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Noncommutative scheme theory
and the Serre–Artin–Zhang–Verevkin theorem

for semi-graded rings

Andrés Chacón and Armando Reyes

Abstract. In this paper, we present a noncommutative scheme theory for the semi-graded rings gen-
erated in degree one defined by Lezama and Latorre [Internat. J. Algebra Comput. 27 (2017), 361–
389] following the ideas about schematicness introduced by Van Oystaeyen and Willaert [J. Pure
Appl. Algebra 104 (1995), 109–122] for N-graded algebras. With this theory, we prove the Serre–
Artin–Zhang–Verevkin theorem for several families of non-N-graded algebras and finitely non-N-
graded algebras appearing in ring theory and noncommutative algebraic geometry. Our treatment
contributes to the research on this theorem presented by Lezama from a different point of view.

Dedicated to Professor Lorenzo Acosta

1. Introduction

In his beautiful paper [42], Serre proved a theorem that describes the coherent sheaves
on a projective scheme in terms of graded modules. Briefly, a commutative graded k-
algebra is associated to a projective scheme ProjA, and the geometry of this scheme can
be described in terms of the quotient category qgrA D grA=tors, where grA denotes the
category of graded modules and tors denotes its subcategory of torsion modules. For A a
finitely generated commutative graded k-algebra and X its associated projective scheme,
if cohX denotes the category of coherent sheaves on X and OX .n/ is the nth power of the
twisting sheaf on X [20, page 117], then we have a functor �� W cohX ! qgrA given by

��.F / D

1M
dD�1

H0.X;F ˝OX .d//:

Serre’s theorem [42, Section 59, Proposition 7.8, page 252], [19, 3.3.5], and [20,
Proposition II. 5.15], asserts that if A is generated over k by elements of degree one,
then �� defines an equivalence of categories cohX ! qgrA.
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Artin and Zhang [5] extended Serre’s theorem to the noncommutative setting in the
following way: let A be an N-graded algebra over a commutative Noetherian ring. They
defined the associated projective scheme to be the pair ProjA D .qgrA;A/, where qgrA is
the quotient category above, A is the image ofA in qgrA and plays the role of the structure
sheaf of ProjA, and s, called the polarization defined by the projective embedding (this
definition is the same as is given by Verevkin [56, 57]), is given by the shifting of the
degrees in grA. Since Serre’s theorem does not hold for all commutative graded algebras,
i.e., the functor defined by �� need not be an equivalence, Artin and Zhang’s definition
of ProjA is compatible with the classical definition for commutative graded rings only
under some additional hypotheses such that A is generated in degree one. In the literature,
the noncommutative version of Serre’s theorem is known as Serre–Artin–Zhang–Verevkin
theorem [5,56,57]. Several authors have investigated the results of commutative algebraic
geometry, but now in the noncommutative setting following Artin, Zhang, and Verevkin’s
ideas (e.g., [12, 26–28, 41, 43, 53–55, 59] and references therein).

On the other hand, Manin [30] commented on the failure of attempts to obtain a non-
commutative scheme theory à la Grothendieck for quantized algebras. Nevertheless, Van
Oystaeyen and Willaert [33] studied this Proj by developing a kind of scheme theory
similar to the commutative theory. They noticed that this theory is possible only if the
connected and N-graded algebra considered contains “enough” Ore sets. Algebras satis-
fying this condition are called schematic. They constructed a generalized Grothendieck
topology for the free monoid on all Ore sets of a schematic algebra R, and defined a non-
commutative site (cf. [51]) as a category with coverings on which sheaves can be defined,
and formulated the Serre’s theorem. As a consequence of their treatment, an equivalence
between the category of all coherent sheaves and the category ProjR was obtained in the
sense of Artin [3]. Some years later, Van Oystaeyen and Willaert [50–52] presented a
sequel of [33] in which they studied the cohomology of these algebras and proved a lift-
ing property for Ore sets. This allowed to present many examples of schematic algebras
like homogenizations of almost commutative algebras, Rees rings of universal enveloping
algebras of Lie algebras, and three-dimensional Sklyanin algebras. A detailed treatment
of schematic algebras can be found in Van Oystaeyen’s book [49].

A few years ago, Lezama and Latorre [29] introduced the semi-graded rings with
the aim of generalizing the N-graded rings, the finitely N-graded algebras and several
algebras appearing in ring theory and noncommutative geometry that are not N-graded
algebras in a non-trivial sense. In that paper, they investigated some geometrical prop-
erties of semi-graded rings, within which is the Serre–Artin–Zhang–Verevkin theorem
following Artin, Zhang, and Verevkin’s ideas (see also [27]). In this way, having in mind
Van Oystaeyen and Willaert’s ideas developed in [33] about a scheme theory for Proj in
the setting of N-graded algebras, it is natural to ask by a noncommutative scheme theory
for semi-graded rings, and hence, to investigate the schematicness of these objects in a
more general context than N-graded rings. This is the purpose of the paper. As expected,
we generalize the results established in [33] for N-graded algebras to the semi-graded set-
ting (as a matter of fact, we do not impose the condition of connectedness of the algebra),
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and present another approach (Examples 5.27 and 5.28 show that the theory presented by
Lezama [27,29] and the one developed in this paper are independent) to the Serre–Artin–
Zhang–Verevkin theorem for semi-graded rings which is a fundamental problem proposed
for these objects [27, Section 1.4, Problem 1].

