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Expansion of the Many-body quantum Gibbs state
of the Bose–Hubbard model on a finite graph

Zied Ammari, Shahnaz Farhat, and Sören Petrat

Abstract. We consider the many-body quantum Gibbs state for the Bose–Hubbard model on a finite
graph at positive temperature. We scale the interaction with the inverse temperature, corresponding
to a mean-field limit where the temperature is of the order of the average particle number. For this
model it is known that the many-body Gibbs state converges, as temperature goes to infinity, to the
Gibbs measure of a discrete nonlinear Schrödinger equation, i.e., a Gibbs measure defined in terms
of a one-body theory. In this article we extend these results by proving an expansion to any order
of the many-body Gibbs state with inverse temperature as a small parameter. The coefficients in
the expansion can be calculated as vacuum expectation values using a recursive formula, and we
compute the first two coefficients explicitly.

1. Introduction and main result

Within the research field of mathematical physics, proving the validity of effective equa-
tions starting from microscopic interacting theories has been a long-standing and active
research topic. The mathematical challenge is to prove the convergence of the solution of
a very complicated equation to the solution of a much simpler equation in an appropriate
scaling regime motivated by physics. The scaling regime is usually such that the effects
of the microscopic interaction simplify. For example, in a mean-field type scaling limit
this simplification could be achieved through averaging, and for a mathematical rigorous
derivation we need to estimate the error coming from replacing the interaction by its mean.

One particular microscopic theory of interest is quantum mechanics, where the cor-
responding equation in the non-relativistic case is the many-body Schrödinger equation.
While this equation is linear, the corresponding effective equations are usually nonlin-
ear but only one-body (or few-body) theories, which makes their analysis much easier
and allows, e.g., for numerical solutions. Quantum effects are particularly prominent at
low temperature, so much research has been devoted to the low or even zero tempera-
ture regimes. Associated effective equations are for example the Hartree, Hartree-Fock,
and Gross–Pitaevskii equations; see, e.g., the reviews [4, 26]. On the other hand, high or
even infinite temperatures are clearly relevant as well, and here Gibbs states offer a good
mathematical framework for studying these regimes; see, e.g., [23].
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In this article, we aim at bringing different approaches in the study of zero and infinite
temperature regimes together. For technical simplicity we choose to study the Bose–
Hubbard model, which is a lattice model of spinless bosons with on-site interaction that is
prominently used in the study of superfluid-insulator phase transitions. We consider a scal-
ing limit where the temperature goes to infinity, the interaction is scaled with the inverse
temperature, and the temperature and the average particle number are of the same order. To
the best of our knowledge, such a limit was first considered in [20] for finite-dimensional
Hilbert spaces. Hence, the inverse average particle number (or inverse temperature) is a
small parameter ", and the system is in a mean-field scaling regime. Within this model
it is known (see, e.g., [2]) that the many-body Gibbs state of the Bose–Hubbard model
converges to a nonlinear Gibbs measure described by a discrete Hartree functional. In our
main result, we prove a much more precise convergence statement, namely an asymp-
totic expansion of the Gibbs state. Here, the lowest order is the known nonlinear Gibbs
measure, while the derivation of all higher orders, to the best of our knowledge, is new.

The motivation for our work comes from three different directions: (1) The recent
derivations of nonlinear Gibbs measures from many-bodyquantum mechanics in a coupled
infinite temperature and mean-field limit, (2) The recent proofs of asymptotic expansions
for zero-temperature Bose gases in the mean-field limit, (3) The recent results on con-
necting the quantum and classical Kubo–Martin–Schwinger (KMS) conditions through a
coupled high temperature and mean-field limit. Let us explain these motivations in more
detail before we introduce our model in Section 1.1, and state our main results in Sec-
tion 1.2.

(1) The derivation of nonlinear Gibbs measures from many-body quantum mechanics
has recently received a lot of attention in the context of the Bose gas with pair interaction
in the continuum. For example, in [17, 23, 28] convergence for the partition function and
reduced density matrices is proved. In these results the interaction is scaled down with
the inverse temperature, analogous to the limit we consider in this article. Note that for
continuous systems in two and three dimensions, a renormalization of the nonlinear Gibbs
measure is necessary (see [16,18,22,24]), and even its definition via Gaussian measures is
non-trivial. In this article, we avoid such technical difficulties associated with continuous
systems by considering the simpler Bose–Hubbard model which is defined on a lattice. We
furthermore consider only a finite graph instead of an infinite system for technical simplic-
ity. So one motivation for our work is to improve results such as [17, 23, 28] (within our
much simpler technical framework) in the sense of proving the validity of an asymptotic
expansion compared to only proving the limit.

(2) Another motivation for our work is that such higher order expansions have recently
been proved for the continuous Bose gas in the mean-field limit at zero temperature for
low-lying eigenvalues and the corresponding (excited and ground) eigenstates [10], and
for the dynamics [9, 14]; see also [5, 6] for reviews of these results, and [7, 8] for applica-
tions. These results motivated us to prove asymptotic expansions for other relevant scaling
limits, such as the coupled mean-field and high temperature limit we consider in this arti-
cle. At zero temperature and in the mean-field limit, the leading order is described by the
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Hartree equation (a nonlinear Schrödinger equation with convolution-type nonlinearity).
Note that there are also results concerning the dynamics of discrete nonlinear Schrödinger
(DNLS) equations and their derivation from many-body quantum theory, e.g., in [27]. The
next-to leading order is described by Bogoliubov theory. The expansion is then proved by
using perturbation theory around Bogoliubov theory. In our main result in this article, the
Hartree equation appears as well in the limiting Gibbs measure. However, in contrast to
the zero-temperature case, we do not see Bogoliubov theory clearly emerging in our high
temperature limit.

