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Navier-Stokes—Cahn-Hilliard equations on evolving
surfaces

Charles M. Elliott and Thomas Sales

Abstract. We derive a system of equations which can be seen as an evolving surface version of
the diffuse interface “Model H” of Hohenberg and Halperin (1977). We then consider the well-
posedness for the corresponding (tangential) system when one prescribes the evolution of the sur-
face. Well-posedness is proved for smooth potentials in the Cahn—Hilliard equation with polynomial
growth, and also for a thermodynamically relevant singular potential.

1. Introduction

The Navier—Stokes—Cahn—Hilliard system on a sufficiently smooth, closed, oriented, and
evolving hypersurface, (I'(7))se[o,71 C R>,

pd*u = —Vrp + pHv + Vr - 2n(¢)E(m)) —&Vr - (Vro ® Vro) + F, (1.1

Vr-u=0, (1.2)

0°¢ = Vr - (M(9)Vrp). (1.3)
1

p=—eAre + ;F/(so) (1.4)

is derived in analogy to the “Model H” of Hohenberg and Halperin as in [33] and as a

thin film limit of the relevant system in a thin evolving Cartesian domain as in [42]. In

addition, we provide a well posedness result in the case of a prescribed evolving surface.
Here,

E(w = 5(Vru + (Vrw)?)

denotes the rate of strain tensor. We assume a matched density and denote the constant
density by p. The velocity of the surface is denoted by u which will often be decomposed
asu =u, + ur, where u,, ur are the normal and tangential components, respectively. The
associated pressure is denoted by p, n(-) is the variable viscosity which depends on ¢, and
F is some external force. We have split the fourth order Cahn—Hilliard equation into two
second order equations (1.3), (1.4) for ¢, i, where p is the associated chemical potential.
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In our derivations, we consider a non-constant mobility function M(-), but our analysis
will consider a constant mobility M(-) = 1. Lastly, v denotes the outer unit normal to
I'(¢), and H = Vr - v the mean curvature of I'(#)—with the convention that a sphere has
positive mean curvature. The differential operators used will be discussed below.

As in [34,46], one may be interested in this system where the normal component of
the surface evolution is known a priori. That is, u, = Vv for some, sufficiently smooth,
known function V. For our theory, it is sufficient to assume that Vyy isa C 3 function, and
so, we are working on a C 3 evolving surface, I'(¢). We assume that this surface is such
that |I"(¢)| = |To|, which is equivalent to assuming that

HVy =0
ING)

for all # € [0, T]. In this case, one obtains the tangential Navier-Stokes—Cahn—Hilliard
system

1 -
p(]P’8°uT + (Vrur)ur + VyHur — EVI‘ Vfr) =—Vrp + PVr-(2n(p)E(ur))

+ uVre + Fr, (1.5)

VI‘ ‘ur = —HVN, (]6)

3°¢ + Vro -ur = Vr - (M(9)Vrp), (1.7)
1

p=—eArg + —F(p). (1.8)

Here, p = p + §|qu0|2 + %F (p) is a modified pressure. In both systems, the pressure
and modified pressure, are unknown due to the incompressibility constraint.

Variants of this model have been considered on (mainly stationary) surfaces in [10, 13,
44,47,48,50]. The main focus in the existing literature is on the derivation and numerical
simulation of such a system, but there has been little consideration for the well-posedness
thus far. As such, our work considers the well-posedness of a somewhat simpler model
(surface evolution notwithstanding) which still captures the main features of the coupling
of the Navier—Stokes equations with the Cahn-Hilliard equation. Lastly, we note that the
model in [12] considers the influence of a physically relevant bending energy, and the
model in [47] consider a variable density—in accordance with the derivation in [2].

Some geometric differential notation. The evolving surface, I'(¢), is assumed to be suf-
ficiently smooth with a normal, v, and normal velocity, Vyv. Geometric quantities and
differential operators are defined by
P=IT-vQv,
Vr¢ =PV¢®, (Vr¢)i = D;¢, Vrv=PVv'P, (Vrv);;:=D;v,
(Vrv-w); = D;viw;, Vr-v=t(Vrv), H= Vpv,

where we have used Einstein summation convention. Here, ¢ and v, w are scalar and
vector fields, respectively, I denotes the identity matrix, and (-)¢ denotes an extension
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onto a neighbourhood of I'(¢). These expressions are independent of the specific choice
of extension. Likewise, we use the following notation for the normal time derivatives of
scalar and vector fields:

e ave

ot + VNVge-v, °v=— + VNyVv’ .,

°¢ =
¢ ot

which are again independent of choice of extension. Note that this is the time derivative
along a trajectory evolving in the normal direction. We use 9° to denote the time derivative
which follows also the physical tangential flow ur:

0°¢ = 0°¢ +ur - Vrp, 0°v=0°v+ Vrv-ur.

On the other hand, if we wish to use another tangential flow for a velocity field w =
Vnv + wr with a tangential vector field wr, we write

dy¢ = 0°¢p + Vrop-wr, 05v=0°v+ Vrv-wr.

Throughout, we will use the convention that a vector quantity will be denoted in bold, e.g.,
v, and a tensor quantity will be denoted in blackboard bold, e.g., P.

Applications

On a stationary Euclidean domain, the Navier—Stokes—Cahn—Hilliard equations have found
many applications, for example, in studying thermocapillary flows [9] and spinodal de-
composition [30]. For further details and applications, we refer the reader to [8]. A more
recent application to a modified version of this system has been to the study of chemotaxis,
for example, in modelling tumour growth [38]. In this case, there are suitable changes to
allow for a transfer of mass—adding further complications.

Another biological application which has been of interest in recent years is the study
of lipid bilayer membranes. It is known that the curvature of the domain influences the
dynamics of lipid membranes and enters through a bending energy, for example, the
Jillicher-Lipowsky energy:

E'lo) = [ Se@)H ~ Hoo)

as presented in [36]. Here, «(-) is the bending stiffness, and Hy(-) is the spontaneous
curvature which depends on the diffuse interface—an example being Hy(¢) = A¢ for
some curvature coefficient A € R. We refer the reader to [22,40] for a discussion of these
mechanisms, and to [31] for discussion and analysis of diffuse interface models for phase
separation on biological membranes. In [26], the authors consider a model for the kinetics
of a lipid bilayer membrane, coupling the Cahn—Hilliard equation to the stationary Stokes
equations in a planar domain. This model has been extended to surfaces in the recent
works [12, 13] where the authors also include the contributions of the relevant bending
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energy, as well as considering the full time-dependent Navier—Stokes equations for the
hydrodynamics. We also refer the reader to [10] and the references therein.

Lastly, we mention a different model of interest [14], in which the authors consider
the Cahn—Hilliard equations coupled with the Navier—Stokes equations on a free surface
determined by the Navier—Stokes equation in a bulk domain. This work also proposes
semi-discrete and fully-discrete numerical schemes and contains numerical examples.

Contributions and outline

The contributions of this paper are to provide two equivalent derivations of a diffuse inter-
face model coupling the Navier—Stokes equations and the Cahn—Hilliard equation on an
evolving surface and to extend existing analysis for the analogous system on a station-
ary, Euclidean domain to an evolving surface. The main results are showing existence
and uniqueness of weak solutions. The system is derived in Section 2. Some necessary
notation, functional analysis, and useful inequalities are provided in Section 3. Statements
of existence and uniqueness are provided in Section 4 for both smooth and logarithmic
Cahn—Hilliard potentials. Existence is proved in Section 5 and uniqueness in Section 6.
Existence and uniqueness of a mixed formulation involving the pressure are shown in Sec-
tion 7. Section 8 contains some concluding remarks about future directions. Appendices A
and B concern analytic results for the Laplace operator and inverse Stokes-type operator.

2. Derivation of the surface Navier—Stokes—Cahn—-Hilliard system

In this section, we provide two derivations (1.5)—(1.8): one by surface balance laws and
the other by considering a thin film limit.

2.1. Derivation by balance laws

We follow a similar presentation to that of [30] and derive (1.1)-(1.4) by using a balance
of microstresses. Consider a binary mixture of a fluid, with constituent densities p;, pa.
The total density
pi=p1+p2

is assumed to be constant. We define ¢; := % to be the corresponding concentration, so
that ¢; + ¢, = 1. Following the assumption of [30], we assume that the momenta and
kinetic energies of the constituent components are negligible when computed relative to
the gross motion of the fluid. As such, we consider the gross velocity, u, in our derivation
instead of the velocities of each component. By considering the total momentum of the
fluid in an arbitrary region, it is clear to see that

u=cju; + cruy,

where u; is the velocity of component with density p;. Throughout, we consider an arbit-
rary material portion X () C I'(#) whose boundary, dX (), moves with conormal material
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velocity of the surface fluid uz - vy, where vy denotes the unit conormal vector for 02 (¢)
(the outward unit normal vector which is tangential to X ()).
Since p is constant, conservation of mass within the material region X (¢) yields

O—d/ ,o—pd/ 1
dt @) dt 0]

Applying the transport theorem, we obtain that

0= / Vr -u,
(1)

and since ¥ is arbitrary, this yields
Vr-u=0 onI().

This shows that the material surface I'(¢) has the property of local inextensiblity, that is
to say %|Z‘(l)| = 0 for all ¥(¢) C I'(¢) such that the boundary moves with conormal
material velocity ur - vy. As a consequence, we have the property that the total area is
preserved:

IT(0)] = [Tol

forallt € [0, T1.
For each component, u;, we consider the mass balance

BN
J— Ci = — (l~.|)z7
dt Jsay 0Ty

where (; is some flux vector to be determined. The normal component of q; does not
contribute to the flux, and hence, we assume q; is purely tangential. Using the transport
theorem, along with the incompressibility above, we find that

d
—/ Ci :/ 8'c,~.
dt Jsq) ()

Using integration by parts on the boundary integral, one obtains

/ qi“’E:/ VF'Qi—/ qi-vH = Vr - q;,
aX(t) (1) (@) (1)

where H denotes the mean curvature. Thus, we obtain an equation for u;,
9°c; = =Vr-q; onT(¢).
We define quantities ¢ = ¢1 — ¢2,q = q; — 2, and observe that

*¢ =—Vr-q, 2.1)
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where we choose q later. Since ¢; + ¢, = 1, we can revert back to the individual concen-
trations by

Lastly, one considers the linear momentum balance for the gross momentum, that is,

d
—/ pu:/ Tvs +/ F,
dt Js@ D) ()

where T is the Cauchy stress tensor describing the stresses across the surface. Integrating
by parts together with X (¢) being arbitrary to

pd*u=Vr-T +F, (2.2)

where again there is no term involving v coming from the integration by parts' as we
assume T maps onto the tangent space of I'(¢). Similarly, one can apply standard argu-
ments to show that the balance of angular momentum yields

T=r1T. (2.3)

Next, we consider a local dissipation inequality for the energy. For a region X(¢), the
energy is given by

/ E(¢,Vro.u) = / Er(u) + (@, Vo),
(1) (1)

where |
o £
El(z) = —|Z|2, E2(77»Z) = —|Z|2 + —F(U)
2 2 e

We assume, as in [2,30], that there is a local dissipation inequality given by

d
—/ Ef/ Tvz-u—i-/ 8'g0’§~v2—/ ,uq'vz—i—/ F-u (24
dt Jx) AT (1) AT (1) IB@) T()

where p is the difference of the chemical potentials, u;, of each component, and & is
a stress (which we assume exists as in [2, 30]) characterising the microforces across the
boundary of a region—and acts only in the tangential direction. This inequality is under-
stood as being an appropriate form of the second law of thermodynamics. The boundary
terms correspond to the work done by the macroscopic stresses in the fluid, the work done
by the microscopic stresses, and the change of potential energy, respectively.

As X is arbitrary, we find that on I'(¢), one has

9*E = Vr - (Tu) = Vr - (8°¢€) + Vr - (uq) —F-u <0,

"'However, there is, as we emphasise later, still a component of this equation in the normal direction.



Navier—Stokes—Cahn—Hilliard equations on evolving surfaces 291
where we have used (2.3). We use (2.2) and the form of E to see that this implies
L[] L] 1 L] L ] L ]
pd*u-u+eVre -9 Vr(p—f—gF/((p)B ¢—pd®u-u—T : Vru—Vr . (0°¢&)+Vr - (uq)—F-u<0.

The stress & is understood to have a microforce balance on an arbitrary region X (¢),

given by
f §- vy =/ o,
ax(t) (@)

Vr-é§+0=0 onl(), 2.5)

from which we obtain

where o is a scalar function representing the internal forces on the surface. Lastly, we
write S = T + pP, where PP is the projection tensor, and p = —%tr(T) is the pressure.
We note that S maps onto tangent vectors, is trace-free and we find

P:Vru=1I1:Vru—vQ®v:Vru=Vr-u=0.
Next, by using (2.1), (2.2), and (2.5) in (2.4), it is straightforward to see that
(Vro —8) - 8*Vig + (5 + - F/() = p)i" — (5 + Vrg ®) : Vru+q- Vrp —F-u <0,
where we have also used
Vr(8°¢) = P3°Vre + (Vruw)? Vrg.
As noted in [2, 30], the quantity

L] 1 L]
~(eVrg —§) - 0°Vrg — (0 + ~F'(¢p) = )"0 + (S + Vre ® ) : Vru—q-Vru + F-u.

=D

represents the dissipation, and hence, the assumed inequality is equivalent to £ > 0.

One then argues as in [2,30] to show that if one allows S, q, &, o to depend on ¢, V1,
i, Vru, E(u) arbitrarily, then the assumed dissipation inequality can fail to hold. The
argument requires one to assume the presence of general forces and external mass sup-
plies. In particular, one finds that necessarily

1
eVro — & =0, o+;F’(<p)—u=0. (2.6)
We then assume, as in [19], that the mass flux takes the form

q=—-M(p)Vru

for some mobility function M(-). Similarly, motivated by Newton’s rheological law, we
assume
S +&Vre ® Vre = 2n(p)E(u),
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where {
Ew) = 2 (Vru + (Vru)T)

is the rate of strain tensor and 7(-) is a variable viscosity (depending on the concentration).
As noted in [2], S + eVrg ® Vre represents the change in energy due to friction in the
fluids and is referred to as the viscous strain tensor. In summary, this allows us to observe
that

T = —pP +2n(¢)E(w) —eVreo ® Vro, 2.7)

Boussinesg—Scriven term Korteweg term

where the first term is like the Boussinesq—Scriven ansatz seen in [17], but we allow
variable viscosity. Then, by combining (2.5), (2.6), we find that

1= —eArg + éF/(w),
and similarly combining (2.1) and the assumption on q, we obtain
3% = Vr - (M(¢)Vrp),
which are the relations for ¢, p as in [19]. Lastly, we observe that
Vr - (pP) = Vrp— pHv,
and hence, by using (2.2), (2.7), we see that
pd*u = —=Vrp + pHv + Vr - 2n(¢)E(u)) —eVr - (Vro ® Vro) +F.

Lastly, by recalling that Vr - u = 0, we observe that we have derived (1.1)—(1.4).

To obtain the tangential Navier—Stokes—Cahn—Hilliard system, we assume that the
geometric motion of I'(¢) is defined by the normal velocity field Vv, so material con-
tinuity in the normal direction implies the equation

u-v="Vy.

To find the unknown u7, one considers the projection of this momentum equation. For
this, we note that (as in [46])

9°¢ = 0°¢ + Vro -ur,

1
Pd*u = Po°ur + (Vrur)ur + VyHur — EVF VI%.

Similarly, we compute

1
Vr - (Vre ® Vre) = AroVre + EVF|VF¢|2 — (Vre - HVrg)v,
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and by using (1.4), we see that

1
—eAroVro = (M - gF’(w))er-

Thus, defining the modified pressure to be
- & 5 1
p=pr+ §|VF<P| + ;F(QD)

and recalling Vr - ur =—H Vy, we obtain the tangential Navier—Stokes—Cahn—Hilliard
equations (1.5)—(1.8). The obvious modification to the calculations in [46] also yields an
equation for the normal component

pd*Vy = —21(p)(tr(HVrur) + pVy t(H?)) + pur - Hur —ur - VrVy + pH
—&eVre-HVre + F,, (2.8)

where F,, = F - v, which must be satisfied and coupled with (1.5)—(1.8).

Remark 2.1. (1) Equations (1.1)—(1.4) are a simplified form of the system derived in [12],
where the authors also consider the effects of bending/friction. It is useful to note that
these authors consider the modified pressure throughout. Hence, neglecting the effects
of bending/friction terms and changing notation suitably, one finds the two systems are
identical.

(2) One may also be able to derive a related model by considerations similar to [52].
We leave this for future work.

2.2. Derivation by a thin film limit

In this section, we consider the thin film limit of relevant Navier—Stokes—Cahn—Hilliard
equations on an evolving Cartesian domain. This approach has been considered for the
heat equation [41], the Navier—Stokes equations [17,42], and the Ginzburg-Landau equa-
tion [43]. Besides use in derivation of a suitable system of surface Navier—Stokes—Cahn—
Hilliard equations, there has been interest in using a thin film approximation numeric-
ally [50] to study the limiting surface equations.

We assume throughout that I'(¢#) does not undergo a change in topology. Indeed, in
the presence of a change in topology, the modelling of this phenomenon is different, and
so, one expects the systems (1.1)—-(1.4) and (1.5)—(1.8) will not necessarily make sense.
We discuss this more in Remark 2.5. We also ignore the effect of the external force, F, for
brevity.

