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Planar kinematics: Cyclic fixed points, mirror superpotential,
k-dimensional Catalan numbers, and root polytopes

Freddy Cachazo and Nick Early

Abstract. In this paper, we prove that points in the space X.k; n/ of configurations of n points
in CPk�1 which are fixed under a certain cyclic action are the solutions to the generalized scat-
tering equations on planar kinematics (PK). In the first part, we give a constructive upper bound:
we show that these solutions inject into certain aperiodic k-element subsets of ¹1; : : : ; nº, and
consequently that their number is bounded above by the number of Lyndon words with k ones
and n � k zeros. The proof uses a somewhat surprising connection between the superpotential
of the mirror of G.n � k; n/ and the generalized CHY potential on X.k; n/. We also check
the recent conjecture that generalized biadjoint amplitudes evaluate to k-dimensional Catalan
numbers on PK for several examples including k D 3 and n � 40 and .k; n/D .6; 13/. We then
reformulate the CEGM generalized biadjoint scalar amplitude directly as a Laplace transform-
type integral over TropCG.k;n/, and we use it to evaluate the amplitude on PK with the purpose
of exhibiting how generalized Feynman diagrams glue together.

We initiate the study of two minimal lattice polytopal neighborhoods of the planar kinemat-
ics point. One of these, the rank-graded root polytope Rk;n, in the case k D 2, is a projection
of the standard type A root polytope. The other, denoted by

Q
k;n, in the case k D 2, is a degen-

eration of the associahedron. We check up to and including R3;9 and R4;9 that the relative
volume of Rk;n is the multi-dimensional Catalan number C .k/

n�k
, hinting towards the possibil-

ity of deeper geometric and combinatorial interpretations of m.k/.In; In/ near the PK point.

1. Introduction

Motivated by Cachazo–He–Yuan (CHY) definition of biadjoint double partial ampli-
tudes,mn.I;I/, as integrals over the configuration space of n points on CP1 localized
to points satisfying the scattering equations [10–12,26,27], Guevara, Mizera, and the
two authors (CEGM) introduced a generalization of the CHY formulation that uses
the configuration space of n points on CPk�1 [8,14,15], usually denoted by X.k; n/.
This also led to generalized biadjoint amplitudes m.k/n .I; I/.
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In 2013, CHY noticed that the kinematic invariants of all possible planar poles in
a k D 2 biadjoint amplitude form a basis of the corresponding kinematic space [12].
Using this fact, CHY set all planar kinematic invariants to unity so that each planar
Feynman diagram contributes exactly 1 to the amplitude, leading to the result that
m
.2/
n .I; I/ D Cn�2 with Cm the mth Catalan number.

Very recently in [7] the authors proposed a generalization of the k D 2 planar-
basis kinematics to all k and n using the planar basis introduced by the second author
in [22]. This kinematics turns out to be a single integer point in the kinematic space
which we call the PK point. In [7], the scattering equations were solved for k D 3

and n D 5; 6; 7; 8 and the corresponding CEGM biadjoint amplitudes were evaluated.
The explicit results led the authors to conjecture that these amplitudes evaluate to the
k-dimensional Catalan numbers (see [37, OEIS A060854]); i.e.,

m.k/n .I; I/ D C .k/
n�k

: (1.1)

Clearly, C .2/n�2 coincides with the standard Catalan numbers.
In this note, we continue the study of the scattering equations evaluated on the PK

point and its deformations; this culminates in Section 10, where we initiate the study
of two minimal polytopal neighborhoods in the integer lattice in the kinematic space
which are closely linked to the evaluation of the amplitude. Here, the PK point is the
integer point in the kinematic space, where a certain family of

�
n
k

�
linear functions,

denoted by �J for J a k-element subset of ¹1; : : : ; nº, on the kinematic space are
either 0 or 1.

The planar basis, introduced in Section 10.1, consists of linear functions �J .s/ on
the kinematic space, constructed as the linear duals to certain positive tropical Plucker
vectors. See equation (10.1) for the definition and [22,23] for details and related con-
structions in combinatorics and applications to generalized Feynman diagrams.

Specifically, �J D 0 for cyclically consecutive subsets J D ¹i; i C 1; : : : ; i C .k �
1/º and �J D 1 for all of the remaining k-element subsets of ¹1; : : : ; nº. Solving these�
n
k

�
equations gives the point in kinematic space which we call planar kinematics.
The solution has the following simple formula1. Fixing a planar ordering such as

the canonical order I WD .1; 2; : : : ; n � 1; n/, set

s12;:::;k D s23;:::;kC1 D � � � D sn1;:::;k�1 D 1;
sn1;:::;k�2;k D s12;:::;k�1;kC1 D � � � D sn�1;n;:::;k�3;k�1 D �1;

where all other sJ are set to zero. For example, for .k; n/ D .3; 6/ all Mandelstams
are zero except for s123 D 1, s124 D �1 and cyclic relabeling modulo 6.

1Clearly, the case n D 4 degenerates to s12 D s23 D 1, s13 D �2.
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The fact that the kinematics is cyclically invariant, i.e., invariant under a cyclic
shift of the labels i ! i C 1 mod .n/, motivated us to look for solutions with the
same property. In other words, we are interested in points in X.k; n/ which are fixed
under a cyclic shift. In Sections 3, 4, and 5, we find all such points and prove that they
are indeed all the solutions to the scattering equations on planar kinematics. Some
such points do not lie in X.k; n/ but in its compactification xX.k; n/.

The proof, given in Section 4, uses that there is a very close relation between the
scattering equations on planar kinematics, i.e., the equations for the critical points of

�
.PK/
k;n
D

nX
iD1

log
�
�i;iC1;:::;iC.k�2/;iC.k�1/

�i;iC1;:::;iC.k�2/;iCk

�
(1.2)

and those for the critical points of the superpotential in the theory mirror to the Grass-
mannian G.n � k; n/ introduced by Marsh and Rietsch in [35]:

Fq WD
nX

iD1;i¤n�k

�i;iC1;:::;iC.k�2/;iCk

�i;iC1;:::;iC.k�2/;iC.k�1/
C q�n�k;n�kC1;:::;n�1;1

�n�k;n�kC1;:::;n�1;n
:

Here, �i1;i2;:::;ik are the Plucker coordinates of G.k; n/ and q is a parameter.
In [33], Karp proved that all critical points of the mirror superpotential, Fq , are

in fact fixed points under a cyclic action. Our proof provides the criteria for a fixed
point in G.k; n/ to descend to one in X.k; n/ and become a critical point of �

.PK/
k;n

.
In Section 5, we prove that these solutions inject into aperiodic k-element subsets of
¹1; : : : ; nº, and consequently that their number is bounded above by the number of
Lyndon words with k ones and n � k zeros.

The construction of the fixed points is explicit, and therefore, it is possible to
evaluate the CEGM biadjoint amplitudes on them. In Section 6, we develop new tech-
niques to evaluate the CEGM biadjoint amplitude, in particular, for k D 3; 4.

In Section 7, we perform the explicit evaluations up to .k; n/ D .3; 40/, .k; n/ D
.4; 29/, .k; n/ D .5; 19/, and .k; n/ D .6; 13/. In all cases, we find perfect agreement
with the k-dimensional Catalan numbers.

Since the 2-dimensional Catalan numbers count planar Feynman diagrams and
CEGM biadjoint amplitudes have been related to the positive tropical Grassman-
nian TropCG.k; n/, it is natural to ask what the k-dimensional Catalan numbers are
counting. The CEGM biadjoint amplitudes have also been defined as the sum over
generalized Feynman diagrams (GFD) [5,29]. However, it is known that for k > 2 they
are not counted by higher dimensional Catalan numbers [7]. In fact, on planar kine-
matics individual GFD’s evaluate to rational numbers. Motivated by this puzzle, in
Section 8, we introduce an integral of an exponentiated piecewise linear function sup-
ported on R.k�1/.n�k�1/ which computes the amplitude. The integral can be thought
of as the Laplace transform of TropCG.k; n/.
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In fact, in the examples we studied, when the integral is evaluated on generic
kinematics, it splits into regions which coincide with individual GFDs. However, on
planar kinematics, it simplifies and the number of linear regions is much smaller.
Moreover, each such region contributes a positive integer number hinting the existence
of a polytopal interpretation.

In Section 10, we initiate the study of two families of lattice polytopes which are
related by duality: first, we define rank-graded root polytopes yRk;n and, in particular,
their projections, the root polytopes Rk;n. In the case k D 2, the polytope yR2;n coin-
cides with the usual root polytope introduced in [38], which is the convex hull of the
origin together with the set of positive roots ei � ej for i < j . Moreover, R2;n is a
codimension 1 projection of it.

Also, in Section 10, we initiate the study of a family of lattice polytopes
Q
k;n

which are in duality with the polytopes Rk;n and which specialize in the case k D 2
to a degeneration of the associahedron. We show that

Q
k;n minimally bounds the PK

point in the integer lattice in the kinematic space. We conjecture the expression ofQ
k;n as a Newton polytope.

Based on computations in SageMath of the volume of Rk;n for nontrivial values
of k and n, including R3;9 and R4;9, we finally conjecture that the rank-graded root
polytope Rk;n has the volume of the multi-dimensional Catalan number C .k/

n�k
, thus

hinting towards a deeper polytopal (and, in particular, combinatorial) interpretation of
equation (1.1).

2. Motivation: fixed points under a cyclic shift on xX.k; n/

The spaceX.k;n/ of configurations of n labeled points on CPk�1 can be represented
by selecting homogeneous coordinates for the n points and arranging them in a k � n
matrix. The space can be formally defined as

X.k; n/ WD SL.k/nM �.k; n/=.C�/n;
where M �.k; n/ is the set of all k � n matrices with no vanishing minors. SL.k/ is
the automorphism group of CPk�1, while the algebraic torus .C�/n corresponds to
the projective action on each point.

In order to study the solutions to the scattering equations in the next section, it
turns out to be necessary to also include the configurations of points represented by
k � n matrices with vanishing minors whose only constraint is that no column is
identically zero (so that the point is in CPk�1) and have maximal rank k, so that the
action of SL.k/ is well defined. We denote the extended space by xX.k; n/. A formal
definition of xX.k; n/ as the compactification of X.k; n/ is beyond the scope of this
work since we are only interested in particular points, so a set-theoretic description
suffices.
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In order to find the points of interest, we have to define a cyclic action on xX.k;n/.
Denote by T ,! GL.n/ the embedding of the torus .C�/n into the diagonal of GL.n/.

With e1; : : : ; en the standard basis for Cn, define a linear operator �n 2 GLn by

�n.ej / D ej�1;

where the indices are cyclic modulo n.
The Grassmannian G.k; n/ admits a natural right action of the cyclic group Z=

n ' h�ni generated by �n:
�n.g/ D g � ��1n :

Further, letting G be the embedding of the semidirect product TÌZ=n into GL.n/,
then G acts on xX.k;n/ from the right; in a slight abuse of terminology, we will simply
say that a torus orbit Œg� that is preserved by G is a cyclic fixed point. We are interested
in the set of cyclic fixed points in xX.k; n/ of G.

In order to clarify the discussion which follows, let us be completely explicit about
what it means for an element of xX.k; n/ to be fixed by G. Given g 2 G.k; n/, denote
by Œg� 2 xX.k; n/ the T -orbit of g.

Proposition 2.1. An element g 2G.k;n/ descends to a cyclic fixed point Œg�2 xX.k;n/
provided that for any �1 2 T, we have

.g � �1/��1n D g � �2

for some �2 2 T.

We are interested in finding all fixed points of the cyclic shift. This is easily done
by using SL.k/ and the torus action to fix the first column of the k � n matrix to be
.1; 1; : : : ; 1/T . Consider any row of the matrix .1; x1; x2; : : : ; xn�2; xn�1/. The action
of the cyclic shift is

.1; x1; x2; : : : ; xn�2; xn�1/! .x1; x2; : : : ; xn�2; xn�1; 1/:

Let us impose the condition that this be a fixed point. It is often convenient to combine
the diagonal GL.1/ in .C�/n with SL.k/ into a GL.k/ action. In fact, in order to
compare the matrix after the shift with the original one it is necessary to apply a
GL.k/ transformation that multiplies the row by 1=x1 so as to normalize the first
component. Having done this, we have to require that

.1; x1; x2; : : : ; xn�2; xn�1/ D .1; x2=x1; : : : ; xn�2=x1; xn�1=x1; 1=x1/:

These n � 1 equations are equivalent to xi D .x1/
i for i 2 ¹2; 3; : : : ; n � 1º and

.x1/
n D 1. Denoting by q D exp2�i=n the basic root of unity, one has n possibilities

for x1 given by the ¹0th; 1st; 2nd; : : : ; .n � 1/thº powers of q.
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It is now clear that in order to obtain a cyclic fixed point each row in a k � n
matrix representative of the point must have the form

.1; !a; !
2
a ; : : : ; !

n�1
a /

with !a WD qma and ma 2 ¹0; 1; : : : ; n � 1º.
This amounts to a choice of k integers. However, using the torus action, the last

row can be fixed to have all components equal to one, which brings down the number
of choices to k � 1. The fact that the matrix must have maximal rank requires all
rows to be different, and therefore, a fixed point can be labeled by a k � 1 tuple
¹m1;m2; : : : ;mk�1º. Sometimes, it would be convenient to use a k-tuple description,
where the kth integer is set to be mk WD n. We alternate between descriptions based
on the application.

Finally, let us describe how a given k � 1 tuple can generate k � 1 equivalent
ones. Consider a given choice ¹!1; !2; : : : ; !k�1º of distinct nth roots of unity corre-
sponding to the choice ¹m1; m2; : : : ; mk�1º. The configuration of points on CPk�1

is then given by the k � n matrix with the i th column defined as�
1; !

.i�1/
1 ; !

.i�1/
2 ; : : : ; !

.i�1/

k�1

�T
:

Let us choose any value b 2 ¹1; 2; : : : ; k � 1º and use the torus action to rescale all
columns as follows: rescale the i th column by .1=wb/.i�1/. This has the effect of
setting to 1 the bth row of the k � n matrix defining the point on X.k; n/. Using a
SL.k/ transformation to permute the rows, we can send the row with all 1’s to be
the first one. This leads to a new matrix defining the same configuration of points in
CPk�1 but with different values of integers. Moreover, it is easy to find the new set
of integers

ma !
´
ma �mb for a ¤ b;
�ma for a D b:

(2.1)

When n is prime, this process groups all possibilities into

1

k

�
n � 1
k � 1

�
(2.2)

classes.
When n is not prime, the transformation (2.1) does not necessarily produce dis-

tinct tuples and the number of classes has a structure that depends on the divisors of n.
Clearly, (2.2) provides an upper bound. Indeed, when n is not prime, a tighter upper
bound can be obtained.

To this end, in Section 5, to which we refer for details and expanded discussions,
we give an injection into the set of certain aperiodic k-element subsets of ¹1; : : : ; nº,
and we give a constructive upper bound for the number of cyclic fixed points in
xX.k; n/.
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3. Critical points of �k;n on planar kinematics

In this section, we study critical points of the function on X.k; n/ which is used in the
definition of generalized biadjoint amplitudes when evaluated on planar kinematics,

�
.PK/
k;n
D

nX
iD1

log
�
pi;iC1;:::;iC.k�2/;iC.k�1/

pi;iC1;:::;iC.k�2/;iCk

�
: (3.1)

Here, all indices are defined modulo n and pi1;i2;:::;ik denotes the minor of a k � n
matrix representative of a point in xX.k; n/ made from columns ¹i1; i2; : : : ; ikº. Note
that the notation differs from the one in the introduction (1.2) which was written in
terms of Plucker coordinates of G.k; n/ in which the torus variables are exhibited
explicitly, but as it is well known they completely drop out.

