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1. Introduction

In this paper, we consider the following nonlinear parabolic equation8̂̂<̂
:̂
ut � divŒA.x; t;Du/C B.x; t; u/� D � divF.x; t/ in Q;

u D 0 on @� � .0; T /;

u.x; 0/ D u0.x/ in �;

(1.1)

where� is a regular bounded domain in RN withN � 3 andT >0, andQD�� .0;T /.
Let us describe our main structural assumptions concerning (1.1). Firstly,

(1.2) F 2 L2.Q/ and u0 2 L2.�/:

The operator A D A.x; t; �/ W Q �RN ! RN is a Carathéodory function satisfying
the following monotonicity and boundedness conditions:
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jA.x; t; �/j � cj�j C d.x; t/ for some c > 0 and d 2 L2.Q/;(1.3)
hA.x; t; �/ � A.x; t; �/; � � �i � ˛j� � �j2 for some ˛ > 0;(1.4)

for a.e. .x; t/ 2 Q, for any �; � 2 RN , and

A.x; t; 0/ D 0 for a.e. .x; t/ 2 Q:(1.5)

Moreover, we assume that B D B.x; t; s/ W Q �R! RN is a Carathéodory function
fulfilling the following properties:

jB.x; t; s/ � B.x; t; s0/j � b.x; t/js � s0j;(1.6)
B.x; t; 0/ D 0;(1.7)

for a.e. x 2 �, for any t 2 .0; T /, for any s; s0 2 R, and for some suitable nonnegative
function b such that

b 2 L1.0; T ILN;1.�//:(1.8)

In the homogeneous case, equation (1.1) is known as a version of Fokker–Planck
equation, and it has been studied for instance in [8]. In the literature, many authors
extensively paid attention to find a good definition for solutions introducing the notion
of renormalized solution and entropy solution. The notion of renormalized solution
has been investigated in the elliptic framework (see, e.g., [1] and references therein),
then extended to the parabolic case. In [3], the existence of renormalized solutions
has been proven in the case b D 0. In a series of works by A. Porretta [4, 7, 8], the
existence of renormalized solutions is investigated in case the datum b is continuous and
belongs to Lebesgue spaces. In this paper, we extend the available results (see e.g., [6])
to the case of noncoercive nonlinear convection-diffusion equations with a possibly
unbounded field b lying in a suitable subset of the Lorentz space L1.0; T ILN;1.�//.
Proving the existence of a renormalized solution for equation (1.1) in this framework
is challenging due to the lack of coercivity of the operator in divergence form, and the
lack of summability for b. Because of the unboundedness of the convective term, an
additional assumption on b is necessary. The idea is to decompose the datum b as the
sum of a bounded function, and a function belonging to a Lorentz space with a control
on its norm. The main point which allows us to go further than previous works is to
rephrase (1.1), as in [6], in terms of the following equivalent fixed point equation:

(1.9)

8̂̂̂̂
<̂
ˆ̂̂:
ut � divŒA.x; t;Du/C .1 � �.x; t//B.x; t; u/�

D � div.F � �.x; t/B.x; t; u//
in Q

u D 0 on @� � .0; T /;

u.x; 0/ D u0.x/ in �;
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where �.x; t/ is defined by

�.x; t/ D
TM .b.x; t//

b.x; t/
;

where TM is the usual truncation operator at level˙M , defined for any M > 0 as the
real-valued Lipschitz function

TM .s/ D min.M;max.s;�M//:

The main goal of this paper is to prove existence and uniqueness of renormalized
solutions to equation (1.9), slightly extending the results of [6]. Our main result is the
following.

Theorem 1.1. Let us assume that conditions (1.2)-(1.8) are satisfied. Then there
exists a unique renormalized solution of problem (1.1).

The plan of the paper is as follows: in Section 2, we recall the definition of renormal-
ized solution and the main properties of Lorentz spaces. In Section 3, we extend some
known results related to (1.1), in order to carry out a complete proof of Theorem 1.1.

2. Preliminary results

2.1 – Renormalized solutions

The purpose of this section is to give a thorough definition of renormalized solution
applied to (1.1). The following definition of a renormalized solution is adapted from
the existing literature.

Definition 2.1. The real-valued function u defined on Q D � � .0; T / is a
renormalized solution of equation (1.1), if

u 2 C 0.Œ0; T �IL2.�//;(2.1)

TK.u/ 2 L
2.0; T IW

1;2
0 .�// for all K > 0;(2.2)

for any positive real number C ,

TKCC .u/ � TK.u/! 0 strongly in L2.0; T IW 1
0 .�// as K !C1 ;

and
.S.u//t � div.ŒA.x; t;Du/C .1 � �.x; t//B.x; t; u/�S 0.u//
C ŒA.x; t;Du/C .1 � �.x; t//B.x; t; u/�Du � S 00.u/
D � div.F � �.x; t/B.x; t; u// � S 0.u/;
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where S 2 C1.R/ is such that S 0 2 C10 .R/, and

S.u.t D 0// D S.u0/:

2.2 – Lorentz spaces

In this section, we give the definition and main properties of Lorentz spaces, fol-
lowing [5, 6].