As before, we still consider a closed oriented evolving surface, I'(¢), with a prescribed
normal velocity V. We define 2, (7) by

Qy (1) = {x e R? [|d(x,0)| <y},
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where d(x, 1) is the signed distance function of I'(¢) and y > 0 is sufficiently small. We
then define the (noncylindrical) space-time domain

Oyr:= J @@=}
t€l0,T]

where we pose our problem. We consider a Navier—Stokes—Cahn—Hilliard system on

Qy,T:

Y
p(2 4 VW) =V 4 V- Q0" Ea?) — eV - (Vg? @ V), (29)

ot
V.u =0, (2.10)
de” 14 Y 4 1

~ - =V (M(@")Vu?) +u” - Vg =0, @.11)

1
W = —eAp?” + —F'(¢7), (2.12)

e

equipped with boundary conditions

w v = Vﬁ, (2.13)
[Eq @)y ] = 0, (2.14)
V¥ vV =0, (2.15)
vu? -v? =0, (2.16)

on the lateral boundary 9, Q,, 1 defined as

0Qyr = | 992, x {1},
t€l0,T]

Here, the normal velocity of the bulk domain, €2, (¢), is VIG (x,t) := Vy(m(x,t),t). We
are using the notation Eg := %(Vuy + (Vu”)T) for the rate of strain tensor in €, and
[]tan denoting the tangential component to 32, (¢) of a vector in R3. The condition (2.14)
is sometimes referred to as the perfect slip condition and appears as a natural boundary
condition. One may expect different boundary conditions for ¢?, u?, similar to the Robin-
type condition seen for the heat equation in [41]. However, the usual Neumann conditions
are still sufficient for our setting and retain the mass conservation property. To see this, we
use the Reynolds transport theorem so that

d Y
_ (/)y :/ _+/ (pVVV
dt Ja, o Q,@n 0t 99, (1) N
— [ @w-wvens [ ey
2, () 82, (1)

= / (V¥ -v? —g¥u” -v¥ 4+ "V}
899, (1)

- / v v,
32, ()
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where we have used (2.13) for the final equality. The Neumann condition for ¢¥ fol-
lows in the usual way, without any need for Reynolds transport theorem. We now expand
eV, u¥,u”, p¥ in terms of the signed distance function as

07 (x.1) = °((x. 1), ) +d(x, )@  (x(x. 1), ) +d(x,1)*9*((x,1), 1) + O (d(x,1)?),
1 (x,t) = pl (e, 1), ) +d(x pt (r(x, ), 1) +d (o, )2 p? (e (x, 1), 0) + 0 (d (x, 1)),
w(x,t) =u(m(x,1), 1) +d(x,Hu' (m(x, 1), 1) +d(x, ) >0 (n(x,1), 1)+ O(d(x, 1)>),
pY(x.1) = pP(a(x, ), ) +d(x, ) p' (m(x, 1), ) +d (x, 0)* p*(r(x, 1), 1) + O (d (x, 1)),

where here 7 (x, t) is the closest point projection of x onto I'(¢). This is uniquely defined
on a small tubular neighbourhood, N (I'(¢)), of T'(¢). Hence, we have a requirement on y
being sufficiently small so that

Oyr < |J NT@)x{).

t€l0,T]

Before considering the thin film limit, we recall some preliminary results. Firstly, we recall
that

Vd(x,t) = v(rm(x,t),t),
dd(x,1)
ot

== —VN(T[(X,t),[),

and from these, one can show the following results.

Lemma 2.2 ([42, Lemma 2.7]). Let f be a scalar of vector valued function on §r. Then,
the spatial/temporal derivatives of the composite function f(m(x,t),t) are such that

V(f(r(x.1).1)) = Vr f(r(x.0).1) + dx, ) (HVp f)(r(x,1).1) + O(d(x, 1)),

YOCDD e fete,).0) + de D Vi - Ie) ) (e,0.0) + Odx. 1)

for(x,t) € Qy 1.

Lemma 2.3 ([42, Lemma 2.8]). Let S°, S! be 3 x 3 matrix valued functions on T (t) for
eacht € (0,T). Then, for x € Q,(t), set

S(x) = So(n(x, t)) +d(x, Z)Sl(n(x,t)) + (9(d(x,t)2).
Then, we have
V-S(x)=Vr- So(n(x,t),t) + (Sl(n(x,t),t))Tv(n(x,t),t) + O0(d(x,1))

forx € Q,(1).
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Theorem 2.4. Let (oY, u¥,u”, p?) solve (2.9)—(2.12) with boundary conditions (2.13)—
(2.16). Then, (¢°, %, u®, p°, p') from the corresponding expansion in terms of the signed
distance functions solve

pd*u® = —Vrp® + plv + Vr - 2n(e*")E@°)) —eVr - (Vre® @ Vre®),  (2.17)

Vr-u® =0, (2.18)

9°¢® = Vr - (M(¢°)Vru®), (2.19)
1

n’ = —eAre® + —F'(y°) (2.20)

on 8 such thatu® -v = Vy.

Proof. We abbreviate w(x,t) to = and d(x,?) to d throughout this proof. Firstly, by
considering (2.13) and the expansion for u” (on the boundary d = £y), we have’

w(m, t)-v(m 1) £yul(m 1) -v(m 1) + y?2ud (1) - v(m, 1) + O = V(. 1),
and so, equating terms of order yk fork =0, 1,2, one finds that

w(m, 1) -v(m, t) = Vy(m, 1),
ul(m, 1) v(m, 1) =0,
w(m,t)-v(m, t) =0.

Taking the gradient of u”, we find

V' (x,1) = Vrul(zr,t) + v(m, 1) @ ul(n, 1)
+ d((HVru®)(r, 1) + Vru' (, 1) + 2(v @ u?) (7, 1)) + O(d?), (2.21)

and hence, taking the trace of the above, using (2.10) and u! - v = 0, we obtain
V-uw =Vr-u’ 4+ 0@),
from which the zeroth order terms yield (2.18). Similar calculations let us verify that

VY (x,1) = Vrg®(m, 1) + ¢' (m, 1)v(, 1)
+ d((HVr¢®)(m,1) + Vro' (m,1) + 2(¢*v)(x,1)) + O(d?)

and
VpY¥(x,t) = Vrp°(m, 1) + pl(m, t)v(m, 1) + O(d). (2.22)

Similarly, by considering the transpose of (2.21), one finds

Eq@”)(x,1) = S, 1) + dS'(n, 1) + O(d?), (2.23)

2Here, the £y corresponds to the boundary of Q, (¢) consisting of two disjoint sets, {x € R? | d(x,1) =
y},and {x e R3 | d(x,1) = —y}.
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where
®u1+u1®v
s'=E@Y)+ 222 T 2Y
() + ———
HVru® HVru®)T
gl — - 'ru + (HVru) +E@)+veui+u’Qv.

2
Now, by our smoothness assumption on 7(-), we may use Taylor’s theorem to write
(@ (x,1)) = n(¢° (7w, 1) + dn' (™ (x, 1)) (. 1) + O(d?),

where ¢* (7, t) is some function valued between ¢°(r, t) and ¢” (x, t) which arises from
the remainder term in Taylor’s theorem. Using this, we find that

(" (x, 1) Eq”)(x,1) = S8, 1) + dS' (n, 1) + O(d?),
where

V®u1+u1®V)
2

5o — n(wo)(E(uo) +

and

2
HVru® + (HVru®)?
2

1 1
§' = n’(w*)(E(u") AL L ®")

+n(<p°)( +E(u1)+v®u2+u2®v).

Hence, using Lemma 2.3, we see that
V- 2n(e")Eq)) =2Vr-§° +2(8HTv + 0(d).

and so, we check which of these terms vanish. To do this, we firstly note that, by rewriting
(2.14), one has
P(x,)Eq@”)v(n,t) =0, x € 0RQ,(1),

and so, by using (2.23), one finds that
P, 1)S(m, t)v(m, 1) £ yP (o, t)S (7w, t)w (. 1) + O(y?) = 0,
and hence,

P, )S° (. t)v(m, 1) = 0,
P(x,t)S(n, t)v(m,t) = 0.

Then, by using the form of SO, and

veuhyry=0, W @vw=u, Pu =u,
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in the above yields
u! = 2P, HE@®)v(x, 1).
Thus, we find that
§° = n(@")E@’) — (") (» @ V)EW")P — (¢ )PE@’) (v ® v)
= n(@")E@®) = n(¢*)(» @ ME@’)(v ® v)
= 1(¢")E@°),
where we have used P = I — (v ® v) and Vru® = PVru®P. Hence, we find that

Vr-S% = Vr - (n(@*)E ).

We now show that (§1)Tv = 0. Firstly, we notice that from the above calculations it is
clear that

SHTv = (") E@)y
N U(QOO)(HVFuOV +2(HVru°)Tv

+Eu'yw+ (v u’)w+ W e v)v).

Recalling that
E@)v=0=E@)v, HVrulv=0= (HVpuO)Tv, veu’)r=0, W Qv)v=u?
where we have used v € ker(H), and u? - v = 0, we find that

EHTv = ().

Then, using the form of Stin P(x, t)S(r, t)v (s, t) = 0, one finds that u? = 0, and so,
(SYHTv = 0. Hence,

V- (2n(¢")Eg (")) = Vr - 21(¢”)E(’)) + O(d). (2.24)

The tensor product involving Vg7 is dealt with similarly, where it is straightforward
to see that

Ve? ® Vo' = Vre® ® Vre® +d(Vre' ® Vre® + Vre® @ Vre') + 0(d?),
and hence, by using Lemma 2.3,
V- (Vo' ® V") =Vr - (Vre® ® Vre®)+(Vre® ® Vre' +Vre' @ Vre®)v+0(d),
where the latter term clearly vanishes as Vr qoo, quol are tangential. Thus, one obtains

eV - (Vo¥ @ Vo) = eVr - (Vre® ® Vre®) + 0(d). (2.25)



Navier—Stokes—Cahn—Hilliard equations on evolving surfaces 299

For the momentum equation, all that remains to discuss is the time derivative and the
advective term. The time derivative follows immediately from Lemma 2.2 as

aalty(x’t) = aouo(ﬂ,t) — VN(JT,Z‘)HI(TL[) =+ (9(d), (226)

which we want to turn into a material time derivative by considering the advective term.
For the advective term, we write (u” - V)u” = (u”)” Vu”. Hence, from the expansion of
u” and using Lemma 2.2, one finds that

W)V’ = @) Vru® +ul@®-v) + 0@d) = @° - Vr)u® + Vyu! + 0(d).
Hence, using this expression for the advection with (2.26), one finds

ou’

g (% + V)“V) = p(@u’ + (° - Vr)u®) + 0(d) = po*u’ + O(d). (227)
where here we understand 0° to mean the derivative along the velocity field given by
Vv + u’—that is the tangential velocity is only considered up to the zeroth order term.
This point is made clearer by the notation of [42] where one would write this as d%,. Now,
by combining (2.22), (2.24), (2.25), and (2.27) in (2.9), one obtains

pd*u® = —Vrp® + p'v + Vr - 2n(e*")E@°) — eVr - (Vre® ® Vre®) + 0(d).

and as the functions (¢°, 1%, u®, p°, p!) are independent of d one obtains (2.17) from the
zeroth order terms.

It remains to show that (2.11), (2.12) give (2.19), and (2.20) at zeroth order. This is
largely the same, so we skim the details. The advective term in (2.11) is the main point of
interest here. Using the expansions for ¢, u” and Lemma 2.2, one finds

uw Ve =u’ - Vre® +u’-ve' +0(d). (2.28)

For the time derivative, one uses Lemma 2.2 as before so that
apY
ot

We combine this with (2.28), recalling that u® - v = Vy, so that

(x,1) = 3°° (. t) — Vn (. 1)@ (. 1) + O(d).

8 Y
% +u” V! = 3°0° +u’- Vre® + 0(d) = 8°¢° + O(d). (2.29)

It remains to consider the term V - (M (¢Y)V ), which is dealt with almost identically to
the term V - (2n(¢Y)Egq(u”)). From Lemma 2.2, we see that

Vi (x,0) =Vrp®(m, 1) + ' (o, 0w, ) +d(Vep! (r,0) +20% (, 0w (e, 1)) + 0 (d?),
and by Taylor’s theorem (assuming M (-) is sufficiently smooth),

M(g” (x,1)) = M(¢°(70, 1)) + dM'(¢*(m, )¢ (w0, 1) + O(d?),
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where we have abused notation and reused the ¢* for the intermediate point arising in
the remainder, which is different from the ¢* before, but this does not matter. Combining
these, we find that

M)V = M(g°)Vru® + M(p%)u'v
+dM'(¢")p' Vru® + M' (™)' 1y + M(e°)Vru' +2M(p°%)u?v)
+0(d?).
Considering the gradient of this expression, one finds that
V(M(@")Vi?) = Vr(M(9°)Vrp®) + Vr(M(e°)pu') @ v + M(¢")u'H
+ M (@*)p'v @ Vru’ + M'(p*)e'u'v @ v
+ M%) ® Vru'! +2M(e°)p’v @ v + 0(d).
and taking the trace of the above yields
V- (M(¢")VpY) = Vr - (M(¢°)Vrp®) + Ve (M(@°)u') -v + M(@°)u' H
+ M (9")plv - Ve’ + M (9" )p 'y v
+ M(@%v - Vru! +2M(%)u?v -v + O(d),

which simplifies to
V- (M(p")Vi) = Vr - (M(9")Vrp®) + M(e")u' H + M'(9*)¢" 1!
+2M(@®)u?* + O(d). (2.30)
Now, from the boundary condition (2.16), one finds that
0=Vu’ v’ =Vrul-v+pulv-vEy(Vrul v +2u%v-v) + 0.
Thus, equating terms of the same order in y, one finds
Vrul v+ pul =0,
Vrul v +2u? =0,
from which one concludes ,u‘ =0= ,uz, and hence, (2.30) becomes
V- (M(¢")Vu?) = Vr - (M(¢°)Vru®) + 0(d). (2.31)

By combining (2.29), (2.31) in (2.11) one obtains (2.19) by considering the zeroth order
terms.

We skip the derivation of (2.20) from (2.12) and (2.15) as it follows the same argu-
ments as we have used so far. The only point worth mentioning is that we assume the
potential F(-) is C? so that one may indeed use Taylor’s theorem as we have done for
previous terms. ]
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Remark 2.5. (1) The key difference between the systems (1.1)—(1.4) and (2.17)—(2.20) is
that the latter system has two Lagrange multipliers to be determined, p® which is under-
stood as enforcing the divergence free constraint, and p! which is understood as enforcing
the normal velocity constraint. This difference is the same as observed in a comparison
of various derivations of the evolving surface Navier—Stokes equations in [17]. Moreover,
this only occurs in the normal direction and has no bearing on our following analysis of
the tangential system (1.5)—(1.8).
(2) As remarked in [42], the equations (2.10) and (2.18) imply” that

d
—|2,@)| =0
12, (0] =0,
d
—|I'#)| =0
ST (@) = 0.

respectively. However, one may also use a corollary of the coarea formula (see [25] for
example), proven in [42, Appendix A], to see that

V4
|s2y(r>|=/ 1=/ [ T,
Q2 (2) —y JT(@)

where J(t; x, r) is a corresponding Jacobian of the form
J(t;x,r) =1—rH(t:;x) + r’K(t; x),

where K(¢; x) = det(H(¢; x)) is the Gaussian curvature of I'(¢), we refer to [42] for
details. From this, one finds that

2)/3
€2y (1)] =2V|F(t)|+T K(t:x),
@)

where one finds the mean curvature term vanishes by using the divergence theorem and
the fact that I'(¢) is closed. Hence, assuming that %|F(l)| = 0 is not sufficient for the
existence of a solution to (2.17)—(2.20), one also requires

d

— K(t;x) = 0.
dt @)

As seen for the evolving surface Euler, and Navier—Stokes equations in [42], this can
be assured by imposing that I'(¢) does not change its topology as by the Gauss—Bonnet
theorem, see [35],
K(t;x) =2nx(I(¢)),
ING)
where y(I'(¢)) is the Euler characteristic of I"(¢).

3Here, we are using |2, (¢)| to denote the £ Lebesgue measure of Q2 (¢), and |T'(7)| the 2 Hausdorff
measure of I'(¢).
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2.3. Equivalence of the derived systems

In this section, we discuss the equivalence of the systems (1.5)—(1.8) and (2.17)—(2.20).
Firstly, when considering (1.5)—(1.8), one notes that in prescribing the normal velocity
one does not have to solve (2.8) but this equation must still be resolved for the normal
component to be given by the prescribed velocity. Hence, there must be some normal
force F,v such that the normal velocity one would obtain from (2.8) is the prescribed
normal velocity V. With this in mind, the form of (1.1)—(1.4) with a prescribed normal
velocity becomes

pd*u=—Vrp+ pHv + Vr - 21(¢)E(u)) —eVr - (Vro ® Vro) + F,v,  (2.32)

Vr-u=0, (2.33)

0°¢ = Vr - (M(¢)Vru), (2.34)
1

w=—eArp + EF'(<p). (2.35)

Taking the normal component of (2.32), one finds that

F, = pd*Vy + 2n(¢)(tr(HVrur) — Vy tr(H?)) — pur - Hur + pur - VrVy
— pH + ¢Vre - HVro, (2.36)

which one can find directly from after solving (1.5)—(1.8). This calculation is done in
detail for the evolving surface Navier—Stokes equations in [34].
Similarly, by considering the normal component of (2.17)—(2.20), one finds (up to a
change of notation)
p] =F + pH.

Thus, one finds that we may express (2.32)—(2.35) as
pd*u = —Vrp + p'v + Vr - 2n(@)EM) — eVr - (Vre ® Vro).
Vr-u=0,
%@ = Vr - (M(¢)Vrp),
nw=—eAre + éF/(‘P),

which is precisely the form of (2.17)—(2.20) from the thin film limit (up to a change of
notation). This equivalence will also hold in the presence of some tangential force, Fr.
3. Notation, function spaces, and inequalities

In this section, we introduce some necessary notation, functional analysis, and useful
inequalities.
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3.1. Notation

Next, we introduce some notation which will be used throughout. For a #/2—measurable
set, X C R3 and a function f e LI(X ), we denote the 2 measure of X and the mean

value of f on X by
1
X:=J{’2X,][ :=—/.
XIi= 9200, f o= |1

The components of the tangential gradient are denoted by
Vro = (D,¢.D,¢.D;9).
The (scalar) Sobolev spaces on I'(¢) are defined by
H*? (L) = {¢ € L”(T(1) | D;¢p € H*VP(D(1)).i = 1.2.3},

and H%P(I'(¢)) := LP(I'(¢)). We refer the reader to [21] for further details. We also use
the following notation for tangential vector-valued Sobolev spaces:

L?(T(t)) ={¢p € L (C(1))% | ¢ - v = 0 almost everywhere},
H*P(D(1)) = {¢p € L7(T(1) | Dy¢ € HHP(D(1)).0 = 1.2.3},

where D, ¢ denotes the ith column of Vr¢ and H*?(T'(¢)) := L?(I'(¢)). As is standard,
in the case p = 2, we omit the p, and write H*(I'(¢)). Similarly, we write H~1(I'(¢)) for
the dual space of H! (I'(¢)).

3.2. Pushforward map and compatible time dependent spaces

From our assumptions, we obtain the existence of a C* diffeomorphism
Q7 Ty — T'(r),
which is defined as @} (x¢) = x(¢), where x (¢) solves

B V.., 0 = .

We denote the corresponding inverse as ®”, : I'(#) — I'g. We then may use the framework
established in [6,7], where we use the normal pushforward map defined by ®7¢ = ¢ o 7},
and the pullback ®” v =y o @, for some functions ¢, ¥ on I'y and I"(¢), respectively.

