˝; 1/ consists of a cofibra-
tion category C , an object 1 and a biexact functor � ˝ �W C � C ! C with a natural
isomorphism

˛WX ˝ .Y ˝Z/! .X ˝ Y /˝Z

and natural weak equivalences

�W1˝X ! X and �WX ˝ 1! X

satisfying the following coherence axioms: The two canonical ways to compose the natu-
ral transformations along

..W ˝X/˝ Y /˝Z ! W ˝ .X ˝ .Y ˝Z//; .1˝ Y /˝Z ! Y ˝Z;

.X ˝ 1/˝Z ! X ˝Z; and .X ˝ Y /˝ 1! X ˝ Y
(6.16.1)

are equal.
A monoidal cofibration category is symmetric, if it is equipped with a natural isomor-

phism
� WX ˝ Y ! Y ˝X

satisfying the following coherence axioms: The two canonical ways to compose the natu-
ral transformations along

X ˝ 1! X and .X ˝ Y /˝Z ! Z ˝ .X ˝ Y /

are equal and �2 D id.
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A (left) action of a monoidal cofibration category .C ;˝;1/ on a cofibration category
D consists of a biexact functor

FWC �D ! D

with a natural isomorphism

F
�
X; F.Y;Z/

�
! F.X ˝ Y;Z/

and a natural weak equivalence
F.1; X/! X

satisfying coherence axioms analogous to a monoidal cofibration category (6.16.1), except
for the last one.

Remark 6.17. A monoidal cofibration category .C ;˝; 1/ is in general not a monoidal
category since we require � and � to be weak equivalences instead of isomorphisms.
As a consequence, the axioms (6.16.1) are not superfluous, in contrast to the case of a
monoidal category; cf. [25]. Moreover, when � and � are isomorphisms, the coherence
axioms (6.16.1) imply further coherence. The same need not hold when � and � are weak
equivalences. Explicitly, the identities �.1/ D �.1/ or �.1;1/ D id1˝1 need not be sat-
isfied in a (symmetric) monoidal cofibration category.

Example 6.18. A (symmetric) monoidal model category .M;˝; 1/ consists of a model
category M and a (symmetric) monoidal structure .˝;1/ on M such that ˝ is a Quillen
bifunctor and the unit axiom holds: For any cofibrant replacement Q1! 1 and any cofi-
brant object X the morphisms

Q1˝X ! 1˝X and X ˝Q1! X ˝ 1

are weak equivalences.
If M is a (symmetric) monoidal model category, then its category of cofibrant objects

Mc together with the restriction of the tensor product and a cofibrant replacement of the
unit of M is a (symmetric) monoidal cofibration category.

Let M be a monoidal model category and N a (left) M-model category; see [19,
Definition 4.2.18]. Then the restriction of the action M �N !N to the cofibrant objects
together with a cofibrant replacement of the tensor unit of M defines an action of the
monoidal cofibration category Mc on the cofibration category Nc .

Theorem 6.19. Let .C ;˝;1/ be a (symmetric) monoidal stable cofibration category. Then
.Ho.C/;Ho.˝/; 
.1// is a (symmetric) monoidal triangulated category, and the induced
monoidal product admits a strong Verdier structure.

Proof. By Theorem 6.4, the functor Ho.˝/ is biexact and admits a strong Verdier struc-
ture. Using Lemma 6.2, the natural isomorphism ˛, the natural weak equivalences �, �,
and if available the symmetry � induce natural isomorphisms of exact functors in each
variable on the homotopy category. These provide the (symmetric) monoidal structure for
.Ho.C/;Ho.˝/; 
.1//.
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6.20. Let .T ;˝; 1/ by a tensor triangulated category. We assume X ˝ � has a right
adjoint hom.X;�/ for anyX 2 T . Then homWT op � T ! T is a bifunctor, called internal
hom functor. There are induced natural isomorphisms # and � as in 3.1 satisfying (3.1.1)
and hom is exact in the second variable. We say .T ;˝;1/ is closed, if hom is also exact
in the first variable; see [20, Definition A.2.1].

The homotopy category of a symmetric monoidal stable model category is a closed
tensor triangulated category by [19, Theorem 6.6.4] together with Cisinski’s proof of [19,
Conjecture 5.7.5] in [14, Corollaire 6.8]. We provide a new proof that does not rely on
[19, Conjecture 5.7.5]. In addition, we establish strong Verdier structures for the monoidal
product and the internal hom on Ho.M/.

Theorem 6.21. Let .M;˝; 1/ be a symmetric monoidal stable model category. Then
.Ho.M/;Ho.˝/; 
.1// is a closed symmetric monoidal triangulated category, and the
induced monoidal product and internal hom functor admit a strong Verdier structure.