Let � be a bounded domain of RN . For any p; q 2 .1;1/, the Lorentz space
Lp;q.�/ consists of all measurable functions f defined on � for which the quantity

kf kp;q D

�
p

Z 1
0

j�hj
q
p hq�1 dh

� 1
q

is finite, where �h D ¹x 2 � W jg.x/j > hº for any h > 0. Here and in what follows
jEj stands for the Lebesgue measure of a measurable subset E of RN .

For p D q, the Lorentz space Lp;p.�/ reduces to the Lebesgue space Lp.�/. On
the other hand, for q D1 the class Lp;1.�/ consists of all measurable functions g
defined on �, for which the quantity

kgkp;1 D sup
E��

jEj
1
p�1

Z
E

jgj dx

is finite. The class Lp;1.�/ coincides with the Marcinkiewicz class of weak-Lp . For
the Lorentz spaces, the following inclusions hold:

Lr.�/ � Lp;q.�/ � Lp;r.�/ � Lp;1.�/ � Lq.�/

whenever 1 � q < p < r � 1.
The following Hölder-type inequality plays an important role in our proof of

Lemma 3.2, which will be mentioned in Section 3.

Lemma 2.1 (Hölder inequality). For 1 < p < 1; 1 � q � 1 and 1
p
C

1
p0
D

1; 1
q
C

1
q0
D 1, if f 2 Lp;q.�/ and g 2 Lp0;q0.�/, we have the Hölder-type inequalityZ

�

jf .x/g.x/jdx � kf kp;qkgkp0;q0 :

The following theorem turns out to be crucial for the coercive property of the
operator, which will be used later on.
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Theorem 2.1 (Sobolev embedding theorem). Let us assume that 1 < p < N ,
1 � q � p. Then any function g 2 W 1;1

0 .�/ satisfying jrgj 2 Lp;q.�/ belongs to
Lp

?;p.�/, where p� D Np
N�p

and

kgkp�;q � SN;pkrgkp;q;

where SN;p D !�1=NN
p

N�p
and !N stands for the measure of the unit ball in RN .

3. Existence and uniqueness of renormalized solutions

In this section, we state and prove some useful lemmas for the proof of Theorem 1.1.
We adapt to our specific noncoercive situation some tools used for many different types
of nonlinear parabolic equations, see e.g., [2, 3, 7, 8]. Let us consider the following
auxiliary approximate problem.

(3.1)

8̂̂̂<̂
ˆ̂:
@u"

@t
� divŒA.x; t;Du"/C .1 � �.x; t//B.x; t; u"/�

D �div.F " � �.x; t/B.x; t; u"//
in Q;

u".t D 0/ D u"0 in �;

where F " D T1=".F / and u"0 D T1=".u0/. Since F " and u"0 belong, respectively, to
L2.Q/ and L2.�/, this problem admits a solution

u" 2 L2.0; T IW 1
0 .�// \ C

0.0; T IL2.�//;

as proven in [6]. When " tends to 0, the sequences F " and u"0 strongly converge to
F and u0 in L2.Q/ and L2.�/ respectively. For any fixed positive real number K,
the asymptotic behavior of the sequence TK.u"/ as " tends to zero is investigated in
[2, 3, 8]. We follow their strategy considering the following lemmas.

Lemma 3.1. For any fixed K, we have

lim
K!1

Z
¹K�juj�KCC º

jDuj2 dxdt D 0(3.2)

for any positive real number C .

It has been observed that problem (1.1) is nonconercive, so we need to consider
the auxiliary problem (1.9). The idea is that under the assumption that b belongs to
a suitable subset of the Lorentz space L1.0; T ILN;1.�//, we can recover some
coercivity for the operator in divergence form. To be explicit, let us define the operator

AS W L
2.0; T IW

1;2
0 .�//! L2.0; T IW �1;2.�//;
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defined for u; v 2 L2.0; T IW 1;2
0 .�//, as follows:

hASu; vi WD

Z T

0

Z
�

hA.x; t;DS.u//C .1 � �.x; t//B.x; t; S.u//;DS.v/i dxdt;

where S denotes the truncation operator at level K.

