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Partially hyperbolic compact complex manifolds

Hisashi Kasuya and Dan Popovici

Abstract. We propose and investigate two types, the latter with two variants, of
notions of partial hyperbolicity accounting for several classes of compact complex
manifolds behaving hyperbolically in certain directions, defined by a vector sub-
bundle of the holomorphic tangent bundle, but not necessarily in the other directions.
A key role is played by certain entire holomorphic maps, possibly from a higher-
dimensional space, into the given manifold X . The dimension of the origin Cp

of these maps is allowed to be arbitrary, unlike both the classical 1-dimensional
case of entire curves and the 1-codimensional case introduced in previous work
of the second-named author with S. Marouani. The higher-dimensional generality
necessitates the imposition of certain growth conditions, very different from those in
Nevanlinna theory and those in works by de Thélin, Burns and Sibony on Ahlfors cur-
rents, on the entire holomorphic maps f WCp ! X . The way to finding these growth
conditions is revealed by certain special, possibly non-Kähler, Hermitian metrics in
the spirit of Gromov’s Kähler hyperbolicity theory but in a higher-dimensional con-
text. We then study several classes of examples, prove implications among our partial
hyperbolicity notions, give a sufficient criterion for the existence of an Ahlfors cur-
rent and a sufficient criterion for partial hyperbolicity in terms of the signs of two
curvature-like objects introduced recently by the second-named author.

1. Introduction

In this paper, we continue the study of hyperbolic compact complex manifolds begun
in [21] and [20] by relaxing the hyperbolicity requirement to some (i.e., not necessarily
all) of the directions. This accommodates far larger classes of examples than in those
references, while keeping the two-fold peculiarity of this point of view:

(1) possibly non-Kähler manifolds are targeted, unlike the classical notions of hyper-
bolicity (due, e.g., to Kobayashi, Brody, Gromov, etc.) that only apply (at least
conjecturally) to projective manifolds;

(2) holomorphic maps from possibly higher-dimensional spaces (e.g., Cp with p � 2)
are used in our study, unlike the classical entire curves defined on C that are involved
in earlier notions of hyperbolicity.
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In other words, the overall theme of this approach to hyperbolicity is the identific-
ation and the study of relations between the existence of special (possibly non-Kähler)
Hermitian metrics and the constraints to which entire holomorphic maps from possibly
higher-dimensional spaces to compact complex manifolds are subject.

The starting point of this work is the standard fact that the universal covering space
of Oeljeklaus–Toma (O-T) manifolds ([25]) is Hp �Cq , where H is the upper half-plane
of C, a typical hyperbolic manifold, while the complex Euclidean space Cq is as far as
possible from being hyperbolic. The problem we set ourselves is to single out and study
general properties of partial hyperbolicity that turn out to be displayed by quite a number
of compact complex manifolds.

Let X be a compact complex manifold with dimCX D n � 2. Suppose there exist
p2¹1; : : : ; n� 1º and a C1 complex vector subbundleE of rank� p of the holomorphic
tangent bundle T 1; 0X . We will define two kinds of hyperbolicity properties that X may
have in the directions of E.

The former notion of partial hyperbolicity is of a metric nature and is reminiscent
of Gromov’s Kähler hyperbolicity of [12], generalising it to .p; p/-forms on X when p
may be larger than 1. Specifically, suppose there exists a Hermitian metric ! D !E C

!nE > 0, viewed as a positive definite C1 .1; 1/-form on X , that splits into the sum
of two positive semi-definite C1 .1; 1/-forms such that !E is positive definite in the
E-directions and !nE vanishes in the same directions. If the .p; p/-form � WD !

p
E=pŠ

is d -closed and Qd (bounded), we say that the manifold X is partially p-Kähler hyperbolic
in the E-directions (cf. Definition 2.1). In the special case where p D n � 1 and the
.n � 1/-Kähler hyperbolicity occurs in all the directions, we recover the earlier notion of
balanced hyperbolicity introduced in [21]. The terminology here is a nod to the notion of
p-Kähler structure (D a d -closed, C1, strictly weakly positive .p; p/-form) introduced
by Alessandrini and Bassanelli in [1]. However, the manifolds we study in this paper need
not be p-Kähler, even when p D 1, let alone Kähler.

The latter notion of partial hyperbolicity for X rules out the existence of a certain type
of entire holomorphic maps f WCp ! X and thus reminds one of the Brody hyperbol-
icity of [3] but, again, with p possibly larger than 1. The holomorphic maps f that are
excluded are non-degenerate at some point x0 2 Cp , are E-horizontal (in the sense that
the image of the differential map df is contained in E) and, in a crucial departure from
Brody’s criterion of the case p D 1, induce a relatively small growth for the volumes of
the Euclidean balls in Cp , measured against the (degenerate) metric pulled back from X

under f , as the radius tends to1. Moreover, we propose two variants of this latter notion
of partial hyperbolicity according to whether this growth is subexponential (see Defini-
tion 2.3), thus generalising the divisorial hyperbolicity of the earlier work [21], or slightly
faster (cf. the growth condition (4.14)). We call such manifolds X partially p-hyperbolic
in the E-directions (cf. Definition 2.5), respectively strongly partially p-hyperbolic in the
E-directions (cf. Definition 4.5).

Three of our results are summed up in the following statement (cf. Theorems 2.7, 4.6
and 4.7).

Theorem 1.1. Let X be a compact complex manifold with dimCX D n � 2, and let E �
T 1; 0X be a C1 complex vector subbundle of rank � p 2 ¹1; : : : ; n � 1º. The following
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implications hold:

.?/

X is partially p-Kähler hyperbolic in the E-directions

H
)

X is strongly partially p-hyperbolic in the E-directions

H
)

X is partially p-hyperbolic in the E-directions.

To put these new definitions in the context of the existing ones, we spell out in the
following diagram the various implications for the case where p D n � 1:

.??/

X is Kähler hyperbolic H) X is Kobayashi/Brody hyperbolic

H
)

H
)

X is balanced hyperbolic H) X is divisorially hyperbolic

H
)

H
)

X is partially .n�1/-Kähler hyperbolic H) X is partially .n�1/-hyperbolic:

In Section 3, we exhibit four classes of compact non-Kähler complex manifolds that
have partial hyperbolicity properties: all Oeljeklaus–Toma manifolds [25] (cf. Proposi-
tion 3.1), certain manifolds constructed very recently by Miebach and Oeljeklaus in [23]
(cf. Proposition 3.5), a certain class of complex parallelisable solvmanifolds similar to
those constructed in [15] (cf. Proposition 3.6), and all compact Vaisman manifolds (cf.
Proposition 3.7).

In Section 4, we give a sufficient condition for a non-degenerate holomorphic map
f WCp ! X to induce an Ahlfors current, an object that has played a key role in hyper-
bolicity issues since at least McQuillan’s work [22]. If ! is a Hermitian metric on X , one
considers the bidegree-.n� p;n� p/-current Tr onX defined as the pushforward f?ŒBr �
under f of the current of integration on the Euclidean ball of radius r > 0 centred at
the origin of Cp , normalised by a division by the volume of this ball with respect to the
(possibly degenerate) metric f ?! on Cp . When r ! C1, standard arguments enable
one to extract a subsequence .Tr� /�2N converging in the weak topology of currents to a
strongly positive, bidegree-.n� p; n� p/-current T of unit mass with respect to ! on X .
However, this current need not be closed. When it is, it is called an Ahlfors current. We
prove that this is the case (cf. Theorem 4.2) if f satisfies the growth condition (4.14), the
same that we then use in Section 4 to define our notion of strong partial p-hyperbolicity.
Thus, an immediate consequence of Theorem 4.2 can be reworded as follows.

Theorem 1.2. Any compact complex manifold that is not strongly partially p-hyperbolic
in the directions of a given complex vector subbundle E � T 1; 0X of rank � p carries an
Ahlfors current.

For this result, we drew inspiration from de Thélin’s work [5]. However, our sufficient
growth condition (4.14) is very different from his and is obtained by a different treatment,
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in the spirit of this paper, of certain integral estimates. This further enables us to relate it
to our subexponential growth condition (cf. Proposition 4.8).

It seems difficult to prove in concrete situations that a given compact complex mani-
fold X is either strongly partially p-hyperbolic or partially p-hyperbolic without proving
beforehand that it has the stronger property of being partially p-Kähler hyperbolic.
Indeed, metric structures are often easier to construct than entire holomorphic maps from
some Cp are to rule out. This was one of our main motivations for introducing a met-
ric hyperbolicity property that implies entire-map-based notions. This is also the reason
why all our examples of partially hyperbolic manifolds exhibited in Section 3 are partially
p-Kähler hyperbolic. In particular, we do not have at this point in time any example of a
manifold that is partially p-hyperbolic, but non-strongly partially p-hyperbolic. However,
we hope such manifolds exist, possibly even among the submanifolds of certain project-
ive manifolds or complex projective spaces CPn, as the intuition suggests. Consequently,
we believe both our entire-map-based notions of hyperbolicity will prove useful in future
manifold classification considerations.

In Section 5, we give a sufficient criterion for strong partial .n � 1/-hyperbolicity in
the directions of a complex vector subbundle E � T 1; 0X of co-rank 1 on an n-dimen-
sional compact complex manifold X (cf. Theorem 5.3) in terms of the signs of two
curvature-like objects: a function f! and an .n � 1; n � 1/-form ?�! uniquely associ-
ated with every Hermitian metric ! on X via a construction introduced in [28]. To this
end, we define a notion of partial negativity (or negativity in the E-directions) for any
.n � 1; n � 1/-form (cf. Definition 5.2) and observe that in several cases of explicit (and
well-known) compact complex Hermitian manifolds .X; !/ the computations carried out
in [28] yield

(1.1) f! > 0 and ? �! is negative in the E-directions:

This is the hypothesis that we make to get our curvature-like criterion for partial hyper-
bolicity in the following reformulation of Theorem 5.3.

Theorem 1.3. If there exists a Hermitian metric ! on X satisfying property (1.1), X is
strongly partially .n � 1/-hyperbolic in the E-directions.

This is our analogue in the present context of a by now standard discussion. Indeed, the
classical notions of hyperbolicity (e.g., in the sense of Kobayashi [18] or Brody [3]) are
well known to be implied by various negativity assumptions on various curvature tensors,
forms or functions associated with a given Hermitian metric on a complex manifold. For
example, according to Theorem 3.8 in [18], one has:

A Hermitian manifold whose holomorphic sectional curvature is bounded above by a
negative constant is Kobayashi hyperbolic.

Similar classical results involving other types of curvature can be found in Kobayashi’s
book [19], Chapter 2, Sections 3 and 4. Their proofs make use of various forms of the
maximum principle.

In the examples of partially hyperbolic manifolds that we exhibit in Section 3 and
where explicit computations can be performed, we analyse two types of curvature negat-
ivity/positivity that point to analogies with the classical setting:
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• certain holomorphic sectional curvatures of a class of partially hyperbolic manifolds
that includes the Oeljeklaus–Toma manifolds are found to be negative constants (cf.
Section 3.1.2);

• the curvature form of the canonical bundle of each of the manifolds mentioned above
is found to be at least semi-positive in all directions and positive definite in certain
directions at every point (cf. Section 3.1.3).
Based on these special cases, one may wonder whether

• by analogy with Kobayashi’s KX -ampleness conjecture for the standard Kobayashi or
Brody hyperbolic manifolds X , some kind of (partial) (semi-)positivity of KX can be
proved to hold for every partially p-Kähler hyperbolic compact complex manifold X ;

• by analogy with classical results, the negativity of some classical curvatures implies
one or more of our hyperbolicity properties introduced in this paper, despite the fact
that in Section 5 we felt the curvature-like objects introduced in [28] to be best suited
to the general case.

Further contextualisation of this paper. We point out two examples of earlier works by
other authors in order to emphasise the peculiarities of ours.