Proof. By Theorem 6.19, .Ho.M/;Ho.˝/; 
.1// is a tensor triangulated category and
Ho.˝/ admits a strong Verdier structure. Since˝ is a Quillen bifunctor, the corresponding
internal hom functor on M induces a biexact functor admitting a strongVerdier structure on
Ho.M/ by Corollary 6.14. Hence the tensor triangulated category .Ho.M/;Ho.˝/; 
.1//
is closed.

The existence of a strong Verdier structure for Ho.˝/ is known by the analogous result
for monoidal stable derivators [16, Theorem 6.2, Lemma 6.8] as any symmetric monoidal
stable model category M has an associated monoidal stable derivator. If in addition M

is cofibrantly generated, then the associated monoidal derivator is closed; see [16, Theo-
rem 9.13]. In this case, the internal hom functor admits a strong Verdier structure by the
analogous result for derivators [22, Proposition 4.1.9].

7. Examples

In the following we discuss examples of bifunctors that admit a strong Verdier structure
so that Theorem 3.6 applies. Many of these functors are monoidal products of a tensor
triangulated category or actions of a tensor triangulated category. Any action of a tensor
triangulated category induces elements in the center so that Theorem 4.10 holds for the
corresponding Koszul objects.

7.1. Tensor triangulated categories

Recall from Sections 4.4 and 6.20 that a closed tensor triangulated category .T ;˝; 1/
consists of a triangulated category T and a compatible closed symmetric monoidal product
˝ with unit 1. In particular, the monoidal product ˝ and the internal hom are biexact
functors in the sense of 3.1.
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7.2. Each of the following tensor triangulated categories is the homotopy category of
a symmetric monoidal stable model category. In particular, Theorem 3.6 holds for the
monoidal product and the internal hom functor, and Theorem 4.10 for elements induced
by endomorphisms of the unit.

(1) The derived category D.Mod.R// of modules over a commutative ring R with
monoidal product ˝L

R and unit R. The endomorphism ring is End�.R/ D R.
A corresponding monoidal model category is the category Ch.R/ of unbounded
chain complexes over R with the projective model structure; see [19, Proposi-
tion 4.2.13].

(2) The derived category D.Mod.RG// for a commutative ring R and a finite group
G with monoidal product ˝L

R and unit R. The endomorphism ring is End�.R/ D
H�.GIR/, the group cohomology ring. A corresponding model category is the
category of unbounded chain complexes Ch.RG/ with the projective model struc-
ture. The monoidal product on Ch.RG/ is ˝R with the diagonal G-action. There
is a natural isomorphism

Ch.RG/.X ˝R Y;Z/ Š Ch.R/
�
X; homR.Y;Z/

�
;

where homR.Y; Z/ is the hom-complex over R equipped with the conjugation
action. The forgetful functor Ch.RG/ ! Ch.R/ is left Quillen and in particu-
lar preserves cofibrations. By the definition of the projective model structure, a
morphism in Ch.RG/ is a fibration or weak equivalence if and only if it is so in
Ch.R/. Since homR.�;�/ on Ch.R/ is a Quillen bifunctor it now follows that
homR.�;�/ on Ch.RG/ is a Quillen bifunctor and hence so is ˝R. The unit
axiom can be deduced from the unit axiom for Ch.R/ as well.

(3) The stable module category Mod.H/ of a finite-dimensional cocommutative Hopf
algebra H over a field k with monoidal product ˝k and unit k; see [19, Proposi-
tion 4.2.15]. This includes in particular the stable module category Mod.kG/ of
a group algebra kG of a finite group G. For a group algebra, the endomorphism
ring is End�.k/ D yH

�
.G; k/, the Tate cohomology ring.

(4) The homotopy category of spectra in stable homotopy theory; see for example [30].

(5) The homotopy category of equivariant spectra; see [29].

(6) The motivic stable category in A1-homotopy theory; see [21].

7.3. We obtain many examples for actions of tensor triangulated categories that admit a
strong Verdier structure by restricting the monoidal structures from 7.2 to suitable subcat-
egories.

(1) Let R be a commutative noetherian ring. Then Perf.R/, the full subcategory of
bounded complexes of finitely generated projective modules of D.Mod.R//, is a
tensor triangulated category with the restricted monoidal product. Further, it acts
on Db.mod.R//, the bounded derived category of finitely generated modules.
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(2) Let R be a commutative noetherian ring and G a finite group. Then Perf.RG/
inherits the monoidal structure from D.Mod.RG// and acts on Db.mod.RG//;
cf. [10, Section 8].