Lemma 3.2 (see [6, Lemma 3.1]). For each u; v 2 L2.0; T IW 1;2
0 .�//, we get

hASu �ASv; u � vi �
˛

2

Z T

0

kDS.u/ � DS.v/k2
L2.�/

dt:

In particular,

hA�u; ui �
˛

2

Z T

0

kDS.u/k2
L2.�/

dt:

Proof. We follow the strategy of [6] and choose M > 0 in such a way that

sup
0<t<T

kb.x; t/ � TM .b.x; t//kLN;1 �
˛

2SN;2
:(3.3)

Using the coerciveness of operator A in (1.4) and the definition of �.x; t/ together
with (3.3), we get

hASu �ASv; u � vi

D

Z T

0

hA.x; t;DS.u// � A.x; t;DS.v// C .1 � �.x; t//B.x; t; S.u//

� B.x; t; S.v//;DS.u/ � DS.v/i dxdt

� ˛

Z T

0

kDS.u/ � DS.v/k2
L2.�/

dt

� SN;2

Z T

0

�
kb.x; t/ � TM .b.x; t//kLN;1.�/

� kS.u/ � S.v/kL2�;2.�/ � kDS.u/ � DS.v/kL2.�/

�
dt

�
˛

2

Z T

0

kDS.u/ � DS.v/k2
L2.�/

dt;

which can be obtained by applying Hölder and Sobolev inequalities in the setting of
Lorentz spaces.

With the coercivity of operator A� at hand, we are now in position to prove
Lemma 3.1.
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Proof of Lemma 3.1. Using TKCC .u"/ � TK.u"/ as a test function in (3.1), we
obtain

(3.4)

Z
�

Œ'KCC .u
"/.T / � 'K.u

"/.T /� dx

C

Z
Q

ŒA.Du"/C .1 � �.x; t//B.u"/�ŒDTKCC .u"/ � DTK.u"/� dxdt

D

Z
Q

ŒF " � �.x; t/B.u"/�ŒDTKCC .u"/ � DTK.u"/� dxdt

C

Z
�

Œ'KCC .u
"
0/ � 'K.u

"
0/� dx;

where

'K.r/ D

Z r

0

TK.s/ ds:

Since the function 'KCC .r/ � 'K.r/ is positive, using the convergence of F " to F in
L1.Q/, the convergence of u"0 to u0 in L1.�/, the fact that jTKCC .s/ � TK.s/j � C ,
and the linear growth of 'K at infinity, together with the coerciveness result of
Lemma 3.2, we deduce from (3.4) that

˛

2
lim
"!0

Z
Q

jDTKCC .u"/ � DTK.u"/j2 dxdt

�

Z
Q

.F " � ju"j/ŒDTKCC .u
"/ � DTK.u"/� dxdt

C

Z
�

Œ'KCC .u
"
0/ � 'K.u

"
0/� dx:

By using the Young and Poincaré inequalities, we get

c.˛/ lim
"!0
jDTKCC .u"/ � DTK.u"/j2 dxdt

�

Z Z
¹jKj<u"º

jF "j2 dxdt C
Z
¹ju"

0
j>Kº

ju"0j dx:

When K tends to infinity, the right-hand side tends to 0 since the sequences F "

and u"0 converge strongly, and ¹ju"j > Kº has small measure. So u satisfies (3.2). This
completes the proof of the lemma.

The following theorem gives estimates on the sequence DTK.u"/. Here, we extend
previous results from [2], where the authors considered the case b D 0.
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Theorem 3.1. Assume (1.2) to (1.8). Let

u" 2 L2.0; T IW
1;2
0 .�// \ C 0.Œ0; T �IL2.�//

be a sequence such that8̂̂̂<̂
ˆ̂:
@u"

@t
� divŒA.x; t;Du"/C .1 � �.x; t//B.x; t; u"/�

D � div
�
F " � �.x; t/B.x; t; u"/

� in Q;

u".t D 0/ D u"0 in �;

and the following properties hold:

(i) u" converges almost pointwise in Q to a measurable function u,

(ii) F " is a sequence of L2.Q/ weakly convergent to F in L2.Q/,

(iii) u"0 is a sequence of L2.�/ strongly convergent to u0 in L2.�/.

Then, for any positive real number K,

(3.5)
Z
Q

ŒA.x; t; u;DTK.u"// �A.x; t; u;DTK.u//� � ŒDTK.u"/ � DTK.u/�! 0

as "! 0, where A.t; x; u;Du/ WD A.x; t;Du/C .1 � �.x; t//B.x; t; u/.

Proof. The proof of Theorem 3.1 can be obtained following closely the strategy
in the proof of [2, Theorem 2], with few adaptations due to the unbouded convective
term. More precisely, the differences from [2] are stated in the following lemma.

Lemma 3.3. For any positive real number K, the following assertions hold:

(1) TK.u
"/ weakly converges to TK.u/ in L2.0; T IW 1;2

0 .�//,

(2) A.t; x;DTK.u"// weakly converges in L2.Q/ to an element �K of L2.Q/,

(3)
R
Q

�
A
�
t; x; TK.u

"/;DTK.u"/
�
�A

�
t; x; TK.u

"/;DTK.u/
��
! 0 as "! 0.

