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Estimates for trilinear and quadrilinear character sums

Étienne Fouvry, Igor E. Shparlinski and Ping Xi

Abstract. We obtain new bounds on some trilinear and quadrilinear character sums,
which are non-trivial starting from very short ranges of the variables. An application
to an apparently new problem on oscillations of characters on differences between
Farey fractions is given. Other applications include a modular analogue of a multi-
plicative hybrid problem of Iwaniec and Sárközy (1987) and the solvability of some
prime type equations with constraints.

1. Introduction and backgrounds

1.1. Set-up

Motivated by various applications to analytic number theory, estimates for character sums
received a lot of attention in the past decades. In many situations, the variables are sup-
ported over some additively structured sets, such as sets of consecutive integers. But the
difficulty can vary significantly since the weights might be arbitrary. This paper aims to
study two kinds of multilinear character sums with arbitrary weights.

Throughout this paper, denote by p a large prime, and by � a non-trivial multiplicative
character modulo p. Take two integers a; b with p − ab. ForK;L;M;N > 1, we consider
the trilinear character sum

(1.1) T .˛;ˇ/ D
X
k6K

X
m6M

X
n6N

˛mˇk;n�.ak C bmn/

and the quadrilinear sum

(1.2) Q.˛;ˇ/ D
X
k6K

X
`6L

X
m6M

X
n6N

˛`;mˇk;n�.ak`C bmn/;

where ˛ D .˛m/ or .˛`;m/ and ˇ D .ˇk;n/ are some complex weights. Note that one
obtains (1.1) if taking LD 1 and ˛1;m D ˛m in (1.2). No confusion on the definitions of ˛
arises since one is for the trilinear sum, and the other is for the quadrilinear one.

In various practical applications, one aims to obtain upper bounds, as strong as pos-
sible, for T .˛;ˇ/ and Q.˛;ˇ/ in terms of the `�-norms k˛k� and kˇk� (see (1.7) below
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for the definition of norms). We refer to the following inequalities:

jT .˛;ˇ/j 6 min¹k˛k1kˇk1KMN; k˛k2kˇk2.KMN/1=2º

and
jQ.˛;ˇ/j 6 min¹k˛k1kˇk1KLMN; k˛k2kˇk2.KLMN/1=2º;

as trivial bounds, as they follow directly from the triangle inequality and the Cauchy–
Schwarz inequality. Our aim is to beat the above trivial bounds for ˛; ˇ as general as
possible and K;L;M;N as small as possible compared to p.

We would like to emphasize that weights in Q.˛;ˇ/ depend on variables from differ-
ent products, which makes treatments of such sums much more difficult, as the standard
smoothing technique does not immediately apply.

Our bounds for T .˛;ˇ/ and Q.˛;ˇ/with power-savings, as well as applications, will
be given in Section 2, and we would like to give a brief outline of related results right now.

1.2. Related bilinear sums

The above studies on character sums over sumsets can be dated back to Vinogradov, see
Exercise 8(c) in Chapter V of [28], on the following bilinear form:

(1.3) B.˛;ˇ/ D
X
m2M

X
n2N

˛mˇn�.mC n/;

where � is a non-trivial Dirichlet character modulo p and M;N � Œ1; p� are arbitrary
subsets with M D #M and N D #N . A direct application of Fourier techniques yields

(1.4) jB.˛;ˇ/j 6 k˛k2 kˇk2p1=2:

Although this bound is widely known, its full derivation is not easy to find in the literature,
however, it can be found as a short proof of equation (1.4) in [25]. Despite a very short and
elementary proof, the bound (1.4) has never been improved in full generality. However,
Karatsuba [18] (see also Problem 9 in Chapter VIII of [19]) has proved, that if

(1.5) M > p1=2C� and N > p�

for some � > 0, then the inequality

(1.6) jB.˛;ˇ/j 6 k˛k1 kˇk1MNp��

holds with some �>0, depending only on �. The range (1.5) reveals the Pólya–Vinogradov
threshold even when summing over arbitrary subsets. A similar phenomenon can also be
found in [31]. We note that the proof of (1.6), in the range (1.5), does not seem to be in the
literature, and a concise proof with an explicit upper bound, is provided in Appendix A to
convince cautious readers.

It is worthwhile to point out that B.˛;ˇ/ has received considerable attention in recent
years due to its connection with the Paley graph conjecture. It is conjectured, for instance,
with just constant weights ˛m D ˇn D 1, that

B.˛;ˇ/ D o.MN/
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for all subsets M;N , withM;N > p� and � > 0. This is far from proven, and the classical
inequalities of Vinogradov (1.4) and Karatsuba (1.6) still stand. See [9, 14] for recent
progress towards this conjecture.

For structural sets, such as intervals, or sets with small doubling, or sets supported on
short intervals, a large variety of bounds for B.˛;ˇ/ are known. For example, the above
bounds of Vinogradov and Karatsuba have been improved by Friedlander and Iwaniec, see
Theorem 3 in [12], when M and N are contained in intervals of lengths at most

p
p and

are of cardinalitiesM;N > p11=24C� . Of course, the main point here is that 11=24 < 1=2,
which neither (1.4) nor (1.6) with (1.5) can achieve. The exponent 11=24 has been reduced
to 9=20 by Bourgain, Garaev, Konyagin and Shparlinski, see Theorem 25 in [3]. Several
more results of this type can be found in [2, 4, 5, 13, 21, 24, 26, 27, 29].

1.3. Related trilinear and quadrilinear sums

Before concluding this section, we also mention some recent works on various variants
of B.˛; ˇ/. To proceed, we assume H ;K;M;N � Œ1; p� are arbitrary subsets. Han-
son [13] has studied X

k2K

X
m2M

X
n2N

˛mˇn�.k CmC n/;

while Roche-Newton, Shparlinski and Winterhof [23] have consideredX
k2K

X
m2M

X
n2N

�.kmCmnC nk/ e
�a.kmCmnC nk/

p

�
with gcd.a; p/ D 1. Shkredov and Shparlinski [25] have treated quadrilinear formsX

h2H

X
k2K

X
m2M

X
n2N

˛hˇk;m;n�.hC k Cmn/;X
h2H

X
k2K

X
m2M

X
n2N

˛hˇk;m;n�.hC k.mC n//:

See also [22], for some recent generalizations and refinements.
Our main object T .˛;ˇ/ is intimately related to the following trilinear character sum:X

k6K

X
m2M

X
n2N

˛k ˇmn�.k Cmn/;

where � is a non-trivial Dirichlet character modulo p and M;N � Œ1; p� are arbitrary
subsets with M D #M and N D #N . Banks and Shparlinski (Theorem 2.2 of [1]) give
the upper bound

KMN.p�1 C .KM/�1 CK�2/1=.2r/.p1=.4r/ CN�1=2p1=.2r//po.1/

with an arbitrary fixed integer r > 1, provided that the three coefficients are all bounded.
Note that the above bound is non-trivial as long as

K > p1=4C�; KM > p1=2C�; N > p�;

with some constant � > 0.
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Our work on T .˛;ˇ/ is largely inspired by the recent work of Fouvry and Shparlin-
ski [11] on quadrilinear character sums such as

Q1.˛;ˇ/ D
XXXX
16r;s;u;v6x

˛r ˇu�.rs � uv/;

Q2./ D
XXXX
16r;s;u;v6x

r;s;u�.rs � uv/;

with bounded complex weights ˛ D .˛r /, ˇ D .ˇu/ and  D .r;s;u/. It is shown in [11],
that for any fixed � > 0 and x > p1=8C� , we have

Q1.˛;ˇ/� x4�� and Q2./� x4
log logp

logp
,

where � > 0 and the implied constants depend only on � (we refer to Section 1.4 for the
exact definition of the symbol ‘�’ and other standard notations).

1.4. Notation and conventions

We adopt the Landau symbol A D O.B/, and the Vinogradov symbol A� B , to mean
jAj 6 cB for some constant c > 0. We also write a � A to indicate that A < a 6 2A and
A � B to indicate A� B � A.

For each complex weight ˛ D .˛m/m2M and � > 1, we denote

(1.7) k˛k� D
� X
m2M

j˛mj
�
�1=�

and k˛k1 D max
m2M
j˛mj:

For a finite set � , we use #� to denote its cardinality. The letter p, with or without
subscripts, always denotes a prime number.

We denote by Fp the finite field of p elements, which we identify by ¹0; 1; : : : ; p � 1º,
and in what follows, we mix the usage of Fp and ¹0; 1; : : : ; p � 1º. We freely alternate
between the language of finite fields and the language of congruences.

