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Abstract – In previous work, the first two authors studied the notion of transitivity with respect
to cyclic subgroups for separable Abelian p-groups and modules over the ring of p-adic
integers. Here we consider briefly how the notion can be used in the context of torsion-free
Abelian groups and also look at the situation for non-separable p-groups and direct sums of
infinite-rank homocyclic p-groups.
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1. Introduction

In earlier works [6, 7], the following notions of transitivity for Abelian p-groups
and p-adic modules were introduced and studied.

Definition 1.1. A p-group G is said to be transitive with respect to cyclic sub-
groups if when X , Y are cyclic subgroups of G with (i) X Š Y and (ii) G=X Š G=Y ,
there exists an automorphism � of G with �.X/ D Y .
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We use the abbreviation “G is CS-transitive” for the full statement “G is transitive
with respect to cyclic subgroups”.

Definition 1.2. A p-groupM is said to be quotient-transitive if, given any pair
of non-zero elements x; y 2M , withM=hxi ŠM=hyi, there is an automorphism �

ofM with �.x/ D y.

Note that a quotient-transitive group is always CS-transitive but the converse is
not true, an easy example being furnished by the group G D A˚ B , where A is an
elementary p-group of infinite rank and B is cyclic of order p2 – see [6, Example 2.1].
The notions, of course, coincide for finite Abelian p-groups and finitely generated
p-adic modules. Among the principal results obtained in [6, 7] were the seemingly
unknown facts that both finite Abelian p-groups and finitely generated p-adic modules
are quotient-transitive. The arguments depended heavily on the technical [6, Propo-
sition 3.1], which gives information on the structure of certain quotient groups; this
result will be useful in some of our arguments in this work.

Throughout, all groups will be additively written Abelian groups and we will
generally omit the adjective Abelian. We will examine further the notion of CS-
transitivity in the areas of non-separable p-groups and direct sums of infinite-rank
homocyclic p-groups; we will also look briefly at the situation in relation to torsion-
free groups. Our main results are that (i) the non-separable generalised Prüfer groups of
the formH!Cn, with n finite, are CS-transitive butH!C! is not (Theorem 3.4); (ii) if
� D ¹n1; n2; : : :º is an infinite set of integers with n1 < n2 < � � � and G� D

L1
iD1Gi ,

where each Gi is an infinite-rank homocyclic p-group of exponent ni , then G� is
CS-transitive provided that for each i; niC1 � 2ni C 1 (Corollary 4.7). For torsion-
free groups we show that both transitive and strongly separable torsion-free groups
are CS-transitive; in particular homogeneous completely decomposable groups are
CS-transitive.

We also provide further evidence of the complexity of characterising CS-transitive
groups of the type G� above.

In the classical theory of transitivity due to Kaplansky [9, 10] using height or Ulm
sequences, it turns out that in some not too precisely defined way, “most” groups are
transitive. However, the classes of quotient-transitive and CS-transitive groups are
“small”, but still large enough to be interesting.

Our notation is largely standard and terminology in relation to Abelian group
theory may be found in the standard works of Fuchs [4, 5], an exception being that
we indicate a jump in a height sequence of an element using ", so that U.x/ D
.r0; r1; : : : ;"rn1

; rn1
C 1; : : : ;"rn2

; rn2
C 1; : : : ;"rnt

D1/ indicates that there are
jumps immediately before rn1

; : : : ; rnt
.
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2. CS-transitivity in torsion-free groups

In this section we will take a brief look at the situation in torsion-free groups in
relation to CS-transitivity. The general problem is quite complex and is deserving of a
full treatment in its own right; we will content ourselves by presenting some simple
results that require a minimum of technical background. Our first observation is that
the two notions of transitivity with respect to cyclic subgroups and quotient transitivity
coincide in this situation: this is immediate since any two cyclic subgroups of a torsion-
free group are isomorphic, both being isomorphic to the group of integers Z. We will
state our results in terms of CS-transitivity.

Our first result is to show that transitive torsion-free groups are CS-transitive.

Lemma 2.1. LetG be a torsion-free Abelian group and x;y 2G such thatG=hxiŠ
G=hyi. Then the height sequences of x and y coincide.

Proof. Let x; y 2 G be as stated in the lemma. Obviously we have G=.hxi�/ Š
.G=hxi/=.hxi�=hxi/ where, as usual, for a subgroup H of a torsion-free group G,
H� denotes the purification of H in G. Since the left-hand side of the equation
is torsion-free we conclude that hxi�=hxi is the torsion part of G=hxi. Hence, if
G=hxi Š G=hyi, then hxi�=hxi Š hyi�=hyi. By [1, Theorem 1.4], it follows that the
height sequences of x and y are the same.

Corollary 2.2. Let G be a transitive torsion-free Abelian group. Then G is
CS-transitive. In particular, rank 1 torsion-free groups are CS-transitive.

Proof. Assume that x; y 2 G and that G=hxi Š G=hyi. By Lemma 2.1 above we
conclude that x and y have the same height sequences and thus transitivity implies that
there is an automorphism of G mapping x onto y, as required for CS-transitivity.

Our next result shows that non-CS-transitive groups can exist even at rank 2.

Example 2.3. Let H D R1e ˚ R2f be a completely decomposable group of
rank 2 such that the types tp.R1/ and tp.R2/ are incomparable and satisfy R1 \R2 D
Z. Assume that there is a prime p such that 1=p 62 R1 and 1=p 62 R2. ThenH is not
CS-transitive.

Proof. We need to find elements x; y 2 H such that the two quotients H=hxi
and H=hyi are isomorphic, but x and y cannot be mapped onto each other by an
automorphism ofH . Let p be as in the hypothesis of the lemma and put x D pe C f
and y D eC pf . Obviously, any isomorphism ofH that maps x onto y would have to
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send pe onto e, which is impossible since multiplication by p is not an isomorphism
of R1.

We first claim that x and y are pure elements ofH . Assume that nh 2 hxi for some
n2N and hD r1eC r2f 2H where ri 2Ri . Thus there ism2N with .n;m/D 1 and
n.r1eC r2f /D nhDmx Dm.peC f /. Equating coefficients we obtain nr1 Dmp
and nr2 D m and hence n

p
r1 D nr2, which implies that pr2 D r1. Consequently,

r1eC r2f Dpr2eC r2f D r2.peC f /. Moreover, sinceR1\R2DZ and 1=p 62Ri
for i D 1; 2 we conclude r2 2 Z and thus

r1e C r2f D pr2e C r2f D r2.pe C f / 2 hxi:

Similar arguments show that also y is pure inH and it remains to prove thatH=hxi Š
H=hyi. However, it is easily seen that both quotients are torsion-free of type R1 CR2
and hence must be isomorphic.

Note that the group in Example 2.3 above is completely decomposable but is not
homogeneous.

We now turn our attention to strongly separable torsion-free groups. Recall that a
torsion-free group is said to be strongly separable if each of its pure rank 1 subgroups
is a direct summand; homogeneous completely decomposable groups are, of course,
strongly separable.

Proposition 2.4. Let G be a strongly separable torsion-free group. Then G is
CS-transitive.

Proof. Assume that G is strongly separable and let x; y 2 G such that G=hxi Š
G=hyi. By Lemma 2.1 we conclude that x and y have the same height sequences.
Moreover, since G is strongly separable it follows that the pure subgroups hxi� and
hyi� are direct summands ofG, i.e.G D hxi�˚Gx D hyi�˚Gy . Obviously, there is
a homomorphism from hxi� to hyi� since x and y are of the same type. By assumption
we also have

.hxi�=hxi/˚Gx D G=hxi Š G=hyi D .hyi�=hyi/˚Gy ;

and since Gx and Gy are torsion-free while hyi�=hyi and hxi�=hxi are torsion, we
conclude that Gy Š Gx . Putting this together with the homomorphism between hxi�
and hyi� we obtain an automorphism of G mapping x onto y.

Our final results in this brief introduction to CS-transitivity for torsion-free groups
establish conditions which ensure that certain subgroups of torsion-free CS-transitive
groups are again CS-transitive.
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Lemma 2.5. Let G D G1 ˚G2 be a CS-transitive torsion-free Abelian group such
that ¹G1; G2º is a semi-rigid pair, i.e. either G1 or G2 is fully invariant in G. Then
G1 and G2 are both CS-transitive.