The aim of this section is to give a physically intuitive reason for why the crit-
ical points of �

.PK/
k;n

are the cyclic fixed points discussed in the previous section. A
formal proof requires making a connection to the superpotential of the mirror of the
Grassmannian G.n � k; n/ and it is postponed to Section 4.

If �
.PK/
k;n

is taken as a potential function describing the interaction of particles then
the particle at point a only interacts with particles with indices in a range determined
by the value of k. For example, if k D 2, the particle at point a only interacts with
particles at points a � 1 and aC 1. This is known as a nearest neighbor interaction if
particles are thought of as spins on in a periodic one-dimensional chain. The analogy
with a spin chain2 is stronger if we allow each spin to carry degrees of freedom in
CPk�1.

In order to study the critical points of �
.PK/
k;n

, it is convenient to use a strategy
familiar with statistical mechanics. We first consider the problem of an infinite number
of spins on a line and then find solutions which satisfy the correct periodic boundary
conditions to be interpreted as solutions to the problem of n spins on a circle.

3.1. Solving the infinite chain

Let us define the case of an infinite chain as that given by

�k;1 WD
1X

iD�1

log
�
pi;iC1;:::;iC.k�2/;iC.k�1/

pi;iC1;:::;iC.k�2/;iCk

�
:

In this function, the indices are allowed to run over all integers. It is only when
we restrict to finite n that indices will be defined modulo n.

Consider inhomogeneous variables in CPk�1 given by .1; x1; x2; : : : ; xk�1/.
When denoting a particular point, we use .1; x.i/1 ; x

.i/
2 ; : : : ; x

.i/

k�1
/.

2See, for example, [30] for a standard introduction to spin chains.
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Proposition 3.1. Any .k � 1/-tuple, ¹!1; !2; : : : ; !k�1º, of non-zero and distinct
complex numbers defines a critical point of �k;1 given by

x.i/a D !i�1a :

As mentioned above, the aim of this section is to give an intuitive reason for the
proposition. We do so by giving an elementary technique that we have used to prove
it for values of k < 8.

Let us illustrate the idea with the k D 2 case. We can simplify the notation and
set x.i/1 D yi . The critical points are obtained by setting to zero the derivative of the
potential function

@�2;1

@yi
D � 1

yi�1 � yi C
1

yi � yiC1 C
1

yi�2 � yi �
1

yi � yiC2 : (3.2)

In order to verify Proposition 3.1, we set yi D !i�1 and substitute it into (3.2) to get

@�2;1

@yi
D 1

!.i�2/.1 � !/
�
� 1

!
C 1

!2
C 1

1C ! �
1

!2.1C !/
�
:

Combining the first two terms and the last two terms, one finds

@�2;1

@yi
D 1

!.i�2/.1 � !/
�
1 � !
!2

C ! � 1
!2

�
D 0:

It is important to notice that the cancellation leading to the vanishing result is i inde-
pendent.

The reason we have shown the cancellation in detail here is that it hints that for
general k the key is to combine terms pairwise hoping that a telescopic cancellation
would take place. It turns out that this is indeed the case.

We have studied all cases up to k D 7 and found the telescopic cancellation. Con-
sider the k D 7 case. In order to simplify the discussion, let us introduce another
variable called z to write the coordinate of the i th point as�

zi�1; !i�11 ; !i�12 ; : : : ; !i�1k�1

�
:

Let us study the scattering equation

@�7;1

@z
D 0:

The left-hand side can be computed combining the contributions from each of the
seven pairs. The result of the simplification of each pair is proportional to®

s1z
5;�s1z5 � s2z4; s2z4 C s3z3;�s3z3 � s4z2; s4z2 C s5z;�s5z � s6; s6

¯
;
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where sm is the elementary symmetric polynomial of degree m in ¹!1; !2; : : : ; !6º.
The factor we have omitted depends on i , but since it is a common factor, it is not rel-
evant for the computation. Adding the terms shows that the cancellation is telescopic
as expected.

3.2. Finite chain

We are interested in making the infinite chain periodic with period n. Therefore, we
must impose that the CPk�1 value assigned to the i th site is the same as that assigned
to any j 2 Z such that j D i .modn/. This has the effect of making the infinite chain
equivalent to a chain on a circle with n sites.

It is clear that by requiring every entry of ¹!1; !2; : : : ; !k�1º to be an n-root of
unity the chain becomes periodic as desired. This leads to the following proposition.

Proposition 3.2. Any .k � 1/-tuple, ¹!1; !2; : : : ; !k�1º, of non-zero and distinct
complex numbers, such that !na D 1 defines a critical point of �

.PK/
k;n

given by x.i/a D
!i�1a as long as none of the minors entering in �

.PK/
k;n

vanishes.

This result is still not satisfactory as the potential function �
.PK/
k;n

is defined on the
configuration space xX.k;n/ and distinct choices can lead to the same point in xX.k;n/.
Moreover, these are clearly the fixed points of the cyclic action defined in Section 2.
This leads to the following refined statement, which is our main result.

Theorem 3.3. Any fixed point of the cyclic action on xX.k; n/ defines a critical point
of �

.PK/
k;n

as long as none of the minors entering in �
.PK/
k;n

vanishes.

See the end of Section 4 for the proof of Theorem 3.3.
In order to compute the number of solutions to the scattering equations, it is useful

to find a simple criterion to find out the fixed points that make at least one of the
minors in �

.PK/
k;n

vanish and the remove them.
Computing minors of the form pi;iC1;:::;iCk�2;iCk�1 one discovers that they can-

not vanish if all roots of unity chosen are distinct. On the other hand pi;iC1;:::;iCk�2;iCk
vanishes non-trivially if and only if

1C !1 C !2 C � � � C !k�1 D 0: (3.3)

This means that fixed points which satisfy (3.3) are not solutions to the scattering
equations and must be removed.

The number of solutions, which we denote by Nk;n, is a very interesting function
that depends on the factorization properties of k and n. We have not been able to
construct the function explicitly, but in Section 5, we prove an upper bound given by
the number of binary Lyndon words.
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4. Relation to mirror symmetry superpotential

In this section, we prove the result stated in Theorem 3.3 by making a connection
between the equations that determine the critical points of the CEGM potential, �

.PK/
k;n

,
and those of the superpotential, Fq , in the theory which is the mirror of the Grassman-
nian G.n � k; n/. The precise form we use is that introduced by Marsh and Rietsch
in [35] as a rational function of the Plucker coordinates of G.k; n/.

In [33], Karp proved that fixed points of the GrassmannianG.k;n/ under a certain
cyclic shift map are the critical points of a superpotential Fq .

We prove that by treating G.k; n/ as a torus fibration over X.k; n/, which is pos-
sible at least locally, and “integrating out” the fields that control the scale of each
point one finds that the critical points of Fq contain those of the potential on planar
kinematics, �

.PK/
k;n

.
Let �a1;a2;:::;ak denote the minors of the k � n matrix representative of a point in

G.k; n/, i.e., the Plucker coordinates.
The mirror symmetry superpotential introduced by Marsh and Rietsch [35] is

Fq WD
nX

iD1;i¤n�k

�i;iC1;:::;iC.k�2/;iCk

�i;iC1;:::;iC.k�2/;iC.k�1/
C q�n�k;n�kC1;:::;n�1;1

�n�k;n�kC1;:::;n�1;n
:

This superpotential depends on a parameter q. In fact, one could include a parameter
qi for each term, but using a simple rescaling of the fields all parameters can be
removed except for one, which by convention is chosen to be qn�k WD q. In order to
simplify the notation in the computations below, it is actually useful to keep the other
parameters and write

F WD
nX
iD1

qi
�i;iC1;:::;iC.k�2/;iCk

�i;iC1;:::;iC.k�2/;iC.k�1/
:

In order to proceed, let us choose a chart of G.k; n/ parameterized as0BBBB@
t1 0 � � � 0 tkC1 tkC2 � � � tn

0 t2 � � � 0 tkC1 tkC2x1;1 � � � tnx1;n�k�1
:::

::: � � � :::
:::

:::
:::

0 0
: : : tk tkC1 tkC2xk�1;1 � � � tnxk�1;n�k�1

1CCCCA :
As usual, other charts might be necessary to cover all points of interest but the argu-
ment can be carried out in the exactly the same way.

The Plucker coordinates of G.k; n/ can now be written as

�a1;a2;:::;ak D ta1 ta2 � � � takpa1;a2;:::;ak ;
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where pa1;a2;:::;ak denote the minors of a matrix representative of a point in xX.k; n/,
i.e., the minors of0BBBB@

1 0 � � � 0 1 1 � � � 1

0 1 � � � 0 1 x1;1 � � � x1;n�k�1
:::

::: � � � :::
:::

:::
:::

0 0
: : : 1 1 xk�1;1 � � � xk�1;n�k�1

1CCCCA :
In this chart, the superpotential becomes

F D
nX
iD1

qi
tiCk pi;iC1;:::;iC.k�2/;iCk

tiC.k�1/ pi;iC1;:::;iC.k�2/;iC.k�1/
:

Differentiating with respect to ta gives

@F

@ta
D �qa�k

1

ta�1

p:::;a�3;a�2;a

p:::;a�3;a�2;a�1
C qa�kC1

taC1

t2a

p:::;a�2;a�1;aC1

p:::;a�2;a�1;a
:

Setting this to zero implies that

qa�k
ta

ta�1

p:::;a�3;a�2;a

p:::;a�3;a�2;a�1
D qa�kC1

taC1

ta

p:::;a�2;a�1;aC1

p:::;a�2;a�1;a
;

and therefore, the following quantity is independent of a

� WD qa�k
ta

ta�1

p:::;a�3;a�2;a

p:::;a�3;a�2;a�1
: (4.1)

Let us now compute the derivative of F with respect to any variable that appears in
the minors pb1;b2;:::;bk . Let us denote such a generic variable as za, then

@F

@za
D qa taCk

taC.k�1/

@

@za

�
pa;aC1;:::;aC.k�2/;aCk

pa;aC1;:::;aC.k�2/;aC.k�1/

�
C � � � : (4.2)

Critical points are found by setting this to zero, and provided that � does not vanish,
the equations are equivalent to

1

�

@F

@za
D 0 8 a: (4.3)

Using a form of � appropriate to each term, one can turn each term in the sum
into a logarithmic derivative. For example, consider the contribution of the first term
in (4.2) to the left-hand side of equation in (4.3):

qa

�

taCk

taC.k�1/

@

@za

�
pa;aC1;:::;aC.k�2/;aCk

pa;aC1;:::;aC.k�2/;aC.k�1/

�
:
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Using

� D qa taCk

taC.k�1/

pa;aC1;:::;aC.k�2/;aCk

pa;aC1;:::;aC.k�2/;aC.k�1/
;

the expression simplifies to

pa;aC1;:::;aC.k�2/;aC.k�1/

pa;aC1;:::;aC.k�2/;aCk

@

@za

�
pa;aC1;:::;aC.k�2/;aCk

pa;aC1;:::;aC.k�2/;aC.k�1/

�
;

which can be written as

@

@za
log

�
pa;aC1;:::;aC.k�2/;aCk

pa;aC1;:::;aC.k�2/;aC.k�1/

�
:

Putting all together the equations for the superpotential (4.3) can be written as

@

@za

nX
iD1

log
�

pi;iC1;:::;iC.k�2/;iCk

pi;iC1;:::;iC.k�2/;iC.k�1/

�
D 0 8 a;

which coincide with the scattering equations on planar kinematics.
Note that the derivation is only valid if � is not zero, and so, we have proven the

following.

Lemma 4.1. Any critical point of Fq for which � does not vanish descends to a
critical point of �

.PK/
k;n

evaluated on planar kinematics.

Let us now discuss the critical points of Fq .

Proposition 4.2 ([33]). For t 2 C�, the critical points of Fq on G.k; n/ at q D t are
precisely the fixed points of the t-deformed cyclic shift map �t .

Here, the t -deformed cyclic shift map, �t , is defined as a map Cn ! Cn which
acts on G.k; n/ by acting on each of the rows of a k � n matrix representative. The
precise definition of �t is the following.

Definition 4.3 ([33]). For t 2 C�, define the t -deformed (left) cyclic shift map �t 2
GL.n;C/ as

�t .v/ D .v2; v3; : : : ; vn; .�1/k�1tv1/ for v D .v1; v2; : : : ; vn/ 2 Cn:

Finally, we are ready to prove our Theorem 3.3. For convenience, we state it again.

Theorem 4.4. Any fixed point of the cyclic action on xX.k; n/ defines a critical point
of �

.PK/
k;n

as long as none of the minors entering in �
.PK/
k;n

vanishes.

Proof. First, note that fixed points of the t -deformed cyclic shift map �t clearly
descend to fixed points of our cyclic action �n; moreover, every fixed point of �n
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arrives in this way. Of course, two fixed points in G.k; n/ which only differ by a torus
action descend to the same fixed point in X.k; n/. However, such a fixed point only
produces a solution to the scattering equations if � ¤ 0. Since the scale factors ta do
not vanish in any of the cyclic fixed points in G.k; n/, the only way � can vanish is
for cyclic fixed points for which pa;aC1;:::;aCk�2;aCk D 0. But these are exactly the
fixed points excluded in the theorem.

5. Enumeration of aperiodic critical points of the planar kinematics
potential function

In this section, our aim is to give an explicit combinatorial tabulation of the criti-
cal points of �

.PK/
k;n

; we do not completely succeed, but we are able to give a useful
constructive upper bound.

In what follows, it is convenient to regard �
.PK/
k;n

as a function on the complex
Grassmannian that happens to be invariant under not only the action of the torus group
.C�/n (denoted by T in Section 2), but in fact it is invariant under the action of the
semidirect product .C�/n Ì Z=n ,!GL.n/, where the subgroup .C�/n acts by scaling
the standard basis vectors in Cn by complex numbers in the standard way as � � ej D
�j ej , and the subgroup Z=n acts by the cyclic rotation operator �n.ej /D ej�1. Given
2 � k � n � 2, put q D exp.2�i=n/.

Let Tn ' Z=n be the subgroup of GL.n/ embedded into the diagonal as

a 7! diag.1; qaq2a; : : : ; q.n�1/a/:

Then, in particular, Tn acts on the standard basis of Cn by

a W ej 7! qa.j�1/ej :

Denote by
�
Œn�
k

�
the set of k-element subsets of Œn� D ¹1; : : : ; nº; then the group

Z=n acts by ¹j1; : : : ; jkº 7! ¹j1 C a; : : : ; jk C aº.
Definition 5.1. We say that a k-element subset J D ¹j1; : : : ; jkº 2

�
Œn�
k

�
is aperiodic

if its Z=n-orbit has exactly n elements,ˇ̌¹¹j1 C j; : : : ; jk C j º W j 2 Z=nºˇ̌ D n;
where addition is regarded modulo n.

Such aperiodic sequences, also called Lyndon words, have a well-known enumer-
ation.

Recall that a string w with k ones and n � k zeros is a binary Lyndon word if it
is the unique lexicographically smallest element among its cyclic rotations. As it is
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the unique lexicographically smallest element among its cyclic rotations, it follows
that w is different from its cyclic rotations. For example .0; 0; 1; 1/ is a Lyndon word,
but .0; 1; 1; 0/ is not because it is not lexicographically the smallest among its cyclic
rotations. Moreover, .0; 1; 0; 1/ is not a Lyndon word because its period modulo cyclic
rotation is less than four.

Recall that the number of binary Lyndon words with k ones and n � k zeros is
equal to

N 0k;n D
1

n

X
d jgcd.k;n/

�
�.d/

�
n=d

k=d

��
; (5.1)

see [37, OEIS number triangle A051168].
Here, �.d/ is the Moebius function:

�.d/ D

8̂̂<̂
:̂
0 if d is a product of primes with repeated factors;

1 d D 1;
.�1/` if d is a product of ` distinct primes:

Proposition 5.2. The number of equivalence classes of aperiodic k-element subsets
of Œn� modulo Z=n is given by equation (5.1).