We also use N to denote that set of positive integers.
As usual,

(1.8) �.k/ D #¹d 2 N W d j kº

denotes the divisor function, and we repeatedly use the classical bound �.k/ D ko.1/ as
k ! C1 (see, for example, equation (1.81) in [15]). For an integer a, coprime to m, xa
denotes the multiplicative inverse of a mod m, that is, axa � 1 mod m, which should not
be confused with the complex conjugate.

Given a function f 2 L1.R/, that is, with a bounded L1-norm over R, the Fourier
transform is defined by

yf .y/ D

Z
R
f .x/ e.�yx/ dx;

with e.z/ D exp.2�iz/.
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2. Main results

2.1. Bounds of multilinear character sums

Put

(2.1) L1 D .jajK C jbjMN/ and L2 D .jajKLC jbjMN/:

We prove two estimates for the sums T .˛; ˇ/ given by (1.1), according to whether the
weights ˛m are identically 1, which we write as ˛ � 1, or arbitrary.

Theorem 2.1. Let K;M;N > 1 and let p > max¹K;M;N º be a large prime. Uniformly
over the weights ˛ � 1; ˇ D .ˇk;n/ and integers a; b with gcd.ab; p/ D 1, we have

jT .˛;ˇ/j 6 kˇk1KMN�1 po.1/

for each positive integer r , provided that M > 4p1=.2r/, where

�1 D .1CNK
�1/1=.2r/ .1C L1MNp

�1�1=.2r//1=.2r/
�p1C1=r
M 4N 4

�1=.4r/
;

with L1 as defined by (2.1).

Remark 2.2. Taking N D K D 1 in Theorem 2.1, we recover the celebrated Burgess
bound for short linear character sums, which shows oscillations of non-trivial multiplic-
ative characters modulo p, in any interval with length at least p1=4C" for any " > 0 and
sufficiently large p. This is also known as the Burgess threshold (see Theorem 12.26
in [15]).

Remark 2.3. It is not easy to give a full description on the range of .K;M;N / which is
equivalent to �1 < 1. However, when a D b D 1, we note that Theorem 2.1 is non-trivial
if either of the following conditions holds:

• p1=4C� < MN 6 p1=2 and N 6 K 6 p=.MN/,
• MN 6 p1=2C� 6 M 2NK and N > K,

with some fixed � > 0. For example, we can take

(2.2) K;M;N � p1=8C�

for small � > 0. The lower bound for the values of K;M;N , given by (2.2), is the square
root of the Burgess threshold.

We now use Theorem 2.1 to get a new bound, with a power saving, on the sums Q2./

from Section 1.3. Indeed, applying Theorem 2.1 with

.m; n; kI a; b/ .v; u; kI 1;�1/; .K;M;N / .x2; x; x/

and
ˇn;k D

XXX
16r;s;u6x
rsDk;uDn

r;s;u;

we find the following.
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Corollary 2.4. Let p be a large prime with p > x2 > 1. Uniformly over the weights
 D .r;s;u/, we have

jQ2./j 6 kk1 x4�2=r .1C x4p�1�1=.2r//1=.2r/p1=.4r/C1=.4r
2/Co.1/

for each positive integer r .

We see that Corollary 2.4 gives a non-trivial bound for Q2./ with a power-saving as
long as x > p1=8C� with some fixed � > 0. And this also recovers the above bound for
Q1.˛;ˇ/ with more general weights.

For arbitrary weights ˛ and ˇ, we have the following alternative bound.

Theorem 2.5. Let K;M;N > 1 and let p > max¹K;M;N º be a large prime. Uniformly
over the weights ˛ D .˛m/, ˇ D .ˇk;n/ and integers a; b with gcd.ab; p/ D 1, we have

jT .˛;ˇ/j 6 k˛k1kˇk2M.NK/1=2�2 po.1/

for each integer r > 2, provided that N > 4p1=r , where

�2 D .1CKM
�2/1=.4r/.1C L1MNp

�1�1=r /1=.2r/
� p1C1=r

K.MN/2

�1=.4r/
CM�1=2;

with L1 as defined by (2.1).

Remark 2.6. Fix a D b D 1. Then Theorem 2.5 is non-trivial as long as

M > p�; K.MN/2 > .1CKM�2/p1C� and MN.K CMN/ < p

hold with some fixed � > 0. For example, we can take

K;M;N � p1=5C�;

which has to be compared with (2.2) and also with the Burgess threshold.

As an application of the above bounds for T .˛;ˇ/, one is allowed to address a mod-
ulo p version of a question of Iwaniec and Sárközy [16] about distances between product
sets and squares. We present such an application in Section 2.2.

One can derive some bounds on such sums from Theorems 2.1 and 2.5 with a trivial
summation over a, which plays the role of ` in Q.˛;ˇ/. However, we may obtain a more
precise bound as follows.

Theorem 2.7. Let K; L; M; N > 1 and let p > max¹K; L; M; N º be a large prime.
Uniformly over the weights ˛ D .˛`;m/ and ˇ D .ˇk;n/, we have

jQ.˛;ˇ/j 6 k˛k1kˇk2LM.KN/1=2po.1/ ��3

for each integer r > 2, provided that K;N > 4p1=r , where

�3 D .KLMN/
�3=.4r/

�M
K
C 1

�1=.2r/�
1C

L22
p1C1=r

�1=.2r/
L
1=.2r/
2 p1=.4r/C1=.2r

2/

C .KN/�1=2p1=.2r/ C .MN/�1=2 p1=.2r/ C .LM/�1=2 C p�1=2;

with L2 as defined by (2.1).
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We now analyze when Theorem 2.7 wins over the trivial bound

jQ.˛;ˇ/j 6 k˛k1kˇk2.LM/.KN/1=2:

Corollary 2.8. Fix a D b D 1. For any � > 0, there is some � > 0, such that if

(2.3)

8̂<̂
:
KL�MN 6 KLp1=3��; K5L3N > Mp1C�;

.M=K/5.N=L/3 6 p1��; .KL/3MN > p1C�;

KN > p�; MN > p�; LM > p�;

then
jQ.˛;ˇ/j 6 k˛k1kˇkLM.KN/1=2p�� :

To see this, we write the quantity �3 in an obvious manner as

(2.4) �3 D z�3 C .KN/
�1=2p1=.2r/ C .MN/�1=2 p1=.2r/ C .LM/�1=2 C p�1=2;

corresponding to five terms in its definition. By taking r sufficiently large, each of the last
four terms in (2.4) is at most p�� for some � > 0, provided that the last three conditions
in (2.3) hold. It remains to check that z�3 � p�� . We now assume KL� MN , so that
L2 D KLCMN � MN . First, rising z�3 to the power 2r and expanding it, we obtain
four terms. Each of these terms is at most p�� as long as KL�MN and

max
°
.MN/2p�1=2;

M

K
p1=2C1=r ;

M 3N 2

Kp1=2
; p1=2C1=r

±
� .KL/3=2.MN/1=2p�2r� :

These lead to the remaining inequalities in (2.3), after choosing r to be large enough.
In particular, we see from Corollary 2.8 that we have a non-trivial bound on Q.˛;ˇ/,

provided that
K D L DM D N > p1=8C�:

Observe that one more time the exponent 1=8 appears as a threshold, see Remark 2.3,
however, this does not seem to follow from Theorem 2.1.

2.2. Consequences and applications

Theorems 2.1 and 2.5 describe general situations, since the sequence ˇ satisfies no par-
ticular hypotheses. For instance, if we choose ˛ and ˇ in the landscape of multiplicative
or additive characters modulo p, we obtain, as a direct consequence of Theorem 2.5, the
following bound for triple character sums on short initial segments. To proceed, we use  
to denote a non-trivial additive character of Fp .

Corollary 2.9. Fix a rational functionP in Fp.X/ and a rational functionQ in Fp.X;Y /.
For every fixed � > 0, there exists some � > 0 such thatX

k6K

X
m6M

X
n6N

�.k Cmn/ .P.m/CQ.k; n//� KMNp��

and X
k6K

X
m6M

X
n6N

�..k Cmn/P.m/Q.k; n//� KMNp��

hold uniformly for
p1=5C� 6 K;M;N < p1=4��:
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Remark 2.10. Theorem 2.7 easily leads to an obvious quadrilinear version of Corol-
lary 2.9, but with K;L;M and N of size at least p1=8C� for any � > 0.

Furthermore, Iwaniec and Sárközy [16] have considered the following multiplicative
hybrid problem with positive integers: given two arbitrary subsets M and N , how close
is the product mn to a square in Z with .m; n/ 2M �N ? A special case of their general
result asserts that for any M;N � ŒN; 2N � with #M; #N � N , there exist .m; n; `/ 2
M �N �N satisfying

mn � `2

`
� .N= logN/�1=2:

Iwaniec and Sárközy [16] have also conjectured that the upper bound might be replaced
by N�1Co.1/.