Proof of Lemma 3.3. Using TK.u"/ as a test function in problem (3.1), we have

1

2
kTK.u

"/.T /k2
L2.�/

C

Z
Q

ŒA.x; t;DTKu"/C .1 � �.x; t//B.x; t; TKu"/�DTK.u"/ dxdt

D
1

2
kTK.u

"
0/k

2
L2.�/

C

Z
Q

ŒF " � �.x; t/B.x; t; u"/�DTK.u"/ dxdt:
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Thanks to the coercivity property stated in Lemma 3.2, this gives

(3.6)

1

2
kTK.u

"/.T /k2
L2.�/

C
˛

2

Z
Q

jDTK.u"/j2 dxdt

�
1

2
kTK.u

"
0/k

2
L2.�/

C

Z
Q

F " DTK.u"/ dxdt

C

Z
Q

�.x; t/B.x; t; TKu
"/DTK.u"/ dxdt:

The last term in the right-hand side in (3.6) can be estimated as

(3.7)

Z
�

�.x; t/B.x; t; TKu
"/DTK.u"/ dx

D

Z
�

TM .b.x; t//

b.x; t/
ŒB.x; t; TKu

"/ � B.x; t; 0/�DTK.u"/ dx

�

Z
�

TM .b.x; t//jTKu
"
jjDTK.u"/j dx

�

Z
¹ju"j�Kº

TM .b.x; t//jTK.u
"/jjDTK.u"/j dx

C

Z
¹ju"j>Kº

TM .b.x; t//jTK.u
"/jjDTK.u"/j dx

�

Z
¹ju"j�Kº

b.x; t/jTK.u
"/jjDTK.u"/j dx

CM

Z
¹ju"j>Kº

jTK.u
"/jjDTK.u"/j dx

� kbkLN;1.ju"j<K/kTK.u
"/k2�;2kDTK.u"/k2

CMENK kTK.u
"/k2�;2kDTK.u"/k2

�
˛

SN;2
kDTK.u"/k2L2.�/

CMENK kDTK.u
"/k2

L2.�/

with ENK WD ¹u
" > Kº, this shows that EK tends to 0 as K !1. Hence, we obtain

M jENK j � ˛=8. Inserting the last expression in (3.7) into the last expression on the
right-hand side of (3.6), we get

(3.8)

1

2
kTK.u

"/.T /k2
L2.�/

C
˛

4

Z
Q

jDTK.u"/j2 dxdt

�
1

2
kTK.u

"
0/k

2
L2.�/

C
2

˛
kF "k2

L2.Q/
:

We observe that DTK.u"/ is bounded in L2.Q/ due to estimate (3.8). Proceeding as
in [3], it is easy to conclude that TK.u"/ satisfies (1). Conclusion (2) is not new, and
has already been proven for example in [2, 3, 8], so we skip its proof.
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The proof of estimates (3) can be obtained by proceeding with the same strategy as
in [8].

Let us now consider the following renormalized equation:

@tSn.u
"/ � div.A.x; t; u";Du"/S 0n.u

"//CE"n

D � div.F " � �.x; t/B.x; t; u"//S 0n.u
"/;

where E"n D A.x; t; u"; Du"/Du"S 00n .u"/. Thanks to the coerciveness result from
Lemma 3.1 and (3.2), we get

lim
n!1

sup
"
kE"nkL1.Q/ D 0:(3.9)

Using TK.u"/ � TK.u/ as a test function in the renormalized equation, we get

(3.10)

Z T

0

h.Sn.u
"//t ; TK.u

"/ � TK.u/i dt

C

Z T

0

Z
�

A.x; t; u";Du"/D.TK.u"/ � TK.u//S 0n.u
"/ dxdt

D

Z T

0

Z
�

E"n.TK.u
"/ � TK.u// dxdt

C

Z T

0

Z
�

F " D.TK.u"/ � TK.u//S 0n.u
"/ dxdt C !"n;

where !"n D
R T
0

R
�
�.x; t/B.x; t; TK.u

"//D.TK.u"/� TK.u//S 0n.u"/ dxdt . We need
to prove

lim sup
"!0

k!"nkL1.Q/ D 0:(3.11)

We have Z T

0

Z
Q

�.x; t/B.x; t; TK.u
"//D.TK.u"/ � TK.u//S 0n.u

"/ dxdt

D

Z T

0

Z
Q

TM .b.x; t//

b.x; t/
ŒB.x; t; TK.u

"// � B.x; t; 0/�

� D.TK.u"/ � TK.u//S 0n.u
"/ dxdt

�

Z T

0

Z
�

TM .b.x; t//jTK.u
"/jjD.TK.u"/ � TK.u//jjS 0n.u

"/j

� 2M

Z
¹ju"j>Kº

CP jDu"j2jS 0n.u
"/j:
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Thanks to (3.2), and the fact that S 0n has a compact support, (3.11) is proven. The
second term of the left-hand side of (3.10) can be treated as follows:Z T