(3) A further motivation for our work is that recently the Kubo–Martin–Schwinger
condition for the thermal equilibrium of quantum and classical systems has attracted some
interest [2, 3, 13, 29] (see [1, 15, 19, 21] for older results). In particular, one can interpret
the Gibbs measure as the KMS equilibrium state for the discrete nonlinear Schrödinger
equation. More generally this concept extends to Hamiltonian systems governed by PDEs
(see [3] and references therein). One of the remarkable properties is that the quantum and
classical KMS conditions can be linked to each other rigorously through the same high
temperature limit that we are considering here. Therefore our expansion of the many-
body quantum Gibbs state provides information on the KMS condition as well. We briefly
describe here this relation and refer the reader to [2] for more details. The Bose–Hubbard
model defines a dynamical system .˛t ; !"/ given by a group of automorphisms over the
algebra of bounded operators,

˛t .A/ D e
i t"H" Ae�i

t
"H" ;

where H" is the Bose–Hubbard Hamiltonian defined in (1.4), and by a quantum Gibbs
state defined by

!".A/ D
Tr.e�ˇH"A/
Tr.e�ˇH"/

:

It is known that the Gibbs state !" is the unique KMS state at inverse temperature "ˇ of
the Bose–Hubbard system satisfying

!"
�
A˛i"ˇ .B/

�
D !".BA/; (1.1)

where ˛i"ˇ is an analytic extension of the dynamics to complex times. A specific choice
of observables in (1.1) leads to

!"

�
W".f /

˛i"ˇ
�
W".g/

�
�W".g/

i"

�
D !"

��
W".g/;W".f /

�
i"

�
; (1.2)

where W".�/ are the Weyl operators in (1.7). According to [2], taking the high temper-
ature limit (" ! 0) in the relation (1.2) yields the classical KMS condition studied by
G. Gallavotti and E. Verboven [19],

ˇ

Z
`2.G/

ei<ehf;ui
®
ei<ehg;ui; h.u/

¯
d�ˇ .u/ D

Z
`2.G/

®
ei<ehg;ui; ei<ehf;ui

¯
d�ˇ .u/; (1.3)
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where f; g 2 `2.G/, h is the Hamiltonian of the DNLS equation in (1.9), �ˇ is the Gibbs
measure, and ¹�; �º is the Poisson bracket. Hence our main Theorem 1.1 provides an opti-
mal rate of convergence and an expansion of both sides of (1.2) in terms of the inverse
temperature parameter.

Finally, let us mention another outlook on the topic of this article, namely the rela-
tionship with entropy and with Berezin quantization on symplectic manifolds. In fact, the
Gibbs state and respectively the Gibbs measure are minimizers of their corresponding von
Neumann and Boltzmann entropies, so that we can approach the high temperature limit
in terms of these variational problems (see [23]). On the other hand, the high temperature
limit can be interpreted as a classical limit for Gibbs states in the framework of defor-
mation quantization (see, e.g., [12, 29]). Such a problem was recently studied in [29] and
a convergence (to the leading order without expansion) similar to our result is proved in
[29, Proposition 3.3]. The argument is based on Berezin–Lieb and Peierls–Bogoliubov
inequalities [25]. It would be interesting to apply our method to these two approaches.

1.1. General framework

Let G D .V; E/ be a finite (undirected and simple) graph, with V the set of vertices and
E the set of edges. The degree of a vertex x 2 V is denoted by deg.x/. We consider the
one-body (complex) Hilbert space `2.G/, endowed with the standard scalar product and
norm

hu; vi D
X
x2V

u.x/v.x/; kuk D
�X
x2V

ˇ̌
u.x/

ˇ̌2�1=2
:

We will sometimes use the orthonormal basis ¹exºx2V of `2.G/ defined by

ex.y/ D ıxy ; 8y 2 V:

The symmetric Fock space F is defined as

F WD �
�
`2.G/

�
D

M
m�0

`2.G/˝
m
s '

M
m�0

`2s .G
m/;

where ˝s denotes the symmetric tensor product, and `2s .G
m/ is the symmetric `2 space

over Gm. Let a�x and ax be the usual creation and annihilation operators satisfying the
canonical commutation relations

Œax ; a
�
y � D ıxy ; Œax ; ay � D 0 D Œa

�
x ; a
�
y �;

and set, for any u 2 `2.G/,

a�.u/ D
X
x2V

u.x/ a�x ; a.u/ D
X
x2V

u.x/ ax :

The second quantization of an operatorB on `2.G/with matrix elementsBxy Dhex ;Beyi
is defined as

d�.B/ WD
X
x;y2V

a�xBxyay ;
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and we define the number operator as

N WD d�.1/ D
X
x2V

a�xax :

For any small parameter " > 0, coupling constant � > 0, and chemical potential � < 0,
we define the Bose–Hubbard Hamiltonian on F as

H" WD
"

2

X
x;y2V;x�y

.a�x � a
�
y /.ax � ay/ � "�

X
x2V

a�xax C "
2�

2

X
x2V

a�xa
�
xaxax ; (1.4)

where x � y means that x and y are nearest neighbors. Note that by introducing the
discrete Laplacian �d as

.�du/.x/ WD � deg.x/u.x/C
X

y2V;y�x

u.y/;

we can rewrite the Bose–Hubbard Hamiltonian as

H" D "d�.��d � �1/C "2
�

2

X
x2V

a�xa
�
xaxax : (1.5)