Proof. This is a straightforward consequence of the standard bijection between Z=n-
orbits of k-element subsets of Œn� and Lyndon words. For the bijection, one identifies
a subset J D ¹j1; : : : ; jkº 2

�
Œn�
k

�
with its indicator function

eJ D
X
j2J

ej I

then restrict to lexicographically minimal indicator functions.
Here, Z=n acts on binary Lyndon words via the n-cycle .12; : : : ; n/ on positions,

while it acts on aperiodic subsets by permuting index labels.

Given A D ¹a1; : : : ; akº 2
�
Œn�
k

�
, then clearly since the elements a1; : : : ; ak are

distinct, the k � n matrix gA, which we define by its entries xi;j D q.j�1/ai , has
nonvanishing minor p1;2;:::;k�1;k.gA/ (which is the Vandermonde determinant in the
entries qa1 ; : : : ; qak ), so it has rank k and defines an element of G.k; n/.

Let us call a cyclic fixed point g 2 G.k; n/ aperiodic if its Tn-orbit has exactly
n distinct cyclic fixed points. It follows immediately that the number of Tn-orbits of
aperiodic cyclic fixed points in G.k; n/ is given by N 0

k;n
in equation (5.1).

In Theorem 5.3, we show that the minors pi;iC1;:::;iCk�2;iCk that appear in the
planar kinematics potential function �

.PK/
k;n

vanish on Tn-orbits which are not ape-
riodic; however, there will be defective cyclic fixed points g 2 G.k; n/ which are
aperiodic, but for which we still have pi;iC1;:::;iCk�2;iCk.g/ D 0. Recall that these
minors appeared in the factor � in equation (4.1), which was assumed to be nonzero.
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Theorem 5.3. The set of cyclic fixed points in X.k; n/ injects into the set of Tn-orbits
of aperiodic cyclic fixed points in G.k; n/.

Proof. Supposing that g 2 G.k; n/ is any cyclic fixed point. Then, it follows from
[33, Theorem 1.1] that there exists a uniqueAD ¹a1; : : : ; akº 2

�
Œn�
k

�
such that gD gA

modulo GL.k/.
Let us suppose that A were not aperiodic; this means that there existsm 2 ¹1; : : : ;

n � 1º such that as sets we have

¹a1 Cm; : : : ; ak Cmº D ¹a1; : : : ; akº:

First, note that

p1;2;:::;k�1;kC1.gA/

p1;2;:::;k�1;k.gA/
D qa1 C qa2 C � � � C qak :

Then, we have

qm.qa1 C qa2 C � � � C qak / D qa1 C qa2 C � � � C qak ;

hence

0 D .1 � qm/.qa1Ct C qa2Ct C � � � C qakCt /
) 0 D qa1 C qa2 C � � � C qak :

This implies that g cannot be a critical point of the planar kinematics potential func-
tion.

Consequently, we finally obtain our constructive upper bound on the number of
critical points of the planar kinematics potential function (3.1).

Corollary 5.4. For any 2 � k � n � 2, the PK potential function �
.PK/
k;n

has Nk;n �
N 0
k;n

critical points, where N 0
k;n

is the number of Lyndon words with k ones and n� k
zeros, given in equation (5.1).

Below we enumerate cyclic equivalence classes of aperiodic k-element subsets of
¹1; : : : ; nº, that is to say, Lyndon words with k ones and n � k zeros for k � 6 and
n � 24. The numbers of critical points are given subsequently.

Call a cyclic fixed point gA 2 X.k; n/ defective if A 2 �Œn�
k

�
is aperiodic, but we

still have
det.vi ; : : : ; viCk�2; viCk/ D 0 for i D 1; : : : ; n:

In other words, gA does not define a solution to the scattering equations at the PK
point.
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knn 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11
3 0 1 2 3 5 7 9 12 15 18 22 26 30 35 40 45 51 57 63 70 77 84
4 0 0 1 2 5 8 14 20 30 40 55 70 91 112 140 168 204 240 285 330 385 440
5 0 0 0 1 3 7 14 25 42 66 99 143 200 273 364 476 612 775 969 1197 1463 1771
6 0 0 0 0 1 3 9 20 42 75 132 212 333 497 728 1026 1428 1932 2583 3384 4389 5598

Table 1. Numbers of Lyndon words provide an upper bound on the number of critical points.

In Table 1 above the actual number of critical points is less than the number of
Lyndon words starting at k D 5, where the (nonzero) entries are now given by

1 3 7 14 25 42 65 99 143 200 273 364 474 612 775 969 1197:

In what follows, we tabulate representatives of the first few defective aperiodic
cyclic fixed points which are not critical points.

For k D 5, we have

n D 12 W ¹.1; 4; 7; 8; 12/º;
n D 18 W ¹.1; 6; 10; 12; 18/; .1; 7; 9; 13; 18/º;
n D 24 W ¹.1; 8; 13; 16; 24/; .1; 9; 12; 17; 24/; .2; 8; 14; 16; 24/º;
n D 30 W ¹.1; 10; 16; 20; 30/; .1; 11; 15; 21; 30/; .2; 10; 17; 20; 30/;

.2; 12; 15; 22; 30/º:

Thus, the count decreases by n�6
6

for n D 12; 18; 24; 30; 36; : : : . We have checked
that this formula holds through n D 90.

For instance, for n D 12, we have

q C q4 C q7 C q8 C q12 D 0;

where q D exp.2�i=12/.
Also, by explicit computation, for k D 6, one finds exactly one defective aperiodic

cyclic fixed point at n D 30 and one at n D 60; we did not attempt to compute larger
n. These correspond to

n D 30 W ¹.1; 7; 13; 19; 20; 30/º;
n D 60 W ¹.2; 14; 26; 38; 40; 60/º:

Based on the data for n D 5; 6, it is tempting to try to refine the upper bound to an
exact enumeration, but finding the general rule for all 2 � k � n � 2 appears to be
beyond the scope of this paper and is left for future work.
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6. Evaluating CEGM biadjoint amplitudes

In this section, we review the construction of CEGM biadjoint amplitudes with special
detail on the SL.k/ gauge fixing procedure. In fact, on planar kinematics, there are
solutions which do not admit the standard gauge fixing, and therefore, more general
gauge fixings are necessary.

Recall that the most general CPk�1 scattering equations are the conditions for
finding the critical points of a general potential function

�k;n D
nX

b1;b2;:::;bkD1

sb1;b2;:::;bk logpb1;b2;:::;bk :

More explicitly,
@�k;n

@za;i
D 0 8 .a; i/; (6.1)

where za;i represent inhomogeneous coordinates of the ath point on CPk�1. The
coordinates can be arranged in a matrix as follows:0BBBBBB@

1 1 � � � 1 1

z1;1 z2;1 � � � zn�1;1 zn;1

z1;2 z2;2 � � � zn�1;2 zn;2
:::

:::
: : :

:::
:::

z1;k�1 z2;k�1 � � � zn�1;k�1 zn;k�1

1CCCCCCA : (6.2)

In order for the potential function to be well defined on X.k; n/, the kinematic
invariants sI must be completely symmetric in their indices and satisfy the following
properties:

nX
b2;b3;:::;bnD1

sa;b2;b3;:::;bn D 0 and sa;a;b3;:::;bk D 0 8 a 2 ¹1; 2; : : : ; nº:

The set of scattering equations (6.1) is covariant under the action of SL.k/ act-
ing on the matrix (6.2) by left multiplication. This means that k2 � 1 equations are
redundant. This is a welcome fact as SL.k/ can be used to fix k2 � 1 of the variables
in the matrix (6.2). These two facts mean that the Hessian matrix of �k;n which is a
.k � 1/n � .k � 1/n matrix has corank k2 � 1.

The evaluation of the amplitudes requires the definition of a reduced determinant
of the Hessian matrix, since the Hessian of �k;n is the Jacobian matrix of the scattering
equations.

In the CEGM original work, the reduced determinant was defined by analogy
with the well-known k D 2 case. Let us describe such particular construction before
discussing the most general one.



F. Cachazo and N. Early 224

The components of the Hessian in this context are usually denoted by ‰IJ , with
composed indices I D .a; i/ and J D .b; j /, so that

‰IJ WD @2�k;n

@za;i@zb;j
:

The CEGM construction of the reduced determinant is defined by selecting a sub-
matrix obtained from ‰ by deleting k2 � 1 rows and k2 � 1 columns, computing
its determinant and compensating with a factor which makes the object indepen-
dent of the choices made. Let us denote the submatrix obtained by deleting all rows
that contain labels ¹a1; a2; : : : ; akC1º in their indices; a total of .k � 1/.k C 1/, and
columns containing labels ¹b1; b2; : : : ; bkC1º in their indices by‰a1;a2;:::;akC1

b1;b2;:::;bkC1
. Then,

the reduced determinant is

det0‰.k/ WD
det‰a1;a2;:::;akC1

b1;b2;:::;bkC1

Va1;a2;:::;akC1Vb1;b2;:::;bkC1
; (6.3)

where the Va1;a2;:::;akC1 is a generalization of a Vandermonde determinant defined by

Va1;a2;:::;akC1 WD
kC1Y
iD1

pa1;a2;:::; Oai ;:::;akC1 : (6.4)

Clearly, this definition of the reduced determinant requires both Va1;a2;:::;akC1 and
Vb1;b2;:::;bkC1 to be non-vanishing on the solution to the scattering equations used in
the evaluation. Since the choice of the sets ¹a1; a2; : : : ; akC1º and ¹b1; b2; : : : ; bkC1º
is arbitrary, one can try different choices until the generalized Vandermonde determi-
nants are non-vanishing.

Definition 6.1. A set ¹a1; a2; : : : ; akC1º is called an SL.k/ frame on a particular
solution to the scattering equations if the corresponding generalized Vandermonde
determinant, Va1;a2;:::;akC1 , evaluated on the solution is non-zero.

Now, we can restate the applicability of the CEGM definition of reduced determi-
nant. Formula (6.3) can be used on a given solution to the scattering equations if and
only if the solution defines a point in xXk;n with at least one frame.

When k D 2, all solutions to the scattering equations admit at least one frame.
However, in the next section, we find that k D 4, nD 9 is the first case with frameless
solutions.

When dealing with frameless solutions, one has to use a more general gauge fixing
procedure. Since k D 4 is our main application in this work, we describe the construc-
tion in that case and leave the general k construction as a straightforward exercise to
the reader.



Planar kinematics: Cyclic fixed points and mirror superpotential 225

6.1. General SL.4/ gauge fixing

Consider an arbitrary infinitesimal SL.4/ transformation acting on a point in CP3.
Let us parameterize the transformations as0BBB@

1C "11 "12 "13 "14

"21 1 � "11 C "22 "23 "24

"31 "32 1 � "22 C "33 "34

"41 "42 "43 1 � "33

1CCCA : (6.5)

Here, "ij are infinitesimal deformations, and we have chosen to impose the traceless-
ness condition of the infinitesimal generations in a particular way. There are 42 � 1D
15 infinitesimal deformations.

To obtain the action on .1;x1;x2;x3/T , we simply multiply on the left by (6.5) and
use the torus action to set the top component to one. Performing this and subtracting
the original vector, one finds the infinitesimal variations

ıx1 D �x21"12 � 2x1"11 C x1"22 � x2x1"13 � x3x1"14 C x2"23 C x3"24 C "21;
ıx2 D x1"32�x2"22Cx2"33Cx3"34Cx2.�x1"12�x2"13�x3"14�"11/C"31;
ıx3 D x1"42Cx2"43�x3"33Cx3.�x1"12�x2"13�x3"14�"11/C"41: (6.6)

The key idea is that these infinitesimal variations provide a way of computing a basis
of the null space of the Jacobian matrix which is covariant under SL.k/ and torus
actions. The null space is spanned by 15 vectors in C3n. There is one vector for each
"i;j . For example, consider "4;1. Setting all other "i;j to zero in (6.6), we get

.ıx1; ıx2; ıx3/ D .�x1x2;�x2x3;�x23/"4;1:

Applying this to the coordinates of all n particles produces a 3n-dimensional vector:

v41 WD .�x1;1x2;1;�x2;1x3;1;�x23;1; : : : ;�x1;nx2;n;�x2;nx3;n;�x23;n/T :

These vectors can be grouped into a 15 � 3n matrix,

V WD .v11; v22; v33; v12; : : : ; v43/:

Note that we have not yet fixed the normalization of the vectors spanning the null
space. This is done when we reproduce the standard CEGM gauge fixing.

It is convenient to give a notation for the minors of V . Recall that the entries of
the Hessian matrix, ‰IJ , where indexed with I D .a; i/ and .J; b/. Here, we allow
I and J to be numbers from 1 to 3n with the matching made lexicographically to
.a; i/. For example, I D 4 corresponds to .2; 1/. The minor of V made with rows
¹I1; I2; : : : ; I15º is denoted as ŒI1; I2; : : : ; I15�.
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Now, we are ready to define the most general SL.4/ gauge fixing and its associated
reduced determinant,

det0‰.4/ WD
N det‰I1;I2;:::;I15J1;J2;:::;J15

ŒI1; I2; : : : ; I15�ŒJ1; J2; : : : ; J15�
: (6.7)

Here, N is a proportionality constant which is needed to match the normalization of
biadjoint amplitudes. If desired, N could be reabsorbed in the normalization of the
vectors chosen to span the null space of the Hessian.

Proposition 6.2. The value of det0 ‰.4/ (evaluated on a solution to the scattering
equations) is independent of the choice of sets ¹I1; I2; : : : ; I15º and ¹J1; J2; : : : ; J15º,
up to a sign, for all choices in which neither ŒI1; I2; : : : ; I15� nor ŒJ1; J2; : : : ; J15�
vanish.

The proof is a simple extension of the one given in [13, Appendix A] for the k D 2
case.

Let us end this part of the section with a discussion on how to recover the CEGM
gauge fixing from the generalized one and in the process we fix the normalization N .
In cases in which there is a frame, it is natural to select ¹I1; I2; : : : ; I15º so that they
agree with®
.a1; 1/; .a1; 2/; .a1; 3/; .a2; 1/; .a2; 2/; .a2; 3/; : : : ; .a5; 1/; .a5; 2/; .a5; 3/

¯
:

(6.8)
In other words, one selects five particle labels ¹a1; a2; a3; a4; a5º and all three coor-
dinates for each.

Proposition 6.3. Given a choice of ¹I1; I2; : : : ; I15º as in (6.8), then the following
agree:

ŒI1; I2; : : : ; I15� D 4Va1;a2;a3;a4;a5 (6.9)

with V defined in (6.4) as

Va1;a2;a3;a4;a5 D
5Y
iD1

pa1;a2;:::; Oai ;:::;a5 :

The proof is easily carried out using a symbolic manipulation program. The iden-
tity (6.9) is purely algebraic, and it does not require to be on the support of the
scattering equations.

Using this result in the definition of the reduced determinant (6.7), one immedi-
ately concludes that

N D 42 D 16:
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7. CEGM amplitudes on planar kinematics

In this section, we evaluate the CEGM biadjoint amplitudes on planar kinematics in
order to provide support for the conjecture stating that their values are computed by
the higher-dimensional Catalan numbers.

In order to evaluate the CEGM biadjoint amplitudes on the planar kinematics, it
is necessary to introduce the k-Parke–Taylor factor,

PT.1; 2; : : : ; n/ WD 1

p1;2;:::;k p2;3;:::;kC1 � � �pn;1;:::;k�1
:

Finally, the CHY formulation of the CEGM biadjoint amplitude is constructed as
follows:

m.k/n .I; I/ D
Nn;kX
mD1

1

det0‰.k/
.PT.1; 2; : : : ; n � 1; n//2

ˇ̌̌̌
zaDz

.m/
a

;

where the sum runs over all Nk;n solutions to the scattering equations denoted z.m/a .
In order to present our results, it is useful to review the definition of the higher-

dimensional Catalan numbers C .d/m . As it turns out, these numbers satisfy a duality
relation C .d/m D C

.m/

d
. This motivated us to write their explicit form in a way that

manifests the symmetry. Moreover, the conjecture of [7] states thatm.k/n .I;I/DC .k/
n�k

with

C
.k/

n�k
WD .