Proof. Let x; y 2 G2 be such that G2=hxi and G2=hyi are isomorphic. Then also

G=hxi D G1 ˚ .G2=hxi/ Š G1 ˚ .G2=hyi/ D G=hyi;

and by the CS-transitivity of G we obtain an isomorphism ˛ of G mapping .0; x/ onto
.0; y/. If G2 is fully invariant in G, then clearly ˛ induces an isomorphism on G2 that
maps x onto y. So assume that G1 is fully invariant in G, i.e. Hom.G1; G2/ D 0. Let

˛ D

 
˛1 ˛2

˛3 ˛4

!
:

By assumption ˛3 D 0, and hence ˛ is an isomorphism if and only if ˛1 and ˛4 are
isomorphisms. Thus ˛4 is an automorphism of G2 that maps x onto y. An identical
argument holds if one starts with x; y 2 G1.

We have an immediate corollary.

Corollary 2.6. Let A D
L
�2Tcr.A/

A� be a completely decomposable group
where Tcr.A/ is the critical typeset ofA. Fix a type � 2 Tcr.A/ and letADA.�/˚A�

where A� D
L
�2Tcr.A/;� 6��

A� and A.�/ D
L
�2Tcr.A/;���

.
If A is CS-transitive, then A.�/ and A� are both CS-transitive.

Proof. Since A.�/ is fully invariant in A and Hom.A.�/; A� / D 0, the claim
follows from Lemma 2.5 above.

3. CS-transitivity for non-separable p-groups

In the earlier works [6,7], the notions of quotient transitivity and CS-transitivity
were investigated in the context primarily of separable p-groups. In this section we turn
our attention to the situation for non-separable p-groups. Recall that in [6, Theorem
3.2, Corollary 3.4] it was established that finite p-groups and reduced semi-standard
separable p-groups are both quotient transitive and thus CS-transitive.

Proposition 3.1. Suppose that G is a reduced semi-standard p-group and

(i) p!G is cyclic of order pn;

(ii) G=p!Cn�1G is CS-transitive.

Then G is CS-transitive.
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Proof. Suppose x, y are arbitrary in G such that o.x/ D o.y/ and G=hxi Š
G=hyi. There are three outcomes to consider:

(a) hxi \ p!G D 0 D hyi \ p!G;

(b) hxi \ p!G ¤ 0 ¤ hyi \ p!G;

(c) without loss of generality hxi \ p!G D 0 but hyi \ p!G ¤ 0.

Case (a) is easily handled by [6, Theorem 4.2 and Lemma 4.3].

Case (c). We next show that case (c) cannot occur. Since hxi, hyi are both finite,
they are nice in the sense of Hill, therefore, p!. G

hxi
/ D p!GChxi

hxi
Š

p!G
hxi\p!G

, and
similarly for hyi. Since p!. G

hxi
/ Š p!. G

hyi
/, so p!G

hxi\p!G
Š

p!G
hyi\p!G

. Thus case (c)
cannot occur; note that we have used only the finiteness of p!G to show that this case
cannot occur.

Case (b). Let p!G D hai and set H D p!Cn�1G Š Z.p/. Now hxi \ p!G D
pk.p!G/ and hyi \ p!G D pl.p!G/, where 0 � k; l < n. Since G=hxi Š G=hyi
we conclude k D l .

Furthermore, pkaDprux for some r relatively prime to p. Similarly, pkaDpsvy
for some s relatively prime to p. Since o.x/ D o.y/ we must have r D s. Now
consider the elements Nx, Ny of xG D G=H , where Nx D x C H , Ny D y C H ; note
that o. Nx/ D o. Ny/ D prCn�k�1. We also have that hxi CH D hxi and similarly for y,
so

G

hxi
Š

G=H

hxi=H
Š
xG

h Nxi
Š

G

hyi
Š
xG

h Nyi
:

Since we are assuming xG is CS-transitive, there is an automorphism of xG mapping
Nx 7! Ny; in particular, U xG. Nx/ D U xG. Ny/:

UG.x/ D .htG.x/; : : : ; htG.pn�kCr�1x/;1/

D .htG.x/; : : : ; htG.pn�kCr�2x/; ! C n � 1;1/:

We have a similar result for the Ulm sequence of y. Now consider the canonical
projection �WG ! G=H D xG. The Ker � consists of elements with generalised p-
heights � � D ! C n � 1. By [4, Lemma 37.1], it follows that ht xG.�.g// D htG.g/
provided htG.g/ < � . In particular,

htG.x/ D ht xG. Nx/; : : : ; htG.p
n�kCr�2x/ D ht xG

�
pn�kCr�2 Nx

�
;

and similarly for y and Ny.
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So we conclude that

UG.x/ D
�
ht xG. Nx/; : : : ; ht xG.pn�kCr�2 Nx/; ! C n � 1;1

�
D
�
ht xG. Ny/; : : : ; ht xG.pn�kCr�2 Ny/; ! C n � 1;1

�
D UG.y/:

Now p!G is cyclic and hence G is transitive in the sense of Kaplansky (see, for
example, [2, Lemma 2]), so there is an automorphism ' of G with '.x/ D y. Since x,
y were arbitrary subject to o.x/ D o.y/ and G=hxi Š G=hyi, we thus have that G is
CS-transitive.

Corollary 3.2. If G is a semi-standard reduced p-group with p!G cyclic of
order p, then G is CS-transitive.

Proof. Take n D 1 in Proposition 3.1 and note that G=p!G is semi-standard
since G is semi-standard. Since G=p!G is necessarily separable, it follows from
[6, Corollary 4.4] that G=p!G is CS-transitive, and thus G is CS-transitive.

We want to apply Proposition 3.1 to certain of the so-called Prüfer groups H� .
We recall some well-known properties of these groups; a detailed discussion of them
may be found in, for example, [4, Section 81]. The groups are constructed inductively
starting fromH0 D 0 to satisfy the following four conditions:

(i) H� is of length � ;

(ii) p�H�C1 is cyclic of order p andH�C1=p�H�C1 Š H� ;

(iii) for a limit ordinal � ,H� D
L
�<� H�;

(iv) every Ulm invariant ofH� is at most j� j.

We state two properties of Prüfer groups which are well known and easy to prove
by induction using the defining properties above:

• For each 1 � n � !, p!H!Cn Š Z.pn/.

• For each 1�n�!,H!Cn is semi-standard; in fact, the Ulm invariant fk.H!Cn/D
1 for all k < !.

Lemma 3.3. For each 1 � n < !,H!Cn is CS-transitive.

Proof. If nD 1, p!H!C1ŠZ.p/ andH!C1=p!H!C1ŠB , a standard p-group
and hence CS-transitive by [6, Corollary 4.4]. SinceH!C1 is also semi-standard, we
have by Corollary 3.2 thatH!C1 is CS-transitive.

Proceed by induction: AssumeH!Cn is CS-transitive and considerH!CnC1. Then
from the bullet points above,H!CnC1 is semi-standard and p!H!CnC1 Š Z.pnC1/.
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Furthermore, H!CnC1=p!CnH!CnC1 Š H!Cn is CS-transitive by our induction
hypothesis and so, applying Proposition 3.1, gives the desired result thatH!CnC1 is
CS-transitive.

Thus, we have established the core part of the following:

Theorem 3.4. For each 1 � n < !, H!Cn is CS-transitive, but H!C! is not
CS-transitive.

Proof. It remains only to show thatH!C! is not CS-transitive. SinceH!C! D
H0 ˚H1 ˚ � � � ˚H! ˚H!C1 ˚ � � �, utilising the bullet points above we see that

f0.H!C!/ D f0.H0/C f0.H1/C � � � C f0.H!C1/C � � �

� f0.H!C1/C � � �

� 1C 1C � � � � @0I

similarly, f1.H!C!/ � @0. But then it follows from [6, Proposition 5.9] thatH!C! is
not CS-transitive.

The proof of our next result has many similarities with that of Proposition 3.1 but
the result is somewhat more powerful.

Theorem 3.5. Suppose G is a semi-standard reduced p-group which is transitive
(in the sense of Kaplansky) and p!G is finite. Then G is CS-transitive.

Proof. Let x, y be arbitrary in G such that o.x/ D o.y/ and G=hxi Š G=hyi.
Then p!. G

hxi
/ D p!GChxi

hxi
Š

p!G
hxi\p!G

and similarly for p!. G
hyi
/. As in the proof of

Proposition 3.1, the same three cases need to be considered. Case (a) follows exactly
as in that proposition, while case (c) cannot happen due to the finiteness of p!G, as
observed previously.

So we restrict our consideration to case (b) where hxi \ p!G ¤ 0 ¤ hyi \ p!G.