Theorem 2.5 allows us to study a modular analogue of the above result of Iwaniec
and Sárközy, for which the above conjectural bound N�1Co.1/ can be realized in some
particular cases. To set up, we consider subsets M;N � Œ1; p�, we examine the distance
between mn, with .m; n/ 2M �N , and quadratic residues modulo p.

Theorem 2.11. Fix a positive integer r , two real numbers 0 < c0 < 1 and � > 0. Then
there exists a constant P , depending only on .r; c0; �/, such that:

• for every prime p > P ,

• for every M and N satisfying

(2.5) M 4N 2 > p1C1=rC�;

• for every subsets M;N � Œ1; p� with

(2.6) M � ŒM; 2M�; N � ŒN; 2N �; #M > c0M; #N > c0N;

there exist m 2M, n 2 N , and some positive integer k satisfying

k 6 p1C1=rC�.MN/�2 C p�;

such that mnC k is a quadratic residue modulo p.

Actually, the proof which is given in Section 7 produces a lower bound for the cardin-
ality of the set of triples we are interested in

#¹.m; n; k/ W m 2M; n 2 N ; k 6 K and mnC k is a quadratic residue mod pº
� KMN;

where K � p1C1=rC�.MN/�2.
To illustrate Theorem 2.11, chooseM D N � p1=5Cı (with ı > 0 very small) and M

and N subsets of ŒN; 2N � such that #M; #N > ıN . Then, for sufficiently large p, there
exists a positive integer k 6 p1=5 and .m; n/ 2 M � N such that mn C k is a quad-
ratic residue modulo p. Recall that there must exist a square of an integer between t
and t CO.

p
t / for all t > 1 (namely, d

p
t e2 is such a square) and that essentially nothing

better than the upper bound p1=4Co.1/ is proved for the distance between two consecutive
quadratic residues modulo p. The above illustration shows that one can do much better if
squares are replaced by quadratic residues modulo p.
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The proof of Theorem 2.11 can be easily generalized in many aspects. For instance,
one can relax the hypothesis (2.6) about the cardinalities of M and N by choosing

(2.7)

´
˛m D 1ŒM;2M�\P .m/;

ˇk;n D 1ŒK;2K�\P .k/ � 1ŒN;2N�\P .n/;

where P denotes the set of all primes, and 1S is the indicator function of a set S . One then
deduces from Theorem 2.5 the following result by counting primes using Chebyshev’s
inequalities.

Corollary 2.12. Fix � > 0. For every sufficiently large p, there exist three primes p1; p2
and p3 such that:

• p1; p2; p3 � p
1=5C� ,

• p1p2 C p3 is a quadratic non-residue modulo p.

As we have mentioned, Corollary 2.12 follows directly from Theorem 2.5 and it can
be modified in various ways, for example, one can impose different arithmetic restrictions
on the primes p1; p2; p3. For example, one further imposes that the three shifted primes
p1 C 2; p2 C 2; p3 C 2 have at most two prime factors. This statement is deduced from
the famous work of Chen [7] about the twin prime conjecture that we write under the form
of the following inequality:

#¹p 6 x W p C 2 has at most two prime factorsº � x.log 2x/�2

for x > 2. One can also appeal to Corollaire 2 in [10] to introduce a more involved defin-
ition of the coefficient ˇk;n (see (2.7)) leading to a new version of Corollary 2.12, where
we impose on p1p3 C 2 to have at most two prime factors.

Similarly, Theorem 2.7 leads to the following result (which can also be modified along
the lines mentioned in the above).

Corollary 2.13. Fix �>0. For every sufficiently large p, there exist four primes p1;p2;p3
and p4 such that:

• p1; p2; p3; p4 � p
1=8C� ,

• p1p2 C p3p4 is a quadratic non-residue modulo p.

Another application of Theorem 2.7 concerns sums with the divisor function (see (1.8)
above)

S.U; V / D
X
u6U

X
v6V

�.u/�.v/�.u � v/:

These sums are two-dimensional analogues of the sum

Sa.U / D
X
u6U

�.u/�.uC a/;

which has been studied in a number of works [3, 6, 17, 20]. In particular, it is shown in
Theorem 27 of [3] that for any � > 0, there is some � > 0 such that for U > p1=3C� ,
uniformly over integers a with gcd.a; p/ D 1, one has

Sa.U /� Up�� :
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It is easy to see that Theorem 2.7 combined with the standard completing technique (see
Section 12.2 of [15]) implies the following result.

Corollary 2.14. For any fixed � > 0, there is some � > 0 such that for U; V > p1=4C� ,
we have

S.U; V /� UVp�� :

One can also use Theorem 2.7 to estimate a rich variety of other quantities, for exam-
ple, sums over primes

W.x/ D
X

p1;p2;p3;p46x

�p1
p3

��p2
p4

�
�.p1p2 � p3p4/;

with weights given by Legendre symbols. Theorem 2.7 implies a bound on W.x/ with a
power saving, provided x > p1=8C� for any fixed � > 0. We also note a variety of bounds
on characters over various arithmetic sequences can be found in a very informative survey
of Karatsuba [21].

In closing this section, we would like to state a striking application of our general
bounds in Theorem 2.7 to character sums involving Farey fractions. For R > 2, let

F .R/ D ¹r=s W gcd.r; s/ D 1; 0 6 r 6 s 6 Rº

be the set of Farey fractions of order R. This can be embedded in Fp in a canonical way
r=s 7! rxs .mod p/, where xs is the multiplicative inverse of s modulo p (which is well
defined for R < p and, in fact, is injective for R < p1=2).

By virtue of the multiplicativity of �, in the form

˛`;mˇk;n�.` xm � xkn/ D .˛`;m x�.m//.ˇk;n x�.k//�.k` �mn/:

we may derive the following consequence directly from Theorem 2.7.

Corollary 2.15. Let R > 2 and ��; �% be bounded weights supported on F .R/. Then for
any fixed � > 0, there is some � > 0 such that for p1=8C� 6 R < p1=2, we haveXX

�;%2F .R/

�� �%�.� � %/� R4p�� :

Note that the use of bilinear bounds (1.5) and (1.6) would lead to a much more restrict-
ive condition p1=4C� 6 R < p1=2 in Corollary 2.15.

3. Preliminaries

3.1. Moments of some character sums

The following result is a consequence of the Riemann hypothesis for curves over finite
fields due to Weil [30]. It is a slight extension of a classical bound due to Davenport and
Erdős [8], which corresponds to the case when A is an interval and  D 1. The proof of
Lemma 3.1 below is identical, and it is also a part of the arguments in Appendix A.
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Lemma 3.1. Let A � Fp be a subset of cardinality A, and � a non-trivial multiplicative
character of F�p . For each positive integer r and any complex-valued weight  D .a/

with kk1 6 1, we haveX
x2Fp

ˇ̌̌ X
a2A

a�.x C a/
ˇ̌̌2r

6 .2r/r .Arp C A2rp1=2/:

We also need the following version of Lemma 3.1, which again essentially repeats the
argument in [8] but uses Weil’s bound for multiplicative character sums with polynomials;
see, for example, Theorem 11.23 in [15].

Lemma 3.2. Let A � Fp be a subset of cardinality A, and �1; �2 two non-trivial mul-
tiplicative characters of F�p . For each positive integer r and any complex-valued weight
 D .a/ with kk1 6 1, we haveXX

x;y2Fp

ˇ̌̌ X
a2A

a�1.x C a/�2.y C a/
ˇ̌̌2r

6 .2r/r .Arp2 C 2rA2rp/:

Proof. Denote by S the quantity in question. Opening the power, we write

S 6
XX
a;b2Ar

jS.a;bI�1/S.a;bI�2/j;

where for a D .a1; : : : ; ar / 2 Ar , b D .b1; : : : ; br / 2 Ar and for each non-trivial multi-
plicative character � of F�p ,

S.a;bI�/ D
X
x2Fp

Y
16j6r

�.x C aj /�.x C bj /:

The subsequent treatment is uniform in all non-trivial multiplicative characters � of F�p .
If the coordinates of a and b appear in pairs (with necessary permutations), we appeal to
the trivial bound

jS.a;bI�/j 6 p:

Note that the number of such tuples .a; b/ is at most r
�
2r
r

�
Ar 6 .2rA/r . For the remain-

ing a and b, we can apply Weil’s bound for complete character sums (see Corollary 11.24
in [15]), getting

jS.a;bI�/j 6 2rp1=2:

This completes the proof of Lemma 3.2 by taking all possibilities of a;b into account.

3.2. Bounds of some GCD sums

We need the following estimate.