(1) Demailly extensively used (see, e.g., [6]) the notion of directed varieties .X; V /
involving an irreducible closed analytic subspace V � T 1; 0X of the total space of the
holomorphic tangent bundle of a complex manifold X such that each fibre Vx WD V \

T
1; 0
x X is a vector subspace of T 1; 0x X and the map X 3 x 7! dimCVx is Zariski lower

semicontinuous.
This is, of course, similar to our consideration of a complex vector subbundle E

of T 1; 0X , but there are significant differences: Demailly’s manifoldX is projective (while
ours need not even be Kähler); Demailly works with entire curves f WC ! X tangent
to V (while we deal with E-horizontal maps f WCp ! X by allowing p to exceed 1);
no growth condition needs to be imposed on the entire curves used in Demailly’s or the
classical hyperbolicity theory thanks to Brody’s reparametrisation lemma that only holds
in complex dimension 1.

In fact, a key aspect of our results is the identification of appropriate growth condi-
tions that need to be placed on holomorphic maps f WCp ! X when p � 2 in order to
sharpen our hyperbolicity notions and make them relevant. (As explained in [21], if no
growth conditions are imposed, the theory would miss many compact non-Kähler man-
ifolds that enjoy hyperbolicity properties, so it would be highly unsatisfactory.) This is
where the special Hermitian metrics come in: they led us to the realisation that, in repla-
cing the Kähler metrics used by Gromov in his definition of the Kähler hyperbolicity by
other types of metrics (e.g., the balanced metrics used in [21] and [20]), we would be
able to spot the appropriate higher-dimensional substitute for Brody’s lemma in the form
of our growth conditions. These conditions involve volumes of balls in Cp and differ
from the growth conditions used in the Nevanlinna theory that depend on the Nevanlinna
characteristic Tf .r/.

(2) Burns and Sibony studied Ahlfors currents induced by holomorphic maps from a
complex manifoldX of any dimension k to a compact Kähler manifold Y in [4]. However,
the growth condition we impose on our maps in order to guarantee the existence of an
Ahlfors current is different from both the one used in [5] and the one of [4]. It is more in
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tune with our purposes in this paper and enables us to find yet another notion of partial
hyperbolicity.

In other words, much like the adaptation to our non-Kähler context of Gromov’s notion
of Kähler hyperbolicity, the use of Ahlfors currents under an assumption different from
those of [5] and [4] becomes a tool, rather than a goal, for us.

2. Two notions of partial hyperbolicity

In this section, we give the main definitions and prove a key implication between two of
our notions.

2.1. Partially p-Kähler hyperbolic compact complex manifolds

Let .X; !/ be a complex n-dimensional manifold equipped with a Hermitian metric. We
denote by �X W zX ! X the universal covering map of X . Let k 2 ¹0; : : : ; 2nº and let ˛ be
a C1 differential form of degree k on X . Recall that, according to [12], ˛ is said to be

(i) d.bounded/ is there exists a C1 form ˇ of degree k � 1 onX such that ˇ is bounded
with respect to ! and ˛ D dˇ;

(ii) Qd.bounded/ if the lift �?X˛ of ˛ to the universal cover is d.bounded/ on zX with
respect to the metric z! WD �?X!, the lift of ! to zX .

The first hyperbolicity notion that we propose in this paper for compact Hermitian
manifolds is described in the following

Definition 2.1. Let X be a compact complex manifold with dimCX D n � 2 and let
p 2 ¹1; : : : ; n � 1º.

If there exist
(a) aC1 complex vector subbundleE � T 1; 0X of rank�p of the holomorphic tangent

bundle of X ;
(b) positive semi-definiteC1 .1; 1/-forms!E � 0 and!nE � 0 onX with the following

properties:
(i) the C1 .1; 1/-form ! WD !E C !nE is positive definite on X ;
(ii) !E .x/.�; N�/ > 0 for every point x 2 X and every .1; 0/-tangent vector � 2Ex

lying in the fibre of E over x;
(iii) !nE .x/.�; N�/D 0 for every point x 2X and all .1; 0/-tangent vectors �; �2Ex

lying in the fibre of E over x;
(iv) the C1 .p; p/-form � WD !

p
E=pŠ is d -closed and Qd.bounded/ on .X; !/,

then the manifold X is said to be partially p-Kähler hyperbolic in the E-directions, the
triple .E;�; ! D !E C !nE / is called a partially p-Kähler hyperbolic structure on X ,
and E is called the horizontal vector bundle.

The role of the subbundle E in the above definition is to indicate the directions along
which !E is positive definite. The hyperbolicity is required to hold only in these dir-
ections, accounting for its “partial” character. On the other hand, if !E happens to be
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positive definite in all the directions, one can choose E D T 1; 0X and !nE D 0. Then, the
manifold X is called p-Kähler hyperbolic.

Observation 2.2. Let X be a compact complex manifold with dimCX D n � 2 and let
p 2 ¹1; : : : ; n � 1º. Suppose there exists a Frobenius integrable C1 complex vector sub-
bundle E � T 1; 0X of rank > p such that X is partially p-Kähler hyperbolic in the
E-directions.

Then, for any compact leaf Y � X of the holomorphic foliation induced by E, the
manifold Y is p-Kähler hyperbolic.

Proof. Using the notation in Definition 2.1, we see that T 1; 0y Y D Ey for every y 2 Y
implies that the restriction to Y of !E is a C1 positive definite .1; 1/-form, hence induces
a Hermitian metric, on the compact complex manifold Y . Moreover, the C1 .p; p/-form
�jY D .!E jY /

p=pŠ is d -closed and Qd.bounded/ on .Y; !jY /. The contention follows.

When p � n � 2, the d -closedness of � implies that d!E D 0 at every point x 2X
where !E .x/ > 0. Indeed, if x is such a point, !E is positive definite, hence defines a
Hermitian metric, on a neighbourhood U of x. We have !p�1E ^ d!E D 0 on U , hence
d!E D 0, since the pointwise multiplication map !p�1E ^ �Wƒ3T ?X ! ƒ2pC1T ?X is
injective due to the fact that p � 1� n� 3when p � n� 2. (Recall that for any Hermitian
metric 
 on an n-dimensional complex manifold X and for any non-negative integer
k � n, the pointwise multiplication map 
p ^ �WƒkT ?X!ƒkC2pT ?X is injective when
p � n � k and surjective when p � n � k.)

In particular, if ! D !E > 0 on X , then
• ! is a Kähler metric on X if p � n � 2;
• ! is a balanced hyperbolic metric on X in the sense of [21] (recalled below) if p D
n � 1.
Note that a partially p-Kähler hyperbolic n-dimensional manifold .X; E; �/ needs

not be Kähler.
In the case p D n � 1, the notion of partial .n � 1/-Kähler hyperbolicity introduced

above generalises the notion of balanced hyperbolicity introduced in [21]. The latter gen-
eralised, in turn, Gromov’s notion of Kähler hyperbolicity introduced in [12]. Recall that,
according to [12], a compact complex manifold X is said to be Kähler hyperbolic if it
carries a Qd.bounded/ Kähler metric !.

Meanwhile, according to [21], a compact complex n-dimensional manifold X is said
to be balanced hyperbolic if it carries a balanced metric ! (namely, a C1 positive definite
.1; 1/-form ! such that d!n�1 D 0) such that !n�1 is Qd.bounded/.

2.2. Partially p-hyperbolic compact complex manifolds

We will need a few preliminaries.
On the one hand, recall that if X is an n-dimensional complex (not necessarily com-

pact) manifold equipped with a Hermitian metric !, for a given integer k 2 ¹0; : : : ; nº, a
k-form v onX is said to be primitive (with respect to !) if !n�kC1 ^ vD 0. This is known
to be equivalent toƒ!v D 0, whereƒ! is the adjoint of the Lefschetz operator ! ^ � with
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respect to the pointwise inner product h ; i! defined by !. In particular, all k-forms with
k 2 ¹0; 1º are primitive and so are all .p; 0/-forms and all .0; q/-forms.

The following standard formula (cf., e.g., Proposition 6.29 on p. 150 of [32]) for the
Hodge star operator ? D ?! of ! acting on primitive forms v of arbitrary bidegree .p; q/
will come in handy:

(2.1) ? v D .�1/k.kC1/=2 ip�q
!n�p�q ^ v

.n � p � q/Š
, where k WD p C q:

On the other hand, we will need preliminaries that are similar to those in [21]. Let
f WCq ! .X; !/ be a holomorphic map to a compact complex Hermitian manifold with
n WD dimCX � 2 and 1 � q � n � 1. We will suppose that f is non-degenerate at some
point x0 2 Cq , namely that dx0f WC

q ! T
1; 0
f .x0/

X is of maximal rank. Then, the set

†f WD ¹x 2 Cq
j f is degenerate at xº

is a proper analytic subset of Cq and the C1 .1; 1/-form f ?! � 0 on Cq is positive
definite, hence it defines a Hermitian metric, on Cq n †f . We will refer to f ?! as a
degenerate metric on Cq with degeneration set †f .

For any map as above and any r > 0, we define the .!;f /-volume of the ball Br �Cq

of radius r centred at the origin to be

(2.2) Vol!;f .Br / WD
Z
Br

f ?!q;

where, for any .1; 1/-form 
 � 0 and any positive integer p, we set


p WD

p

pŠ
�

On the other hand, to define the areas of the spheres of Cq with respect to the degen-
erate metric f ?!, we proceed as follows. For every z 2Cq , let �.z/ WD jzj2 be its squared
Euclidean norm. At every point z2Cq n†f , the following equality holds by the definition
of the Hodge star operator ?f ?! induced by the metric f ?!:

(2.3)
d�

jd� jf ?!
^ ?f ?!

� d�

jd� jf ?!

�
D f ?!q :

This implies that the .2q � 1/-form

d�!;f WD ?f ?!

� d�

jd� jf ?!

�
on Cq n †f is the area measure induced by f ?! on the spheres of Cq . In other words,
the restriction

(2.4) d�!;f; r WD
�
?f ?!

� d�

jd� jf ?!

��
jSr

is the area measure induced by the degenerate metric f ?! on the sphere Sr � Cq centred
at the origin of radius r , for every r > 0.
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In particular, the .!; f /-area of the sphere Sr � Cq , namely, the area with respect
to d�!;f; r , is

(2.5) A!;f .Sr / WD

Z
Sr

d�!;f; r > 0; r > 0:

We can now define the restriction that will be placed on the holomorphic maps into a
given compact complex manifold X to define another hyperbolicity property of X . This
condition is the analogue of the one in Definition 2.3 of [21].

Definition 2.3. Let .X; !/ be a compact complex Hermitian manifold with dimCX D n

� 2. Let q 2 ¹1; : : : ; n � 1º and let f W Cq ! X be a holomorphic map that is non-
degenerate at some point x0 2Cq .

We say that f has subexponential growth if the following two conditions are satisfied:
(i) there exist constants C1 > 0 and r0 > 0 such that

(2.6)
Z
St

jd� jf ?! d�!;f; t � C1 t Vol!;f .Bt /; t > r0I

(ii) for every constant C > 0, we have

(2.7) lim sup
b!C1

� b
C
� logF.b/

�
D C1;

where

F.b/ WD

Z b

0

Vol!;f .Bt / dt D
Z b

0

� Z
Bt

f ?!q

�
dt; b > 0:

Since X is compact, any two Hermitian metrics !1 and !2 on X are comparable (in
the sense that there exists a constant A > 0 such that .1=A/!2 � !1 � A!2). Therefore,
the subexponential growth condition on the holomorphic maps into X is independent of
the choice of Hermitian metric on X .

We will often be considering maps of the type described as follows.

Definition 2.4. LetX be an n-dimensional complex manifold. Suppose there exists a C1

complex vector subbundle E of T 1; 0X of rank p 2 ¹1; : : : ; n � 1º.
For any q 2 ¹1; : : : ; pº, a holomorphic map f WCq ! X is said to be E-horizontal if,

for every x 2Cq , the image of its differential map dxf WCq ! T
1; 0
f .x/

X at x is contained
in Ef .x/.

We are now in a position to define our second notion of partial hyperbolicity.

Definition 2.5. Let X be a compact complex manifold with dimCX D n � 2 and let
p 2 ¹1; : : : ; n � 1º.

