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A note on the admissibility of smooth simple R G -modules

MIHIR SHETH (*)

ABsTrACT — Let G be a p-adic reductive group and R be a noetherian Jacobson algebra over the
ring Z; of [-adic integers with [ # p. In this note, we show that every smooth irreducible
R-linear representation of G is admissible using the finiteness result of Dat, Helm, Kurinczuk
and Moss for Hecke algebras over R.
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Unless mentioned otherwise, all rings are commutative with unity. A p-adic
reductive group is the group of rational points of a reductive group defined over
a non-archimedean local field of residue characteristic p > 0. Let R be aring and G
be a p-adic reductive group. Let RG denote the group algebra. An RG-module 7
is called smooth if every v € m is fixed by some compact open subgroup in G, and
admissible if for every compact open subgroup K € G, wX is a finitely generated
R-module.

For a compact open subgroup K C G, let Hr(G, K) denote the Hecke algebra
of compactly supported R-valued K-biinvariant functions on G equipped with the
convolution product and let Zg (G, K) denote its center. The Hecke algera Hr(G, K)
is an associative R-algebra with unity. The following theorem is the joint work [1] of
Dat, Helm, Kurinczuk and Moss:

THEOREM 1. For any noetherian Z;-algebra R with | # p and any compact open
subgroup K C G, the Hecke algebra HR(G, K) is a finitely generated module over
ZRr(G,K), and Zr(G, K) is a finitely generated R-algebra.

(*) Indirizzo dell’A.: Department of Mathematics, Indian Institute of Science,
Bangalore 560012, India; mihirsheth@iisc.ac.in
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As an application of Theorem 1, we prove the following result:

THeEOREM 2. If R is a noetherian Jacobson Zj-algebra with | # p, then any
smooth simple RG-module v is admissible.

Recall that a ring is called Jacobson if every prime ideal is the intersection of the
maximal ideals which contain it. The examples of noetherian Jacobson Z;-algebras
include all fields that are Z;-algebras, as well as finitely generated algebras over such
fields, such as [T, ..., T,] or finite rings such as Z /"™ Z for which Theorem 2 is a
new result. When R = C, Theorem 2 is a classical result in the representation theory
of p-adic groups. The case when R is any field of characteristic not equal to p is given
in [4, Proposition 4.10].

We remark that the authors of [1] expect Theorem 1 to be true for any noetherian
Z [%]-algebra R, in which case Theorem 2 would also hold for any noetherian Jacobson
Z[%]—algebra R (in particular for R = Z[%]).

Theorem 2 follows from the following corollary to Theorem 1:

CoRroLLARY TO THEOREM 1. Let R be a noetherian Jacobson Z;-algebra with
[ # p, and let M be a simple (left) module over Hr(G, K). Then M is a finitely
generated R-module.

Proor. To ease the notation, let us write H = Hg(G, K) and Z = Zg(G, K).
Choose a surjective map H —> M of R-modules. Let m be the kernel of the surjection
H—> Mandmz :=mnNZ. Note that mz is a two-sided ideal of Z because Z is
the center of H. We claim that —Z isafield. Letz :=z 4+ myz € = Ty be a non-zero
element. Then Z z is also non-zero 1n =, So the left H-submodule HZz of ﬁ generated
by Z is equal to H because % is srmple. Therefore, there exists h € H such that hz = 1

in E
Consrder the ——algebra —[h] generated by /. It is commutatlve because L is

commutative. Moreover as ﬂ is a finitely generated £ ——module and = 1s noetherran
mi[h] is a finitely generated 2 L-module Hence, we have that A is mtegral over L

4
ie.

R + @y h" ' + -+ ao =0,
for some n € N and a,_ 1,51” 250,00 € 5 Multrplyrng both sides of the above
by 2"~ ! and then using that .= ~ commutes Wlth h, we obtain that
B4 Gpy + @naZ + -+ aoz" ! = 0.

Hence, i = —(dp—1 + dn—2Z + -+ + Goz" 1) € £-.

mz’
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Now, the field é is a finitely generated R-algebra. One of the characterizations

of Jacobson rings implies that é is a finitely generated R-module [2, Theorem
. H - . zZ

10]. Since < is finite over g

R-module. ]

we get that % >~ M is also a finitely generated

Proor orF THEOREM 2. Since G has a fundamental system of neighborhoods of
identity consisting of open pro-p subgroups, it is enough to show that 7 X is a finitely
generated R-module for K € G an open pro-p subgroup. Let K € G be an open
pro-p subgroup such that 7% = 0. Since 7 is simple and p € R*, X is a simple
Hz(G, K)-module by [6, 1.6.3]. Hence, 7 X is a finitely generated R-module by the
corollary to Theorem 1. u

ReMaRrk 3. The requirement for R to be Jacobson in the corollary to Theorem
1 is necessary. Indeed, if R is a commutative ring and if all simple modules over
HR (G, K) are finitely generated R-modules for all p-adic reductive groups G and
compact open subgroups K, then R is Jacobson. The following proof of this converse
statement was communicated to us by M.-F. Vignéras: By Satake [5, §8], if G is a
classical simple group with trivial center and K € G a natural maximal compact
subgroup, then Hr(G, K) is a polynomial ring over R in m variables, where m is the
rank of a maximal split torus in G. Thus, a finitely generated R-algebra A is a quotient
of some Hr(G, K). If A is a field, then A is a simple module over Hr(G, K), and
hence a finitely generated R-module by assumption. This means that R is Jacobson.

REMARK 4. Let R = Z; with [ # p and G = GL»(Q)). As Z; is not Jacobson,
Remark 3 suggests that G admits a smooth irreducible R-representation that is not
admissible. Indeed, let K = GL,(Z,). By [3, Proposition 2.1], H = Hr(G, K) =
R[To, Ty ', T]. One can make M := Q into a simple H-module by defining the
action via the surjective map H —» M which takes T to 1 and Ty to [~'. However,
note that M is not a finitely generated R-module. By choosing a prime / so that the
pro-order of K is invertible in R, there exists a smooth simple RG-module 7 such
that 7X >~ M as H-modules [6,1.4.4 and 1.6.3]. Since 7% is not a finite R-module,
7 is non-admissible.
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