Lemma 3.3. Let a and b be non-zero integers. Let A; B; K; L; M; N; U; W > 1 with
A� jajKLC jbjMN and B � LU CMW . Then we haveX

k6K

XX
`1;`26L

XX
m1;m26M

X
n6N

X
u�U

X
w�W

ak`�Cbm�nDa� ; a`�uCbm�wDb� ; �D1;2
ja1j�A; jb2j�B;kw¤nu

gcd.a1; b1/ gcd.a2; b2/

6 ABLM.KW CNU/‡o.1/; with ‡ D jabjABKLMNUW .
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Proof. Denote by G the above quantity in question. Writing g1 D gcd.a1; b1/ and g2 D
gcd.a2; b2/, we have the inequality

G 6
XX

g1�A;g2�B

g1g2
X
k6K

XX
`1;`26L

XX
m1;m26M

X
n6N

X
u�U

X
w�W

ak`�Cbm�n�a`�uCbm�w�0 mod g� ; �D1;2
jak`1Cbm1nj�A; ja`2uCbm2wj�B;kw¤nu

1:

The congruences in the summation imply

g� j m�w.ak`� C bm�n/ �m�n.a`�uC bm�w/ D a`�m�.kw � nu/

for � D 1; 2, so that we can decompose g� (in a not necessarily unique way) as

g� D d� e�f� ; where d� j a`� ; e� j m� ; f� j .kw � nu/:

In particular, we have
lcmŒf1; f2� 6 2.KW CNU/:

Therefore,

G 6
XX
d1e1f1�A
d2 e2f2�B

lcmŒf1;f2�62.KWCNU/

d1d2 e1e2f1f2
X
k6K

X
n6N

X
u�U

X
w�W

lcmŒf1;f2�j.kw�nu/¤0

XXXX
`1;`26L;m1;m26M

ak`1Cbm1n�0 mod d1e1f1
a`2uCbm2w�0 mod d2 e2f2

`��0 mod d� ;m��0 mod e� ; �D1;2
jak`1Cbm1nj�A;
ja`2uCbm2wj�B

1:

Making the change of variables `� ! d� `� , m� ! e�m� , � D 1; 2, we obtain

G 6
XX
d1e1f1�A
d2 e2f2�B

lcmŒf1;f2�62.KWCNU/

d1d2 e1e2f1f2
X
k6K

X
k6N

X
u�U

X
w�W

lcmŒf1;f2�j.kw�nu/¤0

XXXX
d1`1; d2`26L; e1m1; e2m26M

ad1`1kCbe1m1n�0 mod d1e1f1
ad2`2uCbe2m2w�0 mod d2 e2f2

jad1`1kCbe1m1nj�A;
jad2`2uCbe2m2wj�B

1:

Note that the congruences

ad1`1k C be1m1n � 0 mod d1e1f1 and ad2`2uC be2m2w � 0 mod d2 e2f2

imply, respectively,
e1 j ad1`1k; d2 j be2m2w;

and

bm1n � �ad1`1k=e1 mod d1f1; a`2u � �be2m2w=d2 mod e2f2:

It then follows that

G 6
XX
d1e1f1�A
d2 e2f2�B

lcmŒf1;f2�62.KWCNU/

d1d2 e1e2f1f2
X
k6K

X
n6N

X
u�U

X
w�W

lcmŒf1;f2�j.kw�nu/¤0

XXXX
d1`1;d2`26L; e1m1;e2m26M

e1jad1`1k; bm1n��ad1`1k=e1 mod d1f1
d2jbe2m2w;a`2u��be2m2w=d2 mod e2f2

jad1`1kCbe1m1nj�A;
jad2`2uCbe2m2wj�B

1
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6
XX
d1f1�A
e2f2�B

lcmŒf1;f2�62.KWCNU/

d1e2f1f2 sup
ı2Z

X
k6K

X
w�W

kw�ı mod lcmŒf1;f2�

XX
d2�B=.e2f2/
e1�A=.d1f1/

d2 e1

�

X
n6N

X
u�U

XXXX
d1`1;d2`26L; e1m1;e2m26M

e1jad1`1k; bm1n��ad1`1k=e1 mod d1f1
d2jbe2m2w;a`2u��be2m2w=d2 mod e2f2

jad1`1k=e1Cbm1nj�A=e1;
ja`2uCbe2m2w=d2j�B=d2

1:

To proceed, we group the variables m1; n, and `2; u, separately, so that we need to
count the number of tuples .r; s/ with

jad1`1k=e1 C br j � A=e1; jas C be2m2w=d2j � B=d2

and
br � �d1`1k=e1 mod d1f1; as � �e2m2w=d2 mod e2f2:

It is clear that the number T of such tuples .r; s/ satisfies

T �
�
1C

A gcd.b; d1f1/
bd1e1f1

��
1C

B gcd.a; e2f2/
ad2 e2f2

�
�

AB

d1d2 e1e2f1f2
�

This leads us to

G � AB
XX
d1f1�A
e2f2�B

lcmŒf1;f2�62.KWCNU/

sup
ı2Z

X
k6K

X
w�W

kw�ı mod lcmŒf1;f2�

XX
d2�B=.e2f2/
e1�A=.d1f1/

XX
`16L=d1;m26M=e2
d2jbe2m2w; e1jad1`1k

1:

In what follows, we would like to sum over d2; e1 firstly, and then `1; m2, so that

G 6 ABLM‡o.1/
XX
d1f1�A
e2f2�B

lcmŒf1;f2�62.KWCNU/

1

d1e2
sup
ı2Z

X
k6K

X
w�W

kw�ı mod lcmŒf1;f2�

1:

Again, by grouping variables, we arrive at

G 6 ABLM‡o.1/
XX
d1f1�A
e2f2�B

lcmŒf1;f2�62.KWCNU/

1

d1e2

� KW

lcmŒf1; f2�
C 1

�

6 ABLM‡o.1/
X
d1�A

1

d1

X
e1�A

1

e2

X
f�KWCNU

�KW
f
C 1

�
6 ABLM.KW CNU/‡o.1/;

where we have used the bound on the divisor function to count the number of pairs .f1;f2/
with lcmŒf1; f2� D f . This completes the proof of the lemma.
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4. Proof of Theorem 2.1

4.1. Preparations

Throughout this section, we assume that ˛ is identically 1 on its support. Suppose without
loss of generality that kˇk1 6 1 and M is a positive integer. Following an approach of
Friedlander and Iwaniec [12], we define the function w 2 L1.R/ as

w.x/ D

´
min¹x; 1;M C 1 � xº for x 2 Œ0;M C 1�;
0 otherwise:

The integration by parts implies

(4.1) yw.�/� min¹M; j�j�1; j�j�2º:

4.2. Amplification

The above function w allows us to run the summation over m to the whole set Z. That is,

T .˛;ˇ/ D
X
k6K

X
m2Z

X
n6N

w.m/ˇk;n�.ak C bmn/:

Furthermore, for all integers u; v, we have

T .˛;ˇ/ D
X
k6K

X
m2Z

X
n6N

w.mC uv/ˇk;n�.ak C b.mC uv/n/:

We choose two real positive parameters U and V with

(4.2) U; V > 1; UV D
1

4
M:

By Fourier inversion and summing over integers u and v with u � U , v � V , we have the
amplified expression

T .˛;ˇ/�
1

UV

X
k6K

X
m6M

X
n6N

X
u�U

Z
R
j yw.�/j

ˇ̌̌ X
v�V

e.uv�/�.un.ak C bmn/C bv/
ˇ̌̌
d�:

Making the change of variable � ! �=u and replacing UV with M , in view of (4.1), it
follows that

T .˛;ˇ/�
1

M

X
k6K

X
m6M

X
n6N

X
u�U

Z
R

ˇ̌̌
yw
� �
u

�ˇ̌̌
(4.3)

�

ˇ̌̌ X
v�V

e.v�/�.un.ak C bmn/C bv/
ˇ̌̌d�
u

�
1

M

Z
R

min
°M
U

, 1
j�j

, U
j�j2

±
�

X
k6K

X
m6M

X
n6N

X
u�U

ˇ̌̌ X
v�V

e.v�/�.un.ak C bmn/C bv/
ˇ̌̌
d�:
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This yields

T .˛;ˇ/�
logM
M

X
k6K

X
m6M

X
n6N

X
u�U

ˇ̌̌ X
v�V

e.v�/�.un.ak C bmn/C bv/
ˇ̌̌

for some � 2 R (for which the multiple sum in (4.3) achieves its largest possible value).
We may further restrict our summation to triples .k;m; n/ such that p − .ak C bmn/

up to an error term at most

po.1/
X
k6K

X
`6MN

akCb`�0 mod p

1 6
�MN
p
C 1

�
Kpo.1/:

Therefore,

T .˛;ˇ/�
logM
M

X
k6K

X
m6M

X
n6N

p−.akCbmn/

X
u�U

ˇ̌̌ X
v�V

e.v�/�.un.ak C bmn/C bv/
ˇ̌̌

C

�MN
p
C 1

�
Kpo.1/:

4.3. Regrouping, counting and Weil’s bound

Put
%.x/ D

X
m6M

X
n6N

X
k6K

X
u�U

akCbmn�unx 6�0 mod p

1

for x mod p. We now have

T .˛;ˇ/�
logM
M

X
x mod p

%.x/
ˇ̌̌ X
v�V

e.v�/�.x C bv/
ˇ̌̌
C

�MN
p
C 1

�
Kpo.1/:

Applying the Hölder inequality with r > 1, we obtain

(4.4) T .˛;ˇ/�
logM
M

I
1�1=r
1 .I2 � I3/

1=.2r/
C

�MN
p
C 1

�
Kpo.1/;

with

Ij D
X

x mod p

%.x/j ; j D 1; 2; I3 D
X

x mod p

ˇ̌̌ X
v�V

e.v�/�.x C bv/
ˇ̌̌2r
:

Trivially we have

(4.5) I1 � KMNU:

Regarding I2, we refer to the following lemma.
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Lemma 4.1. With the above notation, we have

(4.6) I2 6 KMU.K CN/
�
1C

.jajK C jbjMN/UN

p

�
po.1/:

Proof. It is easy to see that I2 is the number of 8–tuples

.k; Qk;m; zm; n; Qn; u; Qu/ 2 N8

satisfying the conditions

k; Qk 6 K; m; zm 6 M; n; Qn 6 N; u; Qu � U;

.ak C bmn/ Qn Qu � .a Qk C b zm Qn/nu 6� 0 .mod p/;

which is bounded by the number of 9–tuples

.k; Qk;m; zm; n; Qn; u; Qu; t/ 2 N8
� Z;

satisfying

(4.7)
k; Qk 6 K; m; zm 6 M; n; Qn 6 N; u; Qu � U; jt j 6 T;

.ak C bmn/ Qn Qu D .a Qk C b zm Qn/nuC tp; .ak C bmn/.a Qk C b zm Qn/ ¤ 0;

with

(4.8) T D 1C .jajK C jbjMN/NU=p:

Note that Qn j a QkunC tp and a Qkun 6� 0 .mod p/. Hence, a QkunC tp ¤ 0 for any t 2 Z,
and thus, for given Qk, n, t and u, which we can fix in O.KNT U / ways, the number of Qn
satisfying (4.7) is at most po.1/. After Qk, zm, n, Qn, t and u are fixed, there are at most
.K=N C 1/po.1/ possibilities for the tuple .m; Qu; k/. This is due to the observations that
Qu j .a Qk C b zm Qn/unC tp ¤ 0 and the number of solutions .m; k/ to

ak C bmn D
.a Qk C b zm Qn/unC tp

Qu Qn
,

with m 6 M; k 6 K, is at most O.1 C K=N/ since k falls in a prescribed arithmetic
progression modulo n � N , which is already fixed.

Taking all possibilities into account, we find the contributions from ak C bmn ¤ 0

to I2 are at most

KNT U �M �
�
1C

K

N

�
po.1/ 6 KMT U.K CN/po.1/:

Now Lemma 4.1 follows by recalling the choice of T in (4.8).

To bound I3, we apply Lemma 3.1 with A D ¹bv W v � V º, getting

(4.9) I3 � V 2rp1=2 C V rp

as a consequence of Weil’s bound for complete character sums over finite fields (see The-
orem 11.23 in [15]).
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4.4. Concluding the proof of Theorem 2.1

To balance the two terms in (4.9), we choose

V D p1=.2r/ and U D
1

4
Mp�1=.2r/

in view of (4.2), so that (4.5) and (4.6) become

I1�KM 2Np�1=.2r/ and I2 6KM 2p�1=.2r/.KCN/.1CL1MNp
�1�1=.2r//po.1/;

respectively, where L1 is defined by (2.1), while (4.9) becomes

I3 � p3=2:

Now Theorem 2.1 follows by combining the inequality (4.4) and the above estimates
for I1, I2 and I3.

5. Proof of Theorem 2.5

5.1. Cauchy–Schwarz inequality and amplification

We note that the auxiliary parameters T , U and V from Section 4 have different meaning
henceforth. This time it is convenient to assume that k˛k1 6 1. By the Cauchy–Schwarz
inequality, we have

(5.1) jT .˛;ˇ/j2 6 kˇk22T;

where
T D

X
k6K

X
n2Z

W
� n
N

�ˇ̌̌ X
m6M

˛m�.ak C bmn/
ˇ̌̌2
;

with any fixed real-valued smooth function W 2 C1c .Œ�2; 2�/, which majorizes the char-
acteristic function of the unit interval Œ0; 1�.

Squaring out, changing the order of summation and estimating the contribution from
the diagonal terms with m1 D m2, we obtain

(5.2) T � T1 CKMN;

with

T1 D
X
k6K

XX
m1;m26M
m1¤m2

X
n2Z

W
� n
N

�
˛m1 x̨m2 �.ak C bm1n/ x�.ak C bm2n/:

For any integers u and v, we may write

T1D
X
k6K

XX
m1;m26M
m1¤m2

X
n2Z

W
�nCuv

N

�
˛m1 x̨m2�.akCbm1.nCuv// x�.akCbm2.nCuv//:
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By Fourier inversion and summing over u�U and v� V , for some positive parametersU
and V with

(5.3) U; V > 1; UV D
1

4
N;

it follows that

T1 �
1

N

X
k6K

XX
m1;m26M
m1¤m2

X
jnj62N

X
u�U

Z
R
j yW .�/j

�

ˇ̌̌ X
v�V

e
�uv�
N

�
�.m1u.ak C bm1n/C bv/ x�.m2u.ak C bm2n/C bv/

ˇ̌̌
d�:

In view of
yW .�/� .1C j�j/�2;

implied by the smoothness of W.x/ via partial integration, and making the change of
variable � ! �=u, after simple transformations, we obtain

T1 �
1

NU

Z
R

�
1C
j�j

U

��2 X
k6K

XX
m1;m26M
m1¤m2

X
jnj62N

X
u�U

�

ˇ̌̌ X
v�V

e
�v�
N

�
�.m1u.ak C bm1n/C bv/ x�.m2u.ak C bm2n/C bv/

ˇ̌̌
d�:

Again, as in the proof of Theorem 2.1, this implies

T1 �
1

N

X
k6K

XX
m1;m26M
m1¤m2

X
jnj62N

X
u�U

(5.4)

�

ˇ̌̌ X
v�V

e.v�/�.m1u.ak C bm1n/C bv/ x�.m2u.ak C bm2n/C bv/
ˇ̌̌

for some � 2 R.

5.2. Regrouping, counting and Weil’s bound

Put
%.x1; x2/ D

X
jnj62N

X
k6K

XX
m1;m26M

X
u�U

akCbm1n�um1x1 6�0 mod p
akCbm1n�um2x2 6�0 mod p

m1¤m2

1

for x1; x2 mod p. We now have

T1 �
1

N

XX
x1;x2 mod p

%.x1; x2/
ˇ̌̌ X
v�V

e.v�/�.x1 C bv/ x�.x2 C bv/
ˇ̌̌

C .1CMN=p/KMpo.1/;

where the last term comes from those k;m1; m2; n, with p j .ak C bm1n/.ak C bm2n/
in (5.4) .
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Applying the Hölder inequality with r > 1, similarly to (4.4), we find

(5.5) T1 �
1

N
J
1�1=r
1 .J2 � J3/

1=.2r/
C .1CMN=p/KMpo.1/;

with
Jj D

XX
x1;x2 mod p

%.x1; x2/
j ; j D 1; 2;

and
J3 D

XX
x1;x2 mod p

ˇ̌̌ X
v�V

e.v�/�.x1 C bv/ x�.x2 C bv/
ˇ̌̌2r
:

Note that

(5.6) J1 � KM 2NU:

We appeal to the following lemma in bounding J2.