Qk�1
pD0 pŠ/.k.n � k//ŠQn�1

pDn�k pŠ
:

7.1. Explicit results

We have performed extensive computations, and in every case, we have found that
m
.k/
n .I; I/ D C .k/

n�k
on planar kinematics.

For k D 2, Cachazo, He, and Yuan (CHY) conjectured in 2013 that m.2/n .I; I/,
defined in terms of a sum over solutions, evaluates to the .n � 2/th Catalan number,
Cn�2. This is consistent with the more general conjecture since C .2/n�2 is indeed the
standard .n� 2/th Catalan number. In their paper, CHY provided strong evidence for
their conjecture. In 2014, Dolan and Goddard proved that m.2/n .I; I/ on general kine-
matics agrees with the sum over planar Feynman diagrams in a cubic scalar theory.
If the planar kinematics is approached as a limit of general kinematics then each pla-
nar Feynman diagram evaluates to one and their sum simply becomes the number of
planar cubic trees with n leaves which is well known to be Cn�2.

For k D 3, we have evaluated m.3/n .I; I/ on planar kinematics by summing over
the solutions corresponding to cyclic fixed points for all n � 40.
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The computation for k D 3 is very straightforward since all cyclic fixed points
that are solutions to the scattering equations admit a frame and therefore a standard
gauge fixing.

Let us move to k D 4 cases, where for the first time frameless solutions are found
for n > 8. Clearly, k D 4; n < 8 cases do not have frameless solutions since they are
dual to k D 2 and k D 3 cases.

Let us start the k D 4 discussion with n D 8; compare with the enumeration pro-
vided in Table 1. The first step is to determine the cyclic fixed points that are solutions
to the scattering equations. There are in total ten triples of integers .m1; m2; m3/ that
are inequivalent under the SL.4/ and torus action. Of these, two are not solutions to
the scattering equations. More explicitly, one can check that if

q D exp.2�i=8/;

then
1C q C q4 C q5 D 0 and 1C q2 C q4 C q6 D 0;

and therefore, .1; 4; 5/ and .2; 4; 6/ are not solutions to the scattering equations.
The remaining eight cyclic fixed points are solutions. Seven of them admit a stan-

dard frame using particles ¹1; 2; 3; 4; 5º. The seven solutions are®
.1; 2; 3/; .1; 2; 4/; .1; 2; 6/; .1; 3; 4/; .1; 3; 5/; .1; 3; 6/; .1; 4; 6/

¯
:

The evaluation of the contributions to the amplitude from these seven solutions is
easily done using the standard gauge fixing and gives rise to 24008.

The solution corresponding to .1; 2; 5/ has a matrix representative of the form0BBBB@
1 0 0 0 1 1 1 1

0 1 0 0 2 1 1 0

0 0 1 0 0 1 1
2

1

0 0 0 1 1 1 1
2

1
2

1CCCCA ;
which makes it clear that a frame with particles ¹1; 2; 3; 4; 5º is not possible but one
with particles ¹1; 2; 3; 4; 6º is. Computing the contribution to the amplitude gives 16.
Combining the two results, we obtain

m
.4/
8 .I; I/ D 24 024;

which agrees with the four-dimensional Catalan number C .4/4 .
Now, we are ready to discuss the first example in which frameless solutions are

found. This is the case of .k; n/ D .4; 9/.
There are a total of fourteen inequivalent triples of integers .m1; m2; m3/. In this

case all fourteen produce solutions to the scattering equations.
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There are twelve solutions that admit a frame and two frameless solutions. The
ones that admit a frame are

.1; 2; 3; 8/; .1; 2; 4; 8/; .1; 2; 5; 8/; .1; 2; 6; 8/; .1; 2; 7; 8/; .1; 3; 4; 8/;

.1; 3; 5; 8/; .1; 3; 7; 8/; .1; 4; 5; 8/; .1; 4; 6; 8/; .1; 5; 7; 8/; .2; 4; 6; 8/;

and their contribution to the amplitude is 14 965 237=9.
The frameless triples are .1; 3; 6; 8/ and .1; 4; 7; 8/. Defining r D exp.�i=9/ a

matrix representative for .1; 3; 6/ is given by0BBB@
1 0 0 0 1 1 1 1 1

0 1 0 0 r7 0 0 r4 0

0 0 1 0 0 r5 0 0 r2

0 0 0 1 �1 �1 r6 �1 �1

1CCCA :
An exhaustive search shows that all possible subsets of five particles give rise to van-
ishing generalized Vandermonde determinants.

Following the construction of general SL.4/ gauge fixings provided in Section 6.1,
it is possible to find a valid one given by

.I1; I2; : : : ; I15/ D .10; 13; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27/:

In other words, the determinant of the 12 � 12 submatrix of the Jacobian matrix
obtained from columns and rows in 1; 2; 3; 4; 5; 6; 7; 8; 9; 11; 12; 14 is nonzero.

Defining sD exp.�i=3/, the second frameless solution has a matrix representative
of the form 0BBB@

1 0 0 0 1 1 1 1 1

0 1 0 0 �1 0 0 �s 0

0 0 1 0 0 �1 0 0 �s
0 0 0 1 s s s2 s s

1CCCA :
It turns out that the same gauge fixing that works for .1; 3; 6/ also works for

.1; 4; 7/. The combined contribution to the amplitude is 1=9.
Adding the contributions from all fourteen solutions one finds

m
.4/
9 .I; I/ D 1 662 804;

which agrees with C .4/5 .
In principle, there is no obstacle against computing m.k/n .I; I/ to arbitrarily high

values of k and n except for the computationally intensive task of searching for valid
SL.k/ gauge fixings for frameless solutions.

It is important to mention that in our numerical study we have found that when n
is prime there are no frameless solutions and computations can be carried out to high
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values of .k; n/. We list the computations we have performed below. In every case,
the results agree with the high-dimensional Catalan conjecture.

Results are listed with computation time, in Mathematica, run on a laptop with an
i7-6700K CPU with 64GB RAM.

• k D 3: n � 40.

• kD 4: All n� 15. Additionally, nD 23 (493 seconds) and nD 29 (1839 seconds).

• k D 5: n D 10; 11; 12; 13; 14; 17. (For n D 19: 6953 seconds).

• k D 6: n D 13 (8007 seconds).

8. Tropical Grassmannian evaluation and the global Schwinger
parametrization

In [7], evidence for the conjecture thatm.k/n .I;I/ evaluates to the k-dimensional Cata-
lan numberC .k/

n�k
on planar kinematics was obtained by evaluatingm.k/n .I;I/ as a sum

over generalized Feynman diagrams [5]. Generalized Feynman diagrams are the k > 2
analog of the standard planar cubic Feynman diagrams used to evaluate m.2/n .I; I/. In
fact, planar kinematics for k D 2 was originally designed to make each Feynman
diagram evaluate to one so that m.2/n .I; I/ counts the number of such diagrams which
is known to be C .2/n�2. Unfortunately, generalized Feynman diagrams (GFD) do not
all evaluate to one on planar kinematics. The reason is that while some GFDs only
possess poles in the planar basis and evaluate to one, other GFDs have other planar
poles which are linear combinations of elements in the basis and therefore evaluate to
rational numbers.

As it turns out, k D 2 (and via duality k D n � 2) is the only case when the
dimension of the planar basis coincides with the dimension of the space of kine-
matic invariants. The fact that individual GFDs evaluate to rational numbers makes
the counting interpretation implausible.

In this section, we rewrite the sum over GFDs in a way, using an integral which
we call the global Schwinger parametrization, that leads to a decomposition in terms
of objects that evaluate to positive integer numbers. Each of the new objects combines
the contribution of several GFDs.

In order to explain the construction, let us start by recalling that standard Feynman
diagrams contributions to an amplitude can be thought of as the Laplace transform of
certain regions in the Billera–Holmes–Vogtmann (BHV) space of trees [4], which is
also the tropical Grassmannian TropG.2; n/ [32, 40].

When restricting to m.2/n .I; I/ only planar Feynman diagrams contribute which
leads to the positive tropical Grassmannian TropCG.2; n/ introduced by Speyer and
Williams in [41].



Planar kinematics: Cyclic fixed points and mirror superpotential 231

The restriction to planar objects is very important because it allows us to find
regions in kinematic space, where the Laplace transform which computes individual
Feynman diagrams exist simultaneously for all planar diagrams. This is not the case
without the planarity condition, e.g., for n D 4, there are three Feynman diagrams,
with values 1=s; 1=t; 1=u. In order to express one of them as a Laplace transform
of the space of trees (i.e., in a Schwinger parametrization), one needs the relevant
Mandelstam invariant to be positive. However, momentum conservation sC t CuD 0
allows at most two invariants to be positive simultaneously. Restricting to two of the
three diagrams is in fact equivalent to imposing planarity.

This means that we can hope to be able to perform the Laplace transform of the
whole TropCG.2; n/ as a single integral if the elements in the planar basis are chosen
to be positive.

Generalized Feynman diagrams extend the same ideas identifyingm.k/n .I; I/ with
the Laplace transform of TropCG.k; n/. So far in the literature the Laplace transform
has been carried out diagram by diagram since for generic kinematics it provides a
systematic way of evaluation [5, 9]. However, as mentioned above this obscures the
way they should be combined when evaluated on planar kinematics.

Here, we proceed by writing a formula for the Laplace transform of TropCG.k;n/
as a single integral which on general kinematics can be decomposed in terms of indi-
vidual GFDs but when evaluated on planar kinematics it performs the combination of
GFD we are looking for. Note that planar kinematics sits inside the region, where we
expect the Laplace transform to exist.

Consider the Laplace transform representation of a single GFD, T [5, 9],

IT D
Z
d�T exp.�F /;

where d�T represents a measure over the space of internal edge lengths of the dia-
grams in the array of Feynman diagrams defining T , while

F D �
X

J�Œn�WjJ jDk

sJdJ : (8.1)

Here, sJ is the generalized Mandelstam invariant with a short hand notation for the
indices while dJ is the metric on the array of Feynman diagrams3 that make T . If
we let J D ¹j1; : : : ; jkº then dJ is a completely symmetric tensor satisfying that the
rank-two tensor constructed by fixing any k � 2 indices and letting the remaining two
vary is a metric on a binary tree [32]. This means that dJ satisfies all the three-term
tropical Plucker vectors relations. This means that they define a point in the Dressian

3The precise definition of arrays of Feynman diagrams and GFD is not needed in this work
and we refer the reader to [5, 9] for details.
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Dr.k; n/ (see [32, 40]). Restricting to planar GFDs further imposes that the tensor dJ
defines a point in the positive Dressian which was recently proven to be equal to the
positive tropical Grassmannian TropCG.k; n/, concurrently in [3, 42].

Using the connection to TropCG.k; n/ and the fact that the invariants sJ satisfy
the generalized momentum conservation one can write dJ as the tropical Plucker
coordinates evaluated on certain regions of TropCG.k; n/.

This means that the Laplace transform of the whole TropCG.k; n/ must be equiv-
alent to the sum over all GFD integrals IT ,

m.k/n .I; I/ D
X
T

IT D
Z
d�TropCG.k;n/ exp.�F /;

where the measure depends on the coordinates chosen.
Luckily, Speyer–Williams [41] provided a natural construction of TropCG.k; n/

based on the well-known positive Grassmannian GC.k; n/.
The Speyer–Williams construction starts with a web diagram and provides a matrix

representative of a point in GC.k; n/ as the boundary matrix of the diagram using
edge variables. The k.n � k/ edge variables vary in RC and generate GC.k; n/.
Given a matrix representative, Speyer and Williams proceed to map it to a point in
TropCG.k; n/ by tropicalizing the maximal minors. In the tropical object, the new
“edge" variables are now in R. This can be understood by recalling that the tropical
map can be thought of as the limit of an exponential map in which x 2 RC goes to
exp. Qx/ with Qx 2 R. This immediately leads to the following formula:

m.k/n .I; I/ D 1

.Vol.RC//n�1

Z
Rk.n�k/

dk.n�k/ Qx exp.�F / (8.2)

with F as in (8.1) but with the metric dJ replaced with the tropicalized Plucker minors
written in terms of the variables Qx. The reason for dividing by the volume of the
torus .RC/n�1 is the fact that the tropicalization procedure makes the scales of each
column in the k � n representation of a point inGC.k;n/ redundant. In physics terms,
the model has a .RC/n�1 gauge invariance. It is important to note that one of the n
possible rescalings has been fixed already when the standard GL.k/ action on the
k � n matrix representatives of GC.k; n/ was fixed. Once the redundancies are fixed
the integral is over R.k�1/.n�k�1/ as expected.

Before illustrating the construction with examples it is important to mention that
a realization of the biadjoint amplitude m.k/n .I; I/ can also be obtained as the limit
when ˛0! 0 of a string-like integral [2]. This connection makes the evaluation of the
amplitude that of a volume of a region defined in terms of tropical inequalities. Our
formula, which integrates over tropicalized functions (8.2), seems compatible with the
formulation in [2] which computes the volume of a region defined by tropical inequal-
ities (see [2, Claim 3]). Also, generalized biadjoint amplitudes have been evaluated
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using cluster algebra techniques [16–18, 31] in which the notion of a volume can be
assigned to each cluster, which either coincides with a GFD or provides a refinement
of one.

Now, we can proceed to the two main examples where we have done explicit
computations.

8.1. Case I: k D 2

A matrix representative of a (generic) point in G.2; n/ can be parametrized as

C D 
t1 0 t3 t4.1Cx1/ t5.1Cx1Cx2/ � � � tn.1Cx1Cx2 C � � � C xn�3/
0 t2 t3 t4 t5 � � � tn

!
:

This parametrization differs slightly from that used by Speyer and Williams, but the
results are the same.

Let us introduce the notation for the tropicalization of a Plucker coordinate

pa;b WD det.Ca; Cb/! ka; bk:

Let us present some examples by computing the minors that enter when we specialize
to planar kinematics. The first set is given by pa;aC1 minors

p1;2 D t1t2 ! k1; 2k D Qt1 C Qt2;
p2;3 D �t2t3 ! k2; 3k D Qt2 C Qt3;
p3;4 D �t3t4x1 ! k3; 4k D Qt3 C Qt4 C Qx1;
p4;5 D �t4t5x2 ! k4; 5k D Qt4 C Qt5 C Qx2;

:::

pn�1;n D �tn�1tnxn�3 ! kn � 1; nk D Qtn�1 C Qtn C Qxn�3;
pn;1 D �tnt1 ! kn; 1k D Qtn C Qt1:

The second set is pa;aC2 minors

p1;3 D t1t3 ! k1; 3k D Qt1 C Qt3;
p2;4 D �t2t4.1C x1/ ! k2; 4k D Qt2 C Qt4 Cmin.0; Qx1/;
p3;5 D �t3t5.x1 C x2/ ! k3; 5k D Qt3 C Qt5 Cmin. Qx1; Qx2/;
p4;6 D �t4t6.x2 C x3/ ! k4; 6k D Qt4 C Qt6 Cmin. Qx2; Qx3/;

:::

pn�1;1 D �tn�1t1 ! kn � 1; 1k D Qtn�1 C Qt1;
pn;2 D tnt2.1C x1 C x2 C � � � C xn�3/ ! kn; 2k D Qtn C Qt2

Cmin.0; Qx1; : : : ; Qxn�3/:
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The last ingredient is to write

F D �
X
a<b

sabdab D
X
a<b

sabka; bk: (8.3)

The minus sign on the RHS is needed to match the definition of dab as a metric on
trees.