If there exists a C1 complex vector subbundle E � T 1; 0X of rank � p of the
holomorphic tangent bundle of X such that there is no E-horizontal holomorphic map
f WCp!X that is non-degenerate at some point x0 2Cp and has subexponential growth
in the sense of Definition 2.3, the manifold X is said to be partially p-hyperbolic in the
E-directions.
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As in Definition 2.1, the role of the subbundle E is to indicate the directions along
which the manifold X is hyperbolic. On the other hand, if we can choose E D T 1; 0X in
the above definition, X is said to be p-hyperbolic. If this last situation occurs for p D
n � 1, X is divisorially hyperbolic in the sense of [21]. The analogue of Observation 2.2
is the following.

Observation 2.6. Let X be a compact complex manifold with dimCX D n � 2 and let
p 2 ¹1; : : : ; n � 1º. Suppose there exists a Frobenius integrable C1 complex vector sub-
bundle E � T 1; 0X of rank > p such that X is partially p-hyperbolic in the E-directions.

Then, for any compact leaf Y � X of the holomorphic foliation induced by E, the
manifold Y is p-hyperbolic.

Proof. Suppose there exists a holomorphic map f WCp ! Y that is non-degenerate at
some point x0 2 Cp and has subexponential growth in the sense of Definition 2.3. Since
T
1; 0
y Y D Ey for every y 2Y , the Y -valued map f , when viewed as X -valued, is E-hori-

zontal. But then, the existence of such a map f contradicts the partial p-hyperbolicity
assumption made on X in the E-directions.

2.3. Partial p-Kähler hyperbolicity implies partial p-hyperbolicity

We now prove the last horizontal implication in diagram .??/ of the introduction with
n � 1 replaced by an arbitrary p 2 ¹1; : : : ; n � 1º.

Theorem 2.7. Let X be an n-dimensional compact complex manifold, n � 2, and let
p 2 ¹1; : : : ; n � 1º.

If there exists a C1 complex vector subbundle E � T 1; 0X of rank � p such that X
is partially p-Kähler hyperbolic in the E-directions, then X is partially p-hyperbolic in
the E-directions.

Proof. Let us suppose that a partial p-Kähler hyperbolic structure .E;� D .!E /p; ! D
!E C !nE / exists on X . In particular, X has a Hermitian metric ! D !E C !nE with the
properties in Definition 2.1. Let z� be a C1 form of degree 2p � 1 on zX such that z� is
bounded with respect to z! WD �?X! and

�?X� D �
?
X .!E /p D d

z�:

We will prove by contradiction that X satisfies the conditions of Definition 2.5 with
respect to the vector subbundle E fixed above. Suppose there exists an E-horizontal
holomorphic map f WCp ! X that is non-degenerate at some point x0 2 Cp and has
subexponential growth in the sense of Definition 2.3. Let †f � Cp be the degeneracy
set of f . Since Cp is simply connected, f lifts to zX , so there exists a holomorphic map
Qf WCp ! zX such that f D �X ı Qf . In particular,

f ?� D Qf ?.�?X�/ D d.
Qf ?z�/ on Cp:

On the other hand, since f isE-horizontal and !D!E C!nE with !nE .x/.�; N�/D 0
for every x 2X and all .1; 0/-vectors �; �2Ex , we have

.f ?!nE /.u; Nv/ D !nE .f?u; f? Nv/ D 0 for all .1; 0/-vector fields u; v in Cp .
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Hence

(2.8) f ?! D f ?!E on Cp:

We will need the following.

Lemma 2.8. The .2p � 1/-form Qf ?z� is bounded in Cp with respect to f ?!.

Proof. For any tangent vectors v1; : : : ; v2p�1 on Cp , we have

j. Qf ?z�/.v1; : : : ; v2p�1/j
2
D jz�. Qf?v1; : : : ; Qf?v2p�1/j

2
� C j Qf?v1j

2
z! � � � j

Qf?v2p�1j
2
z!

D C jv1j
2
f ?! � � � jv2p�1j

2
f ?! ;

where the inequality follows, for some constant C > 0 independent of the vj ’s, from the
z!-boundedness of z� , and the last equality follows from

Qf ? z! D .�X ı Qf /
?! D f ?!:

End of proof of Theorem 2.7. We will compute and estimate Vol!;f .Br / in two ways,
where Br � Cp is the open ball of radius r > 0 centred at the origin.
� On the one hand, applying the classical Fubini theorem, we get

(2.9) Vol!;f .Br /D
Z
Br

.f ?!p/D

Z r

0

�Z
St

d�!;f; t

�
dt D

Z
Br

d�!;f; t ^
d�

2t
, r > 0;

where we used the equality � D t2 on the sphere St �Cp of radius t , which implies d� D
2tdt on St , and where d�!;f; t is the positive measure on St defined by the requirement

1

2t
d�!;f; t ^ .d�/jSt D .f

?!p/jSt ; t > 0:

Comparing this with (2.3) (in which we take q D p), we infer the following equality
on Cp n†f :

(2.10)
1

2t
d�!;f; t D

1

jd� jf ?!
d�!;f; t ; t > 0:

On the other hand, Hölder’s inequality yields:

A2!;f .St / D
� Z

St

d�!;f; t

�2
�

� Z
St

1

jd� jf ?!
d�!;f; t

� � Z
St

jd� jf ?! d�!;f; t

�
; t > 0:

Together with (2.9) and (2.10), this yields

Vol!;f .Br / D
Z r

0

� Z
St

1

2t
d�!;f; t

�
d� D

Z r

0

� Z
St

1

jd� jf ?!
d�!;f; t

�
d�

� 2

Z r

0

A2
!;f

.St /R
St
jd� jf ?! d�!;f; t

t dt; r > 0:(2.11)
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We stress that (2.11) holds for any holomorphic map f WCp ! .X; !/ that is non-
degenerate at some point x0 2 Cp and takes values in any complex Hermitian manifold.
This map need not be either E-horizontal or of subexponential growth.
� On the other hand, applying the Stokes theorem, we get equality (d) below:

Vol!;f .Br / D
Z
Br

f ?!p
(a)
D

Z
Br

f ?.!E /p
(b)
D

Z
Br

Qf ?.�?X�/
(c)
D

Z
Br

d. Qf ?z�/

(d)
D

Z
Sr

Qf ?z� � C

Z
Sr

d�!;f; r D CA!;f .Sr /; r > 0;(2.12)

where (a) follows from f being E-horizontal via (2.8), equalities (b) and (c) are con-
sequences of the partial p-Kähler hyperbolicity assumption, while the inequality follows
from Lemma 2.8.
� Putting together (2.11) and (2.12), we get the first inequality below:

Vol!;f .Br / �
2

C 2

Z r

0

Vol!;f .Bt /
t Vol!;f .Bt /R

St
jd� jf ?! d�!;f; t

dt

�
2

C1C 2

Z r

r0

Vol!;f .Bt / dt WD
2

C1C 2
zF .r/; r > r0;(2.13)

where the second inequality follows from part (i) of the subexponential growth assumption
on f (cf. Definition 2.3) for some constants C1; r0 > 0, and the last equality constitutes
the definition of a function zF W .r0; C1/! .0; C1/.

Now, setting

C2 WD
2

C1C 2
> 0;

differentiating zF and using (2.13), we get

zF 0.r/ D Vol!;f .Br / � C2 zF .r/; r > r0:

Hence
d

dt
.log zF .t// � C2; t > r0:

Fixing arbitrary reals a;b such that r0 <a<b and integrating with respect to t 2 Œa; b�,
we get

� log zF .a/ � � log zF .b/C C2 .b � a/:

Now, fixing a > r0 and letting b D bj !C1 for a sequence of reals bj such that

� log zF .bj /C C2 bj !C1 as j !C1

(such a sequence exists when zF is replaced by F thanks to part (ii) of the subexponential
growth assumption on f – see Definition 2.3 – hence it also exists for zF because zF .r/ D
F.r/� F.r0/� F.r/ for every r > r0), we get zF .a/D 0. Letting a > r0 vary, this means
that Vol!;f .Bt / D 0 for every t > r0. This implies f ?!p D 0 on Cp , contradicting the
non-degeneracy assumption on f and the property ! > 0 on X .
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3. Examples of partially hyperbolic manifolds

We will describe several classes of examples, one in each of the ensuing subsections.

3.1. Partial hyperbolicity and curvature of Oeljeklaus–Toma manifolds

Given positive integers s and t , we consider the Lie group G defined as the semi-direct
product G D Rs Ë� .Rs ˚Ct / via the map �WRs ! Aut.Rs ˚Ct /,

(3.1) �.x/ D diag
�
ex1 ; : : : ; exs ; e 1.x/; : : : ; e t .x/

�
;

where x D .x1; : : : ; xs/2Rs and  1; : : : ;  t WRs ! C are functions of the shape

 j .x/ D

sX
kD1

ajk xk ; j D 1; : : : ; t;

with constant coefficients ajk 2 C, while diag stands for the diagonal matrix whose diag-
onal entries are those indicated.

Our objects of study in this Section 3.1 will be solvmanifolds X D G=ƒ, namely
quotients of the solvable Lie group G by lattices ƒ � G.

Denoting by x D .x1; : : : ; xs/ the variable in the first copy of Rs inG DRs Ë� .Rs ˚
Ct /, by y D .y1; : : : ; ys/ the variable in the second copy of Rs and by z D .z1; : : : ; zt / the
variable of Ct , we see that the dual of the .1; 0/-part of the Lie algebra of G is generated
as a C-vector space as

.g1; 0/? D
˝
dx1 C ie

�x1 dy1; : : : ; dxs C ie
�xs dys; e

� 1.x/ dz1; : : : ; e
� t .x/ dzt

˛
D h˛1; : : : ; ˛s; ˇ1; : : : ; ˇt i;

where we have set

(3.2)
j̨ D dxj C ie

�xj dyj ; j D 1; : : : ; s;

ˇk D e
� k dzk ; k D 1; : : : ; t:

The forms ˛1; : : : ; ˛s; ˇ1; : : : ; ˇt are C1 .1; 0/-forms on G that induce an invariant
complex structure on G. They also induce C1 .1; 0/-forms (which we denote by the
same symbols, for the sake of convenience) on the solvmanifold X D G=ƒ and define a
complex structure thereon, for any lattice ƒ � G.

The Lie group G equipped with this complex structure is biholomorphic to Hs � Ct

since the map
R Ë' R! H; .x; y/ 7! .y; ex/;

is biholomorphic, where the map 'WR! Aut.R/ is defined by

'.x/.y/ D ex y; y 2 R:

We note that the class of complex solvmanifolds of this type contains the compact
complex manifolds associated with algebraic number fields introduced in [25], the so-
called Oeljeklaus–Toma (O-T) manifolds. This point of view was given in [14] and was
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subsequently used in the study of metrical and cohomological properties of O-T manifolds
(see [2, 9, 16, 17, 26]).

Specifically, let K be a finite extension field of Q of degree s C 2t admitting real
embeddings �1; : : : ; �s into C and complex embeddings �sC1; : : : ; �sC2t into C that sat-
isfy the conditions �sCi D N�sCiCt for 1 � i � t . Meanwhile, let U be a free subgroup of
rank s of the group of units in the ring OK of algebraic integers satisfying certain con-
ditions obtained by Dirichlet’s unit theorem. By choosing suitable functions  j WRs ! C
as above, we can associate with the pair .K; U / a lattice ƒ in G that is isomorphic to
U Ë OK . The resulting solvmanifoldX DG=ƒ is an O-T manifold. Conversely, every O-T
manifold is obtained in this way.

3.1.1. Partial hyperbolicity. Straightforward computations yield

d j D

sX
kD1

ajk dxk D

sX
kD1

ajk Re˛k D
 j .˛/C  j .˛/

2
, j D 1; : : : ; t;

where we put  j .˛/ WD
Ps
kD1 ajk ˛k for every j D 1; : : : ; t . Since  j .˛/ is a .1; 0/-form

and  j .˛/ is a .0; 1/-form, this means that @ j D  j .˛/=2 and N@ j D  j .˛/=2.
On the other hand, the definition of j̨ in (3.2) implies, through straightforward calcu-

lations, the following equalities:

d j̨ D �i e
�xj dxj ^ dyj ;

1

2
. j̨ ^ ˛j / D �i e

�xj dxj ^ dyj :

Since j̨ ^ ˛j is of type .1; 1/, we deduce that the .2; 0/-part of d j̨ must vanish, hence

@ j̨ D 0 and N@ j̨ D d j̨ D
j̨ ^ ˛j

2
for every j D 1; : : : ; s.