0

Z
�

A.x; t; u";Du"/D.TK.u"/ � TK.u//S 0n.u
"/

�

Z T

0

Z
�

A.x; t; TK.u
"/;DTK.u"//D.TK.u"/ � TK.u// dxdt

�

Z T

0

Z
�

A.x; t; u";Du"/S 0n�¹ju"j>Kº dxdt

which yields

(3.12)

Z T

0

Z
�

A.x; t; u";Du"/D.TK.u"/ � TK.u//S 0n.u
"/ dxdt

�

Z T

0

Z
�

¹A.x; t; TK.u
"/;DTK.u"// �A.x; t; TK.u

"/;DTK.u//º

� D.TK.u"/ � TK.u// dxdt

�

Z T

0

Z
�

A.x; t; TK.u
"/;DTK.u"//D.TK.u"/ � TK.u// dxdt

C

Z T

0

Z
�

A.x; t; TK.u
"/;DTK.u//D.TK.u"/ � TK.u// dxdt

�

Z T

0

Z
�

A.x; t; u";Du"/S 0n.u
"/DTK.u"/�¹ju"j>Kº dxdt:

Using the facts that S 0n has compact support, DTK.u"/ is bounded in L1.Q/ for every
K > 0, and that in the limit "! 0 the last three terms of the right-hand side of (3.12)
go to zero, we deduce

(3.13)

lim sup
"!0

Z T

0

Z
�

¹A.x; t; TK.u
"/;DTK.u"// �A.x; t; TK.u

"/;DTK.u//º

� D.TK.u"/ � TK.u// dxdt

� lim sup
"!0

Z T

0

Z
�

A.x; t; u";Du"/ � D.TK.u"/ � TK.u//S 0n.u
"/ dxdt:

Inserting the first part of (3.13) into (3.12), we obtain

lim sup
"!0

Z T

0

Z
�

¹A.x; t; TK.u
"/;DTK.u"// �A.x; t; TK.u

"/;DTK.u//º

� D.TK.u"/ � TK.u// dxdt

� lim sup
"!0

²
�

Z T

0

h.Sn.u
"//t ; TK.u

"/ � TK.u/i dt C 2KkE"nkL1.Q/

³
:
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For n large enough, proceeding as in [3], we get

lim inf
"!0

Z T

0

h.Sn.u
"//t ; TK.u

"/ � TK.u/i dt � 0:

From this, together with (3.9) and by letting n tend to infinity, we obtain

lim sup
"!0

Z T

0

Z
�

¹A.x; t; TK.u
"/;DTK.u"// �A.x; t; TK.u

"/;DTK.u//º

� D.TK.u"/ � TK.u// dxdt D 0;

which concludes the proof.

The following lemma is an extension of [3, Lemma 3.2].

Lemma 3.4. There exist a subsequence (still indexed by ") of the sequence u" and
an element u of C 0.Œ0; T �IL2.�// such that when " tends to 0 and for any fixed K,
the following limits hold:

(1) u" ! u in C 0.Œ0; T �IL2.�//,

(2) TK.u
"/! TK.u/ in L2.Œ0; T �IW 1;p

0 .�//,

(3) A.x; t;DTK.u"//! A.x; t;DTK.u// weakly in L2.Q/N ,

(4) B.x; t; u"/! B.x; t; u/ in L2.Q/,

(5)
R
Q

A.x; t; u";DTK.u"//DTK.u"/ dxdt !
R
Q

A.x; t; u;DTK.u//DTK.u/ dxdt .

Proof. The strong convergence of u" can be obtained by using 1=�T� .u" � u�/
as a test function in the difference of the two equations (3.1) concerning u" and u� , and
letting � tend to zero. As a matter of fact, we can prove that u" is a Cauchy sequence
in C 0.Œ0; T �IL2.�//. Thanks to the weak convergence together with the asymptotic
behavior of the sequence TK.u"/ as " tends to zero, which is stated and proved in
Lemma 3.3, the strong convergence in (2) holds. The last three conclusions are simply
inherited from the strong convergence of u" and TK.u"/ along with the results which
are mentioned in Lemma 3.3.

Having at hand those useful lemmas, we are now in position to prove Theorem 1.1,
which is our main result.

Proof of Theorem 1.1.Existence of renormalized solutions. The proof of
the existence of renormalized solutions follows closely [3, Theorem 3.1], with some
slight differences due to the unbounded convective term. Since we know that u" belongs
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to L2.0; T IW 1
0 .�//, and @u"=@t belongs to L2.0; T IW �1;20 .�//, we have, for any

S 2 C1.R/ with S 0 2 C10 .R/,

@S.u"/

@t
D S 0.u"/

@u"

@t
:

This applied to (3.1) leads to

@S.u"/

@t
� divŒS 0.u"/A.t; x;Du"/C .1 � �.x; t//B.x; t; u"/�

C S 00.u"/ŒA.t; x;Du"/C .1 � �.x; t//B.t; x; u"/�Du"