Note that F is independent of all Qt ’s. In fact, the Qt ’s could be identified with the
lengths of the leaves once the integral is separated into individual trees. In order to
see the independence note that every tropical minor in (8.3) has the form

ka; bk D Qta C Qtb C � � � ;

where we have exhibited all Qt dependence. Using that the kinematic invariants satisfy

saa D 0 and
nX
bD1

sab D 0 8 a;

it is simple to see that all Qt ’s drop out of F . This means that the integrals over Qt ’s
factor out and cancel with the volume factors in (8.2).

Now, we are ready to write down the Laplace transform over the entire TropC

G.2; n/ as a single integral,

m.2/n .I; I/ D
n�3Y
aD1

Z 1
�1

d Qxa exp .�F /: (8.4)

Here, we have dropped Qt terms in F .
The combinatorial geometric interpretation which underlies the evaluation ofm.2/5

is depicted in Figure 1.
Specializing to planar kinematics gives rise to

FPK D
n�3X
aD1

Qxa �min.0; Qx1/ �
n�4X
aD1

min. Qxa; QxaC1/ �min.0; Qx1; Qx2; : : : ; Qxn�3/:
(8.5)

Already the k D 2 case is interesting because writing the amplitude on planar kine-
matics using (8.5) requires a decomposition of the integration domain in (8.4) into
regions, where FPK becomes linear. The number of regions is much smaller than the
number of standard Feynman diagrams. In fact, it coincides with the number of linear
trees4 (see [37, OEIS entry A045623]) as we prove below.

4Or equivalently, triangulations of a regular .nC 3/-gon in which every triangle shares at
least one side with the polygon itself.



Planar kinematics: Cyclic fixed points and mirror superpotential 235

S12

1

S123

S12 S123

S34 S234

S234

S23

S23

S34

1

1

1

1

Figure 1. The global Schwinger parametrization, viewed as a projection of the positive tropical
Grassmannian TropCG.2;5/; this is a projection of the root polytope. Integrating the piecewise-
linear function F5, each of the five sectors contributes a single Feynman diagram. Rays are
duality with planar kinematic invariants si;:::;j .

Proposition 8.1. The number of regions needed to expand the piecewise function,
Fn;PK defined in (8.5) is equal to the number of linear trees with n leaves, i.e.,

Nn; linear trees D n 2n�5:

Proof. In order to prove the proposition and also to more easily evaluate the integral
it is convenient to use

exp.min.a1; a2; : : : ; am// D min.exp.a1/; exp.a2/; : : : ; exp.am//;

which follows from the fact that the exponential is a monotonically increasing func-
tion, in order rewrite the integral (8.5). Using a change of variables ya D exp. Qxa/ one
finds

m.2/n .I; I/ D
n�3Y
aD1

Z 1
0

dya

y2a
min.1; y1/

n�4Y
aD1

min.ya; yaC1/min.1; y1; y2; : : : ; yn�3/:

(8.6)
Consider the first n � 3 factors in the integrand and note that each one proves a

choice between two options. For example, min.1; y1/ gives either 1 < y1 or 1 > y1.
Therefore, there are 2n�3 possibilities. Let y0 WD 1. For any given one of the 2n�3



F. Cachazo and N. Early 236

1 20 1 20 1 20 1 20

y0 H1

y0 H1

y0 H1

y2

y0 H1

y1

y2

y2

y2

y1

y1

y1

Figure 2. Counting argument used in the proof of Proposition 8.1.

possibilities one can draw a mountain range picture by plotting the values of the set
¹y0; y1; y2; : : : ; yn�3º in that order (see Figure 2). Having constructed a mountain
range it is easy to find out the number of options provided by the last factor in the
integrand (8.6). The function min.1; y1; y2; : : : ; yn�3/ can only pick values from the
valleys in the mountain range. Therefore, the number of regions is given by

Nn D
2n�3X
iD1

V.Ri /;

where V.Ri / is the number of valleys in the mountain range Ri .
Now, let us find a recursion relations for Nn. Separate the ranges according to

whether the first interval is up (y0 < y1) or down (y0 > y1). More explicitly,

Nn D
2n�4X
iD1

V.Ri;D1/C
2n�4X
iD1

V.Ri;U1/;

where Ri;U1 (Ri;U1) are mountain ranges, where the first interval is up U1 (or down
D1).

Clearly, if we go down then the remaining n � 4 steps have the same number
of valleys as they would if y0 was removed. This means that the sum over them
contributes Nn�1 to Nn. More explicitly,

Nn D Nn�1 C
2n�4X
iD1

V.Ri;U1/:

Next, we separate the ranges Ri;U1 according to whether the second step is up or
down. If the second step is down then one gets the contributions from Nn�2 plus one
additional choice from the valley at y0 for each of the graphs, i.e., a total of 2n�5.
This gives

Nn D Nn�1 C .Nn�2 C 2n�5/C
2n�5X
iD1

V.Ri;U1;U2/:
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Recursing the argument leads to

Nn D Nn�1 C
n�2X
iD3

.Ni C 2i�3/C 1 with N3 D 1:

Simplifying the recursion gives

Nn D 2Nn�1 C 2n�5 with N3 D 1; N4 D 5:

In this new form it is easy to the see that the solution agrees with the number of linear
trees

Nn D Nn; linear trees D n 2n�5

as expected.
The first example in which there are trees that are not linear is nD 6. In fact, there

are exactly 2 non-linear (snowflake) trees and 12 linear ones. Computing the integral
(8.6), i.e.,

m
.2/
6 .I; I/

D
Z 1
0

dy1

y21

Z 1
0

dy2

y22

Z 1
0

dy3

y23
min.1; y1/min.y1; y2/min.y2; y3/min.1; y1; y2; y3/

is a simple exercise once the integrand is separated into the 12 regions, with 10 regions
evaluating to 1 and two regions evaluating to 2. Adding up gives

m
.2/
6 .I; I/ D 10 � 1C 2 � 2 D 14

as expected.

8.2. Case II: k D 3

Having seen that the Qt scale factors drop from all computations, it is convenient to set
them to one, i.e., Qta D 1, from the start and use a matrix representative of a point in
G.3; n/ of the form

C D

0B@1 0 0 1 1C.1Cy1/x1 1C.1Cy1/x1C.1Cy1Cy2/x2 � � �
0 1 0 1 1C x1 1C x1 C x2 � � �
0 0 1 1 1 1 � � �

1CA
Once again, this parametrization slightly differs from that used in [41], but the

results are the same5.

5Note that in the parameterization of the nonnegative Grassmannian the entries in the sec-
ond row of the matrix would usually come with minus signs; but for our purposes, this is not
necessary and we omit them.
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Let us present the minors that appear in F when evaluated on planar kinematics
and their tropicalization. Once again, the first set is given by pa;aC1;aC2,

p1;2;3 D 1 ! k1; 2; 3k D 0;
p2;3;4 D 1 ! k2; 3; 4k D 0;
p3;4;5 D �x1y1 ! k3; 4; 5k D Qx1 C Qy1;
p4;5;6 D �x1x2y2 ! k4; 5; 6k D Qx1 C Qx2 C Qy2;

:::

pn�2;n�1;n D �xn�5xn�4yn�4 ! kn � 2; n � 1; nk D Qxn�5 C Qxn�4 C Qyn�4;
pn�1;n;1 D �xn�4 ! kn � 1; n; 1k D Qxn�4;
pn;1;2 D 1 ! kn; 1; 2k D 0:

The second set is given by minors of the form pa;aC1;aC3,

p1;2;4D1 ! 0;

p2;3;5D1C x1 C x1y1 ! min.0; Qx1; Qx1 C Qy1/;
p3;4;6D�.x1y1 C x2y1 C x2y2/ ! min. Qx1 C Qy1; Qx2 C Qy1; Qx2 C Qy2/;
p4;5;7D�x1.x2y2Cx3y2Cx3y3/ ! Qx1Cmin. Qx2C Qy2; Qx3C Qy2; Qx3C Qy3/;

:::

pn�2;n�1;1Dyn�3�1.1Cx1C� � �Cxn�3�1/ ! Qyn�k�1Cmin.0; Qx1; : : : ; Qxn�3�1/;
pn�1;n;2Dyn�3�1.1Cx1C� � �Cxn�3�1/ ! Qyn�k�1Cmin.0; Qx1; : : : ; Qxn�3�1/;
pn;1;3D�.1C y1 C � � � C yn�3�1/ ! min.0; Qy1; : : : ; Qyn�3�1/:

See also equation (8.7) for the general formula for the minors in the web parameteri-
zation.

8.2.1. Examples. Let us provide some examples to show how specializing to planar
kinematics before integrating over TropCG.3;n/ gives rise to a different splitting into
objects, each of which giving an integer contribution.

The simplest case is k D 3 and n D 6. In order to simplify the notation we use
¹xa; yaº instead of ¹ Qxa; Qyaº for the integration variables.

The integral to be performed isZ
R2
d2x

Z
R2
d2y exp.�x1 � x2 � y1 � y2 CG.x1; x2; y1; y2//;

with G a piecewise linear function

G.x1; x2; y1; y2/ WD min.0; x1; x1 C y1/Cmin.0; y1; y2/

Cmin.x1 C y1; x2 C y1; x2 C y2/Cmin.0; x1; x2/:

Here, we have used that

min.x2; x2 C y1; x2 C y2/ D x2 Cmin.0; y1; y2/:
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In the examples which follow, note that, as expected, the numbers of linear domains
(regions) coincide with the numbers of facets in the respective root polytopes Rk;n,
as provided in the f -vectors listed in Example 10.20.

We separate the integration region into 27 parts, on which G is a linear func-
tion. Note that if we had used generic kinematics, the corresponding piece-wise linear
function would have required 48 regions, i.e., the number of generalized Feynman
diagrams. Evaluating the integral over the 27 regions reveals three kinds of contribu-
tions. There are 16 which contribute 1, 10 which contribute 2 and a single one which
contributes 6 to the total integral. Combining the contributions gives rise to the value
of the amplitude on planar kinematics

m
.3/
6 .I; I/ D 16 � 1C 10 � 2C 1 � 6 D 42:

In order to express our results for n D 7 and n D 8, it is convenient to introduce a
vector of values v D .1; 2; 6/ and one of the frequencies in which they appear, i.e.,
f D .16; 10; 1/ so that f � v D 42.

For k D 3 and n D 7, we find 128 regions and 10 different values. The explicit
results are

v D .1; 2; 3; 4; 5; 6; 8; 11; 12; 25/; f D .21; 38; 32; 8; 14; 2; 6; 3; 2; 2/:

In this case f � v D 462 as expected.
We have also carried out the n D 8 computation. There are 557 regions and 36

distinct values. The explicit results are

v D .1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 14; 15; 16; 17; 18; 20; 21; 24; 25; 26; 28;
30; 32; 33; 40; 42; 49; 54; 57; 75; 77; 93; 98; 169/;

f D .23; 42; 46; 57; 64; 47; 26; 18; 52; 26; 11; 20; 18; 6; 8; 10; 8; 10; 10; 4; 10; 6;
2; 7; 2; 2; 4; 2; 4; 2; 2; 2; 2; 1; 2; 1/:

Once again, this leads to the expected result f � v D 6 006.
These decompositions of the integrals over TropCG.3; n/ also provide a decom-

position of the three-dimensional Catalan numbers. We leave the interpretation of this
construction of C .3/n�3 for future work.

Let us finally record the general formula for the integrand. Define

Pi .x/ D
n�kX
jD1

xi;j ;

Qj .x/ D x1;jx2;j � � � xk�1;j C x1;jx2;j � � � xk�2;jxk�1;jC1
Cx1;jx2;j � � � xk�3;jxk�2;jC1xk�1;jC1C� � �Cx1;jC1x2;jC1 � � � xk�1;jC1:

(8.7)
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Claim 8.2. In the web parameterization, for the planar kinematics potential function,
we have

�
.PK/
k;n
D log

�Qk�1
iD1 Pi .x/

Qn�k�1
jD1 Qj .x/Q

.i;j / xi;j

�
; (8.8)

where in the denominator .i; j / ranges over the set

.i; j / 2 ¹1; : : : ; k � 1º � ¹1; 2; : : : ; n � kº:

We have checked this formula explicitly for nontrivial values of .k; n/, including
.k; n/ 2 ¹.5; 19/; .6; 18/º.

Now, setting all xi;1 D 1 for all i D 1; : : : ; k � 1 and then tropicalizing, we obtain
the integrand of equation (8.2) specialized to planar kinematics.

9. Planar scattering equation in terms of cross-ratios and an involution

In this section, we derive a projectively invariant expression for the k D 3 and k D 4
scattering equations in terms of cross-ratios which makes manifest the flip symmetry.
Flip symmetry in the kinematic space arises by the involution j 7! nC 1 � j , while
the analogous action on the space of solutions of the PK scattering equations is by
complex conjugation.

By following the method used in the derivation in [12, Section 5], it is not difficult
to show that the planar kinematics scattering equations for k D 3 have the projectively
invariant form

p1;2;3 p2;4;5 p3;4;6

p1;2;4 p2;3;4 p3;5;6
D 1;

p2;3;4 p3;5;6 p4;5;6 p4;5;7

p2;4;5 p3;4;5 p3;4;6 p5;6;7
D 1;

and the cyclic index permutations under the transformation j 7! j C 1 modulo n, or
equivalently that is

p1;2;3 p2;4;5 p3;4;6

p1;2;4 p2;3;4 p3;5;6
D 1;

p1;2;4 p3;4;5 p3;5;6

p1;3;4 p2;3;5 p4;5;6
D 1; (9.1)

together with all of the equations obtained under cyclic index permutation. This form
of the equations has the advantage that it makes manifest the fact that on PK the
equations have a symmetry not shared by the definition of the kinematics.
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We define an involution on the kinematic space K.k; n/ by eJ 7! eJ
0

, where®
eJ W J 2 �Œn�

k

�¯
is the standard basis for R.

n
k/, and where J 0 is the flip of J

¹j1; : : : ; jkº 7! ¹nC 1 � j1; : : : ; nC 1 � jkº:
It follows that the new, flipped planar kinematics is now characterized by the equation²

�J D 1 W J 2
�
Œn�

k

�nf ³
7!
²
�J D ` � 1 W J 2

�
Œn�

k

�nf ³
;

where ` is the number of cyclic intervals in J , and�
Œn�

k

�nf
D
�
Œn�

k

��
¹j; j C 1; : : : ; j C k � 1º

is the set of k-element subsets which are not cyclic intervals. Here, the planar basis
elements �J are certain linear functions on the kinematic space, given explicitly in
equation (10.1). It is a nontrivial fact that they are linearly independent. Since there
are

�
n
k

� � n of them, they provide a basis of linear functions on the kinematic space.
The effect for the coordinate functions sJ ’s is to replace the conditions®

si;iC1;:::;iCk�1;iCkC1 D �1 W i D 1; : : : ; n
¯

by ®
si;iC2;:::;iCk;iCkC1 D �1 W i D �1; : : : ; n

¯
:

In other words, the invariants with a gap on the right are replaced by those with a
gap on the left. Note that for k D 2 there is no distinction between left and right, and
therefore, the kinematics is invariant.

Having defined the involution on the kinematic space, one can compute the new
scattering equations associated to it. In the cross ratio form it is clear that the equations
are invariant under the transformation.

Therefore, all solutions to the PK scattering equations are also solutions to the
transformed version. This raises the question of whether there is an avatar of the
involutive transformation on the solutions which maps them among themselves.