Since p!.G=hxi/Šp!.G=hyi/we see that jhxi \p!GjD jhyi \p!Gj and since
both groups are cyclic we may write hxi \p!G D hai and hyi \p!G D hbi for some
a; b 2 G. Thus jhaij D jhbij and as o.x/D o.y/, we can write a D prx, b D pry for
some integer r . Hence p!.G=hai/ Š p!.G=hbi/ and o.a/ D o.b/. Now, since p!G
is finite, it is CS-transitive by [6, Theorem 4.2]. Thus, there is an automorphism of
p!G mapping a onto b. Hence Up!G.p

rx/ D Up!G.p
ry/. Note that Up!G.p

rx/

is of the form .n1; n2; : : : ; nk;1/, where the ni are integers and so it follows that
UG.p

rx/ D .! C n1; : : : ; ! C nk;1/ D UG.p
ry/.
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Now consider the elements Nx, Ny of xG D G=p!G, where Nx D x C p!G and
Ny D y C p!G. Similar to the proof of Proposition 3.1, we have xG

h Nxi
Š
xG
h Nyi

and o. Nx/D
o. Ny/D pr . SinceG is semi-standard, so too is xG DG=p!G and the latter is separable,
so it follows that xG D G=p!G is CS-transitive by [6, Corollary 4.4]. Hence there
is an automorphism of xG mapping Nx onto Ny, and U xG. Nx/ D U xG. Ny/. By [4, Lemma
37.1], htG.x/ D ht xG.x C p

!G/ D ht xG. Nx/ since htG.G/ < !; similarly, htG.px/ D
ht xG.p Nx/; : : : ; htG.p

r�1x/ D ht xG.p
r�1 Nx/, and similarly for y. Piecing together this

information with that pertaining to UG.prx/, we conclude that UG.x/ D UG.y/.
Now, since G is transitive (in the sense of Kaplansky) by hypothesis, there is an
automorphism of G mapping x onto y, and so G is CS-transitive.

The additional strength of Theorem 3.5 allows us to extend our results on Prüfer
groups to certain direct sums of these groups.

Corollary 3.6. If G D
LN
jD1H!Cnj

, whereH!Cnj
is a Prüfer group and for

each j , 1 � nj < !. Then G is CS-transitive and so too is any direct summand of G.

Proof. Note that G is totally projective by [4, Theorem 82.3] and hence by a well-
known result of Hill [8], it is transitive. Furthermore, it follows easily from the bullet
points above that G is also semi-standard. The remaining hypothesis in Theorem 3.5
is immediate since p!G is a direct sum of finitely many cyclic p-groups and hence G
is CS-transitive.

IfH is any direct summand of G, thenH is also totally projective and hence tran-
sitive. Since G is CS-transitive, so too is its transitive summandH by [6, Proposition
4.4].

4. Non-semi-standard groups

Before embarking on our study of non-semi-standard groups in relation to CS-
transitivity, we look at the difference between quotient-transitivity and CS-transitivity
in a simple case. In [6, Theorem 4.8], we saw that a group G of the form G D

F ˚
L
� Z.pn/, with F finite and � infinite, is quotient-transitive if, and only if

the exponent of F is strictly less than n. The situation is somewhat different for
CS-transitivity.

Proposition 4.1. Suppose that B D
L
� Z.pn/, where � is an infinite cardinal,

is an infinite homocyclic group and F is a finite p-group. Then G D B ˚ F is CS-
transitive.

Proof. Let x; y 2 G be such that o.x/ D o.y/ and G=hxi Š G=hyi. Similar to
the proof of [6, Theorem 4.2], using Baer’s lemma [4, Lemma 65.4] we may find two
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finite summands C ,D of G with x 2 C , y 2 D, such that for every integer ˛, the ˛th
Ulm–Kaplansky invariants of C ,D are either 0 or 1. Write G D C ˚H D D ˚K.
Set

� D
®
.˛; f˛.C // j ˛ ¤ n � 1; f˛.C / ¤ 0

¯
;

T D
®
.ˇ; fˇ .D// j ˇ ¤ n � 1; fˇ .D/ ¤ 0

¯
;

� 0 D
®
.
; f
 .C=hxi// j 
 ¤ n � 1; f
 .C=hxi/ ¤ 0

¯
;

T 0 D
®
.ı; fı.D=hyi// j ı ¤ n � 1; fı.D=hyi/ ¤ 0

¯
:

SinceG=hxi ŠC=hxi˚H andG=hyi ŠD=hyi˚K, then for every ˛, f˛.G=hxi/D
f˛.C=hxi/C f˛.H/ and f˛.G=hyi/ D f˛.D=hyi/C f˛.K/. In particular, if ˛ ¤
n � 1, then all Ulm–Kaplansky invariants f˛ of G, C , D, H , K are finite. Thus,
f˛.G/ D f˛.C /C f˛.H/ and f˛.G/ D f˛.D/C f˛.K/. By substituting, we get

f˛.G=hxi/ D f˛.C=hxi/C f˛.G/ � f˛.C /;

f˛.G=hyi/ D f˛.D=hyi/C f˛.G/ � f˛.D/:

Furthermore, by hypothesis, G=hxi Š G=hyi and since f˛.G/ is finite we thus have

(?) f˛.C=hxi/C f˛.D/ D f˛.D=hyi/C f˛.C /:

Now let ˛ 2 � . Then it follows from (?) that f˛.C=hxi/C f˛.D/ D f˛.D=hyi/C
f˛.C /, and note that as f˛.C / ¤ 0, we know from [6, Proposition 4.1] that
f˛.C=hxi/ D 0, thus, f˛.C=hxi/ C f˛.D/ D f˛.D/ D f˛.D=hyi/ C f˛.C / �

f˛.D=hyi/ C 1, which implies that ˛ 2 T . Since ˛ is arbitrarily chosen from � ,
we conclude that � � T . Reversing the roles of � , T in the above proof, we also get
� � T , therefore, we have � D T

Note that for every integer ˛, the ˛th Ulm–Kaplansky invariants of C ,D are either
0 or 1, so if ˛ ¤ n � 1, then f˛.C / D f˛.D/.

So there are now three possibilities to handle:

(i) fn�1.C / D fn�1.D/ D 1;

(ii) fn�1.C / D fn�1.D/ D 0;

(iii) one of fn�1.C /, fn�1.D/ is equal to 1 and the other is 0.

Before analysing the three possibilities, we first note a further consequence of the
equality (?). If 
 2 � 0, then f
 .C=hxi/¤ 0 and f
 .C=hxi/C f
 .D/D f
 .D=hyi/C
f
 .C /. Since 
 ¤ n� 1, then f˛.C /D f˛.D/, so f
 .C=hxi/D f
 .D=hyi/¤ 0. So

 2 � 0, and as 
 is arbitrary from � 0, thus � 0 � T 0. Reversing the roles of � 0 and T 0,
we conclude � 0 D T 0.
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Case (iii) does not occur. Assume, for a contradiction, that fn�1.C / D 1 and
fn�1.D/ D 0, so C Š D ˚ Z.pn/. Note that since fn�1.C / D 1, by [6, Proposition
4.1], fn�1.C=hxi/ D 0. Observe also that fn�1.D=hyi/ D 0; if not, then D=hyi �
C=hxi ˚ Z.pn/. So we have jDj

o.y/
�
jC j
o.x/
� pn D jDj�p

n

o.x/
� pn – impossible as o.x/ D

o.y/. Thus, fn�1.C=hxi/ D fn�1.D=hyi/ D 0 and so C=hxi Š D=hyi as they have
the same set of Ulm–Kaplansky invariants. Note that o.x/D o.y/, so C=hxi ŠD=hyi
implies jC j D jDj, which is contrary to C Š D ˚Z.pn/. Therefore, case (iii) cannot
happen.

Now consider the remaining cases (i) and (ii).
In case (i), fn�1.C / D fn�1.D/ D 1 implies C Š D. Furthermore, by [6, Propo-

sition 4.1], fn�1.C /¤ 0 implies fn�1.C=hxi/D 0; similarly forD andD=hyi. Thus,
in this case, C=hxi Š D=hyi. So by [6, Theorem 4.2] and by cancellation theory (see,
for example, [3]), the existence of an automorphism of G mapping x to y follows.

Similar arguments in case (ii) give C Š D and since o.x/ D o.y/, we must have
jC=hxij D jD=hyij. Since f˛.C=hxi/ D f˛.D=hyi/ for all ˛ ¤ n � 1, this forces
fn�1.C=hxi/ D fn�1.D=hyi/ and hence C=hxi Š D=hyi. Therefore, as in case (i),
there is an automorphism of G mapping x to y.

In the final section of [6] the situation pertaining to groups which were not semi-
standard was briefly considered and it was quite easy to find some arithmetic conditions
which ensure that a group is not CS-transitive. We want to investigate this further and
in a somewhat more systematic way. So throughout this section we will consider a set
� , usually finite, of strictly increasing integers, � D ¹n1; : : : ; ntº, and the associated
group G� D G1 ˚G2 ˚ � � � ˚Gt , where each Gi is a homocyclic group of infinite
rank and exponent ni . The rank of the homocyclic components will not be of interest
other than the fact that each is infinite. It is easy to show that G� is not CS-transitive if
any of the following hold – see [6, Proposition 4.9, Example 4.11]:

• nj D 2ni ; ni C nk D 2nj for some i < j < k.