1.2. Main result

The Gibbs state !" at inverse temperature ˇ > 0 is defined as

!".A/ WD
1

Z"
Tr.e�ˇH"A/ (1.6)

for any operator A on F , where Z" WD Tr.e�ˇH"/ is the partition function. Note that
Z" <1 since we chose � < 0, see, e.g., [11, Proposition 5.2.27]. We will keep the inverse
temperature as a fixed parameter, and instead consider " as the small parameter, so the limit
"! 0 corresponds to a limit where the inverse temperature and the coupling constant each
go to zero in the same way. Our goal is to expand !" in powers of ". In order to write
down such a series expansion concretely, let us consider a Weyl operator with the right
semiclassical structure. For any f 2 `2.G/ the Weyl operator W".f / is defined as

W".f / WD e
i
p
"ˆ.f /; with ˆ.f / WD

1
p
2

�
a.f /C a�.f /

�
: (1.7)

In our main result Theorem 1.1 we prove an expansion for

Z" !"
�
W".f /

�
D Tr

�
e�ˇH"W".f /

�
: (1.8)

Note that for f D 0 this implies an expansion for Z", and both results together can be
combined into a single expansion for !".W".f //, see Remark 1.2. Note, however, that in
the limit "! 0 both quantities diverge like c" WD ."�/�jV j, therefore we write down the
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expansion for c�1" Tr.e�ˇH"W".f //. The expansion could also be written down, e.g., for
reduced one-particle density matrices, see Remark 1.3.

The leading order in the expansion is a classical Gibbs measure, defined in terms of
the Hamiltonian of the discrete nonlinear Schrödinger equation

h.u/ WD
˝
u; .��d /u

˛
� �kuk2 C

�

2

X
x2V

ˇ̌
u.x/

ˇ̌4
: (1.9)

We introduce the corresponding nonlinear Hartree operator hH as

hH.u/ WD ��du � �uC �juj
2u: (1.10)

The Gibbs measure is defined as

d�ˇ .u/ D
1

zˇ
e�ˇh.u/du; (1.11)

where duD
Q
x2V dux with dux the Lebesgue measure on C, and zˇ D

R
`2.G/

e�ˇh.u/ du.
In our setting it is known that

lim
"!0

!"
�
W".f /

�
D

Z
`2.G/

e
p
2i<ehf;ui d�ˇ .u/;

see, e.g., [2]. To expand c�1" Tr.e�ˇH"W".f //, we employ an explicit resolution of the
identity using a coherent state zW".u/j�i, where j�i represents the vacuum state and
zW".u/ is the rescaled Weyl operator as defined in (1.14). Inserting this resolution of

identity into c�1" Tr.e�ˇH"W".f // transforms the expression into an integral involving
the vacuum expectation of the product of e�ˇ zW".u/

�H" zW".u/ and zW".u/�W".f / zW".u/. By
applying the shifting properties of the Weyl operators, we can rewrite the first term as

e�ˇ
zW".u/

�H" zW".u/ D e�ˇh.u/e�ˇA".u/

where A".u/ is an "-dependent Wick polynomial defined in (2.2)–(2.3). Hence when tak-
ing vacuum expectations, we can apply a Taylor expansion to e�ˇA".u/, which reduces
the problem to evaluating the "-dependent terms A".u/mj�i. Such terms can then be
reordered by Wick’s Theorem and expanded as a power series on ", with Am

`
.u/ as the

resulting coefficients that are defined by the recursive formula in (2.8).
Our main result is the following.

Theorem 1.1 (Higher order expansion). For any N 2 N, f 2 `2.G/, and " > 0 small
enough, we have

."�/jV j Tr
�
e�ˇH"W".f /

�
D

NX
jD0

"j
Z
`2.G/

e
p
2i<ehf;uiCj .u; f /e

�ˇh.u/duCO."NC1/;
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where the O."NC1/ term may depend on f and the parameters ˇ, �, and �. The coeffi-
cients Cj are "-independent and given as C0.u; f / � 1, and, for j � 1,

Cj .u; f / D
.�1/j

j Š 4j
kf k2j

C

2jX
mD1

.�ˇ/m

mŠ

min.4m�2;2j /X
`Dm

i2j�`

.2j � `/Š

˝
A
.m/

`
.u/�;ˆ.f /2j�`�

˛
; (1.12)

where� is the vacuum in F and A.m/
`
.u/ are defined by the recursive formula in (2.8). In

particular,

C1.u; f / D �
kf k2

4
� i

ˇ
p
2

˝
hH.u/; f

˛
C
ˇ2

2



hH.u/


2 (1.13)

and C2.u; f / is given in the appendix.

The theorem is proved in Section 3.

Remark 1.2. Note that for f D 0 we have

Cj .u; 0/ D

2jX
mDd 12 .jC1/e

.�ˇ/m

mŠ

˝
A
.m/
2j .u/�;�

˛
;

which are the coefficients in the expansion of ."�/jV jZ". Combining both expansions

."�/jV j Tr
�
e�ˇH"W".f /

�
D

NX
jD0

"j zCj .f /CO."NC1/;

."�/jV j Tr.e�ˇH"/ D
NX
jD0

"j zCj .0/CO."NC1/;

where zC0.0/D zˇ , leads to an expansion of the Gibbs state. Denoting by ˛ 2Nk a multi-
index with j˛j WD

Pk
iD1 ˛i , we find

!"
�
W".f /

�
D
zC0.f /

zˇ
C

NX
jD1

"j

"
j�1X
`D0

zC`.f /

zˇ

j�`X
kD1

X
˛2Nk

j˛jDj�`

kY
mD1

�
�
zC˛m.0/

zˇ

�
C
zCj .f /

zˇ

#
CO."NC1/

D

Z
`2.G/

e
p
2i<ehf;ui e

�ˇh.u/du
zˇ

C "

Z
`2.G/

e
p
2i<ehf;ui

"
�
kf k2

4
� i

ˇ
p
2

˝
hH.u/; f

˛
C
ˇ2

2



hH.u/


2#e�ˇh.u/

zˇ
du

� "