As for the ˇk’s, we get, for all k D 1; : : : ; t ,

@ˇk D �e
� k @ k ^ dzk D �

 k.˛/

2
^ ˇk ;

N@ˇk D �e
� k N@ k ^ dzk D �

 k.˛/

2
^ ˇk :

The solvmanifold X D G=ƒ is a compact complex manifold of dimension n D s C t .
Let ¹e1; : : : ; es; f1; : : : ; ftº be the C1 frame of the holomorphic tangent bundle T 1; 0X
of X dual to the C1 frame ¹˛1; : : : ; ˛s; ˇ1; : : : ; ˇtº of the holomorphic cotangent bundle
ƒ1; 0T ?X . (The vector bundles T 1; 0X andƒ1; 0T ?X are C1-trivial, but not holomorph-
ically trivial.) Let E and F be the C1-trivial vector subbundles of T 1; 0X generated by
e1; : : : ; es and, respectively, by f1; : : : ; ft . They also have natural, but non-trivial, holo-
morphic vector bundle structures.

A natural Hermitian metric on X is defined by the positive definite C1 .1; 1/-form

(3.3) ! D i˛1 ^ ˛1 C � � � C i˛s ^ ˛s C iˇ1 ^ ˇ1 C � � � C iˇt ^ ˇ t > 0:
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Thus, ! D !E C !F , where

!E WD i˛1 ^ ˛1 C � � � C i˛s ^ ˛s � 0 and !F WD iˇ1 ^ ˇ1 C � � � C iˇt ^ ˇ t � 0

are C1 positive semi-definite .1; 1/-forms onX . By construction, !E .�; N�/ > 0 for every
.1; 0/-tangent vector � of E and !E .�; N�/D 0 for all .1; 0/-tangent vectors � and � of F .
The analogous property is satisfied by !F with E and F permuted.

Let us now consider the following C1 .1; 1/-form on X :

� D !E D d.2i˛1 C � � � C 2i˛s/:

Note that� is not a Hermitian metric on X since it is only � 0. Since� is d -exact on the
compact complex manifold X , its lift to the universal cover G ' Hs �Ct is d.bounded/
with respect to the lift of the metric !. In particular, the triple .E;�;! D !E C !F / is a
partially 1-Kähler hyperbolic structure on X .

We have thus proved the following.

Proposition 3.1. For every positive integers s and t and every simply connected solvable
real Lie group G D Rs Ë� .Rs ˚Ct / defined as a semi-direct product via a map � of the
type (3.1), the solvmanifold X D G=ƒ obtained as the quotient of G by any co-compact
lattice ƒ is partially 1-Kähler hyperbolic. In particular, every Oeljeklaus–Toma manifold
is partially 1-Kähler hyperbolic.

3.1.2. Holomorphic sectional curvatures. We will now compute the holomorphic sec-
tional curvatures of solvmanifolds in the E-directions (i.e., the hyperbolic directions)
by continuing the above computations. Let D D D0 C N@ be the Chern connection of
.T 1; 0X;!/.

From N@ j̨ D j̨ ^ ˛j =2 for j D 1; : : : ; s, we deduce that

N@ej D
˛j

2
˝ ej ; j D 1; : : : ; s:

On the other hand, from hej ; eki! D ıjk (the Kronecker delta), we deduce the first equality
below:

0 D D0hej ; eki! D ¹D
0ej ; ekº C ¹ej ; N@ekº D ¹D

0ej ; ekº C ıjk
˛k

2
; j; k D 1; : : : ; s;

where the sesquilinear bracket

¹�; � º W C1p .X; T 1; 0X/ � C1q .X; T
1; 0X/ �! C1pCq.X; C/;°X

�

�� ˝ g�;
X
�

�� ˝ g�

±
WD

X
�;�

�� ^ �� hg�; g�i! ;

combines the wedge product of scalar-valued forms (in this case, the locally defined
forms �� and �� that represent the given T 1; 0X -valued forms in a local trivialisation
of T 1; 0X defined by a local frame .g�/�) with the inner product defined by the Hermitian
metric ! on the fibres of T 1; 0X (see Section 7 in Chapter V of [7]).

Hence, we get
D0ej D �

j̨

2
˝ ej ; j D 1; : : : ; s:
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Letting
‚ WD ‚!.T

1; 0X/ D D2
D D0 N@C N@D0

be the Chern curvature form of .T 1; 0X;!/, we get

‚ej D D
0
�˛j
2
˝ ej

�
C N@

�
�

j̨

2
˝ ej

�
D
1

2
@˛j ˝ ej C

1

2
˛j ˝D

0ej �
1

2
.N@ j̨ /˝ ej �

1

2
j̨ ˝
N@ej

D �
1

4
. j̨ ^ ˛j /˝ ej �

1

4
.˛j ^ j̨ /˝ ej �

1

4
. j̨ ^ ˛j /˝ ej �

1

4
. j̨ ^ ˛j /˝ ej

D �
1

2
. j̨ ^ ˛j /˝ ej ; j D 1; : : : ; s:

It follows that the holomorphic sectional curvature in the direction of the tangent vec-
tor ej is

hi‚.ej ; Nej /ej ; ej i! D �
1

2
h.i j̨ ^ ˛j /.ej ; Nej /ej ; ej i! D �

1

2
hej ; ej i! D �

1

2

for every j D 1; : : : ; s.
We have thus proved the following.

Proposition 3.2. For every solvmanifold X D G=ƒ as in Proposition 3.1 (e.g., an O-T
manifold), the holomorphic sectional curvatures of X in the directions of the horizontal
vector bundle E are constant, equal to �1=2.

3.1.3. Curvature of the canonical bundle. Starting from the definitions (3.2) of the C1

.1; 0/-forms j̨ and ˇk , we consider the real-valued functions

Xj WD e
xj ; j D 1; : : : ; s

and the complex-valued functions

Zj WD Xj C iyj ; j D 1; : : : ; s:

Claim 3.3. ¹dZ1; : : : ; dZs; dz1; : : : ; dztº is a local holomorphic frame of the holo-
morphic cotangent bundle ƒ1; 0T ?X .

Proof. From (3.2) we get

j̨ D d logXj C
i

Xj
dyj D

1

Xj
.dXj C idyj / D

1

Xj
dZj ; j D 1; : : : ; s;

hence dZj D Xj j̨ is indeed a .1; 0/-form for every j D 1; : : : ; s. Since z1; : : : ; zt are
the complex variables of Ct , the 1-forms dz1; : : : ; dzt are of type .1; 0/ and holomorphic.
To see that the .1; 0/-forms dZ1; : : : ; dZs are holomorphic, we compute

N@.dZj / D N@.e
xj

j̨ / D e
xj N@xj ^ j̨ C e

xj N@ j̨ D
exj

2
N̨j ^ j̨ C e

xj j̨ ^ N̨j

2
D 0;
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where we used the equality N@xj D .1=2/ N̨j , that follows from

dxj D Re. j̨ / D
j̨ C N̨j

2
,

from N@xj being the .0; 1/-part of dxj and from j̨ being of type .1; 0/.

The inner products of the pairs of elements of the above frame are

hdZj ; dZki! D XjXk h j̨ ; ˛ki! D XjXk ıjk ; j; k D 1; : : : ; s;

hdzl ; dzri! D e
 lC r hˇl ; ˇri! D e

 lC r ılr ; l; r D 1; : : : ; t;

hdZj ; dzri! D Xj e
 r h j̨ ; ˇri! D 0; j D 1; : : : ; s and r D 1; : : : ; t:

Thus, for the non-vanishing local holomorphic frame of the canonical bundle KX of
the solvmanifold X given by the .n; 0/-form e D dZ1 ^ � � � ^ dZs ^ dz1 ^ � � � ^ dzt , the
squared pointwise !-norm is

jej2! D X
2
1 : : : X

2
s e

2Re 1C���C2Re t :

Hence, the weight function ' defined by e�' D jej! is

' D �

sX
jD1

xj �

tX
lD1

Re l :

Now, by the unimodularity of the Lie group G, the determinant of the matrix

diag
�
ex1 ; : : : ; exs ; e 1 ; : : : ; e t ; e 1 ; : : : ; e t

�
equals 1, which translates to

tX
lD1

Re l D �
1

2

sX
jD1

xj :

This leads to

' D �
1

2

sX
jD1

xj :

The curvature form of the canonical bundleKX of the solvmanifoldX is then given by

i‚!.KX / D i@N@' D �
1

2

sX
jD1

i@N@xj :

On the other hand, as observed above, N@xj D .1=2/ N̨j , so we get

@N@xj D
1

2
@˛j D

1

2
d j̨ D �

1

4
j̨ ^ ˛j ; j D 1; : : : ; s;

where we used the equalities

N@ j̨ D d j̨ D .1=2/ j̨ ^ ˛j :

The conclusion of this computation is summed up in the following result.
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Proposition 3.4. For every solvmanifold X D G=ƒ as in Proposition 3.1 (e.g., an O-T
manifold), the curvature form of the canonical bundle KX with respect to the fibre metric
induced by the Hermitian ! defined in (3.4) is

i‚!.KX / D
1

8

sX
jD1

i j̨ ^ ˛j :

In particular, i‚!.KX / � 0 on X and i‚!.KX /.x/.�; N�/ > 0 for every x 2X and
every � 2Ex .

3.2. Partial hyperbolicity of Miebach–Oeljeklaus manifolds

Consider the matrix group

H D

´ 
1 y v

0 x z

0 0 1

!
W x; y; z; v 2 R

µ
:

Then, the Lie algebra h of H is spanned by

A D

 
0 0 0

0 1 0

0 0 0

!
; B D

 
0 1 0

0 0 0

0 0 0

!
; C D

 
0 0 0

0 0 1

0 0 0

!
; T D

 
0 0 1

0 0 0

0 0 0

!
:

This leads to the structure equations:

ŒA; B� D �B; ŒA; C � D C; ŒB; C � D T; ŒA; T � D ŒB; T � D ŒC; T � D 0:

Now, take the dual basis ¹a; b; c; tº of h�. Then

da D 0; db D a ^ b; dc D �a ^ c and dt D �b ^ c:

Define ˛ D aC ib and ˇ D c C i t . We get

d˛ D ia ^ b D �
˛ ^ N̨

2
and dˇ D �.aC ib/ ^ c D �

˛ ^ .ˇ C Ň/

2
�

Regarding ¹˛; ˇº as a global C1-frame of .1; 0/-forms, we have a left-invariant complex
structure on H .

Now, consider G D Hd . Miebach and Oeljeklaus construct in [23] a lattice � in G
corresponding to a totally real number field K of degree d satisfying certain conditions.
From this, we get the compact complex manifold X WD G=� with a global C1-frame
¹˛1; : : : ; ˛d ; ˇ1; : : : ; ˇd º of .1; 0/-forms satisfying the following equations:

d˛i D �
˛i ^ N̨ i

2
and dˇi D �

˛i ^ .ˇi C Ňi /

2

for all i 2 ¹1; : : : ; dº. Thus,

N@˛i D �
˛i ^ N̨ i

2
and N@ˇi D �

˛i ^ Ňi

2
�



Partially hyperbolic compact complex manifolds 19

Now, let ¹E1; : : : ; Ed ; F1; : : : ; Fd º be the frame of T 1;0X that is dual to the frame
¹˛1; : : : ; ˛d ; ˇ1; : : : ; ˇd º of ƒ1; 0T ?X . We get

N@Ei D �
N̨ i ^Ei C Ňi ^ Fi

2
and N@Fi D 0

for all i 2 ¹1; : : : ; dº.
Let E and F be the C1-trivial vector subbundles of T 1; 0X generated by E1; : : : ;Ed

and, respectively, by F1; : : : ;Fd . Note that while F is a holomorphic subbundle of T 1; 0X ,
E is only a C1 subbundle.