Lemma 5.1. With the above notation, we have

(5.7) J2 6 KNU.K CM 2/
�
1C

.jajK C jbjMN/MU

p

�2
po.1/:

Proof. We observe that J2 is bounded by the number of 10-tuples

.k; Qk;m1; zm1; m2; Qn2; n; Qn; u; Qu/ 2 N10

satisfying

k; Qk 6 K; m1; zm1; m2; zm2 6 M; n; Qn 2 Œ�2N; 2N �; u; Qu � U;

.ak C bm1n/ zm1 Qu � .a Qk C b zm1 Qn/m1u 6� 0 mod p;

.ak C bm2n/ zm2 Qu � .a Qk C b zm2 Qn/m2u 6� 0 mod p;
m1 ¤ m2; zm1 ¤ zm2:

We now rewrite the above congruences as equations:

.ak C bm1n/ zm1 Qu D .a Qk C b zm1 Qn/m1uC t1p ¤ 0;(5.8a)

.ak C bm2n/ zm2 Qu D .a Qk C b zm2 Qn/m2uC t2p ¤ 0;(5.8b)

where 0 6 jt1j; jt2j 6 T , with

(5.9) T D 1C .jajK C 2jbjMN/MU=p:

It follows from (5.8a) that

zm1 j a Qkm1uC t1p ¤ 0 and Qu j . zm1 QnC a Qk/m1uC t1p ¤ 0;

which produces at most po.1/ tuples of . zm1; Qu/ for given Qn; Qk;m1; u; t1.
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After fixing zm1, Qu, Qn, Qk, m1, u and t1, we obtain the equation

(5.10) ak C bm1n D
.a Qk C b zm1 Qn/m1uC t1p

zm1 Qu

in k and n, thanks to (5.8a). We further fix m2 and t2. We see from (5.8b) that zm2 j
a Qkm2uC t2p ¤ 0, by which there are at most po.1/ values of zm2 for given Qk;m2; u; t2.
As before, using (5.8b), we obtain the equation

(5.11) ak C bm2n D
.a Qk C b zm2 Qn/m2uC t2p

zm2 Qu

in k and n. It then follows from (5.10) and (5.11) that k is uniquely defined modulo m1
and modulo m2, so that the number of such positive integers k is at most

K

lcmŒm1; m2�
C 1 D

gcd.m1; m2/
m1m2

K C 1:

Now n is uniquely determined after k is fixed. Collecting all above arguments, we find

J2 6 KNUT 2po.1/
XX
m1;m26M

�gcd.m1; m2/
m1m2

K C 1
�

6 KNUT 2.K CM 2/po.1/:

Lemma 5.1 now follows immediately by recalling the choice of T in (5.9).

Using Lemma 3.2 with the special choice A D ¹bv W v � V º therein, we find

(5.12) J3 � V 2rp C V rp2:

5.3. Concluding the proof of Theorem 2.5

We now choose
V D p1=r and U D

1

4
Np�1=r

subject to the constraint in (5.3), so that the above bounds for J1 and J2 in (5.6) and (5.7)
become

J1� K.MN/2p�1=r and J2 6 KN 2p�1=r .K CM 2/.1CL1MNp
�1�1=r /2po.1/;

respectively, while the bound for J3 in (5.12) becomes J3� p3: Substituting these estim-
ates to (5.5), we arrive at

T1 6
1

N
.KM 2N 2/1�1=.2r/.1CKM�2/1=.2r/.1C L1MNp

�1�1=r /1=r

� p1=.2r/C1=.2r
2/Co.1/

C .1CMN=p/KMpo.1/:

From this and inequalities (5.1) and (5.2) Theorem 2.5 follows.
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6. Proof of Theorem 2.7

6.1. Preliminary transformations

Assume k˛k1 6 1 and gcd.a; b/ D 1 without loss of generality. By periodicity, we also
assume that 1 6 jaj; jbj < p=2. By the Cauchy–Schwarz inequality, we have

(6.1) jQ.˛;ˇ/j2 6 kˇk22Q;

where

Q D
XX
k;n2Z

˚
� k
K

�
˚
� n
N

� ˇ̌̌X
`6L

X
m6M

˛`;m�.ak`C bmn/
ˇ̌̌2
;

for any smooth function ˚ which dominates the characteristic function of Œ�1; 1� and
is supported only inside the interval Œ�2; 2�. Squaring out and switching the order of
summation, we get

(6.2) Q 6 jQ1j CKLMN.LM=p C 1/po.1/

with

Q1 D
XXXX
`1;`26L; m1;m26M
`1m2 6�`2m1 mod p

XX
k;n2Z

˚
� k
K

�
˚
� n
N

�
˛`1;m1 ˛`2;m2

� �.ak`1 C bm1n/ �.ak`2 C bm2n/;

where the second term in (6.2) comes from the contribution from `1m2 � `2m1 mod p.
The trivial bound for Q1 is

(6.3) Q1 � KL2M 2N;

and, by (6.1), we obtain a non-trivial bound of Q.˛;ˇ/ as soon as we improve (6.3). For
all integers u, v and w, using that Z is invariant under shifts by integers, we can write

Q1 D
XXXX
`1;`26L; m1;m26M
`1m2 6�`2m1 mod p

XX
k;n2Z

˚
�k C uv

K

�
˚
�nC wv

N

�
˛`1;m1 ˛`2;m2

� �.a.k C uv/`1 C bm1.nC wv// �.a.k C uv/`2 C bm2.nC wv//:

By Fourier inversion and summing over u � U; v � V;w � W , with

(6.4) U; V;W > 1; UV D
1

4
K and W V D

1

4
N;

it follows that

Q1 �
1

UV W

X
jkj62K

X
jnj62N

XXXX
`1;`26L; m1;m26M
`1m2 6�`2m1 mod p

X
u�U

X
w�W

“
R2

j ẙ.�/ ẙ.�/j

�

ˇ̌̌ X
v�V

e
�uv�
K
C
wv�

N

�
�
�
.a`1uC bm1w/.ak`1 C bm1n/C v

�
(6.5)

� �
�
.a`2uC bm2w/.ak`2 C bm2n/C v

�ˇ̌̌
d� d�C Err1;
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where
• the variables of summation satisfy the extra condition

(6.6) p − .a`1uC bm1w/.a`2uC bm2w/.ak`1 C bm1n/.ak`2 C bm2n/;

• and the term Err1 corresponds to the error induced by the terms

p j .a`1uC bm1w/.a`2uC bm2w/.ak`1 C bm1n/.ak`2 C bm2n/:

As a typical possibility, the number of tuples .`1; u;m1;w/ satisfying p j .a`1uC bm1w/
is at most LU.1CMW=p/po.1/. Taking all the remaining possibilities into account, we
find

(6.7) Err1 6
KL2MNUV

UVW

�
1C

MW

p

�
po.1/ 6 KL2M

�
V C

MN

p

�
po.1/:

Combining (6.7) with the inequality ẙ.�/ � .1 C j�j/�2, and with the change of
variables .�; �/! .�=u; �=w/ in (6.5), we obtain

Q1 �
1

U 2V W 2

“
R2

�
1C
j�j

U

��2�
1C
j�j

W

��2 X
jkj62K

X
jnj62N

XXXX
`1;`26L; m1;m26M
`1m2 6�`2m1 mod p

�

X
u�U

X
w�W

ˇ̌̌̌X
v�V

e
�v�
K
C
v�

N

�
�
�
.a`1uC bm1w/.ak`1 C bm1n/C v

�
� �

�
.a`2uC bm2w/.ak`2 C bm2n/C v

�ˇ̌̌̌
d� d� C Err1:

This implies

Q1 �
1

UV W

X
jkj62K

X
jnj62N

XXXX
`1;`26L; m1;m26M
`1m2 6�`2m1 mod p

�

X
u�U

X
w�W

ˇ̌̌X
v�V

e.v�/�
�
.a`1uC bm1w/.ak`1 C bm1n/C v

�
� �

�
.a`2uC bm2w/.ak`2 C bm2n/C v

�ˇ̌̌
C Err1

for some � 2 R, where Err1 satisfies (6.7). We now pull out the gcd of ak and bn for latter
purpose. To this end, we put

d D gcd.ak; bn/; d1 D
d

gcd.a; d/
, d2 D

d

gcd.b; d/
,

a� D
a

gcd.a; d/
and b� D

b

gcd.b; d/
�

We observe that p − d , gcd.a; d/ D gcd.a; n/, gcd.b; d/ D gcd.b; k/, and d 6 D with

D D min¹jajK; jbjN º .< p2/:
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Note that d j ak implies d1 j k, and similarly, d j bn implies d2 j n. Hence, we have the
relations d1 j k, d2 j n, ad1 D a�d and bd2 D b�d . Therefore, changing the variables

k 7! d1k; n 7! d2n;(6.8)

we obtain the inequality

(6.9) Q1 �
1

UV W

X
d6D
p−d

Q1.d/ C Err1

with

Q1.d/ D
X

jkj62K=d1

X
jnj62N=d2

gcd.a�k;b�n/D1

XXXX
`1;`26L; m1;m26M
`1m2 6�`2m1 mod p

�

X
u�U

X
w�W

ˇ̌̌̌X
v�V

e.v�/ �
�
.a`1uC bm1w/.ad1k`1 C bd2m1n/C v

�
� �..a`2uC bm2w/.ad1k`2 C bd2m2n/C v/

ˇ̌̌̌
:

Writing ad1k`1 C bd2m1n D d.a�k`1 C b�m1n/, we now continue as

Q1.d/ D
X

jkj62K=d1

X
jnj62N=d2

gcd.a�k;b�n/D1

XXXX
`1;`26L; m1;m26M
`1m2 6�`2m1 mod p

�

X
u�U

X
w�W

ˇ̌̌̌X
v�V

e.v�/�.d.a`1uC bm1w/.a�k`1 C b�m1n/C v/

� �.d.a`2uC bm2w/.a
�k`2 C b

�m2n/C v/

ˇ̌̌̌
;

which can be also interpreted as

Q1.d/ D
X

jkj62K=d1

X
jnj62N=d2

gcd.a�k;b�n/D1

XXXX
`1;`26L; m1;m26M
`1m2 6�`2m1 mod p

�

X
u�gcd.a;d/U

gcd.a;d/ju

X
w�gcd.b;d/W

gcd.b;d/jw

ˇ̌̌̌X
v�V

e.v�/�.d.a�`1uC b�m1w/.a�k`1 C b�m1n/C v/

� �.d.a�`2uC b�m2w/.a
�k`2 C b

�m2n/C v/

ˇ̌̌̌
:

Here we have used the formulas a� D a= gcd.a; d/, b� D b= gcd.b; d/. Of course, the
variables of summation continue to satisfy (6.6) with necessary changes of variables as
in (6.8). We further impose a restriction that kw gcd.b; d/ ¤ nu gcd.a; d/, which intro-
duces an additional error Err2.d/ withX

d6D

Err2.d/ 6 KL2M 2V Wpo.1/:
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Next for x1; x2 2 F�p , and for

1 6 A� L2=d; 1 6 B � jajLU C jbjMW � L2=V; 1 6 C 6 K=d1;

we put

%.x1; x2/ D
X
jkj�C

X
jnj62N=d2

XX
`1;`26L

XX
m1;m26M

X
u�U

X
w�W

a�k`1Cb
�m1n�.a`1uCbm1w/x1 mod p

a�k`2Cb
�m2n�.a`2uCbm2w/x2 mod p

`1m2 6�`2m1 mod p; kw gcd.b;d/¤nu gcd.a;d/; gcd.a�k;b�n/D1
ja�k`1Cb

�m1nj�A; ja`2uCbm2wj�B

1;(6.10)

where the condition (6.6) continues to apply to the variables of summation with necessary
changes of variables as in (6.8). We now have

Q1.d/ 6 po.1/ sup
16A�L2=d
16B�L2=V
16C6K=d1

X
x1;x22F�p

%.x1; x2/
ˇ̌̌ X
v�V

e.v�/�.dx1 C v/�.dx2 C v/
ˇ̌̌

C Err2.d/:

Applying the Hölder inequality with a positive integer r > 2, we find

(6.11) Q1.d/ 6 Q2.d/ p
o.1/
C Err2.d/;

where

(6.12) Q2.d/ D sup
16A�L2=d
16B�L2=V
16C6K=d1

†
1�1=r
1 .†2 �†3/

1=.2r/

with
†j D †j .A;B; C / D

XX
x1;x22F�p

%.x1; x2IA;B;C /
j ; for j D 1; 2;

and
†3 D

XX
x1;x22Fp

ˇ̌̌ X
v�V

e.v�/�.x1 C v/�.x2 C v/
ˇ̌̌2r
:

Trivially, we have

(6.13) †1 � CL2M 2NUWd�12 :

Furthermore, using Lemma 3.2, we have the inequality

(6.14) †3 � V 2rp C V rp2:

Next we estimate †2.
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6.2. Bounding †2

This following bound is the core of our method.

Lemma 6.1. With the above notation, we have

†2 6 .M=C C 1/2
�
1C

L22
dpV

�2
.ABLM/1Co.1/.CW gcd.b; d/CNU gcd.a; d/=d2/

for all 1 6 A� L2=d , 1 6 B � L2=V and 1 6 C 6 K=d1.

Proof. Let U1 D gcd.a;d/U andW1 D gcd.b;d/W . We operate the changes of variables

u 7!
u

gcd.a; d/
; w 7!

w

gcd.b; d/
(6.15)

in the definition (6.10) of �.x1; x2/. Note that†2 is bounded by the number of tuples with
length 16

.k; Qk; `1; Q̀1; `2; Q̀2; m1; zm1; m2; zm2; n; Qn; u; Qu;w; zw/

satisfying

jkj; j Qkj � C; `1; Q̀1; `2; Q̀2 6 L; m1; zm1; m2; zm2 6 M; jnj; j Qnj 6 2N=d2;

u; Qu � U1; w; zw � W1; kw ¤ nu; Qk zw ¤ Qn Qu;

gcd.a�k; b�n/ D gcd.a� Qk; b� Qn/ D 1; ja�k`1 C b�m1nj � A;

ja� Qk Q̀1 C b
�
zm1 Qnj � A; ja

�`2uC b
�m2wj � B; ja

� Q̀
2 QuC b

�
zm2 zwj � B;

`1m2 6� `2m1 mod p; Q̀
1 zm2 6� Q̀2 zm1 mod p;

with the additional non-divisibility conditions

(6.16) p − .a�`1uC b�m1w/.a�`2uC b�m2w/.a�k`1 C b�m1n/.a�k`2 C b�m2n/;

and

(6.17) p − .a� Q̀1 QuC b� zm1 zw/.a� Q̀2 QuC b� zm2 zw/.a� Qk Q̀1 C b� zm1 Qn/.a� Qk Q̀2 C b� zm2 Qn/;

and also such that

(6.18) .a�k`1Cb�m1n/.a� Q̀1 QuCb� zm1 zw/D.a� Qk Q̀1Cb� zm1 Qn/.a�`1uCb�m1w/Cz1p;

and

(6.19) .a�k`2Cb�m2n/.a� Q̀2 QuCb� zm2 zw/D.a� Qk Q̀2Cb� zm2 Qn/.a�`2uCb�m2w/Cz2p;

with some 0 6 jz1j; jz2j 6 Z, where

Z D 1C 4.jajKLC jbjMN/.jajLU C jbjMW /=.dp/;

so by hypothesis we have the inequality

(6.20) Z � 1C
L22
dpV
�

Note that the conditions (6.16) and (6.17) are resulted by (6.6) with changes of variables
as in (6.8) and (6.15).
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We now fix k; `1; `2; m1; m2; n; u; w, and put

aj D a
�k j̀ C b

�mjn; bj D a
�
j̀uC b

�mjw

for j D 1; 2. Note that

ja1j � A; ja2j 6 2L2=d; jb1j 6 L2=V; jb2j � B;

with a1a2b1b2 ¤ 0. Given z1; z2 with 0 6 jz1j; jz2j 6 Z as above, we now look at the
equations

(6.21) a1x1 D b1y1 C z1p; a2x2 D b2y2 C z2p

in x1; x2; y1; y2 2 Z with jx1j 6 L2=V , jx2j � B , jy1j � A and jy2j 6 2L2=d . It is
clear that the number of such tuples .x1; x2; y1; y2/ satisfying (6.21) is bounded, up to an
absolute constant, by

(6.22)
�A gcd.a1; b1/

a1
C 1

��B gcd.a2; b2/
b2

C 1
�
� gcd.a1; b1/ gcd.a2; b2/:

We claim that, for given k; `1; `2; m1; m2; n; u; w; z1; z2 as above, the number N of
tuples . Qk; Q̀1; Q̀2; zm1; zm2; Qn; Qu; zw/ satisfying the above-mentioned conditions satisfies

N � .M=C C 1/2:(6.23)

Hence

†2 �
�M
C
C1

�2
Z2

X
jkj�C

XX
`1;`26L

XX
m1;m26M

X
jnj62N=d2

X
u�U1

X
w�W1

a�k`1Cb
�m1nDa1; a

�`1uCb
�m1wDb1

a�k`2Cb
�m2nDa2; a

�`2uCb
�m2wDb2

ja1j�A; jb2j�B; kw¤nu

gcd.a1; b1/ gcd.a2; b2/

in view of (6.22). Then the desired bound for †2 follows from (6.20) and Lemma 3.3.
It suffices to prove (6.23), and keep in mind that k; `1; `2; m1; m2; n; u; w; z1; z2 are

all fixed. We now fix one of such tuples .x1; x2; y1; y2/, satisfying (6.21). Then (6.18)
and (6.19) lead us to consider the system of four equations

(6.24)

8̂̂̂<̂
ˆ̂:
a� Q̀1 QuC b

� zm1 zw D x1;

a� Qk Q̀1 C b
� zm1 Qn D y1;

a� Q̀2 QuC b
� zm2 zw D x2;

a� Qk Q̀2 C b
� zm2 Qn D y2;

in Qk; Q̀1; Q̀2; zm1; zm2; Qn; Qu; zw 2Z. Recalling the restriction Q̀1 zm2 6� Q̀2 zm1 mod p, it suffices
to consider the solutions satisfying Q̀1 zm2 ¤ Q̀2 zm1.