The way to find this out is the following. For any solution to the PK scattering
equations defined by®

!1 D qm1 ; !2 D qm2
¯

and q D exp.2�i=n/;

one has

pa;aC1;aC3 D det

0B@ 1 1 1

!a1 !aC11 !aC31

!a2 !aC12 !aC32

1CA
D .!1!2/a.1C !1 C !2/.!1 � 1/.!1 � !2/.!2 � 1/ (9.2)
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and

pa;aC2;aC3 D det

0B@ 1 1 1

!a1 !aC21 !aC31

!a2 !aC22 !aC32

1CA
D .!1!2/a.!1 C !2 C !1!2/.!1 � 1/.!1 � !2/.!2 � 1/:

Applying complex conjugation to !1; !2 one obtains another solution to the PK
scattering equations with ¹ Q!1; Q!2º D ¹1=!1; 1=!2º. Conjugating (9.2) gives then

p�a;aC1;aC3 D .!1!2/.�2a�3/pa;aC2;aC3:

This means that one can define the action of the involution as conjugation, one can
check that the set of all solutions remains invariant.

In order to generalize the cross ratio form of the scattering equations to k D 4 and
beyond it is convenient to rewrite (9.1) in yet another form. To this end, let us define
a family of projective invariants, as follows6. Denote

w
.L/
i;j D

pL;i;j 0pL;i 0;j

pL;i;jpL;i 0;j 0
;

where the setL[ ¹i; i 0; j; j 0º, withL 2 � Œn�
k�2

�
, has kC 2 distinct elements, and where

i 0 and j 0 are the immediate successors of, respectively, i and j in the standard cyclic
order on ¹1; : : : ; nº n L.

Working backward we find that the k D 3 planar basis kinematics scattering equa-
tions have the following expression in terms of cross-ratios:

w
.2/
14 D w.3/25 ; w

.3/
14 D w.4/25 ; (9.3)

together with the set of cyclic shifts by j 7! j C 1mod.n/. This gives a (redundant)
system of 2n equations. Here, for instance,

w
.2/
14 D

p125p234

p124p235
; w

.3/
14 D

p135p234

p134p325
:

For an expression in terms of only minors made from one or two cyclic intervals,
substituting w.1/14 7! 1 � w.a/14 in equation (9.1) gives the following set of equations:

p123p245

p124p235
D p234p356

p235p346
;

p124p345

p134p245
D p235p456

p245p356
:

6See [22, Section 4.2]. One can show that w.L/
i;j

is a monomial in the multisplit cross ratios

wJ for J 2 �Œn�
k

�nf
.
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Similarly, for k D 4, we find

p1234p2356p3457

p1235p2345p3467
D 1; p1235p2456p3467

p1245p2346p3567
D 1; p1245p3456p3567

p1345p2356p4567
D 1;

together with their cyclic shifts modulo n.
These can be straightforwardly reorganized in terms of cross ratios, as follows:

w
.23/
15 D w.34/26 ; w

.24/
15 D w.35/26 ; w

.34/
15 D w.45/26 ; (9.4)

again together with the set of cyclic shifts by j 7! j C 1 mod .n/. Here, for instance,

w
.23/
15 D

p1236p2345

p1235p2346
; w

.24/
15 D

p1246p2345

p1245p2346
; w

.34/
15 D

p1346p2345

p1345p2346
;

which could be rewritten in terms of minors with two cyclic intervals by replacing
w
.ab/
15 with 1 � w.ab/15 .

Unfortunately, we could not achieve a systematic derivation starting from the scat-
tering equations which would lead to a proof of a general cross-ratio formula for all k,
but based on equations (9.3) and (9.4) it is natural to infer the following cross-ratio for-
mulation of the PK scattering equations for any k and n (of course with 2� k � n� 2)
as follows:²

w
.2;3;:::;bj ;:::;k/
1;kC1

D w.3;4;:::;bjC1;:::;kC1/
2;kC2

W j D 2; : : : ; k
³

²
w
.3;4;:::;bjC1;:::;kC1/
2;kC2

D w.4;5;:::;bjC2;:::;kC2/
3;kC3

W j D 3; : : : ; k C 1
³

:::

for a total of .k � 1/n (dependent) equations.

10. Polytopes: roots and deformations of the PK point

In the rest of the paper, our efforts are directed towards answering the natural question:
are there good deformations of the PK point? Usually, m.k/.In; In/ is evaluated at
generic kinematic points; on the other hand, the PK point is extremely singular, with
only 2n non-vanishing coordinates

si;iC1;:::;iCk�2;iCk D �1 and si;iC1;:::;iCk�2;iCk�1 D 1

with all others equal to zero.
We summarize partial results towards answering this question. Using the planar

basis of functions on K.k; n/, we embed a dimension .k � 1/.n � k � 1/ lattice
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polytope
Q
k;n in the kinematic space which has the following key property: it has the

PK point as its unique interior lattice point. Then, we introduce the rank-graded root
polytopes Rk;n, which are related to

Q
k;n by duality, and we present evidence for our

conjecture that the volume of Rk;n is the Catalan number modulo a factor intrinsic to
the lattice,

Vol.Rk;n/ D
C
.k/

n�k

..k � 1/.n � k � 1//Š :

10.1. Planar bases and polymatroidal blade arrangements

In this section, we review some key results from earlier work [22, 23] that provide
needed background for the linear independence property of the planar basis in Propo-
sition 10.6 and define the planar kinematics (PK) polytope

Q
k;n in Definition 10.10.

We also define the embedding ‰ W R.nk/ ,! K.k; n/ in Remark 10.14, of
Q
k;n into

the kinematic space.
Fix integers .k; n/ such that 1 � k � n � 1.
Let us adopt the notation

�
Œn�
k

�
for the set of k-element subsets of the set Œn� D

¹1; : : : ; nº, and denote by�
Œn�

k

�nf
D
�
Œn�

k

��®¹j; j C 1; : : : ; j C k � 1º W j D 1; : : : ; n¯
the nonfrozen k-element subsets. Let

®
eJ W J 2 �Œn�

k

�¯
be the standard basis for R.

n
k/.

The kth hypersimplex in n variables is the kth integer cross-section of the unit
cube Œ0; 1�n,

�k;n D
²
x 2 Œ0; 1�n W

X
xj D k

³
:

Henceforth, we will assume that 2 � k � n � 2.
Recall that the lineality space is the n-dimensional subspace²X

J

xJ e
J W x 2 Rn

³
of R.

n
k/, where we use the notation xJ D

P
j2J xj .

Then, the kinematic space is the dimension
�
n
k

� � n subspace of R.
n
k/,

K.k; n/ D
²
.s/ 2 R.

n
k/ W

X
J W J3j

sJ D 0; j D 1; : : : ; n
³
:

The original definition of blades is due to A. Ocneanu; blades were first studied
in [21].
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Definition 10.1 ([36]). A decorated ordered set partition ..S1/s1 ; : : : ; .S`/s`/ of the
pair .¹1; : : : ; nº; k/ is an ordered set partition .S1; : : : ; S`/ of ¹1; : : : ; nº together with
an ordered list of integers .s1; : : : ; s`/ with

P`
jD1 sj D k. It is said to be of type �k;n

if we have additionally 1 � sj � jSj j � 1 for each j D 1; : : : ; `. In this case, we write
..S1/s1 ; : : : ; .S`/s`/ 2 OSP.�k;n/, and we denote by Œ.S1/s1 ; : : : ; .S`/s` � the convex
polyhedral cone in the affine hyperplane in Rn, where x1 C � � � C xn D k, that is cut
out by the facet inequalities

xS1 � s1;
xS1[S2 � s1 C s2;

:::

xS1[���[S`�1 � s1 C � � � C s`�1:

These cones were called plates by Ocneanu. Finally, the blade ...S1/s1 ; : : : ; .S`/s`//
is the union of the codimension one faces of the complete simplicial fan formed by
the ` cyclic block rotations of Œ.S1/s1 ; : : : ; .S`/s` �, that is,

...S1/s1 ; : : : ; .S`/s`// D
[̀
jD1

@
�
Œ.Sj /sj ; .SjC1/sjC1 ; : : : ; .Sj�1/sj�1 �

�
:

We emphasize that in this paper we consider only translations of the single non-
degenerate blade with labeled by the cyclic order .1; 2; : : : ; n/, usually denoted by
ˇ WD ..1; 2; : : : ; n//. however, in [19] it was shown that by translating ˇ to a vertex eJ
of a hypersimplex �k;n, then that translated blade ˇJ has the same intersection with
the hypersimplex as the blade ...S1/s1 ; : : : ; .S`/s`//. In this case, the pairs .Sj ; sj /
are uniquely determined and satisfy the condition from Definition 10.1, that is,

1 � sj � jSj j � 1;

or in short ..S1/s1 ; : : : ; .S`/s`/ 2 OSP.�k;n/. Additionally, we have that each

Sj D ¹a; aC 1; : : : ; bº

is cyclically contiguous. We refer the reader to [19] for a detailed explanation of the
construction of the decorated ordered set partition.

For example, see Figure 3 for two arrangements of the blade ..1; 2; 3; 4// on the
vertices of an octahedron, and Figure 4 for arrangements of ..1; 2; 3// on the vertices
of a hexagon.

The number of blocks ` is equal to the number of cyclic intervals in the set J and
the contents of the blocks are determined by the set J together with the cyclic order.
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1 4gf ;

1 3gf ;

1 2gf ;

2 3gf ;
2 4gf ;

3 4gf ;

1 4gf ;

1 3gf ;

1 2gf ;

2 3gf ;

2 4gf ;

3 4gf ;

Figure 3. The two blades arranged on the vertices of an octahedron. Left: ˇe13 . Right: ˇe24 . For
clarity, only portions of the blade are shown. In physics, these induce the s and t channels via
the planar basis of linear functionals on the kinematic space. Left: �13 D s23. Right: �24 D s12.
For general .k; n/ see [19, 22, 23].

In particular, the number of blocks is equal to the number of maximal cells in the
subdivision induced by the blade.

It was further shown in [19] that ...S1/s1 ; : : : ; .S`/s`// induces a certain multi
split positroidal subdivision, where the vertices of the maximal cells become bases of
Schubert matroids, or nested matroids.

Remark 10.2. The blade ..˛1; : : : ; ˛n// is essentially a tropical hyperplane, but
with one key difference: its rays are parallel to the cyclic system of roots e˛1 �
e˛2 ; : : : ; e˛n � e˛1 ; this in fact has the nontrivial consequence that blades are tightly
connected to the theory of matroids.

Superimposing multiple translated copies of the same blade ..1; 2; : : : ; n// on the
vertices of a hypersimplex �k;n results in a particularly “well-behaved” subdivision
when the vertices satisfy a condition on their pairwise relative displacements. In [19],
a combinatorial criterion called weak separation, for k-element subsets of ¹1; : : : ; nº,
was shown to provide the compatibility criterion for an arrangement of blades on
the vertices of �k;n to induce a subdivision of it such that every maximal cell is a
matroid (in particular, positroid) polytope. It is natural to ask what happens when the
hypersimplex is replaced with more general classes of generalized permutohedra (or,
polymatroids). We return to this question at the end of the section.

Let us now recall from [22] the construction of the planar basis: this is a set of�
n
k

� � n linear functions, denoted by �J , on K.k; n/ which are used to construct
generalized Feynman diagrams in the sense of [5, 9, 22].
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We first introduce n linear functionals

Lj .x/ D xjC1 C 2xjC2 C � � � C .n � 1/xj�1;

on Rn, where the indices are cyclic modulo n. For any lattice point v 2 Rn, define a
piecewise-linear function

�v.x/ D �1
n

min¹L1.x � v/; : : : ; Ln.x � v/º:

We warn the reader that our convention differs from [23] in that now the factor � 1
n

is incorporated into �v . We remark that unless otherwise stated we will assume that v
has integer coordinates so that v 2 Zn.

Here, the graph of �v is piecewise linear, with n linear domains and with maxi-
mum height zero at v. Denote by ˇv the locus, where the graph of �v has a discontin-
uous derivative. See Figures 3 and 4. Here, ˇv is an example of a blade; the term was
introduced by A. Ocneanu. See [19] for details.

The set of functions �u for u in some hyperplane ¹x 2 Zn WPn
jD1 xj D 0º satisfy

relations which generalize the positive tropical Plucker relations from the hypersim-
plex to the ambient integer lattice.

Indeed, a slight extension of proposition7 of [23, Proposition 3.8] leads to Propo-
sition 10.3.

Proposition 10.3. Let r 2 Z be an integer. Then, for any v 2 ®x 2 Zn WPn
jD1 xj D

r � 2¯ and x 2 ®x 2 Zn WPn
jD1 xj D r

¯
, we have

�vCeac .x/C �vCebd .x/ D min
®
�vCeab .x/C �vCecd .x/; �vCead .x/C �vCebc .x/

¯
for any cyclic order a < b < c < d .

Sketch of Proof. For the proof, the key insight is that around each integer lattice point,
the hypersimplices �1;n;�2;n; : : : ;�n�1;n meet, each with a multiplicity

�
n
k

�
. There-

fore, the proof reduces to the geometric one given in [23], for any chosen appropriated
translated hypersimplex�2;n; : : : ;�n�2;n. For an analytic derivation, which we omit,
one would show that

�.�vCeac .x/C �vCebd .x//C .�vCeab .x/C �vCecd .x//

and
�.�vCeac .x/C �vCebd .x//C .�vCead .x/C �vCebc .x//

7In the modification, we simply enlarge the vertex set of beyond that of �k;n, to other
vertex sets an integer lattice of the form ¹x 2 Zn WPn

JD1 xj D rº for a given integer r .
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have disjoint support on the given lattice x 2 ¹x 2 Zn WPn
jD1 xj D rº, finding that

when one of the two equations is nonzero at some ev for a lattice point v, then the
coefficient isC1.

For the present purposes, we will specialize the discussion to vertices v D eJ 2
�k;n. For each k-element subset J � ¹1; : : : ; nº, define a piecewise linear surface
over the hypersimplex, the graph of the function �J W �k;n ! R, by

�J .x/ D �1
n

min
®
L1.x � eJ /; : : : ; Ln.x � eJ /

¯
:

We localize the function �J still further to the vertices of a lattice polytope; for
example, to the vertex set of �k;n. We obtain an element of R.

n
k/ with rational coeffi-

cients.
Define

hJ D
X

I2.Œn�k /

�J .eI /e
I D �1

n

X
I2.Œn�k /

min
®
L1.eI � eJ /; : : : ; Ln.eI � eJ /

¯
eI ;

where ¹eI W I 2 �Œn�
k

�º is the standard basis for R.
n
k/.

Example 10.4. Let us now give the explicit calculation of the identity of Proposi-
tion 10.3; of course, the basic example is the octahedron �2;4 itself. The six height
functions are (represented as points in R.

4
2/) as follows:

h13 D 1

4
.e12 C 3e14 C 3e23 C 2e24 C e34/;

h24 D 1

4
.3e12 C 2e13 C e14 C e23 C 3e34/;

h12 D 1

4
.3e13 C 2e14 C 2e23 C e24 C 4e34/;

h34 D 1

4
.4e12 C 3e13 C 2e14 C 2e23 C e24/;

h14 D 1

4
.2e12 C e13 C 4e23 C 3e24 C 2e34/;

h23 D 1

4
.2e12 C e13 C 4e14 C 3e24 C 2e34/:

Now, we find that

.h12 C h34/ � .h13 C h24/ D e13; .h14 C h23/ � .h13 C h24/ D e24:

Comparing respective coefficients we see that the height functions induced on the
vertices of�2;4 by the points e13 and e24 above now obviously have disjoint support;
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it follows that indeed,

�13.e
ij /C �24.eij / D min

®
�12.e

ij /C �34.eij /; �14.eij /C �23.eij /
¯

for each eij , where eij is a vertex of the octahedron �2;4.

Now, as shown in [23], by specializing �v to the vertex set ¹eJ W J 2
�
Œn�
k

�º of a
hypersimplex, we find that the vectors hJ 2

�
Œn�
k

�
satisfy the positive tropical Plucker

relations and thus define elements in the positive tropical Grassmannian TropCG.k;n/
in fact each hJ generates a ray in TropCG.k; n/, and as a height function it induces
the piecewise linear surface �J which projects down to the hypersimplex to induce a
positroidal multisplit, such that �J is linear over each maximal cell.