A natural Hermitian metric on X is defined by the positive definite C1 .1; 1/-form

(3.4) ! D i˛1 ^ ˛1 C � � � C i˛d ^ ˛d C iˇ1 ^ ˇ1 C � � � C iˇd ^ ˇd > 0:

Thus,
! D !E C !F ;

where

!E WD i˛1 ^ ˛1 C � � � C i˛d ^ ˛d � 0 and !F WD iˇ1 ^ ˇ1 C � � � C iˇd ^ ˇ td � 0

are C1 positive semi-definite .1; 1/-forms onX . By construction, !E .�; N�/ > 0 for every
.1; 0/-tangent vector � of E and !E .�; N�/ D 0 for all .1; 0/-tangent vectors �; � of F .
The analogous property is satisfied by !F with E and F permuted.

Let us now consider the following C1 .1; 1/-form on X :

� D !E D d.�2i˛1 � � � � � 2i˛d /:

Since � is d -exact on the compact complex manifold X , its lift to the universal cover G
is d.bounded/ with respect to the lift of the metric !. In particular, the triple .E;�; ! D
!E C !F / is a partially 1-Kähler hyperbolic structure on X .

We have thus proved the following.

Proposition 3.5. The solvmanifold X D G=ƒ obtained as the quotient of G D Hd by
any co-compact lattice ƒ (e.g., the Miebach–Oeljeklaus manifold) is partially 1-Kähler
hyperbolic.

3.3. Partial hyperbolicity of a class of complex parallelisable solvmanifolds

Let n2N? and let G D Cn Ë CnC1 be the complex Lie group defined as a semi-direct
product via the map

Cn
3 .z1; : : : ; zn/ 7! diag.ez1 ; : : : ; ezn ; e�z1�����zn/ 2 Aut.CnC1/ D GLnC1.C/;

where diag stands for the diagonal matrix with the indicated diagonal entries. This Lie
group is solvable.

We can construct a lattice � in G associated with a totally real algebraic number
field K of degree n C 1 in the same way as in Example 4 of [15]. To wit, consider the
semi-direct product H D Rn Ë RnC1 via the map

Rn 3 .x1; : : : ; xn/ 7! diag.ex1 ; : : : ; exn ; e�x1�����xn/ 2 GLnC1.R/:



H. Kasuya and D. Popovici 20

For a totally real algebraic number fieldK of degree nC 1, Dirichlet’s unit theorem yields
a subgroup � 0 � O�K such that � 0 can be regarded as a lattice in Rn. Then, the semi-direct
product � 01 Ë OK can be regarded as a lattice in H D Rn Ë RnC1 (see [29]). We obtain
the lattice

� D .� 01 ˚ .2�Z/n/ Ë .OK C
p
�1OK/

in G. We will investigate the compact complex manifold X D G=� , a solvmanifold of
complex dimension 2nC 1.

Denoting by z1; : : : ; zn the coordinates of Cn and by w1; : : : ; wnC1 the coordinates
of CnC1, the C1 .1; 1/-form

(3.5) z!D
nX

jD1

idzj ^ d Nzj C

nX
jD1

e�zj�Nzj idwj ^ dwj C e
Pn
jD1.zjCNzj / idwnC1 ^ dwnC1

is positive definite, hence it defines a Hermitian metric, on G. Moreover, it passes to the
quotient and induces the Hermitian metric

! D

nX
jD1

i j̨ ^ ˛j C

nX
jD1

i ǰ ^ ˇj C iˇnC1 ^ ˇnC1

on X , where ˛1; : : : ; ˛n, ˇ1; : : : ; ˇn and ˇnC1 are the holomorphic .1; 0/-forms induced
on X by, respectively, the following holomorphic .1; 0/-forms of G:

dz1; : : : ; dzn; e�z1 dw1; : : : ; e
�zn dwn and e

Pn
jD1 zj dwnC1:

Since G is a complex Lie group, the manifold X is complex parallelisable in the sense
that its holomorphic tangent bundle T 1; 0X is holomorphically trivial.

A global holomorphic frame for the holomorphic cotangent bundle ƒ1; 0T ?X is pro-
vided by ¹˛1; : : : ; ˛n; ˇ1; : : : ; ˇn; ˇnC1º. Let ¹e1; : : : ; en; f1; : : : ; fn; fnC1º be the dual
global holomorphic frame of T 1; 0X .

It is easy to see that the .2n; 2n/-form

z!2n WD
z! 2n

.2n/Š

is d -exact on G (the universal cover of X ), but it is not d.bounded/ on G. However,
we will now show that if we remove one of the terms exp.�zj � Nzj / idwj ^ dwj (for
example, the one corresponding to j D 1) from the sum defining z!, we get a semi-positive
.1; 1/-form whose .2n/-th power is d.bounded/ on G. This will lead to a partially .2n/-
Kähler hyperbolic structure on X .

Let

z!1 D

nX
jD1

idzj ^ d Nzj C

nX
jD2

e�zj�Nzj idwj ^ dwj C e
Pn
jD1.zjCNzj / idwnC1 ^ dwnC1

be the positive semi-definite C1 .1; 1/-form on G equal to z! � e�z1�Nz1 idw1 ^ dw1.
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We have

.z!1/2n D
!2n1
.2n/Š

D ez1CNz1 idz1 ^ d Nz1 ^

nY
lD2

idzl ^ d Nzl ^
� nY
rD2

idwr ^ dwr

�
^ .idwnC1 ^ dwnC1/

D d
�
iez1CNz1 d Nz1 ^

nY
lD2

idzl ^ d Nzl ^

nY
rD2

idwr ^ dwr ^ idwnC1 ^ dwnC1

�
D d

�
i d Nz1 ^

nY
lD2

idzl ^ d Nzl ^

nY
rD2

�
e�zr�Nzr idwr ^ dwr

�
^

�
e
Pn
jD1.zjCNzj / idwnC1 ^ dwnC1

��
D d z�;

with the definition of the .2n � 1/-form z� on G made obvious by the notation.
A comparison of the formula for z� with the definition (3.5) of z! shows that z� is

z!-bounded on G. We conclude that .z!1/2n is d.bounded/ on G with respect to the met-
ric z!, or equivalently, that the .2n; 2n/-form .!1/2n is Qd.bounded/ on X with respect to
the metric !, where !1 is the positive semi-definite C1 .1; 1/-form

!1 D

nX
jD1

i j̨ ^ ˛j C

nX
jD2

i ǰ ^ ˇj C iˇnC1 ^ ˇnC1

on X . This shows that .E; �; ! D !E C !nE / is a partially (2n)-Kähler hyperbolic
structure on X , where E is the (globally trivial) holomorphic subbundle of T 1; 0X gener-
ated by e1; : : : ; en; f2; : : : ; fn; fnC1 and � WD .!1/2n. We put, of course, !E WD !1 and
!nE WD iˇ1 ^ ˇ1.

We have thus proved the following.

Proposition 3.6. The .2n C 1/-dimensional complex parallelisable solvmanifolds X D
G=� described above are partially .2n/-Kähler hyperbolic.

Since the metric ! is flat (as can be easily seen) on the globally holomorphically
trivial vector bundle T 1; 0X , the induced holomorphic sectional curvatures of X and the
curvature of KX vanish.

3.4. Vaisman manifolds

Let .X; J / be a compact complex manifold endowed with a Hermitian metric g and
let ! D g.�; J �/ be the fundamental form of g. The following definition is standard: the
metric g is said to be locally conformal Kähler (lcK) if there exists a closed 1-form �

(called the Lee form) such that d! D � ^ !.
It is known (see Theorem 2.1 of [8]) that if � is not exact, the manifold .X; J / does

not admit any Kähler structure.
Let r be the Levi-Civita connection of g. An lcK metric g is said to be a Vaisman

metric ([31]) if r� D 0.
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Now, suppose that g is Vaisman. We summarise below the argument in Sections 2
and 3 of [30]. Let A and B be the vector fields that are dual to the 1-forms � and respect-
ively �� ı J with respect to the metric g. Then

A D JB; LAJ D 0; LBJ D 0; LAg D 0; LBg D 0 and ŒA; B� D 0:

The holomorphic vector field B � iA generates a holomorphic foliation F . We have

! D d.� ı J / � � ^ .� ı J /

and d.� ı J / is a transverse Kähler structure on F . This means that

d.� ı J / D 0 on F and d.� ı J / > 0 on T 1;0=F :

Consider the C1 vector subbundle E D ker.� C i � ı J / of the holomorphic tangent
vector bundle T 1;0X of X .

Since the .1; 1/-form � D d.� ı J / is d -exact on the compact complex manifold X ,
its lift to the universal cover is d.bounded/ with respect to the lift of the metric !. Hence,
.E;�;! D d.� ı J /� � ^ .� ı J // is a partially 1-Kähler hyperbolic structure onX . We
have thus proved the following.

Proposition 3.7. Every compact complex manifold admitting a Vaisman metric is partially
1-Kähler hyperbolic.

We remark that a compact Vaisman manifold is never Kobayashi hyperbolic.
A primary Hopf manifold is a compact complex manifold obtained as the quotient

of Cn n ¹0º by a subgroup generated by a transformation of Cn n ¹0º of the shape

.z1; : : : ; zn/ 7! .�1z1; : : : ; �nzn/;

where �1; : : : ; �n are complex numbers such that 0 < j�nj � � � � � j�1j < 1.
It is known (see [13]) that every primary Hopf manifold admits a Vaisman metric.

Thus, every primary Hopf manifold is partially 1-Kähler hyperbolic.

4. Ahlfors currents

In this section, we give a sufficient condition, reminiscent of de Thélin’s criteria of [5], for
the existence of an Ahlfors current on a compact complex Hermitian manifold. However,
our condition seems simpler, is cast in the language of this paper and is similar to the
subexponential growth condition of Definition 2.3. Thus, it seems better suited to our
situation. We then go on to discuss several examples and the link between these currents
and partial hyperbolicity.

4.1. Existence of Ahlfors currents

Let f WCp! .X;!/ be a holomorphic map that is non-degenerate at some point x0 2Cp ,
where 1 � p � n � 1 and X is an n-dimensional compact complex manifold equipped



Partially hyperbolic compact complex manifolds 23

with a Hermitian metric !. We will use the notation of Section 2.2 (with q D p). In
particular, for every r > 0, Br and Sr stand for the open ball, respectively the sphere, of
radius r centred at the origin of Cp , while ŒBr � and ŒSr � denote the currents of integration
thereon. One can consider the direct image f?ŒBr � of the current ŒBr � under f (cf., e.g.,
Section 2.C.1 in Chapter I of [7]). It is a current in X of the same bidimension .p; p/
as ŒBr �, so f?ŒBr �� 0 is a strongly positive current of bidegree .n� p; n� p/ inX . (See,
e.g., Section 1.C in Chapter III of [7], for the notions of strongly positive and (weakly)
positive currents.)

We can normalise f?ŒBr � to get the bidegree-.n � p; n � p/-current

(4.1) Tr WD
1

Vol!;f .Br /
f?ŒBr � � 0; r > 0;

in X . It has unit mass with respect to !:

(4.2)
Z
X

Tr ^ !p D
1

Vol!;f .Br /

Z
Cp

ŒBr � ^ f
?!p D

1

Vol!;f .Br /

Z
Br

f ?!p D 1

for all r > 0. Thus, the family .Tr /r>0 of strongly positive currents, being uniformly
bounded in mass, has a weakly convergent subsequence .Tr� /�2N with r� ! C1. The
limiting current T � 0 is strongly positive of bidegree .n � p; n � p/ in X . However, T
need not be d -closed since

(4.3) dŒBr � D �ŒSr � ¤ 0; r > 0;

as follows at once from the Stokes theorem.
A current T obtained as the limit in the weak topology of currents of a sequence of

currents Tr� � 0 constructed as above from a holomorphic map f WCp ! .X; !/, with
r� ! C1, is said to be an Ahlfors current if dT D 0. It is well known that Ahlfors
currents need not exist on an arbitrary compact complex manifold X .