� Z
`2.G/

e
p
2i<ehf;ui e

�ˇh.u/

zˇ
du
�� Z

`2.G/

ˇ2

2



hH.u/


2 e�ˇh.u/

zˇ
du
�
CO."2/:
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Remark 1.3. Note that we could also provide an expansion for expectations of other
operators than the Weyl operator W".f /, e.g., for the reduced one-particle density matrix

Tr.e�ˇH""a�xay/:

For this example the expansion reads

."�/jV j Tr.e�ˇH""a�xay/

D

Z
`2.G/

Nux uy e
�ˇh.u/du

C "

Z
`2.G/

�
ˇ2

2
Nux uy



hH.u/


2 � ˇuy ˝hH.u/; ex

˛�
e�ˇh.u/duCO."2/:

Remark 1.4. Let us note that extending our result to an infinite lattice or to the continu-
ous case presents significant challenges. For example, we immediately notice that when
the size jV j becomes infinite, the normalization ."�/jV j diverges. Hence, the resolution of
identity in such infinite-dimensional spaces is non-trivial and cannot be directly computed
as in (1.16) below. Moreover, in infinite-dimensional spaces, the formal measure du in
the definition of the nonlinear Gibbs measure �ˇ in (1.11) cannot be defined using the
Lebesgue measure. Instead, one should use Gaussian measures on infinite-dimensional
Hilbert spaces, for example the space L2.Td / on the d -dimensional torus Td . Fur-
thermore, even in this framework, the construction of Gibbs measures is non-trivial in
dimension d D 2 and d D 3, since the Gaussian measures concentrate on distributions
and a renormalization of the nonlinear term of the Schrödinger equation is required.

1.3. Notation and summary of proof

In addition to the Weyl operator

W".f / D e
i
p

"
2 .a.f /Ca

�.f //;

from (1.7), let us introduce the rescaled Weyl operator

zW".u/ WD e
1p
"
.a�.u/�a.u//

: (1.14)

With the latter we define the coherent state

ju"i WD zW".u/j�i D e
�
kuk2

2" e
1p
"
a�.u/
j�i; (1.15)

where j�i is the vacuum in F , and the equality follows from the Baker–Campbell–
Hausdorff formula. Then, by direct computation on the finite graph G, we have the reso-
lution of identity

c"

Z
`2.G/

ju"i hu"jdu D 1; (1.16)
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where c" WD ."�/�jV j. It is important to note that such a resolution of identity is not
valid in infinite-dimensional spaces as already highlighted in Remark 1.4. This presents a
significant challenge when attempting to generalize our results to continuum cases. The
idea of the proof is to insert the identity (1.16) in the computation of Tr.e�ˇH"W".f //,
so that it only contains zW".u/�H" zW".u/ instead of H" directly. This Weyl-transformed
Hamiltonian can be written as

zW".u/
�H" zW".u/ D h.u/C

4X
jD1

"j=2Aj .u/; (1.17)

for some "-independent operators Aj .u/, see Section 2.1. It remains to expand the expo-
nential of (1.17), andW".f /, in powers of ". This is done in Section 2.2 where we compute
the coefficients of the expansion and thus define the remainder terms. In Section 3 we
prove Theorem 1.1 by estimating the remainder terms. Finally, we explicitly compute the
first two coefficients of the expansion in the appendix.

Notation. In the following sections, we use in our estimates constants C that may depend
on the parameters of our model, and that can be different from line to line.

2. Formal expansion

2.1. Resolution of identity

First, we insert the resolution of identity (1.16) into the computation of Tr.e�ˇH"W".f //.

Lemma 2.1 (Integral formula). We have

1

c"
Tr
�
e�ˇH"W".f /

�
D

Z
`2.G/

e
p
2i<ehf;ui

˝
�; e�ˇA".u/W".f /�

˛
e�ˇh.u/du; (2.1)

where W".�/ is the Weyl operator defined in (1.7), and

A".u/ WD

4X
jD1

"j=2Aj .u/ (2.2)

with

A1.u/ WD a
�
�
hH.u/

�
C a

�
hH.u/

�
;

A2.u/ WD d�.��d / � �N C
�

2

X
x2V

�
a�xa

�
xu
2
x C 4a

�
xaxjuxj

2
C axax Nu

2
x

�
;

A3.u/ WD
�

2

X
x2V

.a�xa
�
xaxux C a

�
xaxax Nux/;

A4.u/ WD
�

2

X
x2V

a�xa
�
xaxax :

(2.3)
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Proof. We use the resolution of identity (1.16) to expand

1

c"
Tr
�
e�ˇH"W".f /

�
D

Z
`2.G/

˝
u"; e

�ˇH" W".f / u"
˛
du

D

Z
`2.G/

˝
�; zW".u/

�e�ˇH" zW".u/ zW".u/
�W".f / zW".u/�

˛
du

D

Z
`2.G/

˝
�; e�ˇ

zW".u/
�H" zW".u/ zW".u/

�W".f / zW".u/�
˛
du:

To expand the above expression in powers of ", we use the shifting properties of the Weyl
operator, i.e.,

zW".u/
� a�x

zW".u/ D a
�
x C

1
p
"
u.x/;

zW".u/
� ax zW".u/ D ax C

1
p
"
u.x/;

(2.4)

zW".u/
� a�.f / zW".u/ D a

�.f /C
1
p
"
hu; f i;

zW".u/
� a.f / zW".u/ D a.f /C

1
p
"
hf; ui:

(2.5)

Using (2.4) gives us directly (1.17) with the coefficients (2.3). Furthermore, using (2.5),
we get

zW".u/
�W".f / zW".u/ D e

i
p

"
2
zW".u/

�.a�.f /Ca.f // zW".u/ D e
p
2i<ehf;uiW".f /;

which proves (2.1).