It can then be shown that we have compatibility of the pairs (H*?(T'(¢)), ®7) and
(H*P(T(1)), ®7) for k = 0,1,2, p € [1, oc], in the sense of [6]. However, a known
issue with the associated pushforward map is that is does not necessarily preserve the
divergence free properties of solenoidal vector fields on I'g. We remedy this by using the
Piola transform as in [23,46].
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3.3. The Piola transform and time differentiation

It is clear that the differentials D®7 (p) : T,To — Tgr(p)I'(¢) are invertible. We intro-
duce the notation J(p,t) = det(D®"(p)), J "1 (x,1) = det(D D" ,(x)) = J(t,d",x)" !,
D(p,t) = D®"(p)P(p,0), and D! (x,1) = D®",(x)P(x, ). These matrices are such
that DD~! = D~'D = P. One then defines the operator

A(p,1) = J U@ (p), OD(p, 1) + v(P} (p),1) ® v(p,0)
for p € Ty, € [0, T]. One can readily observe that
AP OIr,ry : TpTo = TapnT (). A(p.D)lgry - TpTy — Tor(mnT (1)
We then define the Piola pushforward map, for a vector field ¥ on I’y as

Py (x) = A(PL;(x), )P (7, (x)),

where it is known that for some sufficiently smooth, tangential vector field, ¥, on I'g, then
Vr - ¥ = 0 almost everywhere Iy if, and only if, Vr - ;¥ = 0 almost everywhere on
r'@).

One similarly defines an inverse operator A™! by

AT 1) t= (@, (x0), DT (x, 1) 4 v(P2,(x),0) ® w(x, 1)
for x € T'(¢), t € [0, T]. The Piola pullback is defined as one would expect,

P-i¥(p) = A7H@ (). DY (PF (p))

for a vector field ¥ on I'(¢). As one would expect (and hope) this is such that Vr - ¢ = 0
almost everywhere on I'(¢) if, and only if, Vr - ;¢ = 0 almost everywhere on I'g. We
now recall the following result.

Lemma 3.1 ([46, Lemma 3.1]). We have that D, A € C?(Ty x [0, T]), and D!, A~ €
C?(8r), and are hence uniformly bounded in space and time.

We note that we have improved regularity compared to the result in [46], as we assume
" are C3-diffeomorphisms instead of C2.

This result is used to show compatibility, in the sense of [7], of the pairs (Hk (1), P,
(k = 0,1,2), and the divergence free space (V4 (), #;), which we discuss later. We refer
the reader to [46] for details. With this compatibility of spaces in hand, one can refer to
a derivative associated to the Piola transform pushforward/pullback maps, as in the sense
of [7], defined by

d
0¥ = 2 (- P-¥).
V=2 Y
We refer to this as the strong Piola derivative. The utility of this choice of derivative is that
for a sufficiently smooth vector field, ¥, on §7 we have

v(@) v=0=03Y-v=0, Vr-y@¢)=0= Vr-3*y() =0.
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The corresponding weak Piola derivative is defined in the same way as the weak mater-
ial/normal derivative (see [7]). The normal derivative, 0°, and the Piola derivative, 0*, are
related through the following.

Lemma 3.2 ([46, Lemma 3.6]). For sufficiently smooth ¥, we have

°Y = 3y —A°A Ny, (3.1
Py = 0%y — AP(°A )y (3.2)

From here on we define A := AP (3°A~!) € C'(&r). We note that from this lemma
we may uncontroversially consider either 0* or d° when we discuss bounds on the deriv-
ative of a vector-valued function.

From this compatibility of spaces one may now define the evolving Bochner spaces,
L§,, for p € [1, co] and a family of Banach spaces. We denote a pushforward/pullback
map as ®_; and P, respectively, and for our purposes these will be either ®”, and % or
F_; and &;. The evolving Bochner space Lf; is

LY = {u 1[0, 7] - U X(@t) x{t}.t — ((t),1) | ®_ it € LP(0, T;X(O))},

t€l0,T]

where we identify u(¢) with u(¢). This is a Banach space when equipped with norm

T P
u®|2 . de | € [1, 00),
it = () w0l ar)" peineo

esssupyepo, 7y lu(Dllxay. p = oo,

and a Hilbert space for p = 2 and X (¢) a family of Hilbert spaces.
For a family of Hilbert spaces, X, we define the evolving Sobolev—Bochner space H,.,
to be
Hy, ={uelL}|0°uely),

where 0°u is the weak material derivative of u associated with the maps ®_;, ®;. As
in [6,7] we have identified L§(, o~ (Li,)’ . We refer the reader to [6, 7] for further details
and properties of these spaces.

3.4. Preliminary rewriting of the system

In order to set up the weak formulation, we rewrite the system (1.5)—(1.8) in such a way
that the unknown u7 is divergence free and we may eliminate the pressure. To do this, we
consider the unique solution, W, of the elliptic PDE

—ArV(r) = H1)Vn (1),

on I'(¢), subject to the constraint fF(t) W = 0, for all ¢ € [0, T]. Note that this is well
defined as fr‘(t) HVy =0 for all t € [0, T]. We then define a7 = VrW¥, from which
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we see that a7 € H??(I'(¢)) for all p € [1,00), and —Vr -7 = HVy. Then, defining
U7 :=ur — ur, we find that

oA A A A 1 ~ A
Po%dr + (Vrbr)ir + VyHar — SVrVy = =Vrj+ PVr - n(@)E(@7) + 1Vre

+Fr — Di(¢.ur.,ur), (3.3)
Vr-ur =0, (3.4)
0°¢ + Vro -7 = Arp — Da(p. ur), (3.5)
1
= —eArg + EF’(qJ), (3.6)
where
Di(p.ur,ur) = Pd°ur + (Vrur)ur + Vr(ur)ir + Vr(ar)ur
+ VyHur — PVr - 2n(p)E(u7))
and

Do(p,ur) = Vre -ur.

This suggests a new “body force”, B, which is defined as
B = Fr — (Vrur)ur — Po°ur — VyHur.

From Appendix A, we know uy € ngﬁp n CLlp for all p € [1, 00), and so, for Fy € Liz,
one can readily show that B € Liz.

The above reformulation is formal, but for sufficiently smooth a7 we find that this
holds in a weak setting. We show the necessary regularity properties of ¥ (and u7) in
Appendix A and will discuss this later. From here on we will now denote Gy as ur and
treat this as the unknown velocity. This formulation allows us to work in the space of
divergence free test functions, as is typical in the analysis of the Navier—Stokes equations.
As such we introduce some notation for a suitable space of divergence free functions:

Vo() := (¢ € H'T()) | Vr - ¢ = 0}
Similarly, we define Hy; (¢) to be the following closure in the || - [|2(p()) norm:
Ho (1) := {¢ € C'(T(1))* | Vr-¢ = 0,¢ - v = 0} 2y,
Moreover, we have compact, dense embeddings
Vo (t) = Hy (1) = Vo (1)

The appropriate weak formulation follows from multiplying by a sufficiently smooth,
solenoidal test function, ¢, in (3.3) and a sufficiently smooth test function, ¢, in (3.5),
(3.6) and integrate over I'(¢). This yields (4.1)—(4.3) below. Notice now that, by using the
divergence theorem, one finds the pressure term vanishes as

o=/r(t)vr-(ﬁ¢>=/F(l)vrﬁ-¢+/r(t)ﬁvr-¢.
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3.5. Some bilinear and trilinear forms

Here, we introduce some bilinear/trilinear forms to be used in our weak formulation later.
me:p ) = [ .
r@)

m;¢.9) = /F(t)fb-l/f,

max(t; N, @) = (A, )1 (@), H (T @)
m.(t; A, ¢) = (A, P)v, ).V, (1)

at: p.v) = fm) Vré - Vrv,

at:g,¥) = 2/”01&«») CE(),
A, 1) = 2/“” PEW) : EQ0),
6.9, ) = [F(t)(vrw-x,

et x) = [F()wrvf-x,

1(t:¢.¥) =m(: VyHe, ¥),
d](l;¢, 10) = C](l;¢,lfl\7-"/, 'ﬁ\) + cl(t;ﬁ\i:vq)’ w)v
d(t:¢.9) =a(t; 9, ur, ¥)
for sufficiently smooth scalar functions ¢, v, vector functions ¢, ¥, x, and linear func-
tionals A € H™1(I'(¢)), A € V4(t)". We will omit the ¢ argument throughout, as above.

We note the following antisymmetry properties of the trilinear forms ¢, ¢;, which one can
readily verify by using the divergence theorem:

cl(¢v¢s X) = _CI(X9¢7¢)7
ci1(¢.¢.¢) =0,
02(¢7 1//5 X) = _c2(wv¢v X)

for ¢,y € H'(I'(t)) and ¢, x € V4 (t). We will use these throughout.

We relate some of these bilinear forms to the normal derivatives using the transport
theorem.

Lemma 3.3 (Transport theorem). (1) Let ¢, € H 111_1 N leﬂ" then,

d
Em(qbv W) = m*(aoq&, W) + m*(aolﬁ, ¢) + m(¢v WHVN)
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Moreover; if we have that ¢,V € H}

I then

d
Ea(qb, V) =a(3°¢,¥) +a(3°¢,¥) + b(g, ¥),
where

b(t;¢,¥) = /F(t) Vn(HI —2H)Vr¢ - Vry.

(2) Let ¢, ¥ € H\Z N L%’g ; then,

d
Em(¢» ’lf) = m*(ao(bv "/’) + m*(ao'/f» ¢) + m(¢v K”HVN)

Moreover, if we have that ¢, ¥ € Hla, then

a0, ) = a9, ¥) + 2. 9°¥) + b ¥).
where b(t; -, ), is a uniformly bounded in t, bilinear form H (I'(¢)) x HY(I'(¢)) — R.
The relevant form for the bilinear form b can be deduced noting that
0°Vr¢ = 0°(PVy°P) = 0°PVe°P + Po°Ve°P + PVe°a°P,
°Ve® = V(3°¢°) — VVy ® (V§°v) — Vy V§ H,
for sufficiently smooth ¢. We do not give an explicit expression for b as it is sufficiently
long, and requires new notation (which would not reappear) to be written succinctly. We

do note that the smoothness assumptions on I"(¢) allows one to show a uniform bound in
the H! norm.

3.6. Inequalities

We end this section by recalling some useful inequalities. The following results on Sobolev
spaces are proven in [11,32].

Theorem 3.4. (1) (Poincaré inequality)
There exists a constant Cp > 0, independent of t € [0, T), such that for f € H'(I'(t)),

we have
F(t)

(2) (Sobolev embeddings)

(a) Let 0 <[ < k be two integers, and 1 < p < q be two real numbers such that

% = % — % Then, we have continuous embedding

< CrlIVr fllL2r@y)-
L2(T (@)

HRP(T (1)) — HY(T(@1)).

(b) If F2= >

%, where o € (0, 1), then we have continuous embedding

HRP(T(1)) — C™H*(T(1)).
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Notice in particular that this implies
H'(T(1)) = LP(T (1))

for all p € [1, 00), and in fact, these embeddings are compact. It can be shown that
the operator norms of the above continuous injections are independent of time—which
follows from the fact that we consider a compact time interval and sufficiently smooth
evolution of I'(r). We obtain analogous Sobolev embeddings for the spaces H®? (I'(¢)).
We also recall the following inequalities which are used throughout the analysis.

Lemma 3.5 (Ladyzhenskaya’s interpolation inequality [46, Lemma 3.4]). For all ¢ €
HY(T'(t)) and ¢ € H'(I'(¢)), we have
1 1
I8llzs0an < CI1E w1811 @y 3.7)
1 1
I#lsan < CIo1E 1Bl o) (3.8)
for a constant C independent of t.

Lemma 3.6 (Korn’s inequality [46, Lemma 3.2]). For ¢ € H(I'(¢)), we have

¢ lu @y < C(IDlzaaey + IE@)l2way)- (3.9

where the constant C is independent of t.

In order to establish energy estimates, we use the following nonlinear generalisation
of the Gronwall inequality.

Lemma 3.7 (Bihari-LaSalle inequality [15]). Let X, K : [0, T] — R be non-negative
continuous” functions, w : RT — R™ be a non-decreasing continuous function, and k > 0.
Then, if

S
X(t) <k +[ K(s)w(X(s))ds
0
holds fort € [0, T], and one can choose yy > 0 such that
T Yy o1
Q(k) + / K(s)ds € dom(Q7Y), where Q(y) := / ——ds,
0 Yo Cl)(S)

then one for t € [0, T] has

X(@t) < Q! (sz(k) + /t K(s)ds). (3.10)
0

In fact, the inequality (3.10) is independent of choice of yg. Finally, we recall three
results which will be used in proving uniqueness.

4By density this can be shown to extend to K € L1(]0, T]).
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Lemma 3.8 ([24, Lemma 4.3]). Let z € H™'(I'(t)) be such that m«(z, 1) = 0. Define the
inverse Laplacian §z € H' (T'(t)) € H'(I'(t)) as the unique solution of

a(ﬁZ,(f)) :m*(z,¢)
forall¢p € HY(I'(¢)). Ifz € H;I_l; then,

19251, = Clzllgy -

In fact, in [24], it is assumed that z € H 1111 but examining the proof, it is sufficient to
assume z € Hy,_,.

Lemma 3.9 ([39, Lemma 2.2]). Let m1,m3, S be non-negative functions on (0, T) such
that my, S € LY(0,T) and m, € L?(0,T), with S > 0 a.e. on (0, T). Now, suppose f.g
are non-negative functions on (0, T), f is absolutely continuous on [0, T) such that’

F1@) + g0 <mi@) f(t) + mz(t)(f(t)g(t) log* (%)) ;

holds a.e. on (0, T), and f(0) = 0. Then, f(t) =00n][0,T).
The final result we mention is an evolving surface analogue of the Brezis—Gallouét—

Wainger inequality (which originates from work on the nonlinear Schrédinger equation,
see [18]).

Lemma 3.10. For ¢ € H*(I'(t)), one has

1
Clléll a2y ) 2)

LCO(I @) = 1( ) ﬁ
” ||H1(I‘(z))

for constants C independent of t.

Proof. From [29, Theorem 1.1], we see that for ¢ € H?(I'y) one has

1
&Nl 2ary) \ 2
16y < C||¢||H1<r0)(1 + log (1 L SWORERY
D1l 1 (o)

where examining the proof one finds that our assumption that Ty being C3 is suffi-
cient. To see that one can choose the constant independent of time, we observe that
@l Loy = |92, @l Lo (r,)- Hence, by pulling back to I'y and using the above inequal-
ity, the compatibility of the pairs (H* (T'(¢)), ®7) in the sense of [7], and the monotonicity
of x — log(1 + x) %, it is clear that the inequality holds on I'(¢) with constants independ-
ent of 7. We note that this also introduces a constant into the logarithmic term. ]

5Here, we are using the notation log™ (x) := max (0, log(x)).
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4. Weak formulation and well posedness theorems

We are now in a position to discuss the weak formulation. For simplicity, we assume
constant mobility, M(-) = 1, and a scaling such that p = 1.

4.1. Regular potential

We firstly consider a smooth potential, F', under the same assumptions as in [19]. That is,
we assume F(r) = Fi(r) + F,(r) for F;, F, € C?(R) such that the following statements
hold:

(1) F(r) = B,

(2) F1 > 0is convex,

(3) 3¢q € [1, 00) such that | F{(r)| < a|r|? + «,

@) [F{(] + [rF{(r)] < aFi(r) + B,

O) [F ()] = alr| +«a,
where o denotes some non-negative constant, and 8 some real constant. We also assume
the viscosity function, 7(-) is Lipschitz continuous. A typical example of a viscosity func-
tion is

(1+7r) 1—-r)

nr)=m Tt rel[-1,1]

for two positive constants 11, 72, which can then be suitably extended to a C?2, Lipschitz
continuous function on R. The previous section then allows the following weak formula-

tion, using the notation introduced in Section 3.5.
Given initial data pg € H!(Tg),ur,0 € Hy(0), find ¢ € H;I_l N Lél,,u € Lzl,uT €
H‘l,, N L%a such that

m, (0°ur. ) + a(n(¢).ur.¢) + ci(ur,ur. ¢) + l(ur, ¢) + di(ur. ¢) + d2(n(e). $)

=m(B,¢) + c2(i, ¢, ¢). (4.1)

m*(ao(pv ¢)) + a(l‘bv ¢) + C2(¢, (78 llT) + 02(¢7 ®, lTT-:) =0, (42)
1

m(p, ) = ealp, ) + gm(F/(ﬁﬂ)Ji’) (4.3)

forallg¢ € H'(I'(t)),¢ € V() for almost all ¢ € [0, T'], and such that (0) = ¢o, ur (0) =
ur,o almost everywhere on I'g.

Theorem 4.1. Let I'(t) be a C3 evolving surface, F a potential function satisfying the
assumptions at the beginning of the section, and ¢y € H'(I'(0)),ur,o € Hy(0) be initial
data. Then, there exists a solution triple (¢, i, ur) on [0, T such that

peLly NLY, NHY .

M € L%Il ’

o) 1
ur € L5 N HV{,’
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and solving (4.1)~(4.3) for all ¢ € HY(I'(¢)), ¢ € V() for almost all t € [0, T], and such
that ¢(0) = @o, ur (0) = ur,g almost everywhere on I'y.
4.2. Logarithmic potential

In this section, we consider the well-posedness theory for the singular logarithmic poten-
tial,

1—r2 0 1—r2
= EFlog(r) +

F(r) = %((1 +r)log(1+r)— (1 —r)log(l —r)) +

for 6 € (0, 1). Here, 0 can be understood as a temperature in the system, which we have
scaled for notational simplicity. As the equations (1.5)—(1.8) consider the derivative of F
we introduce some shorthand notation,

F0) = (o)) = log (120,

The corresponding version of (4.1)—(4.3) for the logarithmic potential is as follows. Given
initial data o € Zo,ur,0 € Hy(0), find 9 € Hy,_, N L3, € Ly, ur € Hy, N LY
such that

m, (0°ur, @) + a(n(¢),ur, @) + ci(ur,ur, @) +1(ur, ¢) + dy(ur, @) + d2(n(¢). ¢)

= m(Bv ¢) + CZ(Ms @, ¢)’ (44)
m«(0°¢. ) + a(i. ) + c2(¢. ¢, ur) + e2(¢. ¢, ur) = 0, 4.5)
0 1

forall¢ € H'(T'(¢)),¢ € V,(¢) for almost all ¢ € [0, T], and such that ¢(0) = @y, ur (0) =
ur, almost everywhere on I'g. Here, I denotes the set of admissible initial conditions,

given by
][ n| < 1},
Ty

g 1
EMp:1] == / §|VF§0|2 + —F(p). 4.7
@) €

Io:= {77 € H'(Ty) | E%[n; 0] < o0,

where EH is the Ginzburg-Landau functional

We note there is no modification to the choice of initial velocity, so we still choose ur,g €
H, (0) - as in the case of a polynomial potential.