There are two further elementary conditions which lead to the failure of CS-
transitivity:

• ni C nj D nk; ni C n` D nj C nk for some ni < nj < nk < n`.

We give the short proof of the final claim leaving the simpler proof of the first to
the reader. Let ei be a generator of a cyclic summand of Gi and set x D pnke`, so
that e.x/ D n` � nk and G=hxi Š G ˚ Z.pnk / Š G. However, if y D pni ej then
e.y/D nj � ni D n` � nk D e.x/ andG=hxi ŠG ˚Z.pni /ŠG ŠG=hyi. Clearly,
no automorphism of G can map x 7! y, so G is not CS-transitive.

Our first two results illustrate situations in which the exclusion of some of the above
relations also gives sufficient conditions for CS-transitivity.
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Proposition 4.2. Let G D A˚ B , where A D
L
� Z.pr/, B D

L
� Z.ps/, �,

� are infinite, and r < s. Then G is CS-transitive if and only if 2r ¤ s.

Proof. The necessity follows from the bullet points above. For the sufficiency,
assume 2r ¤ s. Suppose that x; y 2 G. Since G is certainly transitive (in the sense of
Kaplansky), it suffices to show that if G=hxi Š G=hyi and e.x/ D e.y/, then U.x/ D
U.y/. Suppose that the Ulm (height) sequence of x is U.x/ D .r0; r1; : : : ; "rn1

;

rn1
C 1; : : : ;"rn2

; rn2
C 1; : : : ;"rnt

D1/, and U.y/ D .s0; s1; : : : ;"sm1
; sm1

C 1;

: : : ;"sm2
; rm2

C 1; : : : ;"rmu
D1/. Note that in this case, the exponent e.x/ of x is

nt , and also e.y/ D mu. The proof is divided into three cases:

(i) both Ulm sequences have two gaps;

(ii) one Ulm sequence has two gaps, and the other one has one gap;

(iii) both Ulm sequences have one gap.

In case (i), U.x/D .r0; r1; : : : ;"rn1
; rn1
C 1; : : : ;"rn2

D1/ and U.y/D .s0; s1;
: : : ;"sm1

; sm1
C 1; : : : ;"sm2

D1/. By [4, Lemma 65.4], there are integers n1, n2,
k1, k2 with 0 < n1 < n2, 0 � k1 < k2, and c1; c2 2 G with the following properties:

(a) C D hc1i ˚ hc2i is a summand of G with e.c1/ D n1 C k1, e.c2/ D n2 C k2,
and r0 D k1, rn1

D n1 C k2;

(b) x can be written as x D pk1c1 C p
k2c2.

A similar result holds for y: there are integers m1, m2, l1, l2 with 0 < m1 < m2,
0 � l1 < l2, and d1; d2 2 G with the following properties:

(a0) D D hd1i ˚ hd2i is a summand of G with e.d1/ D m1 C l1, e.d2/ D m2 C l2,
and s0 D l1, sm1

D m1 C l2;

(b0) y can be written as y D pl1d1 C pl2d2.

By [6, Proposition 4.1], G=hxi is isomorphic to G ˚ Z.pk1/ ˚ Z.pk2Cn1/ and
G=hyi Š G ˚ Z.pl1/˚ Z.pl2Cm1/.

In this case, note that n1 C k1 < n2 C k2, and both belong to the set ¹r; sº. So
n1 C k1 D r , n2 C k2 D s. Similarly, m1 C l1 D r , m2 C l2 D s. Since e.x/ D e.y/
by hypothesis, n2 D m2. Thus k2 D l2.

Furthermore, G=hxi Š G=hyi, so G ˚ Z.pk1/˚ Z.pk2Cn1/ Š G ˚ Z.pl1/˚

Z.pl2Cm1/. Observe that r < k2 C n1, l2 Cm1 < s, fG.k2 C n1 � 1/ D fG.l2 C
m1 � 1/ D 0, that is to say, G has no cyclic summand isomorphic to Z.pk2Cn1/ or to
Z.pl2Cm1/. Hence we see k2C n1 D l2Cm1 and so n1 Dm1. By the same reasoning
k1 D l1, since 0 � k1; l1 < r .

We conclude in this case that ni D mi , ki D li , i D 1; 2. Thus, U.x/ D U.y/ and
there is an automorphism of G taking x onto y.
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For case (ii), without loss of generality, assume x is the same as in case (i), U.y/D
.s0; s1; : : : ; "sm1

D 1/. Then there is a summand D D hd1i of G with e.d1/ D
m1 C l1, s0 D l1 and y can be written as y D pl1d1. Thus G=hyi Š G ˚ Z.pl1/.
First note that e.x/ D e.y/ implies n2 D m1.

By assumption,G=hxiŠG=hyi, that is,G˚Z.pk1/˚Z.pk2Cn1/ŠG˚Z.pl1/.
As in case (i), we have k2 C n1 D l1; so k2 C n1 D l1 > r and l1 C m1 2 ¹r; sº,
therefore, l1 Cm1 D s. But then s D l1 Cm1 D k2 C n1 Cm1 D k2 C n1 C n2 D
s C n1 – a contradiction since n1 > 0.

In case (iii), since U.x/ D .r0; r1; : : : ;"rn1
D1/, we have by a similar argument

to that in case (i) that there is a summand C D hc1i of G with e.c1/ D n1 C k1,
r0 D k1 and x can be written as x D pk1c1 and G=hxi Š G ˚ Z.pk1/. Similarly,
since U.y/ D .s0; s1; : : : ;"sm1

D 1/, as in case (i) there is a summand D D hd1i
of G with e.d1/ D m1 C l1, s0 D l1 and y can be written as y D pl1d1 and that
G=hyi Š G ˚ Z.pl1/. First notice that e.x/ D e.y/ implies that n1 D m1.

There are two possibilities for k1, l1: (1) k1 D l1, (2) k1 ¤ l1, with k1; l1 2
¹0; r; sº. In possibility (1), then n1 D m1, k1 D l1, so U.x/ D U.y/ and there is an
automorphism of G from x onto y. For possibility (2), since s � k1 C n1 > k1, we
have s � l1 Cm1 > l1, so actually, k1; l1 2 ¹0; rº. Then without loss of generality,
assume k1 D 0, l1 D r . Thus, k1 C n1 D n1 < l1 C m1 D r C n1. As k1 C n1,
l1 C m1 2 ¹r; sº, we have k1 C n1 D n1 D r; l1 C m1 D r C n1 D s, so 2r D s –
contrary to our assumption that 2r ¤ s.

The idea in the proof of the next result is similar to that in Proposition 4.2 above,
but more cases need to be handled. The necessity is justified by the bullet points above.

Proposition 4.3. Let G D A1 ˚ A2 ˚ A3, where A1 D
L
� Z.pr/, A2 DL

� Z.ps/, A3 D
L
� Z.pt /, �, �, � are infinite, and r < s < t . Then G is CS-

transitive if and only if 2r ¤ s, 2r ¤ t , 2s ¤ t , r C s ¤ t , and r C t ¤ 2s.

Proof. For the sufficiency, assume 2r ¤ s, 2r ¤ t , 2s ¤ t , r C s ¤ t , and r C t ¤
2s. Suppose that x; y 2 G. Since G is transitive in the sense of Kaplansky, it suffices
to show that if G=hxi Š G=hyi and e.x/ D e.y/, then U.x/ D U.y/. There are three
cases:

(i) one Ulm sequence of x, y has three gaps;

(ii) one Ulm sequence has two gaps, the other has at most two gaps;

(iii) both Ulm sequences have one gap.

Case (i). Without loss of generality, assume U.x/ D .r0; r1; : : : ;"rn1
; rn1
C 1; : : : ;

"rn2
; rn2
C 1; : : : ;"rn3

D1/. As in the proof of Proposition 4.2, by [4, Lemma 65.4],
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we have integers n1, n2, n3, k1, k2, k3 with 0 < n1 < n2 < n3, 0 � k1 < k2 < k3,
and c1; c2; c3 2 G with the following properties:

(a) C D hc1i ˚ hc2i ˚ hc3i is a summand of G with e.c1/ D n1 C k1, e.c2/ D
n2 C k2, e.c3/ D n3 C k3, and r0 D k1, rn1

D n1 C k2, rn2
D n2 C k3;

(b) x can be written as x D pk1c1 C p
k2c2 C p

k3c3.