Before giving our sufficient condition for the existence of an Ahlfors current T , we
give a general estimate on the norms of the currents @Tr that holds without any special
assumption on the map f .

We start by following de Thélin’s strategy of [5], from which we will deviate at some
point that will be specified. Since T is the limit of strongly positive (hence real) currents,
it is itself real. Thus, N@T is the conjugate of @T , so proving that dT D 0 is equivalent to
proving that @T D 0. To this end, we will show that a certain norm of @T vanishes.

As a current of bidegree .n � p C 1; n � p/ on the n-dimensional compact complex
manifold X , @T acts on C1 forms of bidegree .p � 1; p/. We consider the closed unit
ball of these forms with respect to the C 0-norm induced by the metric !:

F!.p � 1; p/ WD ¹ 2 C
1
p�1;p.X; C/ j k kC 0! WD max

x2X
j .x/j! � 1º

and the induced norm on the space D
0n�pC1; n�p.X/ of bidegree-.n � p C 1; n � p/-

currents S on X :
kSk WD sup

 2F!.p�1;p/

jhS;  ij:

Our general estimate, different from the one in Theorem 0.1 of [5], is spelt out in the
following result.



H. Kasuya and D. Popovici 24

Theorem 4.1. Let X be an n-dimensional compact complex manifold equipped with a
Hermitian metric !. Let p 2 ¹1; : : : ; n � 1º and let f WCp ! X be a holomorphic map
that is non-degenerate at some point x0 2 Cp .

Then, the norm of @Tr , where Tr is the current defined by f through formula (4.1),
satisfies the estimate

(4.4) k@Trk �
1
p
2

A!;f .Sr /

Vol!;f .Br /
; r > 0;

where A!;f .Sr / and Vol!;f .Br / are the .!; f /-area of the Euclidean sphere Sr � Cp ,
respectively the .!; f /-volume of the Euclidean ball Br � Cp , defined in (2.5) and (2.2).

Proof. In a departure from the strategy of [5], we handle the .p � 1; p/-forms on Cp

starting from the standard fact that the pointwise multiplication by the .p � 1/-st power
of any metric (in our case, of the degenerate metric f ?!, that is a genuine metric on
Cp n †f ) is an isomorphism on its image when acting on 1-forms in Cp . In particular,
the linear map

f ?!p�1 ^ � W ƒ
0; 1T ?Cp

! ƒp�1;pT ?Cp

is bijective at every point of Cp n †f . Hence, for every .p � 1; p/-form  on X , there
exists a unique .0; 1/-form ˛ on Cp such that

(4.5) f ? D ˛ ^ f
?!p�1:

This gives the latter equality below, while the former equality follows from the stand-
ard formula (2.1) expressing the image under the Hodge star operator of any primitive
form (in this case, ˛ , which is a 1-form, hence primitive):

?f ?!˛ D i ˛ ^ f
?!p�1 D i f

? :

In particular, since the Hodge star operator is an isometry with respect to the pointwise
norm, we infer

(4.6) j˛ jf ?! D jf
? jf ?! D j j!

at every point in Cp n†f .
We now set about proving estimate (4.4). For  2C1p�1;p.X; C/ and r > 0, we have

h@f?ŒBr �;  i D h@ŒBr �; f
? i

(a)
D hdŒBr �; f

? i
(b)
D �hŒSr �; ˛ ^ f

?!p�1i

D �

Z
Sr

˛ ^ f
?!p�1 W

(c)
D h.r/

(d)
D H 0.r/;(4.7)

where (a) follows from hN@ŒBr �; f ? i D 0 (which holds trivially, for bidegree reasons,
since N@ŒBr � is a current of bidegree .0; 1/ and f ? is a form of bidegree .p � 1; p/
in Cp), (b) follows from (4.3) and (4.5), (c) is the definition of a function hW .0; C1/!R
and (d) is the immediate consequence of the definition H.r/ WD

R r
0
h.t/ dt of a function

H W .0; C1/! R.
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As in [5], we momentarily fix arbitrary reals 0< r < r 0, but we will handle the integrals
differently. We have

H.r 0/ �H.r/

r 0 � r
D �

1

r 0 � r

Z r 0

r

� Z
St

˛ ^ f
?!p�1

�
dt

D �
1

r 0 � r

Z
Br 0nBr

˛ ^ d� ^ f
?!p�1;

where the last equality follows from the Fubini theorem and �WCp ! Œ0; C1/ is the
function defined by �.z/ D jzj (hence � D t on St and d� D dt ). Since d� D @� C N@�
and ˛ ^ N@� ^ f ?!p�1 D 0 for bidegree reasons (as it is a .p � 1; p C 1/-form in Cp),
we get the first equality below:

H.r 0/ �H.r/

r 0 � r

D �
1

r 0�r

Z
Br 0nBr

˛ ^ @� ^ f
?!p�1 D �

1

r 0�r

Z
Br 0nBr

ƒf ?!.˛ ^ @�/ f
?!p(4.8)

for all 0 < r < r 0.
Now, recalling that �.z/ D jzj2 for all z 2Cp , we get � D �2, hence

i@� ^ N@� D 4�2 i@� ^ N@� D 4jzj2 i@� ^ N@�; z 2Cp:

Meanwhile, for any .1; 0/-forms ˛ and ˇ on a p-dimensional complex manifold
(e.g., Cp) equipped with a Hermitian metric 
 , we have the general formula

(4.9) h˛; ˇi
 D ƒ
 .i˛ ^ ˇ/;

where ƒ
 is the adjoint of 
 ^ � with respect to the pointwise inner product h � ; � i
 . This
formula follows by putting together the following equalities (where dV
 WD 
p is the
volume form induced by 
 ):

h˛; ˇi
 dV
 D ˛ ^ ?
ˇ D i˛ ^ ˇ ^ 
p�1;

ƒ
 .i˛ ^ ˇ/ dV
 D .i˛ ^ ˇ/ ^ 
p�1;

where the primitivity of the .0; 1/-form ˇ yielded ?
ˇD iˇ ^ 
p�1 thanks to the standard
formula (2.1) applied to the Hodge star operator ?
 evaluated on primitive forms.

In particular, (4.9) yields the latter equality below:

(4.10) jd� j2f ?! D 2 j@� j
2
f ?! D 2ƒf ?!.i@� ^

N@�/:

We also get the analogous equalities for � in place of � .
On the other hand, after noticing that (4.9) also yields the equality

�ƒf ?!.i˛ ^ @�/ D h@�; ˛ if ?!
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(the last expression being the pointwise inner product with respect to f ?! of two .1; 0/-
forms), the Cauchy–Schwarz inequality yields the first of the following pointwise inequal-
ities in Cp n†f :ˇ̌
ƒf ?!.˛ ^ @�/

ˇ̌
� j˛ jf ?! j@�jf ?! D j j!

q
ƒf ?!.i@� ^ N@�/

D
j j!

2jzj

q
ƒf ?!.i@� ^ N@�/ �

j@� jf ?!

2jzj
k kC 0! D

jd� jf ?!

2
p
2 jzj
k kC 0!(4.11)

for every form  2C1p�1;p.X; C/, where the identity (4.6) was used to get the first equal-
ity, while (4.10) and its analogue for @� were also used.

Putting together (4.8) and (4.11), we getˇ̌̌H.r 0/ �H.r/
r 0 � r

ˇ̌̌
�

1

r 0 � r

Z
Br 0nBr

jƒf ?!.˛ ^ @�/jf
?!p

�
1

r 0 � r

k kC 0!

2
p
2

Z
Br 0nBr

jd� jf ?!

jzj
f ?!p:(4.12)

Now, recall that f ?!p D .d�=jd� jf ?!/^ d�!;f , where d�!;f D ?f ?!.d�=jd� jf ?!/
is the area measure induced by the degenerate metric f ?! on the spheres of Cp (see (2.3)
and (2.4)). Thus, (4.12) and a new application of the Fubini theorem lead toˇ̌̌H.r 0/ �H.r/

r 0 � r
j �

1

r 0 � r

k kC 0!

2
p
2

Z r 0

r

1

t

� Z
St

d�!;f; t

�
2tdt

D

� 1

r 0 � r

Z r 0

r

A!;f .St / dt
� k kC 0!
p
2

(4.13)

since � D t2 on St , hence d� D 2tdt .
Inequality (4.13) holds for every 2C1p�1;p.X; C/ and for all reals 0 < r < r 0. Fixing

r > 0 and letting r 0 # r , the left side of (4.13) converges to jH 0.r/j D jh.r/j, while the
right side of (4.13) converges to A!;f .Sr / k kC 0!=

p
2. Recalling (4.7), this leads to

jh@Tr ;  ij D
ˇ̌̌D
@
� f?ŒBr �

Vol!;f .Br /

�
;  

Eˇ̌̌
�

1
p
2

A!;f .Sr /

Vol!;f .Br /
k kC 0!

for every r > 0 and every  2C1p�1;p.X; C/.
Taking the supremum over  2F!.p � 1; p/, we get (4.4) and we are done.

Our existence result for Ahlfors currents now follows at once from Theorem 4.1.

Theorem 4.2. Let X be an n-dimensional compact complex manifold equipped with a
Hermitian metric !. Suppose there exists p 2 ¹1; : : : ; n � 1º and a holomorphic map
f WCp ! X , non-degenerate at some point x0 2 Cp , satisfying the condition

(4.14) lim inf
r!C1

A!;f .Sr /

Vol!;f .Br /
D 0;

where A!;f .Sr / and Vol!;f .Br / are the .!; f /-area of the Euclidean sphere Sr � Cp ,
respectively the .!; f /-volume of the Euclidean ball Br � Cp , defined in (2.5) and (2.2).
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Then, there exists a sequence of positive reals r� !C1 such that the currents

Tr� WD
1

Vol!;f .Br� /
f?ŒBr� �

converge in the weak topology of currents to a strongly positive current T � 0 of bidegree
.n�p; n�p/ and of mass 1 with respect to ! onX that has the further property dT D 0.

Proof. As explained at the beginning of this Section 4.1, there always exists a current T
obtained as the weak limit of a sequence of currents Tr� as in the statement and satisfying
all the stated properties except, possibly, dT D 0. To guarantee this last property, we use
hypothesis (4.14) to infer the existence of a sequence of positive reals r�!C1 such that

lim
�!C1

A!;f .Sr� /

Vol!;f .Br� /
D 0:

This implies, thanks to the general estimate (4.4), that k@Tr�k converges to 0 as �!C1.
Now, thanks to (4.2), we have

R
X
Tr� ^ !p D 1 for all � 2 N. Thus, we can apply

to the sequence .Tr� /��0 the argument given at the beginning of this Section 4.1 to infer
the existence of a subsequence (denoted by the same symbol) of .Tr� /��0 that converges
weakly to a current T .

The only conclusion that still needs proving is dT D 0. Since @ is continuous with
respect to the weak topology of currents, we get

0 � k@T k D


 lim
�!C1

@Tr�


 � lim

�!C1
k@Tr�k D 0;

where the last equality was seen above. We infer that k@T k D 0, hence @T D 0, hence
dT D 0, as desired.

Since the manifold X of Theorem 4.2 is compact, any two Hermitian metrics !1
and !2 thereon are comparable, in the sense that there exist constants A; B > 0 such
that A!1 � !2 � B!1 on X . This implies that Af ?!1 � f ?!2 � Bf ?!1 on Cp , so the
growth condition (4.14) imposed on f is independent of the choice of Hermitian metric
! on X .