An advantage of this singular potential is that it necessarily has “physical solutions”,
thatis |¢(7)| < 1 almost everywhere on I"(¢) for almost all ¢ € [0, T'], due to the logarithmic
nonlinearity. As in [19,20] there is a constraint on the initial conditions which allows us
to find such a solution. As we assume |I'(¢)| = |I'¢| we obtain a condition purely about
information at ¢ = 0.
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Theorem 4.2. Let I'(t) be a C3 evolving surface such that |T'(t)| = |To| forallt € [0, T],
F be the logarithmic potential, and ¢o € I, ur, € H;(0) be initial data. Then, there
exists a solution triple (¢, |, ur) such that
peLy NLY, NHY .
ne L.
ur € LS N Hy, ,

solving (4.4)—(4.6) for all ¢ € HY'(I'(¢)), ¢ € V4(t) for almost all t € [0, T), and such
that ¢(0) = @o, ur(0) = ur, almost everywhere on I'y.

5. Proof of existence

5.1. The regular potential

5.1.1. Galerkin approximation. We now show existence of a solution triple to (4.1)—
(4.3) via the Faedo—Galerkin method. For M € N, we define the Galerkin approximations

M M
oM =) MOy, wM@) =) B Oy,

i=1 i=1
M

w (1) =Y yMOPx;.
i=1

where (/;)i=1,...,00 form a countable basis of H 1(Ty), and (Xi)i=1,...,00 form a countable
basis of V,(0), and hence pushforward onto countable bases of H!(I'(¢)) and V,(t),
respectively. For example, by Hilbert—Schmidt theory, one can choose (¥;);=1,...,00 to be
the eigenfunctions of the Laplace—Beltrami operator on I'y, and (x;)i=1,...,cc to be the
eigenfunctions of the surface Stokes operator on I'y. In particular, we choose ¥; = 1 to
retain the mass conservation property of ¢ in the Galerkin approximation. We define the
following spaces:

VM(t) .= span{®ty; |i =1,....M} C H'(T())
VM (1) = span{Px; |i = 1,....M} C V5(t),
and the corresponding projections as P‘I,"I (t): H'(T(t)) = VM), P‘I,u () : Ho(t) —
VM (t), which are defined by
PO Ve = @ Vmeey Y¥ VM),
(PY ). Vi) = @ V)2 ¥ € V().

We emphasise that these are H! and L? projections, respectively, as it is sufficient to
choose initial data such that ur, € Hy (0), rather than V(0), but require ¢ € H!(Tp).
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Lemma 5.1. There exists a solution triple (o™, u™ ué‘f’) on [0,t*), for some t* < T
depending on M, solving
m(3°uf’ . ¢) +a((e"). v} ¢) + c1 @i u . 9) + 1l 9)
+di (07 9) + da(n(¢™). §) = m(B.9) + (M. ™. 9). 5.1)
m@°e™ . ¢) + a(u™.¢) + c2(p. 0™ uf) + e2(¢. o™ . 07) = 0, (5.2)

1
m(uM, ¢) = ea(pM, ¢) + ;m(F’(wM),sb) (5.3)

forallg € VM (1), ¢ € VM (1) for almost all t € [0,1*), and such that o™ (0) = P} g,
ur(0) = P\I,"I ur,o almost everywhere on I'y.

Proof. To begin, we show the system (5.1)—(5.3) is equivalent to an ODE for the coeffi-
cients «, B8, y. Firstly, by (3.2), we note that we may write

m(3°u¥ . ¢) = m(@*u, ¢) + m(Au¥, ¢).
Now, we note that, by definition of the strong derivative, one finds that
°Pty; =0, 3*Pix; =0,

and hence,

M
M) = @My )0y,

i=1

M
Fuf (1) => MY ) Pixi-

i=1
With this in hand, it is clear that testing (5.1) with $; x; yields

M M
> MMPx Pexi) + Y v mAP x;, Prxi)

i=1 i=1

M M M M
+ Z%Mﬁ(n(za}”@%)ﬂxi,!szk) + ZZViMVJMcl(e(PtX,‘,e?th,?th)
j=1

i=1 i=1j=1
M M
+ Z)’,-Ml(f/)t)(i,fptxk) + ZV,Mdl(?zxi,e‘szk) + dz(’?(

i=1 i=1

M
>t oy, ).

Jj=1

M M
=m@®B, P x) + ) Y B ea (@i, DYy, Pix)-
i=1j=1
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Next, testing (5.2) and (5.3) with &7y, we obtain

M M
> @My m(@p i OF i) + > B a( @y, @)

i=1 i=1

M M M
+ ZZ“;MVJMCACD?WIC, Q?Wt,ftxj) + Zallucz(q);’wk’ @;ll//l’ﬁ\’l-:) — 0
i=1j=1 P
and
M
> BM m(@ s, )
i=1
M | M
M M
=D aa(@i 01w + (P L) o7ve)
i= =
By considering the system this generates for k = 1,..., M, one obtain, an ODE system for

the vectors o™ (¢), BM (t), yM (t) € RM . It is straightforward to see that the nonlinearities
are locally Lipschitz, but we omit these details. Applying standard ODE theory one obtains
the short time existence of a solution triple (&, g™, yM). |

Next, we establish existence on a time interval independent of M by use of energy
estimates. To do this, we recall the Ginzburg—Landau functional, (4.7), and require the
following assumptions.

Assumption 5.2. (1) We assume the basis (;); of H!(Iy) is such that vy is constant on
. This guarantees that 1 € VM (¢) forall M € N, ¢t € [0, T].
(2) We define PM (1) : L2(I'(t)) — V™ (t) to be the L2 projection defined by

(P Op. V)i2ay = @ Wraaeay V¥ € VH(Q).
We assume that for n € H(T) that
12 Ol ey < Cllullawy:
and given y > 0 there exists M * € N such that for M > M*,
1P )1 = nllL2ey < vl -

These assumptions hold when we choose (/;); to be the eigenfunctions of Laplace—
Beltrami operator on I'g. We notice that this second assumption implies that for n €
HY(T(1)),

1P @0 —=nll2way < 197 PO, —nll2ray
= CIP @@, 1 — @ nllary)
= Cy®Zmllaimy) = Cylnla @y
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where the first inequality follows from the fact that PZM () minimises the L? distance by
definition. Moreover, it is straightforward to see that

1P @Onllar ey < Clnlla @aey-

Lemma 5.3. Givent € [0, T] such that a solution to (5.1)—(5.3) exists, then one has

][ <PM =][ ®o-
F(t) To

Proof. We chose our basis such that 1 € V¥ (¢), so we may test (5.2) with 1 for
m(3°oM . 1) + ea(1, ™, u) + c2(1, oM, 07) — 0.
By integration by parts, it is clear that

cz(l,g)M,ué‘!) = —cz(g)M, l,uI}’I) =0,

(1M, a7) = m(HVy, M) — 2 (o™, 1,07),

and so, one finds that

d
Em(goM, 1) = m(8°<pM, 1)+ m((pM, HVy) =0.

Hence, we have shown that

/ oM =/ P oo = (90, Vi (ry) =[ %o,
F(t) To To

where we have again used the definition of P‘I,"I ®o, and the fact that 1 € Vp(0). The
equality for the mean values then follows since |I'(z)| = |Ty|. |

The same logic applies to the solution of (4.1)—(4.3).
Lemma 5.4. For sufficiently large M, the solution triple (o™, u™ ué‘ff ) satisfies

L2 CH; M 1 /T M2
- +E ]+ = E
tes[uO,pT] (2 ”uT ||L2(I‘(t)) [p ] 2 /s (|l (uT )”LZ(F(,))

+ Ve 172y < € (5.4)
for a constant C independent of M.
Proof. To begin, we test (5.1) with uj}’l for
m(8°u1}’1, ul}l) +a(n(eM), uTAfI, uj}l) = m(B, uj}l) + e (uM oM, ué‘fl) — l(uI}’I, ué‘!)

—dy (¥ u) —dy(n(e™), ud),
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where we have used ¢; (uj}’l , ul}’l , ul}! ) = 0. Next, we notice that from (5.2) that

(M oM uf) = —m@ ™, 1 M) —a(u™, uM) — (WM, M 7).

and from (5.3), we find that
o o 1 o
m(@°e™, i) = ea(p™, 0°6™M) + “m(F'(p™), 9°¢™).
Hence, combining these three equalities, it is clear that
m(3°uy’. u}’) + a(n(e™). uff . ug") + ea(p™ . 9°pM)
1 o
+ ;m(F'(wM), M) + a(uM, u™)

=m(B,u}l) —co(uM, o™, a7) — 1u¥  u¥) — di ¥ uf) — da(n(e™), u}).
(5.5

Recalling Lemma 3.3, we find that
1d 1
m(3°u¥ u}) = - —m@¥ u¥) - —m@¥, HVyulf),
2 dt 2
1d 1
M a0 M M M M M
5 a - T 5 - _b 9 3
ale™. 0"p™) = 5 —a(ep™ . ¢7) = Sb(@™. ¢T)
o d
m(F' (™), 8°6™) = —m(F(p™),1) = m(F (™), HVy).

Next, by using the bound 7, < 7(-) and the above, we see

1d d
s——m(uy’ uff) + — EN M 1] + nea(u uf’) + a1 M)
2dt dt
1 e 1
= m(B,uf’) + m(uy!, HVyuil) + Sbe™. o™) + —m(F ™). HV)

—ea(uM oM. a7) — 1 uy) - di @y uff) — da (™). uf).  (5.6)
The focus now is bounding these terms on the right-hand side. Firstly, we find that
1
m(B,u7') + Sm(uy’, HVyuy') + (', uz’

1 1 1
< SIBIZ gy + (5 U HVy sy + ||VNH||Lw<r(m) 1912 -
5.7)

where we note that H, Vy € C1(gr), H € (C'(gr))>*3 by our assumptions. Similarly,
this smoothness assumption on H V allows us to bound

€ 1
Sb@M. M) + —m(Fe™), HVy) < CES[p™; 1] (5.8)
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for a constant independent of # and M. We now look at the terms introduced by the influ-
ence of ur. It is straightforward to see that

|4y (uz’, ug)| < 07 ooy 07l ap lof Tea@ay + 107 e ey 102 120y

where we have used the regularity result from Appendix A to bound u7. We then use (3.8)
to see that

3 1
[ e e ey 10 2y < C||u¥||fz(p(t))||E(u¥)||f2(r(t)),
and hence, from Young’s inequality, we obtain
107 [loe oy 07 i oo 107 ez (5.9)

n 4
< S TEQ@I)IEa ) + CIT oo oy 107 12 - (5.10)

All in all, this yields a bound on d; (ug! , uTAfI ) given by

4
)] = T @I oy + (T liroo o +C T o) 108 B2 -
(5.11)

Likewise, it is straightforward to see that

*)2
|d2(n(@™), uf)| < IIE(uT M2y + ———IEQ@D) 20 )- (5.12)

We lastly consider the ¢, term and see that

c(uM, oM™ ar) =[F()/LMVF¢M-G7=—/F()¢)MVFMM
t t

—/ oM uMvr a7,
T

which follows from integration by parts. By construction of a7, we now find that
—co(uM, oM. u7) = 2™ M ur) —m(uM, HVy ™).

The difficulty now is in bounding |m(u™, HVy@M)|, for which we argue as in [19]. By
definition, we find that

m(uM, HVyo™) = m(u™. P () (HVyo™)).
where we observe that we can now test (5.3) with PZM (t)(HVy¢™M). This yields
m(uM, P ()(HVie™))

= cale™, PY O(HVx ™)) + -m(F/ ("), PY 0 (H V™).
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and hence, we find that
M V™)) < Cllo™ Iy + -m(F (M), HVvgH)
+om(F M), PY W) (HVygM) — HVy M),

Now, recalling that assumptions on F|, F, and the assumptions on PZM one finds that for
sufficiently large M,

m(u™, HVyo™)| < C + CEMp™: 1] + CylIVro™ 191 1)y

where we have also used the Sobolev embedding L4 (I'(t)) < H(I'(¢)). We note that
y — 0as M — oo. From this bound one readily finds that

1

— 1 att
le2(u™. ™ TF)| < C + SIVEuM G2y + CEMpM 1] + CYET M )T
(5.13)
for constants C independent of M, and some small y > 0.
Finally, by using the estimates (5.7)—(5.13) in (5.6) and integrating over [0, t], we
obtain an inequality of the form

1 n 4 1 [!
I ey + B+ 2 [ QIR + 5 [ 1900 e,

g+1

t 1 1 2
M 2 CHp M. M2 CHp M.
<t [ KOG o+ BNl (5 108 ooy + B i) T ),
(5.14)
where
1 T ) 2(17*)2 T S
k= C 5 [ 1By s+ 25 [ IEGD i ds
1
+ §||P$4UT,0||]%2(F(O)) + EH[PM g 0],
and

1 N 4
K(s) = C + I HVNllLewey + IV Hllie ey + 107 |t e + CIOT L)
We can bound k independently of M by noting that

IPY @oll ey < lleollmiroy. 1 PY urollizaoy < lurollizwo))-

and as above, we can bound the potential term in £ by using Sobolev embeddings.

Lastly, we note that while EH[¢™ ;¢] is not necessarily non-negative, it is bounded
below. Hence, we add some sufficiently large constant to (5.14) so that the analogous
inequality holds for the modified energy:

— ~ &
ECH[(,O;[] = ECH[‘/);I] + /3 = EHVFQOHIZQ(FO))-
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From our assumptions, it is clear such a constant exists and depends only on the evolution

of I'(¢) and choice of F. Thus, one obtains (5.4) by using Lemma 3.7, with w(s) =
s+ ys%, where one can verify that, forg > 1,

1—q

2 Y+ o’

Q(y) = —— log =
qg-—1 y+yz

for a suitable choice of yog > 0. In order to apply Lemma 3.7, we need that

1—¢q
2

T
Q(k) +/0 K(s)ds € dom(Q") = R(Q) = (_ 0. - i log (V +yyo ))

which in turn follows if

2 1g T -2
log(y + k2 )+/ K(s)ds € [ — oo, ——log(y) |.
q—1 0 q—1

Taking M sufficiently large, and hence y sufficiently small, we may now apply Lemma 3.7
to show (5.4). In the case ¢ = 1, we may apply the usual Gronwall inequality instead. m

From (5.4), the growth conditions on F’, and the Sobolev embedding H!(I'()) —
L?4(T'(t)), one finds that F’(¢M) LIZJZ, and so, it is clear that one obtains uniform Lzl
bounds on /LM . Likewise, using (3.9), one can establish uniform Lﬁl bounds for ué‘i’ .
5.1.2. Passage to the limit. We have established uniform bounds for uIT‘fI in L?I?, and
L%Il, for (pM in L;I"l , and for /LM in Lf,_ll. Thus, there exist limiting functions ur, ¢, u
such that

u¥ — ur, weakly in L%,
*
u¥ — ur, weak- * in Ly,

* .
(pM — ¢, weak- * in L},

/,LM — u, weakly in L?p-

Moreover, arguing as in [19], one can show that 9™ — ¢ strongly in Liz. This is useful
as one cannot use (a variant of) the Aubin-Lions theorem to show strong convergence of
@, ur because we do not have uniform estimates for <pM in H 111_1 and ul}’l in H, 1(,7. Now,
by proceeding as in the proof of [19, Proposition 4.10], one shows the existence of 9°¢.
We do not do this in detail for the sake of brevity, but we outline the argument. Firstly, one
considers a sufficiently smooth test function so that one can pass the derivative onto this
test function. By careful choice of test function, one can pass to the limit, using the weak
convergence of ™, 4™ and obtain an equation which characterises the weak material
time derivative. For explicit, details we refer to [19, Proposition 4.10]. We compute a
bound for d°¢ in Lé_l in Lemma 5.5 below.
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Recalling the compact embeddings
H'(T(1)) — LP(T'(1))

for all p € (1, 00), by using [6, Theorem 6.2], one obtains strongly convergent sub-
sequences such that
goM — @, strongly in L%,,.

The case p = 4 will be useful when we discuss the passage to the limit of ué‘fi .
We now discuss passage to the limit in the nonlinear terms. Firstly, it is shown in [19]
that
F'(¢M) — F'(p), weakly in L?,,

where the authors use a generalisation of the dominated convergence theorem. To see that
we can pass to the limit in the ¢; term one argues as in [49, Lemma 3.2]. Similarly, to see
the convergence in the ¢, (U™, oM | @) term in (5.1), we write

(M oM ¢) = —c2(p™, 1M ) = c2(p — ™, M 9) — c2(p, 1M . §).

Firstly, we notice that fOT c2(p, -, @) is an element of (Lill )" from the established bounds,
and hence, the weak convergence of 4™ in L,qu yields

T T
/ C2(§0, /'LM, ¢) - / C2(§0, Mv¢)
0 0

2

145 and write

as M — oo. For the other term, we use the strong convergence 9™ — ¢ in L

T
‘/0 (e — oM uM . ¢)

Thus, we find that

T
< /0 1o — ™ s Ve o 1l = O.

T T T
/ (M oM ¢) — —/ (0, 1. §) =/ (L. 9. 9).
0 0 0

by using standard localisation arguments, one concludes ¢, (™, o™, ¢) — c2(, ¢, @)
for almost all # € [0, 7] and all ¢ € V4 (1). c2(¢, oM, uj}l ) converges by similar logic.

The final nonlinear term to consider its convergence is a(n(¢™), ué‘f’ ,¢). This fol-
lows essentially the same calculations as above, owing to the assumption that we have a
Lipschitz continuous viscosity 7(-). One writes

a(n(e™).ulf . ¢) = a(n(p).u . ¢) + a(n(e™) — n(e). u} . ¢).

and as above, we find fOT a(n(@).-, @) is an element of L2, . Likewise, the integral of the
second term over [0, T'] vanishes® as M — oo by using the Lipschitz property of 7(-) and
the strong convergence of ™ in Lz4.

%Here, one considers ¢ sufficiently smooth so that E(¢) € LP3 and extends to ¢ € L%,g (1) Dy density.
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With these considerations, one argues as in [40] to see that d°ur exists. This argument
is similar to the aforementioned proof that d°¢ exists, and consists of passing the time
derivative onto some sufficiently smooth test function and carefully taking the limit M —
o0o. We omit the details here as the main point of interest is in the nonlinear terms. Now,
we know these derivatives exist, we may show the following bounds.