2.2. Taylor expansion

In order to expand the right-hand side of (2.1), let us write down the Taylor expansions
with remainders for e�ˇA".u/ and W".f /. For given N 2 N, we have

e�ˇA".u/ D

NX
mD0

�
� ˇA".u/

�m
mŠ„ ƒ‚ …

DWM
.N/
A

C
�
� ˇA".u/

�NC1 Z 1

0

e�sˇA".u/
.1 � s/N

NŠ
ds„ ƒ‚ …

DWR
.N/
A

; (2.6a)

W".f / D

NX
nD0

"
n
2

�
iˆ.f /

�n
nŠ„ ƒ‚ …

DWM
.N/
f

C
�
i
p
"ˆ.f /

�NC1 Z 1

0

eis
p
"ˆ.f / .1 � s/

N

NŠ
ds„ ƒ‚ …

DWR
.N/
f

: (2.6b)

The above formulas make sense by functional calculus. Note that (2.6a) is not an expan-
sion in powers of

p
" yet because A".u/ contains different powers of

p
". Furthermore,



Expansion of the Many-body quantum Gibbs state 485

according to (2.1), we only need to evaluate .A".u//m acting on the vacuum �. Recall
that � is an analytic vector of the field operator ˆ.f / and it is in the domain of any Wick
monomial. Ordering .A".u//mj�i in powers of

p
" gives, for m > 0,

A".u/
m
j�i D

4m�2X
`Dm

"
`
2A

.m/

`
.u/j�i; (2.7)

where A.m/
`
.u/ is given by

A
.m/

`
D A

.1/
1 A

.m�1/

`�1
C A

.1/
2 A

.m�1/

`�2
C A

.1/
3 A

.m�1/

`�3
C A

.1/
4 A

.m�1/

`�4

D

X
˛2¹1;2;3;4ºm

j˛jD`

mY
kD1

A˛k ; (2.8)

where the A˛k .u/ � A
.1/
˛k .u/ for ˛k 2 ¹1; 2; 3; 4º are given in Lemma 2.1. Here, we have

used the multi-index notation, i.e., j˛j D
Pm
kD1 ˛k . Note that in (2.7) the `D 4m� 1 and

` D 4m terms vanish since both A3.u/ and A4.u/ contain an ax acting on the vacuum
j�i. For later convenience we define A.m/

`
.u/ to be zero outside the range of indices in

(2.7). To summarize, for any ` 2 N,

A
.m/

`
.u/ WD

´
0; for ` < m or ` > 4m � 2;

(2.8); otherwise:
(2.9)

We can now state the expansion of the term he�ˇA".u/�;W".f /�i from (2.1) in powers
of
p
".

Lemma 2.2 (Formal expansion). For any N 2 N we have

˝
e�ˇA".u/�;W".f /�

˛
D

NX
jD0

"
j
2C j

2
.u; f /CR.N/" .u; f /; (2.10)

with C0.u; f / � 1 and where, for j � 1,

C j
2
.u; f / WD

ij

j Š

˝
�;ˆ.f /j�

˛
C

jX
mD1

.�ˇ/m

mŠ

min.4m�2;j /X
`Dm

ij�`

.j � `/Š

˝
A
.m/

`
.u/�;ˆ.f /j�`�

˛
; (2.11)

with A.m/
`
.u/ as defined in (2.9). The remainder term R

.N/
" .u; f / is given as

R.N/" .u; f / WD
˝
�;
�
R
.N/

f;A
CM

.N/
A R

.N/

f
CR

.N/
A M

.N/

f
CR

.N/
A R

.N/

f

�
�
˛
; (2.12)
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with M
.N/
A , R

.N/
A , M

.N/

f
, and R

.N/

f
from (2.6), and

R
.N/

f;A
WD

5N�2X
jDNC1

"
j
2

jX
mD1

.�ˇ/m

mŠ

min.4m�2;j /X
`Dmax.m;j�N/

ij�`

.j � `/Š

˝
A
.m/

`
.u/�;ˆ.f /j�`�

˛
:

Proof. By using the Taylor expansions (2.6a) and (2.6b) we have˝
e�ˇA".u/�;W".f /�

˛
D
˝
�;M

.N/
A M

.N/

f
�
˛
C
˝
�;
�
M
.N/
A R

.N/

f
CR

.N/
A M

.N/

f
CR

.N/
A R

.N/

f

�
�
˛
:

It remains to multiply out the first term in the expression above. Defining amD .�ˇ/m=mŠ
and bn D in=nŠ we have

˝
�;M

.N/
A M

.N/

f
�
˛
D

NX
mD0

NX
nD0

"
n
2 ambn

˝
A".u/

m�;ˆ.f /n�
˛

D

NX
nD0

"
n
2 bn

˝
�;ˆ.f /n�

˛
C

NX
mD1

NX
nD0

4m�2X
pDm

"
pCn
2 ambn

˝
A.m/p .u/�;ˆ.f /n�

˛
:

It is now convenient to use the convention (2.9), i.e.,A.m/
`
.u/ WD 0 for `<m or `> 4m� 2,

since then we can rearrange

NX
mD1

NX
nD0

4m�2X
pDm

"
pCn
2 ambn

˝
A.m/p .u/�;ˆ.f /n�

˛
D

1X
pD0

NX
nD0

NX
mD1

"
pCn
2 ambn

˝
A.m/p .u/�;ˆ.f /n�

˛
D

1X
jD0

"
j
2

NX
Q̀D0

NX
mD1

amb Q̀
˝
A
.m/

j�Q̀
.u/�;ˆ.f /

Q̀
�
˛

D

5N�2X
jD1

"
j
2

jX
mD1

NX
Q̀D0

amb Q̀
˝
A
.m/

j�Q̀
.u/�;ˆ.f /

Q̀
�
˛

D

5N�2X
jD1

"
j
2

jX
mD1

min.j;4m�2/X
`Dmax.m;j�N/

ambj�`
˝
A
.m/

`
.u/�;ˆ.f /j�`�

˛
;

renaming Q̀ D j � ` in the last step (and using the convention (2.9) again). In total, this
implies the expansion (2.10), noting that max.m; j �N/ D m for j � N and m � 1.
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The expansion from Lemma 2.2 can be simplified by noting that the "
j
2 terms vanish

for j odd.