Similarly, if the Ulm sequence of y has three gaps, say U.y/ D .s0; s1; : : : ; "sm1
;

sm1
C 1; : : : ; "sm2

; sm2
C 1; : : : ; "sm3

D 1/, then by [4, Lemma 65.4] we have
integers m1, m2, m3, l1, l2, l3 with 0 < m1 < m2 < m3, 0 � l1 < l2 < l3, and
d1; d2; d3 2 G with the following properties:

(a0) D D hd1i ˚ hd2i ˚ hd3i is a summand of G with e.d1/ D m1 C l1, e.d2/ D
m2 C l2, e.d3/ D m3 C l3, and r0 D l1, rm1

D m1 C l2, rm2
D m2 C l3;

(b0) y can be written as y D pl1d1 C pl2d2 C pl3d3.

As e.x/ D e.y/ we have n3 D m3, and by [6, Proposition 4.1], G=hxi Š G=hyi
implies

G ˚ Z.pk1/˚ Z.pk2Cn1/˚ Z.pk3Cn2/

Š G ˚ Z.pl1/˚ Z.pl2Cm1/˚ Z.pl3Cm2/:

Hence e.c1/ D n1 C k1 D r , e.c2/ D n2 C k2 D s, e.c3/ D n3 C k3 D t , and in the
same way, e.d1/ D m1 C l1 D r , e.d2/ D m2 C l2 D s, e.d3/ D m3 C l3 D t . Since
s < k3 C n2, l3 Cm2 < t , we have k3 C n2 D l3 Cm2, hence, n2 D m2; in a similar
way, we have k2 D l2, and n1 D m1, k1 D l1. Therefore, U.x/ D U.y/.

If the Ulm sequence of y has two gaps, say U.y/ D .s0; s1; : : : ;"sm1
; sm1

C 1;

: : : ;"sm2
D1/, appealing again to [4, Lemma 65.4], we have y D pl1d1 C pl2d2.

Then e.x/D e.y/ implies that n3 Dm2; in addition, by [6, Proposition 4.1],G=hxi Š
G=hyi means

(�) G ˚ Z.pk1/˚ Z.pk2Cn1/˚ Z.pk3Cn2/ Š G ˚ Z.pl1/˚ Z.pl2Cm1/:

If k1 ¤ 0, then k1 < r and we also have r < k2 C n1 < s < k3 C n2 < t , so
that the left-hand side of (�) has three non-zero summands with exponents not in
the set ¹r; s; tº. Since the right-hand side of (�) has at most two such summands,
this is impossible and so we have k1 D 0. Furthermore, we must then have n1 D r ,
l1 D k2 C n1, l2 Cm1 D k3 C n2; recall also that n3 D m2. Thus l1 > r and so it
follows that l1 Cm1 D s D nC 2C k2. So k2 C n1 Cm1 D n2 C k2, which shows
that n2 D n1 Cm1 and as l2 Cm1 D k3 C n1 Cm1 we deduce that l2 D k3 C n1.
However, since l1 C m1 D s, we must have l2 C m2 D t D n3 C k3, which gives
l2 D k3, which contradicts our previous conclusion that l2 D k3 C n1. Thus this case
cannot occur.
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If the Ulm sequence of y has one gap, that is to say, U.y/ D .s0; s1; : : : ;

"sm1
D1/, then as in the previous case, by [4, Lemma 65.4], write y D pl1d1. Note

that e.x/ D e.y/ implies n3 D m1. By [6, Proposition 4.1], we have G=hxi Š G=hyi,
which meansG ˚Z.pk1/˚Z.pk2Cn1/˚Z.pk3Cn2/ŠG ˚Z.pl1/. This is impos-
sible since neither k2 C n1 nor k3 C n2 belongs to the set ¹0; r; s; tº, and G ˚Z.pl1/

does not have two cyclic summands isomorphic to Z.pk2Cn1/ and Z.pk3Cn2/ respec-
tively.

Case (ii). Without loss of generality assume U.x/ D .r0; r1; : : : ;"rn1
; rn1
C 1; : : : ;

"rn2
D1/. Similarly to case (i), by [4, Lemma 65.4] we can write xDpk1c1Cp

k2c2.
If the Ulm sequence of y has two gaps, by [4, Lemma 65.4], we may write x D
pl1d1 C p

l2d2. Note that e.x/ D e.y/ gives n2 D m2. Using [6, Proposition 4.1], we
have G=hxi Š G=hyi, which means

(��) G ˚ Z.pk1/˚ Z.pk2Cn1/ Š G ˚ Z.pl1/˚ Z.pl2Cm1/:

Subcase (a) k2 C n1 D s. Note that we then have k1 C n1 D r , k2 C n2 D t , and
0 � k1 < r . As r < l2 C m1 and (��) gives us that Z.pl2Cm1/ is isomorphic to a
summand ofG˚Z.pk1/˚Z.pk2Cn1/, we must have l2Cm1 2 ¹0;r; s; tº and clearly
the only possibility is l2 Cm1 D s. Therefore, k1 C n1 D l1 Cm1 D r , k2 C n2 D
l2 Cm2 D t . Straightforward calculation then gives us that ni D mi , k1 D li , i D 1; 2.
So U.x/ D U.y/ and this ensures the existence of an automorphism of G mapping
x 7! y since G is transitive in the sense of Kaplansky.

Subcase (b) k2C n1¤ s. Note firstly that we may assume l2Cm1¤ s since otherwise
we are again in subcase (a). Furthermore, k2 C n1 … ¹r; tº and similarly for l2 Cm1.
It then follows that k2 C n1 D l2 Cm1 since these are the exponents of the summands
of maximal size not in the set ¹r; s; tº occurring in (��).

If k1 C n1 D l1 C m1 D z 2 ¹r; sº then substituting for n1, l1 in the equation
k2 C n1 D l2 Cm2 we see that k2 � k1 D l2 � l1. Consider the various possibilities:

• If z D r then k1; l1 < r and it follows from (��) that k1 D l1, so that k2 D l2 and
n1 D m1. The equality of the exponents of x, y gives n2 D m2 and so we have
U.x/ D U.y/.

• If z D s, then k2 C n1 > s so that k2 C n2 D t and similarly l2 C m2 D t . As
n2 D m2 this yields k2 D l2 whence k1 D l1 and so n1 D m1. Again we have
U.x/ D U.y/.

So in both of the above situations there will be an automorphism ofG mapping x 7! y.
The remaining possibility is that k1 C n1 and l1 Cm1 are different and, without

loss, we may assume k1 C n1 D r , l1 Cm1 D s; it follows that l2 Cm2 D t . Also,



B. Goldsmith – K. Gong – L. Strüngmann 50

as k1 < r it follows from (��) that k1 D l1. We claim k2 C n2 D s since otherwise
k2 C n2 D t D l2 Cm2, which gives us that k2 D l2, forcing n1 D m1. This is clearly
impossible as it means k1C n1 D r D l1Cm1 D s. So we have k2C n2 D s, but this
is also impossible: k2 C n2 D s implies k2 C n1 < s while l2 Cm1 > l1 Cm1 D s,
contradicting l2 Cm1 D k2 C n1.

In case (ii), if the Ulm sequence of y has one gap, then using similar notation to
that in the previous cases, we may write y D pl1d1. Since e.x/D e.y/, then n2 Dm1.
By [6, Proposition 4.1], we have G=hxi Š G=hyi which means

(���) G ˚ Z.pk1/˚ Z.pk2Cn1/ Š G ˚ Z.pl1/:

There are two subcases to consider:

(a) k1 C n1 D r ;

(b) k1 C n1 D s.

Subcase (a) k1C n1D r . Observe firstly that if k1D 0 then n1D r and it follows from
(���) that l1 D k2C n1; furthermore, k2 C n1 must also belong to the set ¹r; s; tº and
hence it is immediate that k2 C n1 D s. However, l1 Cm1 D k2 C n1 C n2 2 ¹r; s; tº
and it follows that k2 C n1 C n2 must be equal to t , so that k2 C n2 D s. This
is impossible since then we would have t D k2 C n1 C n2 D s C r . So k1 ¤ 0

and as k1 < r , it follows from (���) that we must have l1 D k1. Now l1 C m1 D

k1 C n2 2 ¹r; s; tº and k1 C n2 … ¹r; tº, so that k1 C n2 D s. This is impossible:
r C t D n1C k1C n2C k2 D .k2C n1/C .k1C n2/D sC s D 2s. Thus subcase (a)
cannot occur.