7.4. Tensor products of bimodules

Under reasonable conditions a stable model structure on a monoidal category transfers
to stable model structures on categories of bimodules. We will show in Section 7.8 that
tensoring over a monoid induces a biexact functor on homotopy categories that admits a
strong Verdier structure. Moreover, the derived tensor product is part of an adjunction of
two variables and the adjoints are biexact functors that admit a strong Verdier structure as
well.

7.5. Let .C ;˝;1/ be a biclosed monoidal category, that is ˝ has a right adjoint in each
variable denoted hom` and homr . We further assume that equalizers and coequalizers
exist. We briefly recall basic constructions for bimodules; for more details see [4].

For monoidsA andB in M, we write Bimod.A;B/ for the category ofA-B-bimodules.
If the monoidal structure on C is symmetric, then Bimod.A;B/ is isomorphic to the cate-
gory of left A˝ Bop-modules. The category of left A-modules Mod.A/ can be identified
with Bimod.A;1/ where 1 is the trivial monoid.

We write X ˝B Y for the tensor product of a right B-module X with a left B-module
Y defined by the coequalizer of X ˝ B ˝ Y � X ˝ Y . Since ˝ preserves coequalizers
in each variable, we obtain a bifunctor

�˝B �WBimod.A;B/˝ Bimod.B; C /! Bimod.B; C /;

where C is a monoid in C as well.
If X is an A-B-bimodule and Z is an A-C -bimodule, then hom`

A.X; Z/ is a B-C -
bimodule with B-action

B ˝ hom`
A.X;Z/! hom`

A.X;Z/

induced by the adjoint transpose of

X ˝ B ˝ hom`
A.X;Z/! X ˝ B ˝ hom`.X;Z/! X ˝ hom`.X;Z/! Z;

and C -action
hom`

A.X;Z/˝ C ! hom`
A.X;Z/

induced by the adjoint transpose of

X ˝ hom`
A.X;Z/˝ C ! X ˝ hom`.X;Z/˝ C ! Z ˝ C ! Z:

We obtain a bifunctor

hom`
A.�;�/WBimod.A;B/op

� Bimod.A; C /! Bimod.B; C /:
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Similarly, we have a bifunctor

homr
C .�;�/WBimod.B; C /op

� Bimod.A; C /! Bimod.A;B/:

The tensor product over a monoid is a left adjoint in each variable. Explicitly, there
are natural isomorphisms

Bimod.B; C /
�
Y; hom`

A.X;Z/
�
Š Bimod.A; C /.X ˝B Y;Z/

Š Bimod.A;B/
�
X; homr

C .Y;Z/
�

for X 2 Bimod.A;B/, Y 2 Bimod.B; C / and Z 2 Bimod.A; C / defined as follows. For
a morphism of bimodules Y ! hom`

A.X;Z/, the adjoint transpose of

Y ! hom`
A.X;Z/! hom`.X;Z/

induces a morphism X ˝B Y ! Z of A-C -bimodules. It is straightforward to check
that this assignment defines a natural isomorphism. Analogously, one defines the second
natural isomorphism.

In addition to the monoids A, B , and C , consider a monoid D. There are natural
isomorphisms

X ˝B .Y ˝C Z/! .X ˝B Y /˝C Z; A˝A X ! X and X ˝B B ! X

for any bimodules X 2 Bimod.A; B/, Y 2 Bimod.B; C /, and Z 2 Bimod.C; D/. The
associativity isomorphism is induced by the associativity of C using that ˝ preserves
coequalizers in each variable. The unit isomorphisms are induced by the structure maps
of X as an A-module and as a B-module, respectively.

This equips the monoids in C , bimodules, and morphisms of bimodules with the struc-
ture of a biclosed bicategory; see [4]. In particular, Bimod.A; A/ is a biclosed monoidal
category with monoidal product˝A and unit A.

7.6. Let .M;˝;1/ be a cofibrantly generated monoidal model category. In particular, the
monoidal product ˝WM �M !M is a Quillen bifunctor and thus part of an adjunction
of two variables .˝; hom`; homr /.

We say the cofibrantly generated model structure on M (right) transfers to the category
of bimodules Bimod.A; B/, if Bimod.A; B/ is a cofibrantly generated model category
with generating (trivial) cofibrations A˝ i ˝ B for generating (trivial) cofibrations i of
M. By adjunction, this implies that the weak equivalences and fibrations of Bimod.A;B/
are the bimodule morphisms whose underlying morphisms in M are weak equivalences
and fibrations, respectively. For sufficient conditions and examples when M is symmetric
monoidal see [38, Theorem 4.1 and Section 5].