Lemma 5.5. We have 3°¢ € L?,_, and 3°ur € L%’{;'

Proof. To see the bound for 8°¢M observe from (4.1) that

im(0°p.¢)| < la(u, )| + le2(¢. ¢, ur)| + le2(¢, @, u7)|,

and we recall that

c2(¢. ¢, ur) = —¢2(¢, ¢, ur),
c2(¢, ¢, ur) = m(¢p, HVng) — c2(p, ¢, ur).
From this, it is clear to see that
L < ey + lollaoburhsco)
+ 1HVN Lo@epllellz@ey + 1@l @wepllor s e

and hence, using (3.7), (3.8), and the uniform bounds established by (5.4) we obtain the
L%,_, bound.
Similarly to bound d°ur, we see from (5.1) that
im(3°ur, @) < |a(n(p),ur,d)| + le1(ur,ur,$)| + [l(ur, $)| + |d;(ur, $)|

Recall from properties of ¢y, ¢, that

lei(ur, ur, ¢)| = |e1(d, ur,ur)| < [llu cepllurlferey-
le2(us @, @) = |ea(p, 1, @) < CllellLsaey IVrillLz@ey 19 lar ey

where we have used the Sobolev embedding H! (I'(¢)) < L*(I'(¢)) in the second inequal-
ity. The only other problematic term here is |d; (ur, ¢)|, which we bound as

|di(ur, )| < |ci(ur,ur,@)| + [ci (07, ur, @)
<lei(¢.ur,ur)| + |e1(p,ur,ur)| + 2lm(ur HVy, §)|
< CUur lLsrey + Dllur sy 16l @aey-
From these inequalities, it is straightforward to see that
%I(Tr’(i))' < " [Er)lleway + 107 sy + Clellzsaen I Vrullzaee)
+ VN HllLeo @y lar L2y + Cllarllez@ay)
+ Cllur sy 107 s ey + 1" IEQ@T) L2y + IBllez@e))-
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From this inequality, it is straightforward to see how one obtains the Lf,, bound by using
(3.8), (5.4), and Sobolev embeddings where necessary. [

Lastly, it remams to discuss the initial conditions. We note that up, (0) = PM ur,o,
and oM (0) = goo. These projections are such that P ur,o — ur, strongly in Hy (0),
and PII,” Yo — goo strongly in H!(I'(0)). By using standard arguments (again we refer
to [19, 46]) one can then verify that ur(0) = ur,, and ¢(0) = ¢o. All in all we have
shown Theorem 4.1.

5.2. The logarithmic potential

Asis common in the literature, see, for example, [19,27], we consider a regularised version
of this potential and use the preceding theory to show existence. To this end, we choose
8 € (0, 1) and define a regularised function

(1—r)log®) + (1 + ) log2 —§) + U527 4 G2 > 1 3,
Fog(r) = 1 Fiog(r), re(—1+8,1-6),
2 —_ )2
(1+7r)log(8) + (1 —r)log2 — §) + LHE + G0 r < —1+8.

It is a straightforward calculation to see that F° € C?(R). As before, we also introduce
shorthand notation f%(r) = ( log) (r).

We now focus on the following version of (4.4)—(4.6). We want to find <p5 €H 11{_1 n

10Y

L3, 1’ € Ly, anduf € Hy, N LY such that
m, (3°ud, ¢) + a(n(@®), v, @) + c1(ud, vl 9) + 10, ¢) + di(ul, 9)
+d2(n(¢%). ¢) = m(B.§) + c2(u’. 0% 9), (5.15)
my(0°9° . ¢) + a(u’, ¢) +c2<¢ ¢’ u) +c2<¢ %, 7), (5.16)
m(u’, ¢) = ea(y’, ¢)+ rn(f @), ¢)——m(<p . P) (5.17)

forall ¢ € H'(I'(t)), ¢ € V4 (¢) and almost all 7 € [0, T'], such that ¢®(0) = ¢o € I and
ut.(0) = ur € Hy (0).

Global existence then follows from Theorem 4.1, since the nonlinear term % (-) has
linear growth (¢ = 1) by construction. However, as our polynomial conditions depend on
our regularisation parameter, §, we now have to establish new energy estimates before
passing to the limit § — 0.

Lemma 5.6. The solution triple (¢°, u%, uST) is such that

1 82 CH,$§ ’7* T 82
sup (—nuTn T+ E ) IE )]
oo \pIrliara | L2 ()

1 T
+ 5/0 IVt 13 2y < € (5.18)

for a constant C independent of §.
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Proof. For the interest of brevity, we try to recycle as much of the proof of the previous
energy estimate. Examining the proof of Lemma 5.4, one finds that the analogues of (5.5)—
(5.12) still hold. Continuing in the same way, we find that

—e2 (10, ¢ 07) = ea(¢®, 18, 07) —m(ub, HVy ¢%).

In particular, all we need to establish is an L2 bound on u?. To do this, we test (5.17)
against ® HVy € HY(I'(t)) for

0 1
m(u’, HVng") = ea(@’, HV ") + S-m(f ("), ¢ HV) = —m(g", " HVy).
(5.19)
We then notice that r f 8 (r) = 0, and so,
0 0
2@, " HVy) < I HV L=aan 1L/ @N)e Loy
0
= Z||HVN||L°°(F(t))m(f8(§08)s 0%).
and using (5.17), we see that
0 1
5@, 6" =mut,0%) —eag’, ") + —m(@’. "), (5.20)

Now, by using the inverse Laplacian, we see that

m(M8,¢8)=m(u8,¢8—][ ¢8)+m(u8,][ 90‘3)
@) ()
:a(u‘g,ﬁ(cps —][ 908))+m(u8,][ go‘g).
T@) r'@)

Now, by using the definition of the inverse Laplacian and Poincaré’s inequality, one finds

that
a(,ﬁ,g((p‘* _][r( ) <ﬂ8)) < CIVr 8 L2y 1 Vred L2y -
t

Also, as we chose ¢y € I there exists some constant @ < 1 such that

m(u‘g,][ <p5) = m(, 1)][ o < |m(1’, 1)I‘][ 0| < a|m(u’,1)],
T() T I
and hence, we find that
5 s 5 P 5
[m(u”, )| < CIVru® lL2@en IVre® |2y + alm(u®, D). (5.21)

Testing (5.16) against ¢ = 1 and noting that f%(r) < rf%(r) + 1, we have

0 1 o 6 1
m(p®, 1) = Zm(f2 "), 1) = —mlg" 1) < PO+ -m(f° "), ¢") = —m(g", 1),
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thus using (5.20), we see that
m(u®. D] = C + ClIVe Iy + Im(@” 1nd)]. (522)

where we have used Young’s and Poincaré’s inequalities as appropriate. Now, by combin-
ing (5.21), (5.22), we see that

m(u®. @) < C + ClIVre® 122 ray + CIVE P I2en VT L2y
for constants which depend on «. Now, using this and (5.20) in (5.19), one can show that
Im(u, HVy @) < C + ClIVre® 720y + CIVE L [2an V00 L2y

for constants which depend on sup,¢[o, 71 | VN || 1000 (1)) By using Young’s inequality,
it then follows that

1
§ 6 —~ 5§12 8§12
lea(u®, ¢, ur)| < C + C||Vro ”LZ([‘(t)) + EHVFM ||L2(I‘(t))’

which is the analogue of the bound (5.13). Combining this with the analogues of (5.5)—
(5.12) it is straightforward to see that

1 e [* 1 !
§||u¥ 1320y + ECH3[oM 1] ¢ 7*/0 ||E(“¥)||iz(p(,)) + 5/0 ||VFMM||22(F(,))

! 1
<k+ /0 K(S)(§||u¥||i2(r(s)) + ECHS [(PM;S])ds (5.23)
for
1 T 2(n*)2 T ~
k=t 3 [ By ds + 25 [T IE@D R ds
0 T 0
1 2 CH[ .
+ E”uT,O”LZ(I'(O)) + E [%0; 0]
and

1 — 4
K(s) = C+ SIHVNILewe) + VN Hliewe) + 107 laewes) + CIOT i r)-

The claim then follows from Gronwall’s inequality once we establish that EH4[¢q: 0] is
independent of §. To see this, we find that

Vrgol> | 6
ECHS[,0-0 :/ e A
[@o: 0] o 2 T log(¥0)
€ 1 0
= ~llpoll; + =1 —goll} + —/ Fiog(%0)
27T T g B0 T 26 Jygpl<igy

6
Egm+—/ F (00).
{po<—1+3}

2e Jipo=1-83 2e
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and so, it is only necessary to bound the last three terms. Firstly, from the definition of
Fiog(+), it is straightforward to see that

0 6log(2)|T°
L
€ Hlpol<1-8} €

For the terms involving Flﬁg (), we use the set they are integrating over to bound them, for
example,

— on)2 2
/{ 18}(1_‘/’0)10‘8(5)4‘(1+<po)log(2—8)+(1 0)”  (+¢0)
$o=1—

28 22— 6)

8 1 5
< / —8log(8) +2log(2) + = +2 < (— + 2log(2) + —)|F0|,
To 2 e 2

and the other term is bounded similarly. Thus, we see E™9[gy: 0] is bounded independent
of § and we obtain (5.18). [ ]

Notice that this proof also gave us uniform bounds for ;% in Liz. We now use this
energy estimate to obtain some further §-independent bounds.

Lemma 5.7. There exists a constant C independent of § such that

T T
o . § 12 o 8§12
1w B+ [ 107 ey < €.
r 8.8\ 2
L1 @ = €
Proof. The proof for the bounds on the time derivatives is identical to that of Lemma 5.5,
and is hence omitted. The bound for the regularised potential term was not required in the

setting of a smooth potential as we used the polynomial growth conditions and Sobolev
embeddings to bound this term. Testing (5.17) against 1% (¢®) € H(I'(¢)) yields

2 262 2
172 ey = Gm £ ") = =—a(e". £ (@) + Smig". £o "),

Now, we notice that as (f%)'(-) > 0 one has
~atg’ £y = [ (@ Vg <0
t
hence, by using Young’s inequality, it is clear that

8
172 @Dy = 55 197 12away + 211 172may)-

The bound then follows from integrating in time and using the uniform Liz bounds. =
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5.2.1. Passage to the limit. Now, we want to pass to the limit as § — 0. We have estab-

lished uniform bounds for u‘gT in LE‘Z’, L%Il and H‘l,/ , hence, there is a limiting function ur
o

such that

§ . 2
ur — ur, weakly in LVa,

5 * . 0
ur — ur, weak- x in LLZ,

§ . 1
ur — ur, weakly in va.

Likewise, ¢? is uniformly bounded in LY and H !, and p? is uniformly bounded in

H—l 1)
L%Il . Thus, there exist limiting functions ¢, p such that

(,0‘s A @, weak- x in L3,
(p5 — ¢, weakly in HI}I—I’
/,LS — u, weakly in Lél.

Lastly, the uniform bounds for £%(¢?) in Liz imply the existence of some f € Lzz such
that

f3(@%) — f, weakly in L2,.
One also has the same strong convergence properties as seen for smooth potentials, which
follow from the relevant compact embeddings.

It remains for us to show that the limiting functions are such that |¢(¢)| < 1 almost
everywhere on I'(¢) for almost all z € [0, T], and that f = f(¢). From the piecewise
definition of f9, it is clear that these two issues are related. We firstly recall a result
from [19].

Lemma 5.8 ([19, Lemma 5.8]). There exist constants Cy, C, independent of §,t such that
C

[ o=+ [ Feo-nsass o2

r() r() [1og(8)]

foralmost all t € [0, T].

The proof of this result is unchanged with the coupling with the Navier—Stokes equa-
tions, and hence follows without any adaptations. In particular, in the limit § — 0, we find
that |¢(¢)| < 1 almost everywhere on I"(¢) for almost all # € [0, T']. There is still the issue
of the set of values such that |¢(¢)| = 1, which we discuss using the same arguments as
in [19].

Lemma 5.9. For almost all t €0, T] the set {x €T (t) | |@(x,t)| =1} has #?* measure 0.

Proof. To begin, we claim that up to a subsequence of § — 0 we have for almost all
t € [0, T] that
flp@)) if|e()] < 1 almost everywhere on I'(z),

00, otherwise.

lim f%(¢° (1)) = {
5§—0
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This is in fact exactly the content of [19, Lemma 5.10], and so, we do not prove this. Then,
we have that
. o) f(p)) if|e()] < 1 almost everywhere on I'(z),
lim ¢ (1) 1° (6° (1)) = {

00, otherwise,

pointwise, almost everywhere on I'(¢) for almost all ¢ € [0, T]. Now, by testing (5.17)
against ¢°, integrating in time, and using the established uniform bounds for ¢® and u?,

one finds that .
/ f o fie) < C.
o Jr@

for a constant C independent of §. Now, noting that r f § (r) = 0, by Fatou’s lemma, one

has . .
/ / liminf¢® £%(¢%) < liminf / / o i’ <.
o Jr@ 6—0 §—0 Jo Jro

From the claim, it is now evident that one necessarily has that for almost all ¢ € [0, T'] the
set {x € I'(¢) | |¢(x,t)| = 1} has measure 0. L]

In particular, we see that % (¢% (x,1)) = f(¢(x,1)) for almost all x € '(¢),¢ € [0, T].
Hence, again by using Fatou’s lemma, one finds that

T T T
2 P §¢..6\12 F— §r..6\12
= lim inf < liminf <C,
/0 £ @220 /0 fr | liminf %) <1 13/0 £ 2 ey <

§—0

and hence, f(¢) € Liz. Now, by the uniqueness of weak limits and a suitable variant of
the dominated convergence theorem for evolving surfaces (see [19, Theorem B.2]), one

finds that f(¢) = f.

6. Proof of uniqueness

6.1. Uniqueness for the regular potential

In this section, we prove the uniqueness of solutions to (4.1)—(4.3).
As a preliminary result, we note that by elliptic regularity theory, one has that

T T
2 2 2
| 10bwin =€ [ sy + 1P @) 6.1)

This L%—IZ regularity of ¢ is invaluable for proving the uniqueness of solutions, as it allows
one to eliminate u from (4.1). To see this, we notice that, for almost all ¢ € [0, 7], and all

¢ € Vs (),

1
cz(u,w,qs):/ R =/ (—EAF<P+—F/(€0))VF<P'¢~
ING) ING) €
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Now, as observed in the derivation, one formally calculates that
e
—eArgVre = —eVr - (Vro ® Vro) + EVrIerl2 —&(Vre - HVro)v,

almost everywhere on I"(¢). Thus, one finds that

1
(1. 0.6) = /F . VFGWFW ; ;F(q))) b —eVr - (Vrg ® Vro) - .

where the normal term has vanished as ¢ is tangential. Now, using integration by parts,
and the fact that ¢ is solenoidal, it is clear that

1 1
[owe(Smeel s tr@) -0 = [ e (Srole s Lrw)
o) € () 2 &

€ 1
- [ (519 + 1 Fw))vr-g =0
r@) &

and
—e[ Vo (Vrg ® Vrg) - ¢ = e/ (Vg ® Vo) : Vrd.
NG r'@)

Hence, we find that
(i, ¢, @) = ec3(p. 9. 9),

where the trilinear form c3 is defined as
c3(t: 9. ¥, x) = / (Vro ® Vry) : Vry.
@)
The structure of this proof is similar to that in [28], with relevant modifications for an

evolving surface—as discussed in Appendix B.

Theorem 6.1. Let I'(¢), F be such that the assumptions in Theorem 4.1 hold. Moreover,
assume F, is Lipschitz continuous. Then, the solution triple, (¢, i, ur) solving (4.1)—(4.3)
is unique.

The first step is to observe that if we have two solution triples,
(o', pui ), i=1,2,

with the same initial data and defining

= ol 2
=9 -0,
7o 1 2
M= p = pe,
ur = ur —u%,
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then these solve the system

m. (0°ur, ¢) + a(n(¢"). uf, §) — a(n(9?),u7. ¢) + ¢1(ug, uf, @) — ¢1 (U7, uf, @)
+1(ur, ¢) + di (ur, $) + da(n(p") — n(p?), d)

:803(@1,§01,¢)—863((p2,§02,¢), (62)

my(0°¢, ¢) + a(it,¢) + c2(d. 9" uf) — c2(d. 9>, u7) + c2(¢. . U7) =0,  (6.3)
1

m(ji, ¢) = ea(@. ) + gm(F’(wl) — F'(¢?). 9) (6.4)

for almost all # € [0, 7] and all ¢ € H'(I'(¢)), ¢ € V,(¢). This proof firstly requires
obtaining bounds for ¢ and u7 in appropriate norms. We refer to Appendix B for the
definition of one of the norms that we will use.

The proof relies on proving the following differential inequalities.

Lemma 6.2. ur is such that

1d, _ Ns - £ - - D v
5 7T 13+ T Iy < 2 IVER 2y + KiOINT I + Cuog(@. uh) iz 5.
(6.5)
where
K, (l‘) = C(l + ||]E(u%")||12‘2(r(t)) + ”u%"”?}(r(z)) + ||“2T||i4(r(z)))
+ C(”(Pl ”;Il"‘(l"(t)) + “902”;11,40‘(;)))
and

Ciog (@, u})

— Clog (Cz(||Vr¢||L2(r(t)) + 121l 72 @y))

1

2
- IVr@ll2@en IE@7) 2w ey)-
”Vl"(p”zza‘(t)) ) @ e

Likewise, ¢ is such that

1d  _ _ £ _ 1/ _
EE”(P“il + 8”VF‘P”22(F(,)) = Z“VF‘P”iz(r(,)) + 7*||uT||i2(r(t)) + KZ(I)”‘PHED
(6.6)
where

Kr(t) = C(l + ||lﬂl\71||]24m(r(,)) + ||u%"||i4(r(,)) + ||‘P2||]24°°(I'(t)))'

Proof of uniqueness. With these bounds we are now in a position to show uniqueness.
Taking the sum of (6.5) and (6.6), one finds that

1d . _ _ £ _ _ _
ST 13 + 16120 + S1Vr 220y < KOUNTIF + 1212,

- — - 1
+ Ciog(@, ur)(lur I3 + 161122,
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where
K(t) = K1(t) + Kx(¢).