Subcase (b) k1 C n1 D s. Note firstly that we then have k2 C n2 D t and n2 D m1.
If k1 D 0, then n1 D s and it follows from (���) that l1 D k2 C n1. This leads to
the contradiction that l1 Cm1 D k2 C n1 C n2 D t C n1 > t , so k1 ¤ 0. However,
we cannot have k1 D r , since this would again force l1 D n1 C k2 and thus l1 C
m1 D n1 C k2 C n2 > t . Since k1 ¤ 0; r it follows from (���) that l1 D k1 and
k2 C n1 must belong to the set ¹r; s; tº. Since k2 C n1 > k1 C n1 D s, we must have
k2 C n1 D t D k2 C n2, giving the contradiction that n1 D n2. So subcase (b), and
hence case (ii), cannot occur.

Case (iii). Both Ulm sequences have only one gap. By [4, Lemma 65.4], write x D
pk1c1 and y D pl1d1 and e.x/ D e.y/ gives n1 D m1. By [6, Proposition 4.1],
G=hxi Š G ˚ Z.pk1/ and G=hyi Š G ˚ Z.pl1/. By hypothesis, G ˚ Z.pk1/ Š

G ˚ Z.pl1/. If k1 D l1, then U.x/ D U.y/. If k1 ¤ l1, then both k1; l1 2 ¹0; r; sº.
Also notice that k1 C n1, l1 Cm1 D l1 C n1 2 ¹r; s; tº. Without loss of generality,
assume k1 < l1.
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If (1), k1 D 0, l1 D r , then n1 2 ¹r; s; tº, but l1 C n1 D r C n1 2 ¹s; tº, and so the
only possibilities are 2r D s, 2r D t , r C s D t , 2s D t , all of which contradict
the assumption.

If (2), k1 D 0, l1 D s, then n1 2 ¹r; s; tº, but l1 C n1 D s C n1 2 ¹tº, and so the
only possibilities are r C s D t , 2s D t , which are all impossible by the
hypothesis.

If (3), k1 D r , l1 D s, then n1 2 ¹s � r; t � rº, now l1 C n1 D s C n1 2 ¹tº, and so
the only possibility is r C t D 2s – which contradicts the assumption.

It is tempting to think that the exclusion of relations as given in the bullet points
above will lead to sufficient conditions for CS-transitivity as in Propositions 4.2, 4.3
above. Unfortunately, the situation is much more complex. We illustrate this initially
with an example.

Example 4.4. LetGDG1˚G2˚G3˚G4, where the groupsGi are homocyclic
of infinite rank and exponents 1, 3, 7, 12 respectively. Then G is not CS-transitive but
none of the additive relations above hold.

Proof. Clearly no relation 2ni D nj holds and the sum of any two elements of the
set ¹1; 3; 7; 12º is not a member of the set. Furthermore, the sum of any two elements
of this set cannot be equal to the sum of the remaining two elements.

However, if a, b, c, d are generators of cyclic summands of the groups G1, G2,
G3, G4 respectively and we set x D a C p2c, y D p7d , then e.x/ D 5 D e.y/.
Clearly, G=hyi Š G ˚ Z.p7/ Š G. A simple calculation, either directly or using
[6, Proposition 3.1], givesG=hxi ŠG˚Z.p3/ŠG. Since x, y have different heights
in G, no automorphism of G can map x 7! y and hence G is not CS-transitive.

Finding sufficient conditions to ensure CS-transitivity is non-trivial and a complete
characterisation of CS-transitivity, even for direct sums of infinite-rank homocyclic
groups, seems doomed to end in a complicated arithmetic discussion. We can, however,
offer a reasonably general sufficient condition which will, in at least one case, be
necessary also.

For this we need to introduce a simple concept.
Given a finite set � of strictly increasing integers, � D ¹n1; : : : ; ntº, we say that

� is well spaced of breadth t if, given any pair of consecutive terms ni , niC1 in � ,
the inequality niC1 � 2ni C 1 holds. As before, with a well-spaced set � of breadth t
we associate a group G� by setting G� D G1 ˚G2 ˚ � � � ˚Gt , where each Gi is a
homocyclic group of infinite rank and exponent ni . Our objective is to establish the
following theorem:
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Theorem 4.5. If � is a well-spaced set of arbitrary finite breadth, then the group
G� is CS-transitive.

The proof requires quite delicate calculations and bears some similarity in general
nature to the proof that a finitely generated p-adic module is CS-transitive; see [7,
Theorem 3.1].

Proof of Theorem 4.5. The proof will be by induction on the breadth of � ; if �

is a singleton, thenG� is just a homocyclic group of infinite rank and this is easily seen
to be CS-transitive – see, for example, [6, Corollary 2.3]. Suppose then that the theorem
holds for all well-spaced sets of breadth�N and let � D¹n1; : : : ;nN ;nNC1º be a well-
spaced set of breadthN C 1withG� D

LNC1
iD1 Gi , withGi homocyclic of infinite rank

and exponent ni ; for convenience of notation we will write GNC1 D D D
L
i2I hdi i,

where I is infinite and e.di / D nNC1 � 2nN C 1. We will also find it notationally
convenient to write G0 D

LN
iD1Gi and G00 D

LN�1
iD1 Gi and if there is no possibility

of ambiguity we write G in place of G� .
So suppose that x; y 2 G satisfy e.x/ D e.y/, G=hxi Š G=hyi. We show by a

case-by-case argument that there is an automorphism � of G with �.x/ D y, thereby
ensuring that G is CS-transitive. We split the argument into three main cases, although
we will require a number of additional subcases:

(I) x; y 2 G0;

(II) x 2 G0, y … G0;

(III) x … G0, y … G0.

Case (I) is easily handled: G=hxi Š G0=hxi ˚D and similarly for y, but then asD
is homocyclic of exponent strictly bigger than that of the direct sums of cyclic groups
G0=hxi; G0=hyi, we may deduce that G0=hxi Š G0=hyi. By induction, we can find
an automorphism  of G0 with  .x/ D y. Now set � D  ˚ 1D and � is then an
automorphism of G mapping x 7! y.

Case (II). Here x 2 G0 but y … G0, so that y D c C d 0 for some c 2 G0, 0 ¤ d 0 2 D.
SinceD is homocyclic we may choose a decompositionDD hd i˚D0 with d 0Dp˛d
for some 0 � ˛ � nNC1 � 1; note that nNC1 � 1 � 2nN . Now G=hxi D G0=hxi ˚
hd i ˚D0 is a direct sum of cyclic groups where the direct summands either have
exponent � nN or have exponent nNC1 � 2nN C 1; observe that e.c/ cannot exceed
e.x/ since e.x/ D e.y/.

We consider two subcases:

(a) e.c/ D e.x/;

(b) e.c/ < e.x/.
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Subcase (a). Suppose e.c/D e.x/D t , where t � nN . Then ptxD 0DptyDp˛Ctd ,
so that ˛C t � nNC1, whence ˛ � nNC1 � t � 2nN C 1� t � nN C 1. Now consider
the Ulm sequence UG.y/: since G0 and D are direct summands of G, UG.y/ D
UG0.c/ \ UD.p

˛d/. However, if UG0.c/ D .
0; 
1; : : : ; 
t�1;1; : : :/, then 
i < nN
for all 0 � i � t � 1, while UD.p˛d/ � .˛; ˛ C 1; : : : ; ˛ C t � 1;1; : : :/ and for
each i (0 � i � t � 1), ˛C i � nN C 1C i > nN . Hence UG.y/D UG0.c/D UG.c/.
Now the group G is, of course, transitive in the sense of Kaplansky, so there is
an automorphism � of G with �.y/ D c. But then G=hyi Š G=h�.y/i D G=hci.
However, it then follows that G=hxi Š G0=hxi ˚D and G=hci Š G0=hci ˚D. Since
the exponent of G0 is strictly less than that ofD, we must have, as observed in case (I),
that G0=hxi Š G0=hci. By our assumption in subcase (a) we also have e.x/ D e.c/
and our inductive hypothesis now provides an automorphism  of G0 mapping c 7! x;
extend this to an automorphism � D  ˚ 1D of G and observe that the composition
�� is then an automorphism of G mapping y 7! x.

Subcase (b). Here we have e.c/ < e.x/, so suppose e.x/ D t and e.c/ < t ; we claim
that in this situation it is impossible to have G=hxi Š G=hyi, so that this subcase
cannot arise.