4.2. Examples of manifolds carrying Ahlfors currents

Note that hypothesis (4.14) is a kind of subexponential growth condition on f similar,
though not identical, in nature to the condition introduced in Definition 2.3. In the special
case where the pullback of ! under f coincides with the standard Kähler metric ˇ of Cp ,
namely

(4.15) f ?! D ˇ D
1

2

pX
jD1

idzj ^ d Nzj ;

the .!; f /-area function r 7! A!;f .Sr / D Aˇ .Sr / for the Euclidean spheres Sr � Cp

is the derivative of the .!; f /-volume function r 7! Vol!;f .Br / D Volˇ .Br / of the Euc-
lidean balls Br � Cp , as shown by the Fubini theorem:

(4.16) Volˇ .Br / D
Z
Br

p̌ D

Z r

0

� Z
St

d�ˇ; t

�
dt D

Z r

0

Aˇ .St / dt; r > 0;
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where d�ˇ; t is the restriction to St of the area measure d�ˇ WD ?ˇ .d�=jd� jˇ / induced
by the Euclidean metric ˇ on the spheres of Cp . Thus, p̌ D .d�=jd� jˇ / ^ d�ˇ in Cp .
To justify the factor dt in the integrals of (4.16), note that

i@� ^ N@� D
X

1�j; k�p

zk Nzj idzj ^ d Nzk

in Cp , so (4.10) implies

jd� j2ˇ D 2ƒˇ .i@� ^
N@�/ D 4jzj2 in Cp:

In particular, jd� jˇ D 2t on St . Meanwhile, � D t2 on St , so d� D 2t dt and d�=jd� jˇ D
dt on St .

Formula (4.16) is, of course, standard, as are the equalities Volˇ .Br / D cp r
2p and

Aˇ .Sr / D bp r
2p�1 with constants cp; bp > 0 related by bp D 2p cp . In particular, hypo-

thesis (4.14) is satisfied by any map f WCp ! X with the property (4.15), the growth of
any such f being even polynomial. Thus, an immediate consequence of our Theorem 4.2
is the existence of an Ahlfors current induced by any map satisfying condition (4.15).

Corollary 4.3. Let X be an n-dimensional compact complex manifold. Suppose there
exist p 2¹1; : : : ; n� 1º, a holomorphic map f WCp ! X and a Hermitian metric ! on X
such that f ?! D ˇ.

Then, there exists a sequence of positive reals r� !C1 such that the currents

Tr� WD
1

Volˇ .Br� /
f?ŒBr� �

converge in the weak topology of currents to a strongly positive current T � 0 of bidegree
.n�p; n�p/ and of mass 1 with respect to ! onX that has the further property dT D 0.

This corollary, in turn, implies the existence of an Ahlfors current of bidegree .1; 1/
on every complex torus X D Cn=� (where � � .Cn; C/ is any lattice) and on every
Nakamura manifold X D G=� (defined as the quotient of the solvable, non-nilpotent
complex Lie group G D .C3; ?/ whose group operation is

.�1; �2; �3/ ? .z1; z2; z3/ D .�1 C z1; �2 C e
��1 z2; �3 C e

�1 z3/;

by any lattice � � G; see, e.g., [24] for the definition and the basic properties of these
manifolds). Indeed, these manifolds X were shown to be non-balanced hyperbolic in
Examples (VI)(a), (b) in Section 2.3 of [21], owing to the existence in each case of a non-
degenerate holomorphic map f WCn�1 ! X (where n D 3 in the case of the Nakamura
manifolds) satisfying property (4.15) for a certain choice of Hermitian metric ! on each
of these X .

As a further consequence of our Theorem 4.2, we now prove the existence of an
Ahlfors current on the Iwasawa manifold induced by a map f that does not have prop-
erty (4.15). Recall that the Iwasawa manifold is the 3-dimensional compact complex
manifold X D G=� defined as the quotient of the Heisenberg group G, namely the nilpo-
tent complex Lie group G D .C3; ?/ whose group operation is

.�1; �2; �3/ ? .z1; z2; z3/ D .�1 C z1; �2 C z2; �3 C z3 C �1z2/;
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by the lattice � � G consisting of the elements .z1; z2; z3/ 2 G with z1; z2; z3 2 ZŒi �.
(See, e.g., [24]).

It was observed in Example (VI)(b) in Section 2.3 of [21] that there exist a non-
degenerate holomorphic map f WC2 ! X and a Hermitian metric ! on X such that

f ?! D idz1 ^ d Nz1 C .1C jz1j
2/ idz2 ^ d Nz2 on C2:

This implies that f ?!2 D .1C jz1j2/ dV0, where dV0 D idz1 ^ d Nz1 ^ idz2 ^ d Nz2 is the
Euclidean volume form of C2, from which we get

Vol!;f .Br / D
Z
Br

.1C jz1j
2/ dV0 � c r

4.1C r2/; r > 0;

for some constant c > 0 independent of r . This implies, after fixing a constant c1 > c, that
there exists r1 > 0 such that

(4.17) Vol!;f .Br / � c1r6; r > r1:

Moreover, (4.10) gives the first equality below:

jd� j2f ?! D 2ƒf ?!.i@� ^
N@�/

D 2ƒf ?!

� X
1�j; k�2

zk Nzj idzj ^ d Nzk

�
D 2

�
jz1j

2
C
jz2j

2

1C jz1j2

�
;

for all z D .z1; z2/2C2. When z 2St , this translates to

(4.18) jd� j2f ?! D 2
jz1j

4 C t2

1C jz1j2
� 2 .jz1j

2
C t2/ � 2 .jzj2 C t2/ D 4t2:

For any 0 < r < r 0, we get

Vol!;f .Br 0 n Br / D
Z r 0

r

� Z
St

1

jd� jf ?!
d�!;f; t

�
2tdt �

Z r 0

r

A!;f .St / dt;

where we used formula (2.10) (see also (2.9)) to get the equality, while the inequality
followed from jd� jf ?! � 2t on St , a direct consequence of (4.18). Dividing by r 0 � r and
letting r 0 # r , we further get

V 0.r/ � A!;f .Sr /; r > 0;

where V 0 is the derivative of the function r 7! V.r/ WD Vol!;f .Br /. Thus, we get

(4.19)
A!;f .Sr /

Vol!;f .Br /
�
V 0.r/

V .r/
, r > 0:

Now, fix ˛ > 6. We claim that there exists a sequence r� !C1 such that

(4.20)
V 0.r�/

V .r�/
<
˛

r�
, � 2 N:
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We prove this claim by contradiction. Suppose the contention is false. Then, there
exists r2 > 0 such that V 0.r/=V .r/� ˛=r for all r � r2. This is equivalent to .logV.r//0 �
.˛ log r/0, hence to .log.V .r/=r˛//0 � 0 for all r � r2. This implies that the function
Œr2; C1/ 3 r 7! log.V .r/=r˛/ is non-decreasing, hence log.V .r/=r˛/ � log.V .r2/=r˛2 /
WD c2 for all r � r2. We would then have V.r/�C2 r˛ for all r � r2, whereC2 WD exp.c2/.
However, this would contradict (4.17).

Thus, the claim is proved. Putting (4.19) and (4.20) together, we get

A!;f .Sr� /

Vol!;f .Br� /
�
V 0.r�/

V .r�/
<
˛

r�
! 0 as � !C1:

This proves that

lim inf
r!C1

A!;f .Sr /

Vol!;f .Br /
D 0;

which means in turn that the non-degenerate holomorphic map f WC2 ! X satisfies con-
dition (4.14).

Thus, our Theorem 4.2 yields the following.

Proposition 4.4. The Iwasawa manifold carries an Ahlfors current.

4.3. Link with partial hyperbolicity

When p D n � 1, a holomorphic map f WCn�1 ! .X; !/ that is non-degenerate at some
point and satisfies the growth condition (4.14) gives rise, thanks to Theorem 4.2, to an
Ahlfors current T � 0 of bidegree .1; 1/ on X . Since T is a non-zero (because it has unit
mass with respect to !) d -closed positive .1; 1/-current, X cannot carry any degenerate
balanced structure, namely there is no C1 positive definite .n � 1; n � 1/-form � on X
such that � 2 Im d . This is one implication of an equivalence proved in Proposition 5.4
of [27]. Since the existence of a degenerate balanced structure on X is a special type of
balanced hyperbolicity (cf. [21]), this observation is an indication (already noted, e.g.,
in [22] in the context of maps from C) of a link between possible hyperbolicity properties
of X and the possible non-existence of Ahlfors currents thereon.

We will now make this link precise for an arbitrary p 2 ¹1; : : : ; n � 1º. Our result
in this direction will be similar in nature to Theorem 2.7, except that the subexponential
growth condition of Definition 2.3 will be replaced by the growth condition (4.14). This
leads naturally to another notion of partial hyperbolicity.

Definition 4.5. Let X be a compact complex manifold with dimCX D n, where n � 2.
Fix p2¹1; : : : ;n� 1º and suppose there is aC1 complex vector subbundleE of rank� p
of the holomorphic tangent bundle T 1; 0X .

The manifold X is said to be strongly partially p-hyperbolic in the E-directions if
there exists no holomorphic map f WCp ! X simultaneously satisfying the following
three conditions:

(i) f is non-degenerate at some point x0 2 Cp;
(ii) f is E-horizontal;
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(iii) for some (hence any) Hermitian metric ! on X , f satisfies the growth condition
(4.14), namely

lim inf
r!C1

A!;f .Sr /

Vol!;f .Br /
D 0;

where A!;f .Sr / and Vol!;f .Br / are, respectively, the .!;f /-area of the Euclidean
sphere Sr � Cp and the .!; f /-volume of the Euclidean ball Br � Cp , defined
in (2.5) and (2.2).

We can now state the result we have been alluding to.

Theorem 4.6. LetX be an n-dimensional compact complex manifold, with n � 2, and let
p 2 ¹1; : : : ; n � 1º.

If X has a partially p-Kähler hyperbolic structure .E; �; ! D !E C !nE /, then X
is strongly partially p-hyperbolic in the E-directions. In particular, there is no Ahlfors
current on X induced by a map as in Definition 4.5.

Proof. We shall reason by contradiction. Suppose that an E-horizontal holomorphic map
f WCp! X that is non-degenerate at some point and satisfies the growth condition (4.14)
existed. We use the notation of Section 2.

Since f is E-horizontal, f ?! D f ?!E (cf. (2.8)), hence also

f ?!p D f
?� D d. Qf ?z�/

on Cp , where z� is the z!-bounded .2p � 1/-form on the universal cover zX with the prop-
erty �?X� D d z� given by the partial p-Kähler hyperbolicity hypothesis on X . Thus, we
get

1 D
1

Vol!;f .Br /

Z
Br

f ?!p D
1

Vol!;f .Br /

Z
Br

d. Qf ?z�/ D
1

Vol!;f .Br /

Z
Sr

Qf ?z�

�
C

Vol!;f .Br /

Z
Sr

�!;f; r D C
A!;f .Sr /

Vol!;f .Br /
; r > 0;

where C > 0 is a constant whose existence reflects the boundedness in Cp of Qf ?z� with
respect to f ?! (cf. Lemma 2.8).

This contradicts the assumption (4.14) made on f .

The use of the adverb “strongly” in the above terminology is warranted by the partial
hyperbolicity notion introduced in Definition 4.5 being stronger than the one introduced
in Definition 2.5, as shown by the following.

Theorem 4.7. Let X be a compact complex manifold with dimCX D n � 3 and fix p 2
¹1; : : : ; n� 1º. Suppose there exists a C1 complex vector subbundle E of rank� p of the
holomorphic tangent bundle T 1; 0X .

If X is strongly partially p-hyperbolic in theE-directions, thenX is partially p-hyper-
bolic in the E-directions.

The proof of this result follows at once from the following general fact.



H. Kasuya and D. Popovici 32

Proposition 4.8. Let X be an n-dimensional compact complex manifold, with n � 2, let
p 2 ¹1; : : : ; n � 1º and let f WCp ! X be a holomorphic map that is non-degenerate at
some point x0 2 Cp .

If f satisfies the subexponential growth condition of Definition 2.3, then f satisfies
the growth condition (4.14).

Proof. This proof is implicit in the proof of Theorem 2.7. Indeed, fix an arbitrary Her-
mitian metric ! on X . As already pointed out, inequality (2.11) holds without any special
assumption on f or X .

On the other hand, let us suppose that f does not satisfy the growth condition (4.14).
This means that there exists a constant C > 0 such that

A!;f .Sr /

Vol!;f .Br /
�
1

C

for every r > 0 large enough. This amounts to inequality (2.12) (which in the proof of
Theorem 2.7 is a consequence of the Stokes theorem and the partial p-Kähler hyperbolicity
assumption on X ) holding for all r > 0.