Now, recall that we have uh e L% NLE, ¢ € LY, N L2, and in particular, this implies
¢' €L}, as

T T
5 . .
|1 e =€ [ W0 Bl s

T
< sw 10 Bnaa) [ 19 By <
re[0.7] HY(T@®) 0 H2(T(®)

Moreover, as |[u7 (0) ||§ + |@(0)[|2, = 0 by definition, we see that we may use Lemma 3.9
to see that ||ur||s and ||@||—1 vanish on [0, T]. Hence, it follows that ur, ¢ vanish for
almost all ¢, and from this one can readily show that it = 0 a.e. on [0, T'], and hence,
determine uniqueness of weak solutions. ]

6.1.1. Proof of Lemma 6.2.

Proof. We begin by showing (6.5). Testing (6.2) with Sur, as defined in Appendix B, and
rewriting terms in a suitable way, we find that

m,(0°ur, Sur) + a(n(e") — n(¢?). uy, Sur) + a(n(e?), ur, Sur)
+ ¢;(ur, lllT, Sur) + cl(uzT, ur, Suy) + 1(ur, Sur) + d; (ur, Suy)

+da(n(e") — n(¢?), Sur) = ee3(g. 9", Sur) + sca(¢®, @, Sur). (6.7
Firstly, we claim that
R I 2 L
m, (0 llT,SllT)=EE||11T||s+Em(SHT,SuT)-FEb(SuT,SUT)—m(uTHVN,SUT),

(6.8)
where we are using the notation from Appendix B. To see this, we write

d
m, (0°ur, Sur) = Em(u}, Sur) —m(ur, 0°Sur) — m(ur HVy, Suy).

By the definition of §, we have

d _ _ d . _ .5
Em(“TsS“T) = E”“T”g,

and it remains to rewrite m(u7, d°Su7). For this, we see that
m(u7, 0°Sur) = m(Sur, 0°Suy) + a(Suz, 3°Sur)

1d

_ 1 _ _ 1 _ _
= §E||UT||§ - Em(SUT, SurHVy) — Eb(SUT, Sur),

from which we see the claim holds.
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Next, we rewrite the second a term in (6.7) by using integration by parts. To do this,
we note that Sur € L12L12 and we have the bound (B.1). Integration by parts yields

A1) i Suir) = / M(DE (i) : E(Suiy) =— / ur - PVr - (02 E(Sup))
r'@) ING)
=- f ' (p*)ur - E(Sur)Vre? + / n(e*)ur - (up — Suy),
r'@) @)

where we have used the fact that Su7z — PVr - E(Sur) = ur a.e. on I'(¢). Hence, one
obtains

A(0(¢?). iy Sur) = — / o (@it - E(Suir)Vrg® + / D@ it - i
r@®) T@)
- / n(e*)ur - Sur. (6.9)
@)

Next, we bound the other a term. To do this, we recall that n(-) is Lipschitz continuous,
and so, we obtain the bound

an(e") — n(@?).uf, Sur) < Cll@ ooy IE@E) L2y T lls-

Now, we use Lemma 3.10 and Poincaré’s inequality to see that

— 1
Cllella2raey) ) 2)

162y < C||Vr¢||L2(r(z))(1 4 log (1 4 Slel
IVrolzray

where we note from (6.1) that ¢ has sufficient regularity. Now, from the L%}, bounds for
@1, @2, we see that there is a constant, Cy, such that |Vr@||z2r)) < Ci for almost all
t € [0, T]. Hence, one can find a sufficiently large constant C; so that

Cla C(|Vro + o
o (1 N ||<o_||Hz<r<,») o ( 2(Vrdloza, Ilwllmwmﬂ)
IVr@ll L2y V@I 0y

such that this logarithmic term is positive, and we ultimately be able to apply Lemma 3.9.
All in all, this gives us the bound

la(n(p") — n(¢?). ur. Sur)|
& _ _
= E”VFQDHiZ(F(,)) + C||E(“1T)||fz(p(,))||ur||§
1
2

C(IVrellLz )y + 12l a2 @)
”qu_) ||22(I‘(t))

+ C log ( ) IVr @l L2 IE @) 2y llur |l s.
(6.10)

where we have used Young’s inequality where appropriate.
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Now, we bound the ¢; terms. Firstly, we note that
le1 (U, up, Sur)| = |ey(Suz, up. uy)| < [SuT sy llug s ey U7 Iz @e)-

We recall the interpolation inequality’,

1 o1
1SW7 e < CISUT |G 1S9 e
and use (3.9), (B.1) to see that
- T
ISurllaisrey = Cllurllg luz itz ey (6.11)
Hence, we observe that
_ _ ) 13
le1(ur, uz, Sur)| < Cllur|luswey oz lls 107152 0y
and hence, Young’s inequality yields
_ _ - M\ —
ey (ur, u%"’ Sur)| <C ”u’}" ”ﬁzt(r(t)) [lur ||§ + 1_; [ur “i%r(,)y (6.12)
An identical argument yields
_ _ _ /P
ey (ll%, ur,Sur)| < C ”u%”iqp(t))”uT”é + 1_; ”uT”iZ(F(t))' (6.13)

We now turn to the contributions from the evolution of the surface, that is the terms
involving 1, dy, d», which would vanish for a stationary surface. The simplest of these
terms is

e 3 B} Me | _ i}
l(ur, Sur) < CllurllzeylISurlle e < é||uT||iZ(F(t)) + Clurls. (6.14)

which follows from Young’s inequality. Next, we look at

A

d>(n(e") — n(@?). Sur) < Cl1@llL2 @y llurlls

€ —112 - 12

= EHVF(p”Lz(F(,)) +C ”uTHSv (6.15)

which follows similarly to the above inequality, but we have also used the Lipschitz con-

tinuity of (), Poincaré’s inequality, and the uniform bounds on u7. Finally, to bound the
d; term, we see

d; (u7, Su7) = ¢;(ur,ur, Sur) + ¢; (a7, ur, Sur)

= —ci(Sur, a7, ur) — ¢ (Sur,ur,u7) + 2m(ur H Vy, Sur),

7See [11], and note that a C3 surface is sufficiently smooth for this to hold. This can be extended to
evolving surfaces with a time independent constant as in [46, Lemma 3.4].
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where we have used the antisymmetry of ¢; (for solenoidal functions), and the extra term
comes from the fact that Vr - iy = —H V. From this, one readily sees that

|d; (ur, Sur)| < Cllurls U7 lez@ey 107 Lo @aey + C T lzaey) lur s

This clearly yields
_ _ —~ _ n _
41 67 S| = CO+ 1T e o) T I + T 107 2 (6.16)

The last terms for us to bound are the ¢3 contributions, from which one readily sees
that Young’s inequality gives us

eles(@, 9", Sur)| + eles(¢?, @, Sur)|
< SIVPB 2y + CU Brnaceay + 197 ns o 1597 sy
We then recall (6.11) to see that the above yields
eles(@, !, Sur)| + eles (92, @, Sur)|

e _ Nw — _
= E”VF(PHI%Z(FQ)) + é”uTHiZ(r(t)) + C(||€01||‘1‘-11,4(r(t)) + ||‘P2||;-11,4(r(t)))”“T||§s
(6.17)
where we note that ¢’ € L;IH as shown above.
Now, we use (6.8)—(6.17) in (6.7) to see that

1d

537 v 15 + ne 6T 120y

£ _ SN _ 1 _ _
= _”VF‘/)HI%Z(F(,)) + H”uTHiZ(F(,)) + Em(suTa Sur)

1 _ _ _ _ _ _
+ 5|b(3uT, Sur)| + m(up HVy, Sur)| + ‘ /( | n’((pz)uT -IE(SuT)VF(p2
Tt

+ ‘ /( | n(p*)ur - Sur| + Ky (O)|[ur|I5 + Ciog(@. uz)lur |5
ra

Equation (6.5) then follows by noting the bound
1 _ - 1 _ _ - -
§|m(SuT, Sur HVy)| + §|b(SuT, Sur)| 4+ lm(ur HVy, Sur)|

+ ‘f n (p*)ur - E(Sur)Vre?
@)

+ ‘ / n(e*)ur - Sur
r@e

n T -
< T 2y + €O+ 107 sy o7 1.

where we have used (6.11) so that

3 !
‘ /F( ) 77/(‘;02)'-1_7w : ]E(SU_T)VF%Oz <C ||(p2”H1s4(I‘(t))”u_T”LZZ(F(t))”uT ”§ .
t




Navier—Stokes—Cahn—Hilliard equations on evolving surfaces 335

It remains to establish (6.6). To do this, we test (6.3) with ¢, which we note is well
defined as fr(z) @ = 0 for almost all ¢ € [0, T'], which yields

m(3°¢,9¢) + a(jt, §¢) + ¢2(§¢, ¢, ur) + ¢2(9¢, ¢, ur) + ¢2(¢,,0r) = 0.
(6.18)
The first term can be expressed as

oo o 1d  _ _ _ 1 .
m(0°9,99) = 5612, —m(@HVN.56) + 5b(56,55). (6.19)
To see this, we express this term as
o - - d - = - Qoo = - =
m«(9°¢, 5¢) = Em(w,ﬁw) —m(9,0°59) —m(@HVN,5¢),
and note m(¢, @) = ||¢||?,, and that
o - o - ld _., 1 o
m(@,0°9¢) = a(§¢,0°5¢) = EE”(p”—l - Eb(ﬁw,ﬁw).

To bound the second term, we see from the definition of the inverse Laplacian that
a(ir,§p) = m(fi, ), and hence testing (6.3) with ¢, we see that

- _ 1 _
a(f1, §¢) = ea(p. @) + gm(F’(wl) — F'(¢%).9).
We recall that F = F; + F,, where F; is convex so that
m(F'(¢") = F'(¢*). @) = m(F3(¢") — F3(¢%). ®).

By using the Lipschitz continuity of F,, and the definition of the inverse Laplacian, one
readily sees that

_ - _ _ & - _
m(F3@") = F@*). 9 SCI ey = Ca(@.99) = = IVrdllaan+CIoI,.
(6.20)
It remains to bound the various ¢, terms. Firstly, we find that
|e2(§, @, up)| < 96l @@n I Vrdlz ey lur lusaay,
and by using the embedding H'(I'(t)) < L*(I'(t)), Poincaré’s inequality and Young’s
inequality, we find that

- - 3 _ _
|c2(g907(ﬂau%")| = E”VF(P”%;(FU)) + C||u%"||i4(r(,))||‘/’||31- (6.21)

The other ¢, term is similar, but now we use the antisymmetry of ¢, in the first two
arguments so that

le2(§¢, 92 ur)| = |e2(9>, §@,ur)| < 9% ooy 18 ]l-1 107 [L2r -



C. M. Elliott and T. Sales 336

It is then clear from Young’s inequality that
_ _ n _ _
€288 % U7)| < T oy + ClO%IEmrap 1012 (622)
Finally, we bound the term involving u7. To do this, we observe that
le2(§¢, @, ur)| < |2, 9@, ur)| + [m(@H VN, 59)|

so that by similar arguments to the above, we have

- -~ & _ — _
€255.6.50) = 10912y + CO+ [T e IF2: (623)
Hence, using (6.19)—(6.23) in (6.18), one obtains
1d _ _ _ 1 o 3¢ _ P
S IGI2) < Im@H Yy 59|+ 51655, 99)|+ Lo Vel Laaan+ 2 T ooy

+ C(+ ug sy + 197170y + 0T I 12112,
Equation (6.6) then follows from the bound

_ _ _ _ & _ _
m@H VN, 59)| + 1b(£0.99)| = T IVr@lLaqry + C 1612, =

Next, we show a stability result for the case of constant viscosity. This also provides a

simpler proof for uniqueness in this special case, where we no longer require Lemma 3.10.

Proposition 6.3. Let (¢, 1/, u’}) denote the solution triple corresponding to some choice
of initial data ¢}y € H'(T'o),u}. , € Hy fori = 1,2, where fro Ph = fr, @3. Then, under
the same assumptions as the preceding theorem, we have

luz @) —uz )5 + le' () —*O12; < C(lluzo —uFolls + lleg — ¢51121) (6:24)

for a constant C which depends on t, T, and the initial data.

Proof. This proof is largely the same as that of the previous theorem, but now there are
simpler terms regarding the viscosity. We use the same notation as before, except now
we denote (¢, ui, uiT) as the solution corresponding to some choice of initial data (pf) €
HY(I), u"T o € Hy. We define (¢, i, ur) as before, and note that instead of (6.2) we find
that (¢, i1, ur) solves
m.(9°u7. ) + aur. ¢) + e1(ur. uz. ¢) — ¢1 (W7 u7. @) + (7. ) + di(ur. §)
=ee3(¢'.0'.9) —ees(p?. 0% 9). (6.25)

but (6.3) and (6.4) are still satisfied. As before, we test (6.25) with Su7 to see that
ld, _ 5 - 2 -1 - 2 - - - -
EE”uT”S + n”uT”LZ(F(t)) + Cl(llT, ur, SuT) + cl(uT’ ur, SuT) + l(uT’ SuT)
_ _ _ _ e 1 _ _
+d, (ur, Sur) = ec3(¢, @', Sur) + ec3(p?, @, Sur) — Em(SuT, Sur)

1 _ _ _ _ _ _
- zb(SllT, Sur) + m(ur HVy, Sur) + nm(ur, Sur),
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where we have used (6.8) and the definition of §. Now, by arguing as we did for equations
(6.12)—(6.17), it is straightforward to see that

E%Ilu‘rl@ 1T 2y = 30T ey + 51900120y + KrOlhir 3,

(6.26)
where K is as before. Notice that the requirement fr ga& = fr gog allows us to define §¢,
and so, related calculations from the preceding theorem still hold. By summing (6.6) and
(6.26), one finds that

1d

5 27zl + 1212 = KOz 15 + 1212,

where K € L'([0, T]). An application of Gronwall’s inequality then yields (6.24). |

Remark 6.4. One can improve this result on a stationary surface as follows. Firstly, we
note that depending on the surface, I', there may be a nontrivial, finite-dimensional kernel

K= {¢ €V, | E(¢) = 0},

consisting of the Killing vectors of I'. We then define the subspace K~ such that H, =
K @ K=, and for ¢ € K+ we define S+¢ € KL NV, to be the unique solution of

a(St¢.¥) =m(¢.¥)

for all ¥ € V. Itis shown in [34] that this is well defined.

One can then decompose ur = Pxur + Py iur, where Pxur € K, Pyour € K+,
for which one can now show stability for Pguz in L?(T"), and Py.ur in V,—we omit
the calculations here. An important note is that the dimension of K is not a topological
invariant, and so, under arbitrary (but area conserving) normal evolution the dimension
of J can vary. In particular, this means there is not necessarily an isomorphism X (t) —
K (s) for t,s € [0, T]. Hence, this argument does not hold for evolving surfaces without
some extra assumptions based on the dimension of J(¢), which can be understood as
geometric constraint based on the symmetries of I'(¢).

6.2. Uniqueness for the logarithmic potential

It is clear that (6.1) still holds, that is, ¢ € quz, since we know ., f(¢) € Liz, and so,
we may use the c3 bilinear form as before. With this at hand, the proofs of Theorem 6.1
and Proposition 6.3 follow. That is, for I'(¢) a C3 evolving surface, and initial data ¢y €
JTo,urp € Hy(0), the solution triple (¢, i, ur) solving (4.4)—(4.6) is unique. Moreover,
for a constant viscosity, and @6 € Iy such that fl‘o qo(} = fl‘o (pg, then we have stability
bound similar to (6.24). We note that our proof does not require Vr¢ € Liw, as is assumed

in [28].
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Remark 6.5. The results for the logarithmic potential extend to more general singular
potentials of the form F(r) = Fy(r) — %rz, with F; € C2((a,b)) N C°([a, b]) for some
a,b € R under some necessary assumptions we do not expand upon. Potentials of this
form are treated on a Euclidean domain in [1, 28], but here we have only covered the
thermodynamically relevant logarithmic potential, which is still illustrative of the general
case.

7. Reintroducing the surface pressure

We end our discussion by reintroducing the surface pressure and the correct divergence
condition. We now consider the mixed formulation, with a regular potential, where one
finds a solution (¢, i, ur, p), with ¢ € HI}I—I N L%il,,u € Lf,_ll,ur eH! N LIZ_II,p €
Liz, solving

(0°ur. @) u—1(r @y m vy + a(n(e).ur, )
+ci(ur,ur, ¢) +1(ur, @) + di(ur, ) + d2(n(e), ¢)

=m(p,Vr-¢) + m(B,¢) + c2(u, 9. §), (7.1)
m(q, Vr -ur) = 0, (7.2)
m«(3°¢. ) + a(u. @) + c2(¢p. . ur) + c2(¢. . ur) = 0, (7.3)

1
m(u,¢) = ealp, ¢) + gm(F’(w),qﬁ) (7.4)

for all ¢ € L2(I'(¢)), ¢ € H'(I'(t)), ¢ € H (I'(¢)) for almost all ¢ € [0, T]. Here, the
initial data is go € H'(T), ur,0 € Hy(0), so one has ¢(0) = ¢o, ur(0) = ur,o almost
everywhere on [y.

Before proving the existence and uniqueness of this system, we recall the uniform
inf-sup condition of [46].

Lemma 7.1 ([46, Lemma 3.3]). There exists a constant, C, independent of time such that
forallg € L3(T(1)) := {¢p € L*(T'(1)) |fF(t)¢ = 0},

fl" t qu ° ¢
IVrglla-1 @@y = sup UL

> CliqllL2ray)- (7.5)
per Cey\ioy 1Plla ey

Theorem 7.2. There exists a unique solution, (¢, i,ur, p), with ¢ € H;Ifl N L%-Il TS

L3, ur € H: L2, pel?, of (7.1)~(7.4).

2
HD H!’ L%

Proof. To begin, let (¢, i, ur) be the unique solution of (4.1)—(4.3), and define () b
g @, 1 q y
(F (1), )u-1 (o)), 11 (T (1))

= (0°ur. @) g1 (rey).m (0 () + A(N(@), ur, @) + ¢1(ur,ur, ¢)
+1(ur, @) + di(ur, ¢) + d2(n(p), ¢) —m(B, @) —c2(u, ¢, §)
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for ¢ € H(I'(¢)). We claim that ¥ € L?I_l. To see this, we recall the equivalence
Popely, ©Ipely., ¢ely,

from [46] and repeat various estimates we have used throughout. We elaborate on the
estimates for ¢ (uz,ur, @), c2 (1, ¢, @), but skip further calculations. As ¢ € H'(I'(¢)),
and not necessarily V4 (¢), we cannot use the properties, ¢; (ur,ur,¢) = —c¢1 (¢, ur,ur)
and ¢co (U, @, @) = —ca2(@, 1, ¢). However, by using the divergence theorem and the fact
that dT"(¢) = @, one finds that

c1(ur.ur. ) = —c1<¢,ur,uT)—fF()<uT ur)Vr- g,

(.0, 9) = —Cz(¢,u,¢)—/r(t) ouVr - ¢,

and hence,

T T 1 T 1
[ lesur ur.gi=c sup ||uT||Lz(r(,»( / ||uT||H1(m)) ( / ||¢||H1(m») ,
0 1€[0,T] 0 0

T T R 1 T " 1
[ leeg.dr=c sup ||¢||H1(F(,»( / ||u||H1(F(,))) ( / ||¢||H1(F(,))) ,
0 1€[0,T] 0 0

where we have used Sobolev embeddings and (3.8) as appropriate. The other terms follow
similar, but simpler, arguments.