We now fix integers l1; l2;m1 and m2 satisfying

(6.25) l1; l2 6 L; m1;m2 6 M; l1m2 ¤ l2m1:

such that the two equations

(6.26) a� Qkl1 C b
�m1 Qn D y1; a� Qkl2 C b

�m2 Qn D y2
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are solvable in Qk; Qn with gcd. Qk; Qn/ D 1, given the above l1; l2;m1;m2. Note that the
system (6.26) has at most one solution . Qk; Qn/ because its determinant does not vanish.
Suppose that a solution to (6.26) does exist. Then by (6.25) all solutions to the second
equation in (6.24) are of the shape

Q̀
1 D l1 � s1b

�
Qn; zm1 D m1 C s1a

� Qk; 0 6 js1j �M=j Qkj �M=C;

and all solutions to the fourth equation in (6.24) are of the shape

Q̀
2 D l2 � s2b

�
Qn; zm2 D m2 C s2a

� Qk; 0 6 js2j �M=j Qkj �M=C:

After determining Q̀1; Q̀2; zm1; zm2 with Q̀1 zm2¤ Q̀2 zm1, we may find at most one tuple . Qu; zw/
satisfying the first and third equations in (6.24) simultaneously.

We have proved (6.23) so far, and thus completed the proof of Lemma 6.1.

Subsequently, by Lemma 6.1, for all 1 6 A� L2=d , 1 6 B � jajLU C jbjMW �

L2=V and 1 6 C 6 K=d1, we have the bound

(6.27)
†2 6 .M=C C 1/2

�
1C

L22
dpV

�2
�
.L22LM/1Co.1/

dV
.CW gcd.b; d/CNU gcd.a; d/=d2/:

6.3. Concluding the proof of Theorem 2.7

We substitute the bounds (6.13), (6.14) and (6.27) into (6.12) and note that

d1d2 D
d2

gcd.a; d/ gcd.b; d/
D

d2

gcd.ab; d/

since we have assumed gcd.a; b/ D 1. Hence, we derive

Q2.d/ 6 po.1/ sup
C6K=d1

.CL2M 2NUWd�12 /1�1=r .M=C C 1/1=r
�
1C

L22
dpV

�1=r
�

�L22LM
dV

�1=.2r/
.CW gcd.b; d/CNU gcd.a; d/=d2/1=.2r/.V 2rp C V rp2/1=.2r/:

It is easy to see that in the last expression, after expanding, C appears only in positive
powers, and therefore the supremum is attained at C D K=d1. Hence,

Q2.d/ 6 po.1/.KL2M 2NUW=d2/1�1=r .d1M=K C 1/
1=r
�
1C

L22
dpV

�1=r
�

�L22LM
dV

�1=.2r/
gcd.ab; d/1�1=r .KW gcd.b; d/=d1

CNU gcd.a; d/=d2/1=.2r/.V 2rp C V rp2/1=.2r/

6 po.1/.KL2M 2NUW=d2/1�1=r .d1M=K C 1/
1=r
�
1C

L22
dpV

�1=r
�

�L22KLMN
d2V 2

�1=.2r/
gcd.ab; d/1�1=.2r/.V 2rp C V rp2/1=.2r/:
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We also note that

d�2C2=r � d
1=r
1 � d�1=r � gcd.ab; d/1�1=.2r/ 6 d�2C2=r gcd.ab; d/1�1=.2r/

6 d�1 gcd.ab; d/1�1=.2r/

for r > 2. Recalling (6.7), (6.9) and (6.11) and then summing over d 6 D, we obtain

Q1 �
po.1/

UVW

X
d6D

.Q2.d/C Err2.d//C Err1

6 po.1/.KL2M 2N/1�1=r .UV W /�1=r .M=K C 1/1=r
�
1C

L22
pV

�1=r
� .L22KLMNp/

1=.2r/ .1C V �1=2p1=.2r//

CKL2M 2U�1po.1/ CKL2M
�
V C

MN

p

�
po.1/:

Taking

V D p1=r ; U D
1

4
Kp�1=r ; W D

1

4
Np�1=r ;

so that the assumption (6.4) is satisfied, we derive that

Q1 6 .KL2M 2N/1�1=r .KN/�1=r .M=K C 1/1=r
�
1C

L22
p1C1=r

�1=r
.L22KLMN/

1=.2r/

� p1=.2r/C1=r
2Co.1/

C .LM/2p1=rCo.1/ CKL2M
�
p1=r C

MN

p

�
po.1/

6 .KLMN/2�3=.2r/.KN/�1.M=KC1/1=r
�
1C

L22
p1C1=r

�1=r
L
1=r
2 p1=.2r/C1=r

2Co.1/

C .LM/2p1=rCo.1/ CKL2M
�
p1=r C

MN

p

�
po.1/:

It remains to recall (6.1) and (6.2) to conclude the proof of Theorem 2.7.

7. Proof of Theorem 2.11

Let p > max¹K;M;N º. Consider the trilinear sum of Legendre symbols

S D
X
k6K

X
m2M

X
n2N

�k Cmn
p

�
;

with

(7.1) K D bp1C1=rC�.MN/�2 C p�c:

Suppose that the values of k Cmn, for all given k;m; n in the above ranges, are always
quadratic non-residues or zero modulo p. Then we see from (2.6) that S satisfies the
trivial bound

jSj > c20KMN CO..MN=p C 1/Kp
o.1//;

where the error term accounts for the cases with k Cmn � 0 .mod p/.
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Therefore, Theorem 2.11 is proved as soon as we have the bound

(7.2) S D o.KMN/

under the hypotheses (2.5) and p tending to infinity.
We first consider the case .MN/2 >p1C1=r , for which we see from (7.1) thatK � p� .

Now (7.2) is an immediate consequence of Karatsuba presented already in (1.6) and (1.5).
We henceforth assume that .MN/2 6 p1C1=r . Applying Theorem 2.5 with the choice

a D b D 1; ˛m D 1M.m/ and ˇk;n D 1Œ1;K�.k/ � 1N .n/;

we deduce that (7.2) is proved as soon as one has the following three inequalities:

M > K1=2; K.MN/2 > p1C1=rC�=2; M > p�=4:

The choice (7.1) guarantees the above three conditions provided that

M > p�=4 and M 4N 2 > p1C1=rC�:

The restriction M > p�=4 can also be dropped, since otherwise we should have N 2 >

p1C1=r , and we may instead appeal to Karatsuba by noting that K > p� thanks to the
choice (7.1). This completes the proof of Theorem 2.11.

A. Karatsuba’s bound for double character sums

Recall that
B.˛;ˇ/ D

X
m2M

X
n2N

˛mˇn�.mC n/

as in (1.3) We now give a proof of (1.6) in the range of (1.5). More precisely, we have the
following explicit estimate for B.˛;ˇ/.

Theorem A.1. Let � be a non-trivial character of F�p and M;N � Fp two arbitrary
subsets with cardinalities M;N , respectively. For each positive integer r , we have

B.˛;ˇ/� k˛k
1�1=r
1 k˛k

1=r
2 kˇk1.Np

1=.4r/
CN 1=2p1=.2r//;

where the implicit constant depends only on r .

Remark A.2. Theorem A.1 implies that

B.˛;ˇ/� k˛k1kˇk1MN.M
�1=.2r/p1=.4r/ CM�1=.2r/N�1=2p1=.2r//:

This readily implies (1.6) for

M > p1=2C� and N > p�

by taking r > 1=�.
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The proof is quite short. From the Hölder inequality, it follows that

jB.˛;ˇ/j 6
X
m2M

j˛mj
ˇ̌̌ X
n2N

ˇn�.mC n/
ˇ̌̌

6 k˛k1�1=r1 k˛k
1=r
2 W 1=.2r/;

where
W D

X
m2M

ˇ̌̌ X
n2N

ˇn�.mC n/
ˇ̌̌2r
:

The ingredient here is that one enlarges the sum over m to Fp , and ignores the structure
of M, so that

W 6
X
m2Fp

ˇ̌̌ X
n2N

ˇn�.mC n/
ˇ̌̌2r
:

Now Theorem A.1 follows immediately from Lemma 3.1.
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