Consequently, we obtain a family of piecewise-linear functions, translated to the
integer lattice points in an affine hyperplane of the form

Pn
jD1 xj D r 2 Z in Rn,

which can be localized to the integer lattice points in any generalized permutohe-
dron; one particularly interesting case is when the facet hyperplanes are of the formPb
jDa xj D ca;b for any cyclic interval a; aC 1; : : : ; b, where ca;b is an integer.

Let us recall the first basis result from [23].

Proposition 10.5 ([23]). The set of height functions hJ is a basis for R.
n
k/.

Denote by “ � ” the standard Euclidean dot product on R.
n
k/.

Now, for any J 2 �Œn�
k

�nf
, define a linear functional on the kinematic space, or in

more physical terminology, a planar kinematic invariant, �J WK.k; n/! R, by

�J .s/ WD hJ � .s/ D �1
n

X
I2.Œn�k /

min¹L1.eI � eJ /; : : : ; Ln.eI � eJ /ºsI : (10.1)

Usually, instead of �J .s/, we write just �J with the understanding that �J is to be
evaluated on points in K.k; n/.

Then, we have the property that if J D ¹i; i C 1; : : : ; i C k � 1º is frozen, then
since the graph of �J W �k;n ! R does not bend over the interior of �k;n, it follows
that �J is identically zero on K.k; n/. See [23] for details.

A further computation proves linear independence for the set of �J , where J is
nonfrozen, and we obtain Proposition 10.6. This will be the key to defining the map
‰ in equation (10.2).

Proposition 10.6 ([23]). The set of linear functionals²
�J WK.k; n/! R W J 2

�
Œn�

k

�nf ³
is a basis of the space of the dual kinematic space .K.k; n//� that is to say, it is a
basis of the space of linear functionals on K.k; n/.
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Figure 4. Two polymatroidal blade arrangements on a hexagon (the convex hull of the 6 roots
ei � ej for i 6D j D 1; : : : ; 4).

For the conclusion of this section, we initiate the study of polymatroidal blade
arrangements; these generalize the construction of matroidal blade arrangements by
Early [19].

Note that in Definition 10.7 we are including unbounded generalized permutohe-
dra as maximal cells.

Definition 10.7. Fix an integer r 2 Z. Given lattice points v1; : : : ; vM in an affine
hyperplane, where

Pn
jD1 xj D r 2 Z, call the arrangement of blades ¹ˇv1 ; : : : ; ˇvM º

polymatroidal if every maximal cell in the superposition of the blades is a generalized
permutohedron.

Clearly, matroidal blade arrangements, where each vj is a vertex of a hypersim-
plex, provide a special case of this construction.

Remark 10.8. The maximal cells of a polymatroidal blade arrangement are general-
ized permutohedra8 whose facets are in hyperplanes of the form xa C xaC1 C � � � C
xb D ra;b .

Figure 4 contains two blade arrangements. On the left, starting from the (light
green) top right vertex and walking counter clockwise, we have the arrangement

ˇ.1;�1;0/; ˇ.0;1;�1/; ˇ.1;�1;0/;

and on the right, starting from the top left (red) vertex and walking counter clockwise,
we have

ˇ.1;0;�1/; ˇ.�1;1;0/; ˇ.0;�1;1/:

8It is immediate that the bounded maximal cells occurring in a polymatroidal blade arrange-
ment are polypositroids, as introduced very recently in [34].
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Note that here the subscripts .a; b; c/ are coordinates of points in the hyperplane

x1 C x2 C x3 D 0:

Example 10.9. Figure 4 gives two polymatroidal blade arrangements on the vertices
of a two-dimensional generalized permutohedron. Clearly, all of the maximal cells
(some of which are unbounded) are generalized permutohedra.

10.2. Polytopal neighborhood of the planar kinematics point

Denote by ¹˛i;j W .i; j / 2 Œ1; k � 1� � Œ1; n � k�º the coordinates on R.k�1/�.n�k/.
Let .xi;j /Œ1;k�1��Œ1;n�k� be auxiliary variables (appearing in the so-called web

parameterization of the nonnegative Grassmannian). Define a codimension k � 1 sub-
space Hk;n of R.k�1/�.n�k/,

Hk;n D
²
.˛ij / 2 R.k�1/�.n�k/ W

n�kX
jD1

˛i;j D 0 for each i D 1; : : : ; k � 1
³
:

Define

˛i;Œa;b� D
bX

jDa

˛i;j :

If a > b, then put ˛i;Œa;b� D 0. More generally, put

˛I;J D
X

.i;j /2I�J

˛i;j

for subsets I � ¹1; : : : ; k � 1º and J � ¹1; : : : ; k � nº.
Denote


J D
k�1X
iD1

˛i;Œji ;jiC1�i�1�:

Definition 10.10 contains the main construction of this section, of the lattice polytopal
deformation of the PK point.

Definition 10.10. Define a polyhedronY
k;n

� Hk;n

by Y
k;n

D
²
.˛ij / 2 Hk;n W 
J C 1 � 0; J 2

�
Œn�

k

�nf ³
;

where J D ¹j1; : : : ; jkº runs over all non-frozen subsets of ¹1; : : : ; nº.
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Then, for instance, if J D ¹1; 4; 5º then, correspondingly, we have


145 C 1 D ˛1;1 C ˛1;2 C 1 � 0;
while if J D ¹1; 3; 6º, then


136 C 1 D ˛1;1 C ˛2;23 C 1 � 0:
Note that ˛i;j � �1 is included in the set of inequalities; it follows that

Q
k;n is a

bounded polyhedron with (at most)
�
n
k

� � n facets.

Proposition 10.11. For the polyhedron
Q
k;n, we have the following two properties:

(1)
Q
k;n has exactly

�
n
k

� � n facets,

(2)
Q
k;n has a unique interior lattice point p0, given by ˛i;j D 0 for all .i; j / 2

Œ1; k � 1� � Œ1; n � k�.
Proof. First, note that the point p0 with all coordinates ˛i;j D 0 for .i; j / 2 Œ1; k �
1� � Œ1; n � k� satisfies all

�
n
k

� � n inequalities, but it does not minimize any of them.
Consequently,

Q
k;n is nonempty and has the full-dimension .k � 1/.n � k/ � .k �

1/ D .k � 1/.n � k � 1/.
For (1), we have that the

�
n
k

� � n facet inequalities are of the form


J D
k�1X
iD1

˛i;Œji ;jiC1�i�1� � �1

for each nonfrozen subset J D ¹j1; : : : ; jkº, from which it is evident that they are
additively independent and consequently are minimized on distinct facets of

Q
k;n.

For (2), we finally claim that p0 is the only interior lattice point. Indeed, first note
that

Q
k;n lies inside the cube, where Œ�1; n � k � 1�.k�1/.n�k/ and satisfies

n�kX
jD1

˛i;j D 0

for each i D 1; : : : ; k � 1. In particular, it lives in a Cartesian product of k � 1 copies
of the .n � k/th dilate of a simplex of dimension n � k � 1, and each of these has
exactly one interior lattice point at the origin. Therefore, the interior lattice point ofQ
k;n projects uniquely onto the origin in each copy.

The result follows.

Example 10.12. The polyhedron
Q
3;6 is cut out by 14 facet inequalities in the codi-

mension two subspace H3;6 of R.2/�.3/ that is characterized by

˛1;123 D ˛1;1 C ˛1;2 C ˛1;3 D 0;
˛2;123 D ˛2;1 C ˛2;2 C ˛2;3 D 0:
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Now, ˛i;j � �1 accounts for 2 � 3 D 6 facets. The remaining 8 facets minimize the
following inequalities:

˛i;1 C ˛i;2 C 1 � 0;
˛i;2 C ˛i;3 C 1 � 0;
˛1;1 C ˛2;2 C 1 � 0;
˛2;2 C ˛2;3 C 1 � 0;

˛1;1 C ˛1;2 C ˛2;3 C 1 � 0;
˛1;1 C ˛2;2 C ˛2;3 C 1 � 0;

where in the first line i D 1; 2. Moreover,
Q
k;n has f -vector .1; 27; 60; 47; 14; 1/. It

is interesting to note that the f -vector is the reverse of the one in Example 10.20; we
expect that this will be true in general for the two families of polytopes.

Remark 10.13. Recall from Proposition 10.6 that the set of
�
n
k

�� n planar kinematic
invariants �J .s/ W K.k; n/ ! R is a basis for the space of linear functions on the
kinematic space; we will use this property in the following construction to give an
embedding of R.k�1/�.n�k/ into K.k; n/.

For each ˛ 2R.k�1/�.n�k/ we define a point in the kinematic space s.˛/2K.k;n/

by solving the system of equations²
�J .s/D

k�1X
iD1

˛i;Œji ;jiC1�i�1�C1; �i;iC1;:::;iCk�1.s/D0 W J 2
�
Œn�

k

�nf
; iD1; : : : ; n

³
for the coordinate functions sJ on K.k; n/.

This gives rise to an embedding ‰ W R.k�1/�.n�k/ ,!K.k; n/,

‰.˛/ D s.˛/; (10.2)

which restricts to an embedding of
Q
k;n into a .k � 1/.n � k � 1/-dimensional sub-

space of the kinematic space.
Now,

Q
k;n has an interesting compatibility with planar kinematics, as in Proposi-

tion 10.14.

Proposition 10.14. We have that

�J .‰.p0// D 1

whenever, J 2 �Œn�
k

�nf
and otherwise,

�J .‰.p0// D 0

when J is frozen that is, ‰.p0/ 2K.k; n/ is the planar kinematics point.
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In other words, the unique lattice point inside
Q
k;n is the planar kinematics point!

For instance, for the embedding
Q
3;6 ,!K.3; 6/, we have

�134 D ˛1;1 C 1; �245 D ˛1;2 C 1; �356 D ˛1;3 C 1;
�145 D ˛1;12 C 1; �256 D ˛1;23 C 1; �124 D ˛2;1 C 1;
�235 D ˛2;2 C 1; �346 D ˛2;3 C 1; �125 D ˛2;12 C 1;
�236 D ˛2;23 C 1; �135 D ˛1;1 C ˛2;2 C 1; �136 D ˛1;1 C ˛1;23 C 1;
�146 D ˛1;12 C ˛2;3 C 1; �246 D ˛1;2 C ˛2;3 C 1:

In particular, the center p0 D 0 2 Qk;n is pushed to the PK point, where �J D 1.
Further, comparing with Example 10.12, then the facet inequalities cutting out

Q
3;6

become the exactly the conditions for the planar invariants �J to be nonnegative.
We conclude this section with a proposal for the expression of

Q
k;n as a Newton

polytope.

Claim 10.15. For any 2� k� n� 2, then the polyhedron
Q
k;n is equal to the Newton

polytope of the Laurent polynomial appearing in equation (8.8)Qk�1
iD1 Pi .x/

Qn�k�1
jD1 Qj .x/Q

.i;j / xi;j
; (10.3)

where

Pi .x/ D
n�kX
jD1

xi;j ; (10.4)

Qj .x/ D x1;jx2;j � � � xk�1;j C x1;jx2;j � � � xk�2;jxk�1;jC1
C x1;jx2;j � � � xk�3;jxk�2;jC1xk�1;jC1C� � �Cx1;jC1x2;jC1 � � � xk�1;jC1:

(10.5)

In fact, note that directly from equation (10.5), by calculating total degrees of the vari-
ables xi;j , it follows that the Newton polytope for equation (10.3) is in the subspace
Hk;n and, in particular, it contains the origin in its interior.

We point out that one could give a facet inequality description of the Newton
polytope in equation (10.3) in terms of tropical inequalities as in [2, Claim 3], but this
is somewhat beyond the scope of the paper and is left for future work.

10.3. Rank-graded root polytopes and their volumes

In what follows, we initiate the study of a polytope which is in duality with
Q
k;n

modulo a change of coordinates. We first introduce a .k � 1/.n � k/-dimensional
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polytope yRk;n and its .k � 1/.n � k � 1/-dimensional projection Rk;n. Our primary
aim is to investigate the properties of the latter. By abuse of terminology, we may call
both yRk;n and its projection Rk;n root polytopes, but it will be clear from the context
which one we mean.

After providing computational evidence, at the end of the section we formulate
Conjecture 10.22, that the volume of Rk;n is

Vol.Rk;n/ D
C
.k/

n�k

..k � 1/.n � k � 1//Š :

On the other hand, a dimension k.n � k/ polytope analogous to Rk;n, called the
superpotential polytope �G , was studied in [39]. Rewriting the formula given in [39,
Proposition 16.8], the volume is

Vol.�G/ D
C
.k/

n�k

..k/.n � k//Š :

In Example 10.19, we check that R2;5 coincides with (a projection of) the so-
called root polytope of type A2. The identification clearly extends to any n.

In particular, yR2;n is the largest among the family of root polytopes introduced
in [38]; these are by construction the convex hull of the origin together with all posi-
tive roots ei � ej with i < j .

Recall that ¹ei;j W 1�i�k�1;1�j�n�kº is the standard basis for R.k�1/�.n�k/,
and ¹˛i;j W 1 � i � k � 1; 1 � j � n � kº is the set of coordinate functions.

The polytope yRk;n lives in the space

yHk;n D
²
.˛ij / 2 R.k�1/�.n�kC1/ W

n�kC1X
jD1

˛i;j D 0 for each i D 1; : : : ; k � 1
³
:

Recall also the subspace of yHk;n,

Hk;n D
²
.˛ij / 2 R.k�1/�.n�k/ W

n�kX
jD1

˛i;j D 0 for each i D 1; : : : ; k � 1
³
;

and denote by projk;n W yHk;n!Hk;n the projection determined by projk;n.ei;j /D ei;j
for j � n � k, and

projk;n.ei;n�kC1/ D ei;1:

Finally, for each nonfrozen J D ¹j1; : : : ; jkº 2
�
Œn�
k

�nf
, let

OvJ D
k�1X
�D1

.e�;j��.��1/ � e�;j�C1�.��1/�1/: (10.6)
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Definition 10.16. The polytope yRk;n � yHk;n is the convex hull of the origin, together
with the following

�
n
k

� � n points:²
OvJ W J 2

�
Œn�

k

�nf ³
;

as well as the k � 1 points®
ei;1 � ei;n�kC1 W i D 1; : : : ; k � 1

¯
:

Now, define

vJ D
k�1X
�D1

.e�;j��.��1/ � e�;j�C1�.��1/�1/;

where now the subscripts are now by convention taken modulo n � k.

Definition 10.17. The polytope Rk;n�Hk;n is the convex hull of the following
�
n
k

��
n points: ²

vJ W J 2
�
Œn�

k

�nf ³
:

Note that the origin is already in the convex hull.
Observe that

projk;n.ei;1 � ei;n�kC1/ D 0
for all i D 1; : : : ; k � 1, and consequently,

projk;n. yRk;n/ D Rk;n:

Remark 10.18. We claim that the polytope Rk;n introduced in the Section 10.3 is in
duality with the polyhedron

Q
k;n defined in Section 10.2. This can be seen as follows.