D � div.F � �.x; t/B.x; t; u"//S 0.u"/:

In order to pass to the limit in (3.1) as " tends to zero, define M in such a way that
suppS 0 � Œ�M;M�, so that

S 0.u"/A.x; t;Du"/ D S 0.u"/A.x; t;DTM .u"//:

Using the facts that u" converges to u as " tends to zero, and that S 0 is bounded, we
may conclude that

S 0.u"/A.x; t;Du"/ * S 0.u/A.x; t;DTM .u// weakly in .L2.Q//N ; and
S 0.u"/.1 � �.x; t//B.x; t; u"/ * S 0.u/.1 � �.x; t//B.x; t; u/ weakly in .L2.Q//N

as " tends to zero. As already mentioned, S 0.u/A.x; t;DTM .u// has been denoted
by S 0.u/A.t; x;Du/ in equation (2.2).

Let us consider the term

S 00.u"/ŒA.t; x;Du"/C .1 � �.x; t//B.x; t; u"/�Du"

D S 00.u"/ŒA.t; x;DTM .u"//C .1 � �.x; t//B.x; t; u"/�DTM .u"/:

Thanks to the asymptotic estimates of TK.u"/ in Lemma 3.3,

lim
"!0

Z
Q

ŒA.x; t; u";Du"/ �A.x; t; u";DTM .u//�ŒDTM .u"/ � DTM .u/� dxdt D 0:

From the above equality we obtain

ŒA.x; t; u";Du"/ �A.x; t; u;DTM .u//� � ŒDTM .u"/ � DTM .u/�! 0 in L1.Q/

as " tends to zero. Using the facts that S 00.u"/ is pointwise convergent to S 00.u/ and
S 00 is bounded, by applying Egoroff’s theorem we get

(3.14)
S 00.u"/A.x; t; u";DTM .u"//DTM .u"/
! S 00.u/A.x; t; u;DTM .u//DTM .u/ in L1.Q/
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as " tends to zero. Since u" is strongly convergent to u in C 0.Œ0; T �IL2.�// as in
Lemma 3.4 (1),

�.x; t/B.x; t; u"/S 0.u"/! �.x; t/B.x; t; u/S 0.u/ in L1.Q/:(3.15)

Finally, the pointwise convergence of u" together with the strong convergence of F " to
F yields

F "S 0.u"/! FS 0.u/ in L1.Q/:(3.16)

From (3.14), (3.15) and (3.16) we deduce that (3.1) is satisfied in the sense of distribu-
tions. This completes the proof of the existence result of Theorem 3.1.

The proof of the uniqueness of the renormalized solution turns out to be more
involved than in the case treated in [3], due to the unboudedness of the convective term.

Proof of Theorem 1.1. Uniqueness. Uniqueness of the solution will follow as a
direct application of the following lemma, which is adapted to our situation from [3].

Lemma 3.5. Assume that u01 and u02 lie in L2.�/, F1 and F2 lie in L2.Q/, and
that they satisfy

u01 � u02 and F01 � F02:

Then if u1 and u2 are two renormalized solutions of problem (1.9) for the respective
data .F1; u01/ and .F2; u02/, we have

u1 � u2 a.e. Q:

Proof. The proof follows the strategy of [3], with some slight differences. In [3],
uniqueness is proved when the data b D 0, and the proof is based on the monotonicity
of the operator A in divergence form. As a matter of fact, in our case we cannot rely on
the monotonicity of the operator, due to the unbounded convective term. But we can
repeat the proof of [3, Lemma 3.4], based on the fact that the operator A is coercive,
as stated in Lemma 3.2.

Define f C D sup.f; 0/ for any measurable function defined on Q. As in [3], we
define in a similar way the function Sn.r/ in C1.R/ through

Sn.r/ D

Z r

0

hn.s/ ds; hn.r/ D

´
1 if jr j � n � 1;
h.r � .n � 1/ sgn.r// if jr j � n � 1;

where sgn.r/ denotes the sign of r .
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The function Sn is a smooth approximation of the truncation Tn, and it satisfies
suppS 0n � Œ�.nC 1/; nC 1�;kS 0nkL1.R/ � khkL1.R/, and Sn.r/D Sn.TnC1/.r/ for
all r inR and all integers n � 2.