As in subcase (a), we see immediately that ˛ C t � nNC1 � 2nN C 1 and again
˛ � nN C 1. On the other hand, pt�1x ¤ 0, so pt�1y ¤ 0 while pt�1c D 0 by
the hypothesis of subcase (b). So ˛ C t � 1 � nNC1 � 1 � 2nN , whence ˛ C t �
2nN C 1. Now consider the quotientH D .G0˚ hd i/=hc C p˛d i, which is generated
by elements of the form c0 C hc C p˛d i with c0 2 G0 and by d C hc C p˛d i. The
former set of generators all have exponent� nN , while the exponent of d C hcCp˛d i
is easily seen to be ˛ C e.c/. It follows that nN C 1 � ˛ < ˛ C e.c/ < ˛ C t D

2nN C 1. Hence H is a group with exponent e.H/ satisfying nN C 1 < e.H/ <

2nN C 1. Furthermore, since e.d C hc C p˛d i/ D e.H/,H has a direct summand,
H 0 say, with nN C 1 < e.H 0/ < 2nN C 1. However, G=hyi D H ˚D0 then has a
summand of exponent strictly between nN C 1 and 2nN C 1 – this is impossible if
G=hyi Š G=hxi since the latter has summands with exponents either � nN or equal to
nNC1 � 2nN C 1. Thus subcase (b) does not arise and we have completed the proof
of case (II).

Case (III). Here we are in the situation where x D c1 C p˛d , y D c2 C pˇd – note
that we may assume that we are dealing with the same element d 2 D for each of
x, y since all the generators of D lie in the same orbit under the action of Aut.D/
and hence of Aut.G/ – where c1; c2 2 G0, e.x/ D e.y/, and G=hxi Š G=hyi. In this
situation we need to examine three possible subcases:
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(a) e.x/ D e.c1/, e.y/ D e.c2/;

(b) e.x/ > e.c1/, e.y/ > e.c2/;

(c) without loss of generality e.x/ > e.c1/, e.y/ D e.c2/.

Subcase (a). Suppose e.x/ D e.c1/ D t say; note that we then have e.y/ D e.c2/ D t
also since e.x/ D e.y/. Since e.x/ D t we have 0 D ptx D ptc1 C p˛Ctd , which
yields ˛ C t � nNC1. Now as t D e.c1/, we also have that t � nN , so nNC1 �
˛ C t � ˛ C nN and hence ˛ � nNC1 � nN � nN C 1; a similar result holds for y
and consequently we also have ˇ � nNC1 � nN � nN C 1.

Now arguing exactly as in case (i), subcase (a), we get that UG.x/ D UG.c1/ \
UG.p

˛d/ D UG.c1/ and similarly UG.y/ D UG.c2/ \ UG.pˇd/ D UG.c2/. As G
is transitive in the sense of Kaplansky, there are automorphisms �, � of G with
�.x/D c1, �.c2/D y. It then follows thatG=hxiŠG=h�.x/iDG=hc1i andG=hc2iŠ
G=h�.c2/i D G=hyi; we immediately deduce thatG=hc1i Š G=hc2i. Now c1; c2 2 G0

so that G=hc1i D G0=hc1i ˚D Š G=hc2i D G0=hc2i ˚D. As every summand of
G0=hc1i, G0hc2i has order at most nN < nNC1 D e.D/, we conclude that G0=hc1i Š
G0=hc2i. We also have from our assumption that we are in subcase (a) that e.c1/ D
e.c2/; by our inductive hypothesis we know that G0 is CS-transitive, so there is an
automorphism  of G0 mapping c1 7! c2. Extend  to an automorphism of G which
we still call  and observe that the composition � � is an automorphism of G
mapping x 7! y.

Subcase (c). Here we are in the situation where e.x/ > e.c1/ and e.y/ D e.c2/. Note
that exactly as in subcase (a) above we will have UG.y/ D UG.c2/, which again gives
us that G=hyi Š G=hc2i Š G0=hc2i ˚D.

However, arguing exactly as in case (II), subcase (b) we see that G=hxi has a direct
summand of exponent strictly greater than nN and strictly less than nNC1. This is
in contradiction with our hypothesis that G=hxi Š G=hyi since the latter only has
summands of exponent at most nN or exactly equal to nNC1. Thus this subcase cannot
arise.

Before proceeding to the final subcase we need the following general lemma.

Lemma 4.6. Suppose thatH D C ˚ hd i is a bounded group and d is an element
of exponent � 2e.C /C 1. Let z D c C p˛d , where c 2 C and e.c/ < e.z/. Then
if ˛ C e.c/ � e.C /, the quotient H=hzi Š Z.pk/˚ C=hci, where k D ˛ C e.c/ �
e.d/ � 1.

Proof. The group H=hzi is generated by elements of the form c0 C Z, d C
Z, where c0 2 C and Z D hzi D hc C p˛d i. The first set of generators all have
exponents at most e.C /, while e.d CZ/ is precisely ˛C e.c/. ThusH=Z is bounded
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of exponent max¹˛ C e.c/; e.C /º D ˛ C e.c/ by hypothesis. Since e.d C Z/ D
e.H=Z/, the cyclic subgroup generated by d CZ is a direct summand ofH=Z and
we have

H=hd CZi D hd CZi=Z ˚ Y=Z

for some Y �H . Observe that hd CZi=ZD .hci˚ hd i/=Z and so Y=ZŠH=.hci˚
hd i/ Š C=hci. Hence H=Z Š C=hci ˚ Z.pk/, where k D ˛ C e.c/. Finally, note
that pe.c/z D pe.c/C˛d ¤ 0, since by assumption e.c/ < e.z/. So k D e.c/C ˛ �
e.d/ � 1.

We are left with just subcase (b) to consider. Thus we have the following situation:
x D c1 C p

˛d , y D c2 C pˇd , e.x/ D e.y/, e.x/ > e.c1/, e.y/ > e.c2/, and the
quotientsG=hxi;G=hyi are isomorphic. Observe first of all that in this situation ˛D ˇ:
a straightforward calculation gives that e.x/ D nNC1 � ˛, while e.y/ D nNC1 � ˇ.

Unfortunately, it seems necessary to split our argument into two further subcases.
So let us assume firstly that in addition we have ˛ C e.c1/ > nN , ˛ C e.c2/ > nN .
Apply Lemma 4.6 with G0 in place of C to get

.G0 ˚ hd i/=hc1 C p
˛d i Š G0=hc1i ˚ Z.pk1/;

.G0 ˚ hd i/=hc2 C p
˛d i Š G0=hc2i ˚ Z.pk2/;

where k1 D ˛ C e.c1/ > nN and k2 D ˛ C e.c2/ > nN . Thus k1; k2 � nNC1 � 1. It
then follows that

G0=hc1i ˚ Z.pk1/˚D0 Š G
0=hc2i ˚ Z.pk2/˚D0

and nN < k1; k2 � nNC1 � 1. SinceG0=hc1i andG0=hc2i are of exponent at most nN ,
whileD0 has exponent exactly nNC1, we must have k1 D k2 and G0=hc1i Š G0=hc2i.
It now follows that e.c1/ D e.c2/. By our inductive hypothesis, G0 is CS-transitive
and so there is an automorphism of G0 sending c1 7! c2. Extend � to  D � ˚ 1D , an
automorphism of G which maps x 7! y. So in this first subcase we have the desired
automorphism of G mapping x 7! y.

For our final subcase we are in the situation where x D c1 C p˛d , y D c2 C p˛d ,
e.c1/ < e.x/, e.c2/ < e.y/ and, without loss of generality we have ˛ C e.c1/ � nN .

Note firstly that we cannot have ˛ C e.c2/ > nN in this situation. If the latter
inequality holds, we may apply Lemma 4.6 to get that G=hyi Š G0=hc2i ˚Z.pk2/˚

D0 with nN < k2 D ˛ C e.c2/ � nNC1 � 1. However, as ˛ C e.c1/ � nN , we have
e.d C hc1 C p

˛d i/ D ˛ C e.c1/ � nN . This means that the summands of G=hxi
have exponents at most nN or exactly nNC1 and this would violate our hypothesis
that G=hxi is isomorphic to G=hyi. So for our final subcase we must have ˛ C e.c1/,
˛ C e.c2/ � nN . For our next simplification we write X D hxi D hc1 C p˛d i.
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• If e.c1/C ˛ � nN , then G0 \X D 0.

To see this assume g 2 G0 \X so that g D pt .c1 C p˛d/ for some t . If t < e.c1/
then g � ptc1 D p˛Ctd , which implies that g � ptc1 D 0 and ˛ C t � nNC1. But
then e.c1/ C ˛ � t C ˛ � nNC1 – a contradiction. So t � e.c1/ and hence g D
p˛Ctd 2 G0 \ hd i D 0, as required.

Our next observation is that the quotient G0 ˚ hd i=X is an extension of G0 by
Z.p˛/. To see this consider the exact sequence

0! .G0 CX/=X ! .G0 ˚ hd i/=X ! .G0 ˚ hd i/=.G0 CX/! 0:

The first term is just isomorphic toG0 sinceG0 \X D 0, and asG0CX DG0˚hp˛d i
the final term reduces to .G0 ˚ hd i/=.G0 ˚ hp˛d i/ Š Z.p˛/; a similar result holds
with X replaced by Y D hyi.