Define new elements
fi;j D ei;j � ei;jC1:

Then, the vertices of Rk;n take the following form:

vJ D
k�1X
iD1

fi;Œji ;jiC1�i�1�;

which dualizes to the linear function defining the facet hyperplane

k�1X
iD1

˛i;Œji ;jiC1�i�1� C 1 D 0

of
Q
k;n.
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Example 10.19. Consider the type A2 root polytope. In the present convention, this
is equal to

yR2;5 D conv
®
0; e1;1�e1;2; e1;1�e1;3; e1;1�e1;4; e1;2�e1;3; e1;2�e1;4; e1;3 � e1;4

¯
� yH2;5:

Now, its projection is

R2;5 D proj2;5. yRk;n/

D conv
®
e1;1 � e1;2; e1;1 � e1;3; e1;2 � e1;3; e1;2 � e1;1; e1;3 � e1;1

¯ � H2;5;

� yH2;5;

that is,
R2;5 D convex hull

®
v1;3; v1;4; v2;4; v2;5; v3;5

¯
:

Example 10.20. Let us also present R3;6 explicitly. This is the convex hull in H3;6

of the following 14 points:

v1;2;4 e2;1 � e2;2;
v1;2;5 e2;1 � e2;3;
v1;3;4 e1;1 � e1;2;
v1;3;5 e1;1 � e1;2 C e2;2 � e2;3;
v1;3;6 e1;1 � e1;2 � e2;1 C e2;2;
v1;4;5 e1;1 � e1;3;
v1;4;6 e1;1 � e1;3 � e2;1 C e2;3;
v2;3;5 e2;2 � e2;3;
v2;3;6 e2;2 � e2;1;
v2;4;5 e1;2 � e1;3;
v2;4;6 e1;2 � e1;3 � e2;1 C e2;3;
v2;5;6 e1;2 � e1;1;
v3;4;6 e2;3 � e2;1;
v3;5;6 e1;3 � e1;1:

Using a computer program, such as SageMath, one finds that R3;6 has f -vector given
by

.1; 14; 47; 60; 27; 1/;

and volume

Volume.R3;6/ D 42

4Š
D C

.3/
3

4Š
;

where C .k/
n�k

is the multi-dimensional Catalan number.



F. Cachazo and N. Early 258

Similarly, we find that R3;7, (R3;8 and R5;8), R3;9, and R3;11 have f -vectors,
respectively,

.1; 28; 178; 483; 661; 456; 128; 1/;

.1; 48; 486; 2122; 5030; 7048; 5895; 2750; 557; 1/;

.1; 75; 1108; 6948; 24170; 52281; 73891; 68921; 41244; 14474; 2286; 1/;

.1; 154; 4179; 45769; 278224; 1081720; 2898751; 5583293; 7902473; 8280735;

6383651; 3537888; 1341425; 313380; 34236; 1/;

while R4;8, R4;9 have f -vectors

.1; 62; 770; 4048; 11653; 20409; 22559; 15524; 6133; 1074; 1/;

.1; 117; 2441; 20488; 94620; 275905; 544210; 750799; 731318; 496454; 225059;

61668; 7783; 1/:

Moreover, as in Example 10.20, we find that the volumes are the fractions

Vol.Rk;n/ D
C
.k/

n�k

..k � 1/.n � k � 1//Š
for R3;n with n � 9 and R4;n with n � 9. In particular, the relative volume is the
multi-dimensional Catalan number C .k/

n�k
itself.

Using SageMath, we were also able to compute the f -vectors of R4;10 and R5;10

(in about ten hours9), respectively,

.1; 200; 6463; 79151; 525529; 2217016; 6460534; 13639822; 21436558; 25407704;

22742748; 15211454; 7404964; 2490478; 520155; 51128; 1/

and

.1; 242; 9041; 123808; 907951; 4218658; 13571560; 31822956; 56070720;

75497722; 78187219; 62086930; 37284006; 16453106; 5055558; 970826; 88193; 1/:

Now, we arrive at the initial raison d’etre for rank-graded root polytopes: their
(relative) volume computes the generalized biadjoint scalar m.k/.In; In/ at the planar
kinematic point! Indeed, this demonstrates a compatibility with the discussion in [2,
Section 2.2] concerning the volume of the dual polytope.

9Laptop with i7-6700K CPU with 64GB RAM.
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Moreover, we see directly that the number of facets of R3;6;R3;7, and R3;8 in the
f -vectors listed above coincide with the number of linear domains used in Section 8
to evaluate m.k/.In; In/ as a Laplace-type transform at the planar kinematics point.

For a small preview of the structure of rank-graded root polytope yRk;n and its
projection Rk;n, we observe a basic feature of their face posets which can be easily
verified, by simply expanding the vertices vJ in the standard basis of ei;j ’s as in
equation (10.6).

Proposition 10.21. Whenever 2 � k � 1 < k � n � 2, then we have k � 1 natural
embeddings

yRk�1;n�1 ' yRk;n \
®
˛ 2 yHk;n W ˛i;j D 0 for all j D 1; : : : ; n � k¯;

one for each i D 1; : : : ; k � 1, and similarly for Rk;n.

Proof. The subpolytopes can be constructed explicitly. For instance, the vertices of
the polytope Rk�1;n�1 in the i th embedding into Rk;n, that is such that ˛i;j D 0 for

all j D 1; : : : ; n� k, are those vertices vJ 2Rk;n, where J 2 �Œn�
k

�nf
has the property

that ji C 1 D jiC1. For yRk;n, the procedure is exactly analogous.

Conjecture 10.22. The polytope Rk;n has (relative) volume the k-dimensional Cata-
lan number C .k/

n�k
.

In particular,

Vol.Rk;n/ D
C
.k/

n�k

..k � 1/.n � k � 1//Š :
A combinatorial proof of Conjecture 10.22 would be very interesting, see [6].

Remark 10.23. Finally, we observe that a similar construction to that used for Propo-
sition 10.14 shows that Rk;n can be embedded in the kinematic space as a minimal
polytopal neighorhood of the PK point.

10.4. Root Kinematics: Roots and Weights

In this section, we introduce root kinematics, which provides a generalization of
the construction for k D 2 in [20], which, in particular, gives a different value for
m.k/.In; In/ for k � 3 from the minimal kinematics in [7], but in both cases scatter-
ing potentials have a unique solution.

For any J 2 �Œn�
k

�nf
, define the linear functional


J D
k�1X
`D1

.˛`;j`�.`�1/ � ˛`;j`C1�.`�1/�1/;

where the indices satisfy .i; j / 2 Œ1; k � 1� � Œ1; n � k C 1�.
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Conjecture 10.24. For any ˛ 2 R.k�1/.n�kC1/, solve the equations �J .s/ D 
J for
the coordinate functions s on K.k;n/. Then, the scattering equations possess a unique
solution, and we have

m.k/.In; In/
ˇ̌
�JD
J

D
k�1Y
iD1

�
˛i;1 � ˛i;n�kC1Qn�k
jD1.˛i;j � ˛i;jC1/

�
:

There is a second version of root kinematics which differs from the above by a
coordinate transformation.

For any J 2 �Œn�
k

�nf
, define the linear functional


 0J D
k�1X
iD1

˛i;Œji ;jiC1�i�1�;

Thus, Conjecture 10.24 has the following equivalent formulation in the second set of
variables.

Conjecture 10.25. For any ˛ 2 R.k�1/.n�k/, solve the equations �J .s/ D 
 0J for the
coordinate functions s on K.k; n/. Then, the scattering equations possess a unique
solution, and we have

m.k/.In; In/
ˇ̌
�JD


0
J

D
k�1Y
iD1

�Pn�k
jD1 ˛i;jQn�k
jD1 ˛i;j

�
:

11. Discussions

In this paper, we are seeing that the planar kinematic point and its surrounding poly-
topal neighborhood

Q
k;n on the integer lattice lie at the core of a seemingly vast

network of connections and novel structures, between the CHY formulation of the
biadjoint cubic scalar theory and its CEGM generalization, and mirror symmetry,
tropical geometry, integrable systems, enumerative combinatorics, and lattice poly-
topes.

We found that the set of critical points of the planar kinematics potential function
can be identified with equivalence classes of certain critical points of the superpo-
tential defined in [25] and more recently in [35]. We have initiated the study of a
highly structured lattice polytope

Q
k;n that surrounds the planar kinematic point,

where
Q
2;n is a degeneration of the associahedron; we have studied its dual polytope,

the rank-graded root polytope Rk;n, where R2;n is a projection of the type An�2 root
polytope. We have checked to nontrivial values of .k; n/ that the volume of Rk;n is
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the multi-dimensional Catalan number modulo a normalization constant,

Vol.Rk;n/ D
C
.k/

n�k

..k � 1/.n � k � 1//Š :

We have reformulated the CEGM generalization of the cubic scalar theory as a
single integral, with a tropical integrand, which can be evaluated explicitly, as opposed
to its formulation as a sum over generalized Feynman diagrams (GFD). This integral
can be interpreted as a Laplace transform of the whole Trop C G.k; n/, where the
dual space is the space of kinematic invariants. This is a significant advance, since
now (in theory) one can evaluate m.k/n without the computational task of constructing
the arrays of Feynman diagrams with compatible metrics. Instead, the internal lengths
of the diagrams in the GFD have been “glued” together to form a .k � 1/.n � k �
1/-dimensional space. Our main motivation for introducing this object was to use it
as a tool to explore possible combinatorial structures hidden in (resummations of)
GFDs which account for the appearance of k-dimensional Catalan numbers as the
value of CEGM amplitudes at the PK point. However, it is clear that even for general
kinematics the integral formula could have many applications, for example, in the
study of soft theorems [1, 15, 28]. We leave the study of this fascinating object for
future research.

We have given a suggestive combinatorial interpretation for the domains of lin-
earity for the tropicalized (exponentiated) planar kinematics potential function �2;n

which, dually, provides a combinatorial interpretation for the vertices of the planar
kinematics associahedron, that is, as the facets of the root polytope R2;n. It would
be very interesting to extend this construction to k � 3. This interpretation suggests
the possibility that planar kinematics could be extended from a single point to a some
bigger subset of the kinematic space; in fact, we have seen exactly this in Corol-
lary 10.14, which provides a minimal polytopal neighborhood

Q
k;n of the planar

kinematics point on the integer lattice.
We have constructed rank-graded root polytopes Rk;n; it is reasonable to expect

that these possess a regular, unimodular triangulation into C .k/
n�k

simplices; that will
prove that the relative volume conjecture for Rk;n. This suggests the natural possi-
bility of an amplitude, wherein the Feynman diagrams, that is maximal collections of
compatible poles, are in bijection with the simplices in the unimodular triangulation
of Rk;n. For this and other combinatorial structures associated to the polytopes Rk;n

and
Q
k;n, as well as a certain toy model for CEGM amplitudes, see [24].

Acknowledgments. We would like to thank W. Norledge, J. Scott, and J. Tevelev
for useful discussions. We thank the referees for a very careful reading and insightful
comments.



F. Cachazo and N. Early 262

Funding. This research was supported in part by a grant from the Gluskin Sheff/Onex
Freeman Dyson Chair in Theoretical Physics and by Perimeter Institute. Research at
Perimeter Institute is supported in part by the Government of Canada through the
Department of Innovation, Science and Economic Development Canada and by the
Province of Ontario through the Ministry of Colleges and Universities.

References

[1] M. Abhishek, S. Hegde, D. P. Jatkar, and A. P. Saha, Double soft theorem for generalised
biadjoint scalar amplitudes. SciPost Phys. 10 (2021), no. 2, article no. 036, 39 pp.
MR 4237712

[2] N. Arkani-Hamed, S. He, and T. Lam, Stringy canonical forms. J. High Energy Phys. 2
(2021), article no. 069, 59 pp. Zbl 1460.83083 MR 4260349

[3] N. Arkani-Hamed, T. Lam, and M. Spradlin, Positive configuration space. Comm. Math.
Phys. 384 (2021), no. 2, 909–954 Zbl 1471.14101 MR 4259378

[4] L. J. Billera, S. P. Holmes, and K. Vogtmann, Geometry of the space of phylogenetic trees.
Adv. in Appl. Math. 27 (2001), no. 4, 733–767 Zbl 0995.92035 MR 1867931

[5] F. Borges and F. Cachazo, Generalized planar Feynman diagrams: collections. J. High
Energy Phys. 11 (2020), article no. 164, 27 pp. Zbl 1456.81319 MR 4204114

[6] F. Cachazo and N. Early. In preparation
[7] F. Cachazo and N. Early, Minimal kinematics: an all k and n peek into TropCG.k; n/.

SIGMA Symmetry Integrability Geom. Methods Appl. 17 (2021), article no. 078, 22 pp.
Zbl 1482.14067 MR 4303678

[8] F. Cachazo, N. Early, A. Guevara, and S. Mizera, Scattering equations: from projective
spaces to tropical Grassmannians. J. High Energy Phys. 6 (2019), article no. 039, 32 pp.
Zbl 1445.81064 MR 3982543

[9] F. Cachazo, A. Guevara, B. Umbert, and Y. Zhang, Planar matrices and arrays of Feynman
diagrams. [v1] 2019, [v3] 2023, arXiv:1912.09422

[10] F. Cachazo, S. He, and E. Y. Yuan, Scattering equations and Kawai–Lewellen–Tye orthog-
onality. Phys. Rev. D 90 (2014), no. 6, article no. 065001

[11] F. Cachazo, S. He, and E. Y. Yuan, Scattering of massless particles in arbitrary dimensions.
Phys. Rev. Lett. 113 (2014), no. 17, article no. 171601

[12] F. Cachazo, S. He, and E. Y. Yuan, Scattering of massless particles: Scalars, gluons and
gravitons. J. High Energy Phys. 07 (2014), aricle no. 033 Zbl 1391.81198

[13] F. Cachazo, L. Mason, and D. Skinner, Gravity in twistor space and its Grassmannian
formulation. SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), article no.
051, 28 pp. Zbl 1296.81160 MR 3210584

[14] F. Cachazo and J. M. Rojas, Notes on biadjoint amplitudes, TropG.3; 7/ and X.3; 7/
scattering equations. J. High Energy Phys. (2020), no. 4, article no. 176, 13 pp.
Zbl 1436.81096 MR 4096874

[15] F. Cachazo, B. Umbert, and Y. Zhang, Singular solutions in soft limits. J. High Energy
Phys. 5 (2020), article no. 148, 32 pp. MR 4112295

https://doi.org/10.21468/scipostphys.10.2.036
https://doi.org/10.21468/scipostphys.10.2.036
https://mathscinet.ams.org/mathscinet-getitem?mr=4237712
https://doi.org/10.1007/jhep02(2021)069
https://zbmath.org/?q=an:1460.83083
https://mathscinet.ams.org/mathscinet-getitem?mr=4260349
https://doi.org/10.1007/s00220-021-04041-x
https://zbmath.org/?q=an:1471.14101
https://mathscinet.ams.org/mathscinet-getitem?mr=4259378
https://doi.org/10.1006/aama.2001.0759
https://zbmath.org/?q=an:0995.92035
https://mathscinet.ams.org/mathscinet-getitem?mr=1867931
https://doi.org/10.1007/jhep11(2020)164
https://zbmath.org/?q=an:1456.81319
https://mathscinet.ams.org/mathscinet-getitem?mr=4204114
https://doi.org/10.3842/SIGMA.2021.078
https://zbmath.org/?q=an:1482.14067
https://mathscinet.ams.org/mathscinet-getitem?mr=4303678
https://doi.org/10.1007/jhep06(2019)039
https://doi.org/10.1007/jhep06(2019)039
https://zbmath.org/?q=an:1445.81064
https://mathscinet.ams.org/mathscinet-getitem?mr=3982543
https://arxiv.org/abs/1912.09422
https://doi.org/10.1103/PhysRevD.90.065001
https://doi.org/10.1103/PhysRevD.90.065001
https://doi.org/10.1103/PhysRevLett.113.171601
https://doi.org/10.1007/JHEP07(2014)033
https://doi.org/10.1007/JHEP07(2014)033
https://zbmath.org/?q=an:1391.81198
https://doi.org/10.3842/SIGMA.2014.051
https://doi.org/10.3842/SIGMA.2014.051
https://zbmath.org/?q=an:1296.81160
https://mathscinet.ams.org/mathscinet-getitem?mr=3210584
https://doi.org/10.1007/jhep04(2020)176
https://doi.org/10.1007/jhep04(2020)176
https://zbmath.org/?q=an:1436.81096
https://mathscinet.ams.org/mathscinet-getitem?mr=4096874
https://doi.org/10.1007/jhep05(2020)148
https://mathscinet.ams.org/mathscinet-getitem?mr=4112295


Planar kinematics: Cyclic fixed points and mirror superpotential 263
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