We use TCC .Sn.u1/ � Sn.u2// as a test function in the difference of equation (2.2)
relative to u1 and u2. Upon integration over .0; t/ and then upon .0; T /, we get

(3.17)

Z T

0

Z t

0

Z
�

�
@Sn.u1/

@t
�
@Sn.u2/

@t
; TCC .Sn.u1/ � Sn.u2//

�
.s/ dxdsdt

C I n1 C I
n
2 C I

n
3 C I

n
4

D

Z T

0

Z t

0

Z
�

.F1S
0
n.u1/ � F2S

0
n.u2//DT

C

C .Sn.u1/ � Sn.u2// dxdsdt

C J n1 C J
n
2 ;

where

I n1 D

Z T

0

Z t

0

Z
�

ŒS 0n.u1/ŒA.Du1/C .1 � �.x; s//B.u1/�

� S 0n.u2/ŒA.Du2/C .1 � �.x; s//B.u2/��
� DTCC .Sn.u1/ � Sn.u2// dxdsdt;

I n2 D

Z T

0

Z t

0

Z
�

S 00n .u1/ŒA.Du1/C .1 � �.x; s//B.u1/�

� Du1TCC .Sn.u1/ � Sn.u2// dxdsdt;

I n3 D �

Z T

0

Z t

0

Z
�

S 00n .u2/ŒA.Du2/C .1 � �.x; s//B.u1/�

� Du2TCC .Sn.u1/ � Sn.u2// dxdsdt;

J n1 D

Z T

0

Z t

0

Z
�

�.x; s/B.u1/S
0.u1/DTCC .Sn.u1/ � Sn.u2// dxdsdt;

J n2 D �

Z T

0

Z t

0

Z
�

�.x; s/B.u2/S
0.u2/DTCC .Sn.u1/ � Sn.u2// dxdsdt:

The first term of (3.17) can be handled in the following way:Z t

0

�
@Sn.u1/

@t
�
@Sn.u2/

@t
; TCC .Sn.u1/ � Sn.u2//

�
.s/ ds

D

Z
�

'C .ŒSn.u1/ � Sn.u2/�
C/.t/ dx �

Z
�

'C .ŒSn.u01/ � Sn.u02/�
C/ dx;
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for all t in Œ0; T �. Equation (3.17) then can be rewritten as follows:Z
Q

'C .ŒSn.u1/ � Sn.u2/�
C/.t/ dxdt C I n1 C I

n
2 C I

n
3

�

Z T

0

Z t

0

Z
�

.F1S
0
n.u1/ � F2S

0
n.u2//DT

C

C .Sn.u1/ � Sn.u2// dxdsdt

C T

Z
�

'C .ŒSn.u01/ � Sn.u02/�
C/ dx C J n1 C J

n
2 :

In order to complete the proof, the quantities I n1 ; I
n
2 ; I

n
3 ; J

n
1 ; J

n
2 will be shown to

satisfy

lim
n!1

I n1 D 0;(3.18)

lim
n!1

I n2 D 0;(3.19)

lim
n!1

I n3 D 0;(3.20)

lim
n!1

J n1 D 0;(3.21)

lim
n!1

J n2 D 0:(3.22)

We have

• Sn.u1/ � Sn.u2/! u1 � u2 strongly in L1.Q/,

• .F1S
0
n.u1/ � F2S

0
n.u2//DT

C

C .Sn.u1/ � Sn.u2// ! .F1 � F2/DTCC .u1 � u2/
strongly in L1.Q/,

• Sn.u01/ � Sn.u02/! u01 � u02 strongly in L1.�/.

When n tends to infinity,

(3.23)

Z
Q

'C .Œu1 � u2�
C/ �

Z T

0

Z t

0

Z
�

.F1 � F2/DTCC .u1 � u2/ dxdsdt

C T

Z
�

'C .Œu01 � u02�
C/ dx:

The right-hand side of (3.23) is nonpositive, thus we have 'C .Œu1 � u2�C/ � 0.
Since C is arbitrary, this implies that u1 � u2 almost everywhere inQ. This will prove
Lemma 3.5. In order for the proof to be complete, it remains to prove (3.18)-(3.22). For
any measurable function v defined on Q, and any positive real number K, let �¹v�Kº
denote the characteristic function of the measurable set ¹.t; x/ W v.t; x/ � Kº. Then
I n1 can be rewritten as

I n1 D

Z
Q

.T � t /�¹0�Sn.u1/�Sn.u2/�C ºŒS
0
n.u1/A.u1/ � S

0
n.u2/A.u2/�

� D.Sn.u1/ � Sn.u2// dxdt;
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or equivalently as

I n1 D

Z
Q

.T � t /�¹0�Sn.u1/�Sn.u2/�C º

� ŒA.x; t; u1;DSn.u1// �A.x; t; u2;DSn.u2//�
� D.Sn.u1/ � DSn.u2// dxdt

C

Z
Q

.T � t /�¹0�Sn.u1/�Sn.u2/�C º

� ŒS 0n.u1/A.x; t; u1;Du1/ �A.x; t; u1;DSn.u1//�
� D.Sn.u1/ � DSn.u2// dxdt

�

Z
Q

.T � t /�¹0�Sn.u1/�Sn.u2/�C ºŒS
0
n.u2/A.x; t; u2;Du2/ �A.DSn.u2//�

� D.Sn.u1/ � DSn.u2// dxdt
WD F n1 C F

n
2 C F

n
3 :