In fact, the exact sequence above actually splits to yield that .G0 ˚ hd i/=X Š
G0 ˚ Z.p˛/. Since all the groups under consideration are bounded, it suffices to show
that .G0 CX/=X is pure in .G0 ˚ hd i/=X .

• The group .G0 CX/=X is pure in .G0 ˚ hd i/=X .

To see the above claim suppose that g0 CX D pr.g C p
d/CX for g0; g 2 G0

and some 
 < nNC1. Then g0 � prg � p
Crd D pt .c1 C p˛d/ for some suitable
integer t . Consequently, g0 � prg � ptc1 D p
Crd C p˛Ctd D 0. Then the right-
hand side of the last equation is of the form pmin.
Cr;˛Ct/�d with .�; p/ D 1. Thus
min.
 C r; ˛ C t / � nNC1, whence each of 
 C r , ˛ C t � nNC1. Now g0 � prg �
ptc1 D 0 so that g0CX D pr.gCX/C ptc1CX . However, ptc1CX D Œpt .c1 D
p˛d/�p˛Ctd�CX DX . Hence g0CX D pr.gCX/ and as g 2G0, purity follows.

Note that a similar result holds for .G0 C Y /=Y .
Returning now to the situation where x D c1C p˛d , y D c2C p˛d , e.c1/ < e.x/,

e.c2/ < e.y/, and ˛ C e.c1/, ˛ C e.c2/ � nN , we see that

G=X Š G0 ˚ Z.p˛/˚D0

Š .G0 ˚ hd i/=X ˚D0

Š G=Y Š G0 ˚ Z.p˛/˚D0:

Since by hypothesis ˛ � nN , we conclude that G0 ˚ Z.p˛/ Š .G0 ˚ hd i/=hxi Š

.G0 ˚ hd i/=hyi.
Now consider the situation where c1D g1Cpkw with g1 2G00,w 2GN andw has

height zero inGN (and hence also inG). Then 0D pe.c1/c1 D p
e.c1/g1C p

kCe.c1/w

and so pkCe.c1/wD 0. This implies that kC e.c1/� e.w/D nN , so k� nN � e.c1/�
˛. A similar argument shows that if c2 D g2 C prz with g2 2 G00, z 2 GN and z of
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height zero, then r � ˛. Now set, for i D 1; 2, �i W hd i ! G0 with �1.d/ D �pk�˛w,
�2.d/ D �p

r�˛z and observe that the matrices

�i D

 
1G0 �i

0 1hdi

!
are automorphisms of G0 ˚ hd i (and hence they extend to automorphisms of G) with
�1.x/ D g1 C p

˛d , �2.y/ D g2 C p˛d . Hence, there exists an automorphism of G
mapping x 7! y if, and only if, there exists an automorphism mapping g1 C p˛d 7!
g2 C p

˛d ; note that g1; g2 2 G00.
The final step in our proof will be to show that there is, indeed, such an automor-

phism mapping g1 C p˛d 7! g2 C p
˛d .

Now .G0˚ hd i/=hxi Š .G0˚ hd i/=�1.x/D .G0˚ hd i/=hg1C p˛d i Š .G00˚
hd i/=hg1 C p

˛d i ˚ GN ; a similar result holds for y. Note that e.g1/ � e.c1/ <
e.x/, e.g2/ � e.c2/ < e.y/, so by our previous argument in this subcase, we will
have .G00 ˚ hd i/=hg1 C p˛d i Š G00 ˚ Z.p˛/ and similarly for g2 C p˛d . Hence
G00 ˚ Z.p˛/ ˚ GN Š .G00 ˚ hd i/=hg1 C p

˛d i ˚ GN and a similar result holds
for g2.

Now if ˛ < nN D e.GN /, a standard argument with Ulm invariants yields that
.G00˚ hd i/=hg1Cp

˛d i ŠG00˚Z.P ˛/Š .G00˚ hd i/=hg2Cp˛d i. Since e.g1/�
e.c1/, we have e.g1/C ˛ � e.c1/C ˛ � �N and similarly e.g2/C ˛ � nN . But it
then follows that e.g1 C p˛d/ D nNC1 � ˛ D e.g2 C p˛d/. Now, by our inductive
hypothesis, there is then an automorphism of G00 ˚ hd i, which extends to an automor-
phism of G and maps g1 C p˛d 7! g2 C p

˛d . Hence, as noted above, there is then
an automorphism mapping x 7! y.

The only remaining thing to check is what happens when ˛ D nN . However, this
case is straightforward: we must then have e.c1/ D e.c2/ D 0 so that c1 D c2 D 0 and
the identity maps x 7! y.

So we have established the existence of an automorphism mapping x 7! y in all
cases and hence the proof is complete.

Corollary 4.7. Suppose that � D ¹n1; n2; : : :º is well spaced and of infinite
breadth. If G� D

L1
iD1Gi , where Gi is homocyclic of infinite rank and exponent ni ,

then G� is CS-transitive.

Proof. Suppose that x; y 2 G� D G, with e.x/ D e.y/ and G=hxi Š G=hyi.
Then there is a finite initial segment, � 0 of � , such that x; y 2 � 0; let � 00 denote the
complement of � 0 in � . Denote the largest element of � 0 by nt . Then

G=hxi D

� tM
iD1

Gi=hxi

�
˚

M
i2� 00

Gi Š

� tM
iD1

Gi=hyi

�
˚

M
i2� 00

Gi :
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Since the exponent of every summand of
Lt
iD1Gi=hxi (and similarly for y) is at

most nt , while every summand of the complement
L
i2� 00 has exponent strictly greater

than nt , we deduce that
Lt
iD1Gi=hxi Š

Lt
iD1Gi=hyi. Clearly the subset � 0 is well

spaced and of finite breadth, so by the previous theorem there is an automorphism �

of
Lt
iD1Gi which maps x 7! y. However, � clearly extends to an automorphism  

of G with  D � ˚ 1, where 1 denotes the identity map on
L
i2� 00 Gi and  .x/ D y.

Since x, y were arbitrary, the result follows.

So from Theorem 4.5 we have sufficient conditions for a direct sum of infinite-rank
homocyclic groups to be CS-transitive. However, these conditions are not in general
necessary.

Example 4.8. If G D G1 ˚ G2 ˚ G3 with G1, G2, G3 homocyclic of infinite
rank and exponents 2, 5, 9 respectively, then G is CS-transitive but the set ¹2; 5; 9º is
not a well-spaced set.

Proof. This follows immediately from Proposition 4.3.

The situation is, however, radically different if we consider a minimal well-spaced
set containing 1, i.e. a set where successive elements ni , niC1 satisfy niC1 D 2ni C 1.
It is possible to give a very general result in this case but we feel the ideas are more
simply explained by examples.

Starting from G1 ˚G2 ˚G3 ˚G4, where the Gi are homocyclic of infinite rank
and exponents 1, 3, 7, 15 respectively, the smallest possible choice of an exponent for
a homocyclic group G5 of infinite rank making the sum G1 ˚G2 ˚G3 ˚G4 ˚G5

CS-transitive is 31. The possibilities ¹16; 17; 18; 19; 21; 22; 23; 27; 29; 30º are easily
eliminated due to relations such as 19C 3 D 22; details are left to the reader. The
remaining possibilities ¹20; 24; 25; 26; 28º all follow the same pattern: let a, b, c, d , e
be generators of cyclic summands of G1; : : : ; G5 respectively and set x D p15e, so
thatG=hxi ŠG. Then for the various possible values of the exponent of e, one has that
x has exponent 5, 9, 10, 11, 13 respectively. Now choose a corresponding element y
as aC p2c, aC p6d , pb C p5d , b C p4d , aC p2d respectively. A straightforward
calculation, using for example [6, Proposition 3.1] or directly, gives us that G=hyi is
isomorphic toG˚Z.p3/,G˚Z.p7/,G˚Z.p/˚Z.p7/,G˚Z.p7/,G˚Z.p3/

respectively. Since all of these are, in fact, isomorphic to G and in no choice is
htG.x/ D htG.y/, we see that G is not CS-transitive for any of the five possible
choices. We summarise the situation as follows:

Proposition 4.9. If H D G1 ˚ G2 ˚ G3 ˚ G4, where the Gi (i D 1; 2; 3; 4)
are homocyclic of infinite rank and exponent 1, 3, 7, 15 respectively, and G5 is
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homocyclic of infinite rank and exponent m, thenH ˚G5 is CS-transitive if, and only
if, ¹1; 3; 7; 15;mº is a well-spaced set.
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