Lemma 2.3 (Vanishing of odd terms). For all j odd, C j
2
.u; f / D 0.

Proof. Recall from (2.8) that

A
.m/

`
D

X
˛2¹1;2;3;4ºm

j˛jD`

mY
kD1

A˛k :

Now recall from the definition (2.3) that each term in A˛k contains exactly ˛k creation or
annihilation operators (in normal order). Hence, for j˛j D `, the products

Qm
kD1A˛k con-

tain an even (resp. odd) number of creation/annihilation operators for ` even (resp. odd).
Note that the terms in the products

Qm
kD1 A˛k are not necessarily normal ordered, but

normal ordering does not change the parity of the number of creation/annihilation opera-
tors. In the same way, ˆ.f /j�` contains only terms with an even (resp. odd) number of
creation/annihilation operators for 0 � j � ` even (resp. odd). Since vacuum expectations
of terms with an odd number of creation/annihilation operators vanish, we have that˝

�;ˆ.f /j�
˛
D 0 D

˝
A
.m/

`
.u/�;ˆ.f /j�`�

˛
for j odd

and any 0 � ` � j , 1 �m � j . Thus, all terms in the definition (2.11) of C j
2
.u; f / vanish

for j odd.

Lastly, let us compute the first term of C j
2
.u; f / explicitly.

Lemma 2.4. For the first term in (2.11) we find

i2k

.2k/Š

˝
�;ˆ.f /2k�

˛
D
.�1/k

kŠ 4k
kf k2k

for any k 2 N.

Proof. Such identity is well known and the expression can easily be verified inductively.
Alternatively, note that by the Baker–Campbell–Hausdorff formulaX

k�0

1

.2k/Š

˝
�;
�
a.f /C a�.f /

�2k
�
˛

D
˝
�; ea.f /Ca

�.f /�
˛
D e

kf k2

2 D

X
k�0

kf k2k

2k kŠ
;

so comparing coefficients leads to

i2k

.2k/Š

˝
�;ˆ.f /2k�

˛
D
.�1/k

.2k/Š
2�k

.2k/Š

2k kŠ
kf k2k D

.�1/k

kŠ 4k
kf k2k :
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3. Proof of the main result

3.1. Preparatory estimates

The following lemmas will be used to estimate the remainder terms in the expansion of
the right-hand side of (2.1). Recall that in our Hamiltonian (1.4) we used the chemical
potential � < 0, and recall that we defined the coherent state u" in (1.15).

Lemma 3.1. There is ˛ with 0 < ˛ < �� such that

hu"; e
�ˇH"u"i � e

�ˇ˛kuk2 (3.1)

for all " small enough.

Proof. Note that we can write the Hamiltonian (1.4) as H" D QH" � �"N , with QH" � 0,
�� > 0 and Œ QH";N � D 0 in the strong sense. Therefore,

hu"; e
�ˇH"u"i D hu"; e

�ˇ QH"e�ˇ.��/"N u"i � hu"; e
�ˇ.��/"N u"i: (3.2)

The right-hand side can be computed directly from (1.15) and yields˝
u"; e

�ˇ.��/"N u"
˛
D e�

kuk2

"
˝
e
a�.u/
p
" �; e�ˇ.��/"N e

a�.u/
p
" �

˛
D e�

kuk2

"

X
k�0

X
`�0

1

`ŠkŠ

1

"k=2"`=2

˝
a�.u/

`
�; e�ˇ.��/"N a�.u/

k
�
˛

D e�
kuk2

"

X
`�0

1

.`Š/2
1

"`
e�"ˇ.��/`



a�.u/`�

2„ ƒ‚ …
D`Škuk2`

D e�
kuk2

"

X
`�0

1

`Š

�
e�"ˇ.��/

kuk2

"

�`
D e�kuk

2. 1�e
�ˇ.��/"

" /:

This directly implies (3.1).

With the exponential decay from Lemma 3.1 we will be able to absorb any polynomial
growth in kuk that comes from the following estimates.

Lemma 3.2. For allm;n 2N0, s 2 Œ0; 1�, f 2 `2.G/, and " > 0 small enough, there exist
C; q > 0 such that for all u 2 `2.G/,

kA".u/
meis

p
"ˆ.f /ˆ.f /n�k � C"m=2 hkukiq;

where hxi WD .1C jxj2/1=2 refers to the Japanese bracket. In particular, q D 0 formD 0.
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Proof. Let � D N C 2. Then we have

A".u/meisp"ˆ.f /ˆ.f /n�


D


A".u/��2�2A".u/��4�4 � � �A".u/��2m
� �2mˆ.f /��.2mC1=2/�2mC1=2 � � �ˆ.f /��.2mCn=2/�2mCn=2eis

p
"ˆ.f /�




�

mY
kD1



�2k�2A".u/�
�2k



 nY
`D1



�2mC`=2�1=2ˆ.f /��.2mC`=2/




�2mCn=2eis

p
"ˆ.f /�



:
(3.3)

Before estimating each term in the above expression, note that for any function F WN!R
and for any f 2 `2.G/ we have