Using the asymptotic estimates from Lemma 3.3, it is easy to see thatF n1 is nonnegative,
so we only need to show thatF n2 andF n3 tend to zero when n!1. Due to the definition
of Sn, we have

S 0n.u1/A.x; t; u1;Du1/ D A.x; t; u1;DSn.u1//;

almost everywhere except on the subset ¹.x; t/ W n � ju1.x; t/j � nC 1º. Thus F n2
can be rewritten as

F n2 D

Z
Q

.T � t /�¹0�Sn.u1/�Sn.u2/�C º�¹n�ju1j�nC1º

� ŒS 0n.u1/A.x; t; u1;Du1/ �A.x; t; u1;DSn.u1//�
� D.Sn.u1/ � DSn.u2// dxdt:

Using the assumptions on Sn, the bound kS 0nkL1.R/ � khkL1.R/, and the fact that
suppS 0n � Œ�.nC 1/; nC 1�, implies that, for any n > C ,

�¹0�Sn.u1/�Sn.u2/�C º�¹n�ju1j�nC1ºS
0
n.u2/

D �¹0�Sn.u1/�Sn.u2/�C º�¹n�ju1j�nC1º�¹n�C�ju2j�nC1ºS
0
n.u2/:

We obtain

F n2 D

Z
Q

.T � t /:�¹0�Sn.u1/�Sn.u2/�C º:�¹n�ju1j�nC1º

�ŒS 0n.u1/A.x; t; u1;Du1/�A.x; t; u1;DSn.u1//�
� ŒS 0n.u1/Du1�S 0n.u2/Du2� dxdt
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� T

Z
Q

�¹n�ju1j�nC1º

�
S 0n.u1/ŒA.Du1/C .1 � �.x; t//B.u1/�

� ŒA.DSn.u1//C .1 � �.x; t//B.u1/�
�

� ŒkhkL1.R/jDu1j � �¹n�C�ju2j�nC1ºkhkL1.R/jjDu2j� dxdt

� T

Z
Q

�¹n�ju1j�nC1ºŒS
0
n.u1/A.Du1/ � A.DSn.u1//�

� ŒkhkL1.R/jDu1j C �¹n�C�ju2j�nC1ºkhkL1.R/jDu2j� dxdt

� T

Z
Q

�¹n�ju1j�nC1ºŒkhkL1.R/.cjDu1j C d/C d C ckhkL1.R/jDu1j�

� ŒkhkL1.R/jDu1j C �¹n�C�ju2j�nC1ºkhkL1.R/jDu2j� dxdt

D T khkL1.R/

Z
Q

Œ.1C khkL1.R//d C 2khkL1.R/c�¹n�ju1j�nC1ºjDu1j�

� �¹n�ju1j�nC1ºjDu1j C �¹n�C�ju2j�nC1ºkhkL1.R/jDu2j dxdt :

Thanks to Lemma 3.1 we obtain

lim
n!1

Z
¹n�ju1j�nC1º

jDu1j2 dxdt D 0 and lim
n!1

Z
¹n�ju2j�nC1º

jDu2j2 dxdt D 0;

thus F n2 tends to zero.
The proof thatF n3 tends to zero as n!C1 is similar to the case ofF n2 by switching

the role of u1 and u2. Thus limn!1 I
n
1 D 0.

The proofs that limn!1 I
n
2 D 0 and limn!1 I

n
3D 0 are also similar, so here we

just describe the proof of limn!1 I
n
2 D 0, and the conclusion limn!1 I

n
3D 0 follows

similarly.
By using the coerciveness of operator A, we easily get

jI n2 j D

Z
Q

.T � t /S 00n .u1/A.x; t; u1;Du1/Du1T
C

C .Sn.u1/ � Sn.u2// dxdt

� TC
˛

2
kh0kL1.R/

Z
Q

�¹n�ju1j�nC1ºjDu1j
2 dxdt:

Thanks to Lemma 3.3, limn!1 I
n
2 D 0. Finally, the proofs of limn!1 J

n
1 D 0 and

limn!1 J
n
2 D 0 are similar, so we just do it for J n1 .

J n1 D

Z T

0

Z t

0

Z
�

�.x; s/B.u1/S
0.u1/DTCC .Sn.u1/ � Sn.u2// dxdsdt

�

Z
Q

.T � t /�¹0�Sn.u1/�Sn.u2/�C º�¹n�ju1j�nC1º

�
TM .b.x; s//

b.x; s/
b.x; s/ju1jkhkL1.R/ŒS

0
n.u1/Du1 � S

0
n.u2/Du2� dxdt
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� TMCP khkL1.R/

�

Z
Q

�¹n�ju1j�nC1ºŒ�n�ju1j�nC1jDu1j
2
C �¹n�C�ju2j�nC1ºjDu2j� dxdt;

which tends to zero because of (3.2) of Lemma 3.1. This completes the proof of
Lemma 3.5.
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