Lemma 7.7. Suppose the cofibrantly generated model structure on M transfers to the
category Bimod.A;B/ for any monoids A and B . Then

�˝B �WBimod.A;B/ � Bimod.B; C /! Bimod.A; C /

is a Quillen bifunctor for any monoids A, B and C in M.
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Proof. The bifunctor�˝B� is part of an adjunction of two variables by 7.5. The pushout-
product axiom can be checked on generating cofibrations and generating trivial cofibra-
tions by [19, Corollary 4.2.5]. In our situation this holds, because for any morphisms f ,
g in M, the pushout-product of A˝ f ˝ B and B ˝ g ˝ C is the pushout-product of f
and g tensored by A from the left and by C from the right, and the functor A˝�˝ C is
a left Quillen functor from M to Bimod.A; C /.

Proposition 7.8. Let .M;˝;1/ be a monoidal stable model category. Suppose the model
structure on M is cofibrantly generated and transfers to Bimod.A;B/ for any monoids A
and B such that Bimod.A;B/ is a stable model category. Then the total derived functors

�˝
L
B �WHo

�
Bimod.A;B/

�
� Ho

�
Bimod.B; C /

�
! Ho

�
Bimod.A; C /

�
;

Rhomr
C .�;�/WHo

�
Bimod.B; C /

�op
� Ho

�
Bimod.A; C /

�
! Ho

�
Bimod.A;B/

�
;

Rhom`
A.�;�/WHo

�
Bimod.A;B/

�op
� Ho

�
Bimod.A; C /

�
! Ho

�
Bimod.B; C /

�
are biexact and admit a strong Verdier structure.

Proof. Since �˝B � is a Quillen bifunctor by 7.7, its total left derived functor is biexact
and admits a strong Verdier structure by Corollary 6.14. The functors homr

C .�;�/ and
hom`

A.�;�/ are up to switching arguments in the case of hom`
A.�;�/ the opposite func-

tors of the cyclic shifts of � ˝B �; see Remark 6.12. Since the cyclic shifts are Quillen
bifunctors, their total left derived functors are biexact and admit a strong Verdier struc-
ture, hence so do the opposites of these left derived functors, that is Rhomr

C .�;�/ and
Rhom`

A.�;�/.

Example 7.9. Let MDCh.R/ be the model category of unbounded chain complexes over
a commutative ring R equipped with the projective model structure in which the weak
equivalences are the quasi-isomorphisms and the fibrations are the degreewise epimor-
phisms; see [19, Theorem 2.3.11]. A monoidA in Ch.R/ is a differential gradedR-algebra
and the category of A-modules is the category of differential graded modules over A. The
model structure of Ch.R/ transfers to Mod.A/; see [38, Lemma 2.3]. Since every object
of Ch.R/ is fibrant, so is every object of Mod.A/. To check that the model structure on
Mod.A/ is stable, we consider the loop space functor � instead of the suspension. The
loop space functor is the suspension in Mod.A/op and for a stable model category it yields
the inverse of the suspension functor in the homotopy category. We set D1 D cone.idR/,
the chain complex with R in degrees one and zero and the identity as differential. Let X
be an A-module. Then

homr
R.D

1; X/! homr
R.R;X/ Š X

is a fibration and homr
R.D

1;X/ is weakly contractible. Its fiber�.X/, that is the pullback
along 0! R, is a shift of X . Thus � is an equivalence on Ho.Mod.A//. The homotopy
category of Mod.A/ is the derived category D.A/ of differential graded modules over A.
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Let A, B , C be differential graded algebras over a commutative ring R. The derived
functors

�˝
L
B �WD.A˝ B

op/ � D.B ˝ C op/! D.A˝ C op/;

RHomC op.�;�/W
�

D.B ˝ C op/
�op
� D.A˝ C op/! D.A˝ Bop/;

RHomA.�;�/W
�

D.A˝ Bop/
�op
� D.A˝ C op/! D.B ˝ C op/:

are biexact and admit a strong Verdier structure.

Example 7.10. Let R be a commutative ring and S an associative algebra over R. We
denote by SeR WD S ˝L

R S
op the derived enveloping algebra of S with respect to R. By

choosing a projective differential graded algebra resolution A
�
�! S over R, we can view

A˝R A
op ��! SeR as a differential graded algebra.

By Example 7.9, we have a monoidal triangulated category D.Mod.SeR//with˝L
S and

unit S acting on D.Mod.S// via˝L
S . The endomorphism ring of the unit S is

Ext�SeR.S; S/ DW HH�.S=R/;

the Shukla cohomology of S over R. When R D k a field, then this coincides with
Hochschild cohomology. In particular, Theorem 4.10 holds for anysequence in HH�.S=R/.
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