As in the proof of Theorem 2.7, putting (2.11) and (2.12) together and using part (i)
of the subexponential growth assumption on f, we get inequality (2.13) which, thanks to
part (ii) of the subexponential growth assumption on f , leads to a contradiction of the
non-degeneracy property of f .

5. Curvature sign and partial hyperbolicity

The curvature-like notion that seems best suited to our partial hyperbolicity context and
will be used in this paper was introduced very recently in [28]. We now briefly recall the
construction for the reader’s convenience.

5.1. Brief reminder of a construction from [28]

If ! is a Hermitian metric on an n-dimensional complex manifold X , the pointwise linear
map

!n�2 ^ � W ƒ
1; 1T ?X ! ƒn�1; n�1T ?X

(that multiplies .1; 1/-forms by !n�2) is bijective. Therefore, there exists a unique C1

.1; 1/-form �! on X such that

i@N@!n�2 D !n�2 ^ �! :

Explicit computations (cf. Section 2.1 of [28]) lead to the following formula for the
Hodge star operator ? D ?! evaluated on �! :

?�! D
1

n � 1

! ^ i@N@!n�2

!n
!n�1 � i@N@!n�2:
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This prompts one to consider the C1 function f! W X ! R defined by

(5.1) f! WD
! ^ i@N@!n�2

!n
�

It is uniquely associated with each Hermitian metric ! on X and plays a role somewhat
similar in some respects, though quite different in other respects, to that of the classical
scalar curvature. Several results of [28] suggest that the scalar-valued .1; 1/-form �! and
the scalar-valued .n � 1; n � 1/-form

(5.2) ?�! D
1

n � 1
f! !n�1 � i@N@!n�2

play roles analogous in some respects to those of the classical vector bundle-valued cur-
vature form i‚!.T

1; 0X/ 2 C11; 1.X; End .T 1; 0X// of the holomorphic tangent bundle
of X .

We also recall the following definition from [28]: The Hermitian metric ! onX is said
to be pluriclosed star split if @N@.?�!/ D 0.

The following statement reproduces several results from [28] that will be relevant to
the ensuing discussion despite them not being used directly therein.

Theorem 5.1. Let X be a compact connected complex manifold with dimCX D n � 3

and let ! be a Hermitian metric on it.

(i) (Proposition 1.1 in [28]) If ! is pluriclosed star split, its associated function f!
satisfies one of the following three conditions:

f! > 0 on X; or f! < 0 on X; or f! � 0:

(ii) (Proposition 2.5 in [28]) If the function f! is a non-zero constant, the metric ! is
pluriclosed star split if and only if it is Gauduchon.

(iii) (Proposition 2.5 in [28]) If the metric ! is Gauduchon, then it is pluriclosed star
split if and only if the function f! is constant.

(iv) (Proposition 1.2 in [28]) If ! is balanced and pluriclosed star split, the (necessarily
constant) function f! is non-negative.

Recall that a Hermitian metric ! on an n-dimensional complex manifold X is said
to be Gauduchon (see [11]), respectively balanced (see [10] where these metrics were
termed semi-Kähler), if @N@!n�1 D 0, respectively if d!n�1 D 0. Every balanced metric
is, obviously, Gauduchon. Meanwhile, Gauduchon metrics always exist on every compact
complex manifold (see [11]), while balanced metrics need not exist, but they exist on quite
a few classes of compact complex non-Kähler manifolds. Meanwhile, every Kähler metric
is, obviously, balanced.

As evidenced by the above Theorem 5.1, the sign of the function f! associated with
a given Hermitian metric ! gives geometric information on the manifold X . A question
that was raised in [28] and whose answer is affirmative on nilmanifolds of complex dimen-
sion 3 is whether (or when) the sign of f! depends only on the complex structure of X .

In this paper, we shall use the signs of the function f! and the .n � 1; n � 1/-form
?�! to give a sufficient criterion for partial hyperbolicity of an n-dimensional compact
complex Hermitian manifold .X; !/.
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5.2. Sufficient metric criterion for partial hyperbolicity

We discuss here partial hyperbolicity in the directions of a vector subbundle E � T 1; 0X
of complex co-rank 1. However, we start with a definition for an arbitrary rank.

Definition 5.2. Let X be a compact complex manifold with dimCX D n, with n � 2. Fix
any p 2 ¹1; : : : ; n� 1º and suppose there is a C1 complex vector subbundle E � T 1; 0X
of rank p.

A real .p; p/-form� on X is said to be negative in the E-directions if for every point
x0 2 X and for some (hence any) C1 frame �1; : : : ; �p of E in a neighbourhood U of x0,
we have

�.�1; N�1; : : : ; �p; N�p/ < 0 at every point x 2U .

We are now in a position to state our sufficient criterion for partial hyperbolicity in
terms of the curvature-like objects f! and ?�! associated with a Hermitian metric ! via
formulae (5.1) and (5.2).

Theorem 5.3. Let X be an n-dimensional compact complex manifold such that there is
a C1 complex vector subbundle E � T 1; 0X of rank n � 1. If there exists a Hermitian
metric ! on X such that f! > 0 and the .n � 1; n � 1/-form ?�! is negative in the
E-directions, X is strongly partially .n � 1/-hyperbolic in the E-directions.

Proof. We reason by contradiction. Suppose there exists an E-horizontal holomorphic
map f WCn�1 ! X that is non-degenerate at some point and satisfies the growth condi-
tion (4.14). Then, by Theorem 4.2, f induces an Ahlfors current T on X which is the
weak limit of a sequence .Tr� /�2N of currents of bidegree .1; 1/ on X defined by (4.1).

Thus, on the one hand, the property dT D 0 and formula (5.2) imply, via the Stokes
theorem, the equality below:

(5.3)
Z
X

T ^ ?�! D
1

n � 1

Z
X

f! T ^ !n�1 > 0;

where the inequality follows from the hypothesis f! > 0 and the property T � 0 (with
T ¤ 0).

On the other hand, since f is E-horizontal and ?�! is negative in the E-directions,
f ?.?�!/ is a negative .n � 1; n � 1/-form on Cn�1. We get

(5.4)
Z
X

T ^ ?�! D lim
�!C1

Z
X

Tr� ^ ?�! D lim
�!C1

1

Vol!;f .Br� /

Z
Br�

f ?.?�!/ � 0:

Since (5.3) and (5.4) contradict each other, we are done.

We now give applications of Theorem 5.3 to several classes of examples of compact
complex manifolds.

(I) The Iwasawa manifold

We now return briefly to this well-known 3-dimensional compact complex manifold X
whose description was sketched in Section 4.2. Its cohomology is completely determined
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by three holomorphic .1; 0/-forms ˛, ˇ, 
 (so, N@˛ D N@ˇ D N@
 D 0) induced respectively
by the forms dz1, dz2 and dz3 � z1dz2 on C3 by passage to the quotient. They satisfy
the structure equations

@˛ D @ˇ D 0 and @
 D �˛ ^ ˇ ¤ 0:

Let ¹�; �; �º be the global holomorphic frame of T 1; 0X that is dual to the global
holomorphic frame ¹˛;ˇ; 
º ofƒ1; 0T ?X . We consider the following holomorphic vector
subbundle of T 1; 0X :

E WD h�; �i:

The standard Hermitian metric on the Iwasawa manifold is

! D i˛ ^ N̨ C iˇ ^ Ň C i
 ^ N
:

Moreover, by Section 2.2.1 of [28], for this metric one has

f! D 1;

?�! D
1

2
f! !2 � i@N@! D

1

2

�
i˛ ^ N̨ ^ i
 ^ N
 C iˇ ^ Ň ^ i
 ^ N
 � i˛ ^ N̨ ^ iˇ ^ Ň

�
:

So, in particular, ?�! is negative in the E-directions.
Thus, the hypotheses of Theorem 5.3 are satisfied. Consequently, we conclude the

following.

Corollary 5.4. The Iwasawa manifold is strongly partially 2-hyperbolic in the E-direc-
tions.

Recall that, on the other hand, the Iwasawa manifold X D G=� was shown in Exam-
ple (VI)(b) in Section 2.3 of [21] to not be divisorially hyperbolic. The non-degenerate
holomorphic map f WC2 ! X that was used to prove this statement in [21] (and again
in the proof of the above Proposition 4.4) was the composition of the map j WC2 ! C3

defined by j.z1; z2/ D .z1; z2; 0/ with the projection map � WC3 D G ! X D G=� . We
wish to stress that f is not E-horizontal, so there is no clash with Corollary 5.4.

Indeed, since

�?˛ D dz1; �?ˇ D dz2 and �?
 D dz3 � z1 dz2;

we get

�?.?�!/ D
1

2

�
idz1 ^ d Nz1 ^ i.dz3 � z1 dz2/ ^ .d Nz3 � Nz1 d Nz2/

C idz2 ^ d Nz2 ^ i.dz3 � z1 dz2/ ^ .d Nz3 � Nz1 d Nz2/ � idz1 ^ d Nz1 ^ idz2 ^ d Nz2
�
:

Moreover, since the third component of j vanishes, j ?.dz3/D 0 and j ?.d Nz3/D 0. Thus,
we get

f ?.?�!/ D j
?.�?.?�!// D

1

2
.jz1j

2
� 1/ idz1 ^ d Nz1 ^ idz2 ^ d Nz2

in C2. This shows that the .2; 2/-form f ?.?�!/ is not negative at every point of C2 as
would be the case if the map f were E-horizontal.
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(II) Certain small deformations Xt of the Iwasawa manifold X D X0

According to Section 2:2:3 of [28], for the standard Hermitian metric !t defined by the
three standard smooth .1; 0/-forms ˛t , ˇt , 
t that generate the cohomology of any small
deformation Xt lying in one of Nakamura’s classes (ii) or (iii) of the Iwasawa manifold
X D X0, one gets

f!t D A.t/;

?�!t D
A.t/

2
.i˛t ^ N̨ t ^ i
t ^ N
t C iˇt ^ Ňt ^ i
t ^ N
t � i˛t ^ N̨ t ^ iˇt ^ Ňt /;

where
A.t/ WD j�12.t/j

2
C j�2 N1.t/j

2
C j�1 N2.t/j

2
� 2Re

�
�1 N1.t/ �2 N2.t/

�
is a constant (depending only on the deformation parameter t ) defined by the coeffi-
cients �12.t/ and �j Nk.t/ featuring in the structure equations satisfied by the forms ˛t , ˇt
and 
t .

We now see that the hypotheses of the above Theorem 5.3, when the vector bundle Et
is chosen analogously to that of the Iwasawa manifold case (I) discussed above, are satis-
fied whenever A.t/ > 0. We conclude the following.

Corollary 5.5. For every complex number t close enough to 0 and such that A.t/ > 0,
the small deformation Xt lying in one of Nakamura’s classes (ii) or (iii) of the Iwasawa
manifold X D X0 is strongly partially 2-hyperbolic in the Et -directions.

(III) Certain small deformations Xt of the Calabi–Eckmann manifold
X D .S 3 � S 3; JCE/

According to Section 2.2.5 of [28], for the standard Hermitian metric !t on the small
deformationXt of the manifoldX DX0 (defined to be S3 �S3 equipped with the Calabi–
Eckmann complex structure JCE, where S3 is the 3-sphere), we have

f!t D 8 Im .t/ and ? �!t D Im .t/
�3i'1t ^ '1t C3i'2t ^ '2t �3i'3t ^ '3t

�
for every t in a small enough neighbourhood of 0 in C. This shows that, for every such t
for which Im .t/ > 0, we have: f!t > 0 and ?�!t is negative in the Et -directions, where
Et � T

1; 0Xt is the C1 subbundle of T 1; 0Xt generated by �1t and �2t , the first two
.1; 0/-vector fields in the frame ¹�1t ; �

2
t ; �

3
t º of T 1; 0Xt that is dual to ¹'1t ; '

2
t ; '

3
t º.

Applying again Theorem 5.3, we conclude the following.

Corollary 5.6. For every complex number t close enough to 0 and such that Im .t/ > 0,
the small deformation Xt of the Calabi–Eckmann manifold X D X0 D .S3 � S3; JCE/ is
strongly partially 2-hyperbolic in the Et -directions.
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