F.N /a�.f / D a�.f /F.N C 1/; F.N C 1/a.f / D a.f /F.N /: (3.4)

Also recall the standard estimates

a.f /�

 � kf k

.N C 1/1=2�

; 

a�.f /�

 � kf k

.N C 1/1=2�

 (3.5)

for any � 2 D.N 1=2/ and f 2 `2.G/. We start with the first product in (3.3). Recalling
the definition of A".u/ in (2.2) and (2.3) we note that

�2k�2A".u/�

�2k




� "1=2


�2k�2

�
a
�
hH.u/

�
C a�

�
hH.u/

��
��2k



 (3.6a)

C "



�2k�2

h
d�.��d / � �N C

�

2

X
x2V

�
a�xa

�
xu
2
x C 4a

�
xaxjuxj

2
C axax Nu

2
x

�i
��2k





(3.6b)

C "3=2



�2k�2

h�
2

X
x2V

.a�xa
�
xaxux C a

�
xaxax Nux/

i
��2k




 (3.6c)

C "2



�2k�2

h�
2

X
x2V

a�xa
�
xaxax

i
��2k




: (3.6d)

Let us deal with each term separately. Using (3.4) and (3.5) we find

"�1=2(3.6a) �


a�hH.u/

�
.N C 1/2k�2 .N C 2/�2k




C


a��hH.u/

�
.N C 3/2k�2 .N C 2/�2k




� C

�

a�hH.u/
�
.N C 1/�2



C 

a��hH.u/
�
.N C 1/�2



�
� C



hH .u/


� C

�
kuk C kuk3

�
:
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Similarly we have

"�1(3.6b) �


d�.��d /��2

C �

N ��2




C
�

2

X
x2V

juxj
2


a�xa�x.N C 4/2k�2.N C 2/�2k



C
�

2

X
x2V

4juxj
2


a�xax��2



C �

2

X
x2V

juxj
2


axaxN 2k�2.N C 2/�2k




� C

�
1C kuk2

�
;

as well as

"�3=2(3.6c) �
�

2

X
x2V

juxj


a�xa�xax.N C 3/2k�2.N C 2/�2k



C
�

2

X
x2V

juxj


a�xaxax.N C 1/2k�2.N C 2/�2k



� C
�
1C kuk

�
;

and

"�2(3.6d) �
�

2

X
x2V



a�xa�xaxax.N C 2/2k�2.N C 2/�2k

 � C:
This implies that 

�2k�2A".u/�

�2k


 � C"1=2�1C kuk3�:

Using the same arguments we find

�2mC`=2�1=2ˆ.f /��2m�`=2


 D 


�2mC`=2�1=2

1
p
2

�
a.f /C a�.f /

�
��2m�`=2





� Ckf k:

Combining all estimates into (3.3) and noting that

e�is
p
"ˆ.f /N eis

p
"ˆ.f /

� 2N C 1C s2"kf k2;

we find 

A".u/meisp"ˆ.f /ˆ.f /n�

 � C� mY
kD1

"1=2
�
1C kuk3

��� nY
`D1

kf k

�
� C"m=2

˝
kuk

˛q
for q D 3m=2, and where the constant C depends on m, n, kf k, �, and �.
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3.2. Remainder estimates

In this subsection we first provide an estimate for the remainder term R
.N/
" .u; f / from

Lemma 2.2. Afterwards, we show that the estimate is good enough such that the full
remainder in the expansion of the Gibbs state, namely

zR.N/" .f / D

Z
`2.G/

e
p
2i<ehf;uiR.N/" .u; f / e�ˇh.u/du; (3.7)

is bounded and of order "
NC1
2 .

Lemma 3.3 (Control of the remainder). There is ˛ with 0 < ˛ <�� such thatR.N/" .u;f /

from Lemma 2.2 satisfies the boundˇ̌
R.N/" .u; f /

ˇ̌
� "

NC1
2 C

˝
kuk

˛q�
1C eˇ.h.u/�˛kuk

2/
�

(3.8)

for all " > 0 small enough, where C depends on N , �, �, ˇ and f .

Proof. By Lemma 2.2, the expression R.N/" .u; f / is composed of four terms which we
estimate separately. We assume "� 1 in the following estimates. Using first some elemen-
tary bounds and Cauchy–Schwarz, then Lemma 3.2 for s D 0, then

zW".u/
�H" zW".u/ D h.u/C A".u/;

and in the end Lemma 3.1, we findˇ̌˝
�;R

.N/
A M

.N/

f
�
˛ˇ̌

D

ˇ̌̌̌
.�ˇ/NC1

NŠ

NX
nD0

"
n
2
in

nŠ

Z 1

0

.1 � s/N
˝
�;A".u/

NC1e�sˇA".u/ˆ.f /n�
˛
ds
ˇ̌̌̌

�
ˇNC1

NŠ

NX
nD0

1

nŠ

Z 1

0

ˇ̌˝
�;A".u/

NC1e�sˇA".u/ˆ.f /n�
˛ˇ̌

ds

�
ˇNC1

NŠ

NX
nD0

1

nŠ

Z 1

0

ke�sˇA".u/�k


A".u/NC1ˆ.f /n�

ds

� "
NC1
2 C

˝
kuk

˛q Z 1

0

q
h�; e�2sˇA".u/�ids

D "
NC1
2 C

˝
kuk

˛q Z 1

0

esˇh.u/
q
hu"; e�2sˇH"u"ids

� "
NC1
2 C

˝
kuk

˛q Z 1

0

esˇh.u/e�sˇ˛kuk
2

ds:
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The other terms can be estimated similarly, using again Lemmas 3.1 and 3.2. We haveˇ̌˝
�;R