We now observe that from the inf-sup condition (7.5) that the distributional divergence,
Vr : L3(T' (1)) > H (I'(¢)), has a closed range R(Vr) C H™1(I'(¢)). This follows from
(7.5) and continuity of Vr as an operator. Now, by the closed range theorem, see, for
example, [51, VIL5], we find that

R(Vr) = ker(V§)t, where ker(V}) = V4 (1),

where V7. is the adjoint of Vr.
Since (¢, i, ur) solves (4.1)—(4.3) for almost all ¢ € [0, T'], we see that

(F @), a1 ey ey =0

for all ¢ € V,(¢). Hence, from the above we see that ¥ (t) € R(Vr) for almost all ¢ €
[0, T']. Thus, there exists some p € L3(T'()) such that Vr p =  (¢) in the distributional
sense. The map ¢ + | pl|z2(r()) is measurable by the same logic as in the proof of [46,
Theorem 4.2]. Moreover, by using (7.5) we see that p is unique and one has

T 5 T )
/0 ||P||L2(r(t)) = C/o ”‘(F”H*Wl“(t))’

where the latter term can be expressed in terms of @, i, ur. [
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Lastly, we want to return to the setting of non-solenoidal vectors. Letting (¢, i, ar, p)
be the solution from the previous theorem, then by our construction of a7 and the bilinear
forms d;, dy, it is clear that ur := 07 — ur is such that

(0°ar, )u-1(r @y | (v ey + a(n(p).ur, ¢) +ci(ur,ur, @) +l(ur, ¢)
=m(Fr.¢) + m(p. Vr - ¢) + c2(i, 9. 9).

m(q,Vr -ur) = —m(q, HVy),

m(3°¢, ¢) +a(u, ) + c2(¢, ¢, ur) =0,

mi11.9) = calp.9) + ~m(F'(9). )

forallg € L2(I'(t)),¢p € H'(I'(¢)), ¢ € H'(I'(¢)) for almost all ¢ € [0, T']. Moreover, we
find that ¢ € HIIJ,1 N L%Il,u € L%Il,uT € Hllrl N Lfll,p € Lil'

The initial condition for ¢ is unchanged, but the initial condition for ur is required
to be such that ur(0) = ur,0 € a7 + Hy(0). One deduces the appropriate regularity for
ur from the regularity of @7, ur. The above arguments also work for the logarithmic

potential, but we omit further details.

Remark 7.3. In this section, we have not discriminated between the pressure, p, and
the modified pressure, p, as it is largely beside the point—that is the existence of some
Lagrange multiplier enforcing the divergence condition. The distinction between these
two pressures is discussed in Section 2. Moreover, it is straightforward to establish that
peli, & pel?,.

8. Concluding remarks

We have derived a system coupling the Navier—Stokes equations with the Cahn—Hilliard
equations on an evolving surface, and shown the well-posedness for a prescribed, suffi-
ciently smooth normal evolution. There is still much work to be done on this topic, which
we expound upon here.

Firstly, for the (evolving surface) Cahn-Hilliard equations with a logarithmic potential
one observes a “separation from the pure phases” where after some small time the solu-
tion, @, is such that |¢| < 1 — & for some small £—as was shown in [20]. This has been
established for a Navier—Stokes—Cahn—Hilliard system on a stationary domain in [28], and
80, it seems reasonable it would extend to our setting.

If one does not prescribe the normal component of the velocity, then the system (1.1)—
(1.4) also contains a geometric evolution equation, (2.8), which one must solve. Unlike
more standard geometric evolution equations, for example mean curvature flow, this flow
is essentially second order in time as one considers the material derivative of the normal
velocity. Indeed, even if one ignores the Cahn—-Hilliard component of (1.1)—(1.4) there
are, to the authors’ knowledge, no results on the well-posedness of the evolving surface
Navier—Stokes equations (with unknown normal component) as discussed in [17,46].
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Moreover, the model we have considered is a diffuse interface model—and depends
strongly on the choice of the interface width, €. It is known that, in the sharp interface limit,
& — 0, the zero-level set of the solution of the Cahn—-Hilliard equation (with a constant
mobility) converges in a suitably weak sense to the Mullins—Sekerka system, see [5].
Likewise, it is known that the analogous zero-level set from the Navier—Stokes—Cahn—
Hilliard system converges to a coupled Navier—Stokes—Mullins—Sekerka system—see, for
instance, [3,4]. However, such results, or even formal asymptotics, have not been obtained
for the corresponding systems on an evolving surface—or even on a stationary surface, to
our knowledge. In particular, it would be interesting to study the sharp interface limit of
(1.1)—(1.4), as the limiting system should consist of a coupling been a Navier—Stokes type
equation for the surface velocity coupled with the Mullins—Sekerka problem.

Lastly, there is interest in the numerical simulation of the system we have considered
(with or without a prescribed normal velocity). There has recently (see [45]) been some
numerical analysis of the tangential Navier—Stokes equations, where the authors discretise
by using the TraceFEM method—but this has not yet been considered for the system (1.5)—
(1.8). It therefore would be interesting to see how existing results for a stationary domain,
for instance, [37], adapt to an evolving surface.

A. Laplace’s equation on an evolving surface

In this appendix, we consider the regularity of the solution of Laplace’s equation on an
evolving domain. For ¢ € [0, T'], we define W(¢) to be the unique weak solution of

—Ar¥() = H@)Vn (1),

]K v =0
@)

We note that this is well defined since

on I'(¢), subject to the constraint

H@Vy@©) = 00| =0,
r(1) t
by assumption.

We recall the normal pushforward map as 7 : I'y — I'(¢), and ", denoting its
inverse. As these are C? diffeomorphisms, the differentials D ®" (p): T,To — Tor(n'(1)
are invertible. We recall the notation J (p, 1) =det(D®" (p)), J ~!(x,1) =det(D®",(x)) =
J(t, @, x)"L, D(p,t) = DO (p)P(p,0), and D1 (x,1) = D®",(x)P(x, ). These
matrices are such that

DD~ !'=D"'D =P.
Lemma A.1. Let ¥ be as above, and T'(t) be a C3 evolving surface with |T'(t)| = |To|

forallt € [0,T]. Then, ¥ € CI(-)IM N Cé,’p,forallp € [1, 00).
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Proof. Let y € H'(I'y); then, by the weak formulation of the above PDE and the com-
patibility of (H!(T'(¢)), ®"), we find that

[ VF\I/(I.‘)-VF(I)?XZI H(I)VN([)q);l)(.
r@) It
Hence, by pulling back the integrals onto 'y we see that
[ sopveer, v DV = [ s0er v,
() To

where the operators now are Vr,. Similarly, the mean value condition transforms as

0= /m) W(r) = /FO T, (1),

and as such we focus on the function ¥ (1) := J(£)®", W(t), where we see ¥ (1) € H'(Ty)
for all 7 € [0, T]. We similarly write f(z) := J(t)®",(HVy,) € H'(Tp). It is then clear
that v (¢) solves the PDE

/F B (Ve (1) - Vrx + ¥ (Do) - Vry = /F oy (A1)

forall y € H'(I'y), where
D=DTD, w=J@DVr(J()™).

We note that clearly D is positive definite, and the uniqueness of ¥ implies uniqueness of
V.

Then, our assumptions on ®} imply we have sufficient smoothness so that we may
apply elliptic regularity theory to see that

1V O m3.r@e) < CILONE12(Ty)

for p € [1,00) and C depends on p, I'y, ﬁ)(t), @ (t). It is straightforward to see that by
considering (A.1) at two times ¢, s € [0, T'], and noting that D,w are C2in¢ and fisC!
in ¢, that the map ¢ +— ||V (¢)|| 3.0 (1) is continuous on [0, 7']. We omit further details on
this calculation.

Next, we show that ¥ has a strong derivative. By considering (A.1) at times ¢ € [0, T')
and ¢ + & for some small &2 > 0 so thatt + h € (0, T'), we find that

i [ B+ v+ by = BOYewe) - Vez

F W Dol + D)~y (00) Vg
1
= oo
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for all y € H'(T'y). We write this in terms of difference quotients as

A (AD@OVry(t +h) +D()Vr Ay (1)) - Vrx

F (Wt + AR + Ay (Do) - Vrx
- / Anf (1.
To

where Ay X(¢) = w for some quantity X. Now, by letting &, i’ > 0 be suffi-
ciently small, one readily finds that
(LO(ArY (@) = Ay (1), Ap¥ (1) — Aw (1))
< CllAWD@OVry (t + B = AD@OVey (t + Wiz )
+ ClY( + B Ao @) = Yt + ) Ay ()22,
+ CllALS @) = A f (D2 r,)
+ yIVr(Apy (1) — Ah/W(f))Hiz(po)

for some small y to be determined. Here L(¢) € £(H '(To) N LZ(To), (H'(To)NL3(To))")
is the operator defined so that

L0t = [ DO Vex+ to)- Vrz.
0

where L%(F()) is the subspace of L2(I'g) containing elements such that fro ¢ = 0. By

pushing the integral forward onto I'(¢), in the reverse to the beginning of the proof, we

can observe L(¢) is elliptic by the ellipticity of —Ar(y on H(T(¢)) N L3(I'(¢)), and

moreover the ellipticity constant is independent of 7. Thus, there exists some constant «

such that

(LO( DY (@©) = Ay (1), Ay (1) — Ap () = k| Ve (DY (1) = Ay (D) 721y

and hence choosing y = 7, and using Poincaré’s inequality on I'y, we see that

1AWV (1) = A ¥ ()31 ry < CIARD@OVEY (¢ + H) = AD @) Vry (¢ + B} r,
+CIY( + M)Ay ) = + 1Ao7,
+ ClARS@) = A O 21,

for some constants C(¢) depending on I'y, and the ellipticity of L(¢). Now, by the differ-
entiability of D, w, f, and the continuity of ¥ it is clear that by taking &, i’ sufficiently
small that we can make [[Ap Y () — Ap ()| g1 (ry) arbitrarily small. Thus, Apv/(¢) is a
Cauchy sequence in H!(I'y) and a right time derivative of ¥ exists at ¢ € [0, 7). A similar
calculation verifies that a left time derivative exists too.



C. M. Elliott and T. Sales 344

Differentiating (A.1) in time, we find that
oD
a—(Z)VFW(l) -Vryx
r, of
~ d d ow
F DO @) Vig+ T O0) Vi + ¥ (05 0) - Vix

Y
= [ Gror

for all y € H'(I'p), t € [0, T]. As above, by noting that D, w are C2 in ¢ and fis
C! in ¢, one can now readily observe that the map ¢ +> ||%—'tp(t)|| H1(T,) 1S continuous
on [0, T]. Applying elliptic regularity theory, we find that ¥ € C°([0, T]; H>?(Iy)) N
C1([0, T]; H'?(T)), and hence using the compatibility of (H*?(T'(¢)), ®") (and uni-

form bounds on J(t) where needed), it follows that W € C%, N C}

Hap i ]

B. An inverse Stokes-type operator

In this appendix, we discuss a solution operator related to the surface Stokes equation. We
refer the reader to [16,34] for further details. For ¢ € [0, T'], and a given ¢ € H, (¢) we are
interested in finding a solution S¢ € V4 (¢) solving

$¢ —PVr-(2E(S¢)) = ¢, on (1),

in a weak sense.
For ¢ € H, () we define S¢ € V(¢) to be the unique solution to

m(S¢.¢) +a(S¢.¢) =m(d.¢)

for all ¥ € V,(¢). This is clearly well defined by (3.9), and the Lax—Milgram theorem.
With this norm, we define a norm on Hy (¢) by

Ills := (m(Sp,SP) +a(S¢, S$))? = m($,$$)?,

where it is straightforward to see that

lolls < Cli¢llLzay-

for a constant independent of 1. We now prove a result on the time-differentiability of this
operator, analogous to [24, Lemma 4.3].

LemmaB.1. If¢ € L} N H,

v, then S¢ € Hrlll such that

T T
/ ||a°8¢||ﬁl(r(,))sc( [ ||a°¢||%u(,),+||¢||izm+||S¢||§1(r(t))).
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Proof. To begin, we formally differentiate the equation defining §, with a test function
¥ € H 16, to obtain

m(3°S¢. ¥) + m($$.0°Y) + g(S9.¥) +a(3°S¢. ¥) +a(5¢.0°Y) + b(S¢. )
=m.(0°.¥) + m(¢.0°¥) + 8(9. ¥).

This then simplifies to

m(3°S¢.¥) +a(0°S¢.¥) = m.(3°¢. ¥) + 8(4.¥) —8(54.¥) —b(5¢.¥).

or equivalently

m(0*S¢.¥) +a(d* 5S¢, ¥) = m.(3°¢. ¥) + (. ¥) —g(S¢.¥) —b(59.¥)
_m(AS(pv 10) _a(ASq)’ "p)v

which we see extends to ¥ € L%,U. We use the formulation involving 9%, as it is not clear
that one would have P3°S¢ € V(¢), but this is the case for 9*S ¢ by construction. From
(3.9) and the Lax—Milgram theorem, one finds that there exists a unique 0*S¢ € Lza, and
hence, P3°S¢ € L2, such that

T T
/ ||a°3¢||§p(r(,))sc( / ||a°¢||%a(,)/+||¢||izm,))+||S¢||§I](r(,))).

Moreover, it is straightforward to see 0°S ¢ is indeed the weak time derivative of S¢p. m

As in [16], we have a sufficiently smooth surface, I'(¢), so that one has improved
regularity
18P llm2ry) < Clld Iy (B.1)

and the constant C is independent of ¢ by the usual arguments.

Acknowledgements. The authors would like to thank Achilleas Mavrakis, Andrea Poi-
atti, and Arnold Reusken for discussions surrounding an earlier version of this paper—as
well as the anonymous reviewers for their invaluable feedback.

Funding. Thomas Sales was supported by the Warwick Mathematics Institute Centre for
Doctoral Training, and gratefully acknowledges funding from the University of Warwick
and the UK Engineering and Physical Sciences Research Council (Grant number: EP/
TS1794X/1). For the purpose of open access, the author has applied a Creative Commons
Attribution (CC-BY) license to any author accepted manuscript version arising from this
submission.

References

[1] H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids
with matched densities. Arch. Ration. Mech. Anal. 194 (2009), no. 2, 463-506
Zbl 1254.76158 MR 2563636


https://doi.org/10.1007/s00205-008-0160-2
https://doi.org/10.1007/s00205-008-0160-2
https://zbmath.org/?q=an:1254.76158
https://mathscinet.ams.org/mathscinet-getitem?mr=2563636

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]
(10]
(1]

(12]

(13]

[14]

[15]

[16]

(17]
(18]

(19]

C. M. Elliott and T. Sales 346

H. Abels, H. Garcke, and G. Griin, Thermodynamically consistent, frame indifferent diffuse
interface models for incompressible two-phase flows with different densities. Math. Models
Methods Appl. Sci. 22 (2012), no. 3, article no. 1150013 Zbl 1242.76342 MR 2890451

H. Abels and M. Roger, Existence of weak solutions for a non-classical sharp interface model
for a two-phase flow of viscous, incompressible fluids. Ann. Inst. H. Poincaré C Anal. Non
Linéaire 26 (2009), no. 6, 2403-2424 7Zbl 1181.35343 MR 2569901

H. Abels and M. Wilke, Well-posedness and qualitative behaviour of solutions for a two-phase
Navier—Stokes—Mullins—Sekerka system. Interfaces Free Bound. 15 (2013), no. 1, 39-75

Zbl 1302.35457 MR 3062573

N. D. Alikakos, P. W. Bates, and X. Chen, Convergence of the Cahn—Hilliard equation to the
Hele—Shaw model. Arch. Rational Mech. Anal. 128 (1994), no. 2, 165-205 Zbl 0828.35105
MR 1308851

A. Alphonse, D. Caetano, A. Djurdjevac, and C. M. Elliott, Function spaces, time derivatives
and compactness for evolving families of Banach spaces with applications to PDEs. J. Differ-
ential Equations 353 (2023), 268-338 Zbl 1509.35391 MR 4538417

A. Alphonse, C. M. Elliott, and B. Stinner, An abstract framework for parabolic PDEs on
evolving spaces. Port. Math. 72 (2015), no. 1, 1-46 Zbl 1323.35103 MR 3323509

D. M. Anderson, G. B. McFadden, and A. A. Wheeler, Diffuse-interface methods in fluid
mechanics. In Annual review of fluid mechanics, Vol. 30, pp. 139-165, Annu. Rev. Fluid Mech.
30, Annual Reviews, Palo Alto, CA, 1998 Zbl 1398.76051 MR 1609626

L. K. Antanovskii, A phase field model of capillarity. Phys. Fluids 7 (1995), no. 4, 747-753
Zbl 1039.76502 MR 1324950

M. Arroyo and A. DeSimone, Relaxation dynamics of fluid membranes. Phys. Rev. E (3) 79
(2009), no. 3, article no. 031915 MR 2497175

T. Aubin, Nonlinear analysis on manifolds. Monge—Ampere equations. Grundlehren Math.
Wiss. 252, Springer, New York, 1982 Zbl 0512.53044 MR 0681859

E. Bachini, V. Krause, I. Nitschke, and A. Voigt, Derivation and simulation of a two-phase
fluid deformable surface model. J. Fluid Mech. 977 (2023), article no. A41 Zbl 1530.76077
MR 4681179

E. Bachini, V. Krause, and A. Voigt, The interplay of geometry and coarsening in multicom-
ponent lipid vesicles under the influence of hydrodynamics. Phys. Fluids 35 (2023), no. 4,
article no. 042102

J. W. Barrett, H. Garcke, and R. Niirnberg, Finite element approximation for the dynamics of
fluidic two-phase biomembranes. ESAIM Math. Model. Numer. Anal. 51 (2017), no. 6, 2319-
2366 Zbl 1383.35153 MR 3745174

L. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problems
of differential equations. Acta Math. Acad. Sci. Hungar. 7 (1956), 81-94 Zbl 0070.08201
MR 0079154

A. Bonito, A. Demlow, and M. Licht, A divergence-conforming finite element method for the
surface Stokes equation. SIAM J. Numer. Anal. 58 (2020), no. 5, 2764-2798 Zbl 1451.65184
MR 4155235

P. Brandner, A. Reusken, and P. Schwering, On derivations of evolving surface Navier—Stokes
equations. Interfaces Free Bound. 24 (2022), no. 4, 533-563 Zbl 07671480 MR 4524372

H. Brézis and T. Gallouet, Nonlinear Schrodinger evolution equations. Nonlinear Anal. 4
(1980), no. 4, 677-681 Zbl 0451.35023 MR 0582536

D. Caetano and C. M. Elliott, Cahn—Hilliard equations on an evolving surface. European J.
Appl. Math. 32 (2021), no. 5, 937-1000 Zbl 1479.35902 MR 4308178


https://doi.org/10.1142/S0218202511500138
https://doi.org/10.1142/S0218202511500138
https://zbmath.org/?q=an:1242.76342
https://mathscinet.ams.org/mathscinet-getitem?mr=2890451
https://doi.org/10.1016/j.anihpc.2009.06.002
https://doi.org/10.1016/j.anihpc.2009.06.002
https://zbmath.org/?q=an:1181.35343
https://mathscinet.ams.org/mathscinet-getitem?mr=2569901
https://doi.org/10.4171/IFB/294
https://doi.org/10.4171/IFB/294
https://zbmath.org/?q=an:1302.35457
https://mathscinet.ams.org/mathscinet-getitem?mr=3062573
https://doi.org/10.1007/BF00375025
https://doi.org/10.1007/BF00375025
https://zbmath.org/?q=an:0828.35105
https://mathscinet.ams.org/mathscinet-getitem?mr=1308851
https://doi.org/10.1016/j.jde.2022.12.032
https://doi.org/10.1016/j.jde.2022.12.032
https://zbmath.org/?q=an:1509.35391
https://mathscinet.ams.org/mathscinet-getitem?mr=4538417
https://doi.org/10.4171/PM/1955
https://doi.org/10.4171/PM/1955
https://zbmath.org/?q=an:1323.35103
https://mathscinet.ams.org/mathscinet-getitem?mr=3323509
https://doi.org/10.1146/annurev.fluid.30.1.139
https://doi.org/10.1146/annurev.fluid.30.1.139
https://zbmath.org/?q=an:1398.76051
https://mathscinet.ams.org/mathscinet-getitem?mr=1609626
https://doi.org/10.1063/1.868598
https://zbmath.org/?q=an:1039.76502
https://mathscinet.ams.org/mathscinet-getitem?mr=1324950
https://doi.org/10.1103/PhysRevE.79.031915
https://mathscinet.ams.org/mathscinet-getitem?mr=2497175
https://doi.org/10.1007/978-1-4612-5734-9
https://zbmath.org/?q=an:0512.53044
https://mathscinet.ams.org/mathscinet-getitem?mr=0681859
https://doi.org/10.1017/jfm.2023.943
https://doi.org/10.1017/jfm.2023.943
https://zbmath.org/?q=an:1530.76077
https://mathscinet.ams.org/mathscinet-getitem?mr=4681179
https://doi.org/10.1063/5.0145884
https://doi.org/10.1063/5.0145884
https://doi.org/10.1051/m2an/2017037
https://doi.org/10.1051/m2an/2017037
https://zbmath.org/?q=an:1383.35153
https://mathscinet.ams.org/mathscinet-getitem?mr=3745174
https://doi.org/10.1007/BF02022967
https://doi.org/10.1007/BF02022967
https://zbmath.org/?q=an:0070.08201
https://mathscinet.ams.org/mathscinet-getitem?mr=0079154
https://doi.org/10.1137/19M1284592
https://doi.org/10.1137/19M1284592
https://zbmath.org/?q=an:1451.65184
https://mathscinet.ams.org/mathscinet-getitem?mr=4155235
https://doi.org/10.4171/ifb/483
https://doi.org/10.4171/ifb/483
https://zbmath.org/?q=an:07671480
https://mathscinet.ams.org/mathscinet-getitem?mr=4524372
https://doi.org/10.1016/0362-546X(80)90068-1
https://zbmath.org/?q=an:0451.35023
https://mathscinet.ams.org/mathscinet-getitem?mr=0582536
https://doi.org/10.1017/S0956792521000176
https://zbmath.org/?q=an:1479.35902
https://mathscinet.ams.org/mathscinet-getitem?mr=4308178

(20]

(21]

(22]

(23]

[24]
[25]
[26]
[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]
(36]

(37]

(38]

Navier—Stokes—Cahn—Hilliard equations on evolving surfaces 347

D. Caetano, C. M. Elliott, M. Grasselli, and A. Poiatti, Regularization and separation for
evolving surface Cahn—Hilliard equations. SIAM J. Math. Anal. 55 (2023), no. 6, 6625-6675
Zbl 1531.35328 MR 4662410

K. Deckelnick, G. Dziuk, and C. M. Elliott, Computation of geometric partial differential
equations and mean curvature flow. Acta Numer. 14 (2005), 139-232 Zbl 1113.65097

MR 2168343

M. Deserno, Fluid lipid membranes: From differential geometry to curvature stresses. Chem.
Phys. Lipids 185 (2015), 11-45

A. Djurdjevac, C. Griser, and P. J. Herbert, An evolving space framework for Oseen equations
on a moving domain. ESAIM Math. Model. Numer. Anal. 57 (2023), no. 5, 3113-3138

Zbl 1531.35251 MR 4659214

C. M. Elliott and T. Ranner, Evolving surface finite element method for the Cahn-Hilliard
equation. Numer. Math. 129 (2015), no. 3, 483-534 Zbl 1312.65159 MR 3311459

L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions. Revised edn.,
Textb. Math., CRC Press, Boca Raton, FL,, 2015 Zbl 1310.28001 MR 3409135

J. Fan, T. Han, and M. Haataja, Hydrodynamic effects on spinodal decomposition kinetics in
planar lipid bilayer membranes. J. Chem. Phys. 133 (2010), no. 23, article no. 235101

A. Garroni, M. Fortuna, and E. Spadaro, On the Read—Shockley energy for grain boundaries
in poly-crystals. 2023, arXiv:2306.07742

A. Giorgini, A. Miranville, and R. Temam, Uniqueness and regularity for the Navier—Stokes—
Cahn-Hilliard system. SIAM J. Math. Anal. 51 (2019), no. 3, 2535-2574 Zbl 1419.35160
MR 3968246

P. Gérka, Brézis—Wainger inequality on Riemannian manifolds. J. Inequal. Appl. (2008), art-
icle no. 715961 Zbl 1152.46022 MR 2415412

M. E. Gurtin, D. Polignone, and J. Vifials, Two-phase binary fluids and immiscible fluids
described by an order parameter. Math. Models Methods Appl. Sci. 6 (1996), no. 6, 815-831
Zbl 0857.76008 MR 1404829

L. Hatcher, Phase field models for small deformations of biomembranes arising as Helfrich
energy equilibria. Ph.D. thesis, University of Warwick, England, 2020

E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Lect.
Notes Math. 5, New York University, Courant Institute of Mathematical Sciences, New York;
American Mathematical Society, Providence, RI, 1999 Zbl 0981.58006 MR 1688256

P. C. Hohenberg and B. 1. Halperin, Theory of dynamic critical phenomena. Rev. Mod. Phys.
49 (1977), no. 3, article no. 435

T. Jankuhn, M. A. Olshanskii, and A. Reusken, Incompressible fluid problems on embedded
surfaces: Modeling and variational formulations. Interfaces Free Bound. 20 (2018), no. 3,
353-377 Zbl 1406.35224 MR 3875687

J. Jost, Riemannian geometry and geometric analysis. Sth edn., Universitext, Springer, Berlin,
2008 Zbl 1143.53001 MR 2431897

F. Jillicher and R. Lipowsky, Shape transformations of vesicles with intramembrane domains.
Phys. Rev. E 53 (1996), no. 3, article no. 2670

D. Kay, V. Styles, and R. Welford, Finite element approximation of a Cahn—Hilliard—Navier—
Stokes system. Interfaces Free Bound. 10 (2008), no. 1, 15-43 Zbl 1144.35043

MR 2383535

K. F. Lam and H. Wu, Thermodynamically consistent Navier—Stokes—Cahn—Hilliard models
with mass transfer and chemotaxis. European J. Appl. Math. 29 (2018), no. 4, 595-644

Zbl 1397.92100 MR 3819990


https://doi.org/10.1137/22M1497213
https://doi.org/10.1137/22M1497213
https://zbmath.org/?q=an:1531.35328
https://mathscinet.ams.org/mathscinet-getitem?mr=4662410
https://doi.org/10.1017/S0962492904000224
https://doi.org/10.1017/S0962492904000224
https://zbmath.org/?q=an:1113.65097
https://mathscinet.ams.org/mathscinet-getitem?mr=2168343
https://doi.org/10.1016/j.chemphyslip.2014.05.001
https://doi.org/10.1051/m2an/2023074
https://doi.org/10.1051/m2an/2023074
https://zbmath.org/?q=an:1531.35251
https://mathscinet.ams.org/mathscinet-getitem?mr=4659214
https://doi.org/10.1007/s00211-014-0644-y
https://doi.org/10.1007/s00211-014-0644-y
https://zbmath.org/?q=an:1312.65159
https://mathscinet.ams.org/mathscinet-getitem?mr=3311459
https://zbmath.org/?q=an:1310.28001
https://mathscinet.ams.org/mathscinet-getitem?mr=3409135
https://doi.org/10.1063/1.3518458
https://doi.org/10.1063/1.3518458
https://arxiv.org/abs/2306.07742
https://doi.org/10.1137/18M1223459
https://doi.org/10.1137/18M1223459
https://zbmath.org/?q=an:1419.35160
https://mathscinet.ams.org/mathscinet-getitem?mr=3968246
https://doi.org/10.1155/2008/715961
https://zbmath.org/?q=an:1152.46022
https://mathscinet.ams.org/mathscinet-getitem?mr=2415412
https://doi.org/10.1142/S0218202596000341
https://doi.org/10.1142/S0218202596000341
https://zbmath.org/?q=an:0857.76008
https://mathscinet.ams.org/mathscinet-getitem?mr=1404829
https://doi.org/10.1090/cln/005
https://zbmath.org/?q=an:0981.58006
https://mathscinet.ams.org/mathscinet-getitem?mr=1688256
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.4171/IFB/405
https://doi.org/10.4171/IFB/405
https://zbmath.org/?q=an:1406.35224
https://mathscinet.ams.org/mathscinet-getitem?mr=3875687
https://zbmath.org/?q=an:1143.53001
https://mathscinet.ams.org/mathscinet-getitem?mr=2431897
https://doi.org/10.1103/PhysRevE.53.2670
https://doi.org/10.4171/IFB/178
https://doi.org/10.4171/IFB/178
https://zbmath.org/?q=an:1144.35043
https://mathscinet.ams.org/mathscinet-getitem?mr=2383535
https://doi.org/10.1017/S0956792517000298
https://doi.org/10.1017/S0956792517000298
https://zbmath.org/?q=an:1397.92100
https://mathscinet.ams.org/mathscinet-getitem?mr=3819990

(39]
(40]
(41]
(42]
[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

C. M. Elliott and T. Sales 348

J. Li and E. S. Titi, A tropical atmosphere model with moisture: Global well-posedness and
relaxation limit. Nonlinearity 29 (2016), no. 9, 2674-2714 Zbl 1345.35116 MR 3544804

H. T. McMahon and J. L. Gallop, Membrane curvature and mechanisms of dynamic cell mem-
brane remodelling. Nature 438 (2005), 590-596

T.-H. Miura, Zero width limit of the heat equation on moving thin domains. Interfaces Free
Bound. 19 (2017), no. 1, 31-77 Zbl 1371.35369 MR 3665918

T.-H. Miura, On singular limit equations for incompressible fluids in moving thin domains.
Quart. Appl. Math. 76 (2018), no. 2, 215-251 Zbl 1384.35099 MR 3769895

T.-H. Miura, Thin-film limit of the Ginzburg—Landau heat flow in a curved thin domain. 2024,
arXiv:2404.14703

M. Olshanskii, Y. Palzhanov, and A. Quaini, A comparison of Cahn—Hilliard and Navier—
Stokes—Cahn-Hilliard models on manifolds. Vietnam J. Math. 50 (2022), no. 4, 929-945

Zbl 1500.65066 MR 4493774

M. A. Olshanskii, A. Reusken, and P. Schwering, An Eulerian finite element method for
tangential Navier—Stokes equations on evolving surfaces. Math. Comp. 93 (2024), no. 349,
2031-2065 Zbl 07872152 MR 4759369

M. A. Olshanskii, A. Reusken, and A. Zhiliakov, Tangential Navier—Stokes equations on
evolving surfaces: analysis and simulations. Math. Models Methods Appl. Sci. 32 (2022),
no. 14, 2817-2852 Zbl 1514.35322 MR 4546904

Y. Palzhanov, A. Zhiliakov, A. Quaini, and M. Olshanskii, A decoupled, stable, and linear FEM
for a phase-field model of variable density two-phase incompressible surface flow. Comput.
Methods Appl. Mech. Engrg. 387 (2021), article no. 114167 Zbl 1507.76216 MR 4321284
M. Sun, X. Xiao, X. Feng, and K. Wang, Modeling and numerical simulation of surfactant
systems with incompressible fluid flows on surfaces. Comput. Methods Appl. Mech. Engrg.
390 (2022), article no. 114450 Zbl 1507.76041 MR 4357312

R. Temam, Navier—Stokes equations. AMS Chelsea, Providence, RI, 2001 Zbl 0981.35001
MR 1846644

J. Yang and J. Kim, A phase-field model and its efficient numerical method for two-phase
flows on arbitrarily curved surfaces in 3D space. Comput. Methods Appl. Mech. Engrg. 372
(2020), article no. 113382 Zbl 1506.76104 MR 4142142

K. Yosida, Functional analysis. 6th edn., Grundlehren Math. Wiss. 123, Springer, Berlin-New
York, 1980 Zbl 0435.46002 MR 0617913

C. Zimmermann, D. Toshniwal, C. M. Landis, T. J. R. Hughes, K. K. Mandadapu, and R. A.
Sauer, An isogeometric finite element formulation for phase transitions on deforming surfaces.
Comput. Methods Appl. Mech. Engrg. 351 (2019), 441-477 Zbl 1441.74286 MR 3939608

Received 1 March 2024; revised 19 July 2024.

Charles M. Elliott
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK;
c.m.elliott@warwick.ac.uk

Thomas Sales
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK; tom.sales @warwick.ac.uk


https://doi.org/10.1088/0951-7715/29/9/2674
https://doi.org/10.1088/0951-7715/29/9/2674
https://zbmath.org/?q=an:1345.35116
https://mathscinet.ams.org/mathscinet-getitem?mr=3544804
https://doi.org/10.1038/nature04396
https://doi.org/10.1038/nature04396
https://doi.org/10.4171/IFB/376
https://zbmath.org/?q=an:1371.35369
https://mathscinet.ams.org/mathscinet-getitem?mr=3665918
https://doi.org/10.1090/qam/1495
https://zbmath.org/?q=an:1384.35099
https://mathscinet.ams.org/mathscinet-getitem?mr=3769895
https://arxiv.org/abs/2404.14703
https://doi.org/10.1007/s10013-022-00564-5
https://doi.org/10.1007/s10013-022-00564-5
https://zbmath.org/?q=an:1500.65066
https://mathscinet.ams.org/mathscinet-getitem?mr=4493774
https://doi.org/10.1090/mcom/3931
https://doi.org/10.1090/mcom/3931
https://zbmath.org/?q=an:07872152
https://mathscinet.ams.org/mathscinet-getitem?mr=4759369
https://doi.org/10.1142/S0218202522500658
https://doi.org/10.1142/S0218202522500658
https://zbmath.org/?q=an:1514.35322
https://mathscinet.ams.org/mathscinet-getitem?mr=4546904
https://doi.org/10.1016/j.cma.2021.114167
https://doi.org/10.1016/j.cma.2021.114167
https://zbmath.org/?q=an:1507.76216
https://mathscinet.ams.org/mathscinet-getitem?mr=4321284
https://doi.org/10.1016/j.cma.2021.114450
https://doi.org/10.1016/j.cma.2021.114450
https://zbmath.org/?q=an:1507.76041
https://mathscinet.ams.org/mathscinet-getitem?mr=4357312
https://doi.org/10.1090/chel/343
https://zbmath.org/?q=an:0981.35001
https://mathscinet.ams.org/mathscinet-getitem?mr=1846644
https://doi.org/10.1016/j.cma.2020.113382
https://doi.org/10.1016/j.cma.2020.113382
https://zbmath.org/?q=an:1506.76104
https://mathscinet.ams.org/mathscinet-getitem?mr=4142142
https://zbmath.org/?q=an:0435.46002
https://mathscinet.ams.org/mathscinet-getitem?mr=0617913
https://doi.org/10.1016/j.cma.2019.03.022
https://zbmath.org/?q=an:1441.74286
https://mathscinet.ams.org/mathscinet-getitem?mr=3939608
mailto:c.m.elliott@warwick.ac.uk
mailto:tom.sales@warwick.ac.uk

	1. Introduction
	Applications
	Contributions and outline

	2. Derivation of the surface Navier–Stokes–Cahn–Hilliard system
	2.1. Derivation by balance laws
	2.2. Derivation by a thin film limit
	2.3. Equivalence of the derived systems

	3. Notation, function spaces, and inequalities
	3.1. Notation
	3.2. Pushforward map and compatible time dependent spaces
	3.3. The Piola transform and time differentiation
	3.4. Preliminary rewriting of the system
	3.5. Some bilinear and trilinear forms
	3.6. Inequalities

	4. Weak formulation and well posedness theorems
	4.1. Regular potential
	4.2. Logarithmic potential

	5. Proof of existence
	5.1. The regular potential
	5.1.1 Galerkin approximation
	5.1.2 Passage to the limit

	5.2. The logarithmic potential
	5.2.1 Passage to the limit


	6. Proof of uniqueness
	6.1. Uniqueness for the regular potential
	6.1.1 Proof of Lemma 6.2

	6.2. Uniqueness for the logarithmic potential

	7. Reintroducing the surface pressure
	8. Concluding remarks
	A. Laplace's equation on an evolving surface
	B. An inverse Stokes-type operator
	References