.N/
A R

.N/

f
�
˛ˇ̌

D

ˇ̌̌̌
"
NC1
2
.�ˇ/NC1

NŠ

iNC1

NŠ

Z 1

0

dQs .1 � Qs/N

�

Z 1

0

ds .1 � s/N
˝
�;A".u/

NC1e�sˇA".u/ei Qs
p
"ˆ.f /ˆ.f /NC1�

˛ˇ̌̌̌
� "

NC1
2
ˇNC1

NŠ

1

N Š

Z 1

0

dQs
Z 1

0

ds


e�sˇA".u/�



A".u/NC1ei Qsp"ˆ.f /ˆ.f /NC1�



� "NC1C
˝
kuk

˛q Z 1

0

esˇh.u/e�sˇ˛kuk
2

ds;

as well asˇ̌˝
�;M

.N/
A R

.N/

f
�
˛ˇ̌

D

ˇ̌̌̌
"
NC1
2
iNC1

NŠ

NX
mD0

.�ˇ/m

mŠ

Z 1

0

.1 � s/N
˝
�;A".u/

meis
p
"ˆ.f /ˆ.f /NC1�

˛
ds
ˇ̌̌̌

� "
NC1
2

1

N Š

NX
mD0

ˇm

mŠ



A".u/m�



ˆ.f /NC1�


� "

NC1
2 C

˝
kuk

˛q
:

Lastly,ˇ̌˝
�;R

.N/

f;A
�
˛ˇ̌

D

ˇ̌̌̌
ˇ 5N�2X
jDNC1

"
j
2

jX
mD1

.�ˇ/m

mŠ

min.4m�2;j /X
`Dmax.m;j�N/

ij�`

.j � `/Š

˝
A
.m/

`
.u/�;ˆ.f /j�`�

˛ˇ̌̌̌ˇ
�

5N�2X
jDNC1

"
j
2

jX
mD1

ˇm

mŠ

min.4m�2;j /X
`Dmax.m;j�N/

1

.j � `/Š



A.m/
`
.u/�





ˆ.f /j�`�


� "

NC1
2 C

˝
kuk

˛q
;

since kA.m/
`
.u/�k � C hkukiq by repeatedly applying the standard estimates (3.5). To

conclude the bound (3.8) recall that ˛ from Lemma 3.1 satisfies 0 < ˛ < ��, and that
h.u/ � ��kuk2 (with � < 0), hence h.u/ � ˛kuk2 > 0 andZ 1

0

esˇ.h.u/�˛kuk
2/ds � eˇ.h.u/�˛kuk

2/:

From Lemma 3.3 we know that the full remainder zR.N/" .f / from (3.7) is of order
"
NC1
2 . It remains to prove the integrability in u.
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Lemma 3.4 (Integrability of the remainder). For all N 2 N we haveˇ̌
zR.N/" .f /

ˇ̌
� C"

NC1
2 :

Proof. Applying Lemma 3.3 leads toˇ̌̌̌ Z
`2.G/

e
p
2i<ehf;uiR.N/" .u; f /e�ˇh.u/du

ˇ̌̌̌
� C"

NC1
2

Z
`2.G/

˝
kuk

˛q�
1C eˇh.u/�ˇ˛kuk

2�
e�ˇh.u/du

� C"
NC1
2

Z
`2.G/

˝
kuk

˛q�
e�ˇh.u/ C e�ˇ˛kuk

2�
du

� C"
NC1
2

since ˇ > 0 and ˛ > 0.

We can now put everything together to prove our main theorem.

Proof of Theorem 1.1. Combining Lemmas 2.1 and 2.2 we find, for any M 2 N,

."�/jV j Tr
�
e�ˇH"W.f /

�
�

MX
jD0

"
j
2

Z
`2.G/

e
p
2i<ehf;uiC j

2
.u; f /e�ˇh.u/du D zR.M/

" .f /;

where the first summand in the definition of C j
2
.u;f / from (2.11) is given by Lemma 2.4,

and with remainder zR.M/
" .f / defined in (3.7). In Lemma 3.4 we have proved thatˇ̌

zR.M/
" .f /

ˇ̌
� C"

MC1
2 :

All coefficients C j
2
.u; f / with odd j vanish by Lemma 2.3. Thus, for M DW 2N C 1 odd

we have ˇ̌
zR.2NC1/" .f /

ˇ̌
� C"NC1;

and for M DW 2N C 2 even we have j zR.2NC1/" .f /j � C"NC
3
2 � C"NC1 as well.

Appendix: Computation of the first two coefficients

Here, we compute the coefficients C1.u; f / and C2.u; f / from Theorem 1.1 explicitly.
Recall that

Cj .u; f / D
.�1/j

j Š 4j
kf k2j

C

2jX
mD1

.�ˇ/m

mŠ

min.4m�2;2j /X
`Dm

i2j�`

.2j � `/Š

˝
A
.m/

`
.u/�;ˆ.f /2j�`�

˛
:
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We then find

C1.u; f / D �
1

4
kf k2 � ˇ

2X
`D1

i2�`

.2 � `/Š

˝
A
.1/

`
.u/�;ˆ.f /2�`�

˛
C
ˇ2

2Š

˝
A
.2/
2 .u/�;�

˛
D �

1

4
kf k2 � ˇi

˝
A
.1/
1 .u/�;ˆ.f /�

˛
� ˇ

˝
A
.1/
2 .u/�;�

˛
C
ˇ2

2Š

˝
A
.2/
2 .u/�;�

˛
;

where, by the definition (2.8), A.1/1 D A1, A.1/2 D A2, and A.2/2 D A1A1. Now, recalling
the definition (2.3) and using that a.g/� D 0 for any g 2 `2.G/, we have˝
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To summarize,
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The second coefficient is given by
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Using again the definitions (2.3) and (2.8) we find explicitly
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