The article is organized as follows. In Section 2, we recall some key facts about torsion
theory, Serre’s theorem in the commutative case and the noncommutative setting of N-
graded rings following the ideas presented by Artin and Zhang [5] and Van Oystaeyen
and Willaert [33, 52]. Next, in Section 3, we consider some preliminaries about semi-
graded rings and semi-graded modules, and present some facts about the localization of
these objects. In Section 4, we formulate the notion of schematicness (Definition 4.1) for
semi-graded rings without the assumption of connectedness established by Van Oystaeyen
and Willaert for N-graded rings. Section 5 contains the definition of noncommutative
site with the aim of establishing the Serre–Artin–Zhang–Verevkin theorem in the semi-
graded setting (Theorem 5.23). Our results generalize those corresponding in the case of
N-graded rings (Remark 5.24) and allow to guarantee that other non-N-graded algebras
(even not connected) to be schematic (Example 5.25). As we said above, Examples 5.27
and 5.28 show that the theory presented by Lezama about Serre–Artin–Zhang–Verevkin
theorem and the one developed in this paper are independent. Finally, in Section 6, we
present some ideas for a future work that are motivated by different topics concerning
schematic algebras [49, 50, 52, 58].

Throughout the paper, the term ring means an associative ring with identity not neces-
sarily commutative. The letter k denotes an arbitrary field, and all algebras are k-algebras.
The symbols N and Z denote the set of natural numbers including zero, and the ring of
integer numbers, respectively. For a ring R and a subset I of R, I Cl R means that I is
a left ideal of R. Z.R/ denotes the center of R, while the category of left R-modules is
written as R �Mod.

2. Serre’s theorem and schematic algebras

We recall briefly some notions of algebraic geometry which are key in the proof of Serre’s
theorem.

Following Hartshorne [20], if C D k˚ C1 ˚ C2 ˚ � � � is a positively graded commu-
tative Noetherian ring generated in degree one, consider Y D ProjC and Y.f /D ¹p 2 Y j
f … pº, the Zariski open set corresponding to a homogeneous element f 2 C . It is well-
known that there is a finite subset ¹fi j fi 2 C1º such that Y D

S
i Y.fi /. Equivalently,

for every choice of di 2 N, there exists n 2 N with .CC/n �
P
i Cf

di
i . In this way, for

any finitely generated graded C -module M , we have that

��.M/ WD
M
n2Z

�.Y;AM.n//

D Q�C.M/ D lim
 ��
i

Qfi .M/;
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where AM.n/ denotes the sheaf of modules associated to the shifted module M.n/, Q�C
is the module of quotients of M with respect to the classical torsion of modules in the
N-graded case, and Qfi .M/ is the localization of M at ¹1; fi ; f 2i ; : : :º. Of course,

Qf .M/ D lim
 ��
i

Qffi .M/;

where the inverse systems are defined as g� h if and only if Y.g/� Y.h/. This is precisely
the key fact to prove Serre’s theorem: the category of coherent OY -modules is equivalent
with a certain quotient category.

In the noncommutative setting, for a noncommutative positively graded Noetherian k-
algebraRDk˚R1˚R2˚ � � � withRDkŒR1� (notice thatR is connected, that is,R0D
k), Van Oystaeyen and Willaert [33] presented their interpretation of Serre’s theorem for
algebras with enough Ore sets called schematic algebras. With the aim of presenting the
key ideas developed by them, we start by recalling some notions of torsion theory that
we will use freely throughout the paper. For more details, we refer to Goldman [16],
Stenstrom [44] or Van Oystaeyen [48].

Definition 2.1 ([33, Section 2]). Let L be a set of left ideals of an arbitrary ring R. L is
said to be a filter if it satisfies the following conditions:

.T1/ if I 2 L and I � J , then J 2 L,

.T2/ if I; J 2 L, then I \ J 2 L,

.T3/ if I 2 L and a 2 R, then .I W a/ WD ¹r 2 R j ra 2 I º 2 L.

The functor � W R �Mod! R �Mod defined by

�.M/ D
®
m 2M j there exists I 2 L with Im D 0

¯
is a left exact preradical, that is, a left exact subfunctor of the identity functor on the
category R �Mod. A module M satisfying �.M/ DM is called a �-torsion module, and
if �.M/D 0, thenM is said to be a �-torsion-free module. It is straightforward to see that
the family of torsion modules are closed under quotient objects and coproducts, while the
torsion-free modules are closed under subobjects and products.

The filter L is called idempotent (also called a Gabriel topology) when it satisfies the
following condition.

.T4/ If I Cl R and there exists J 2 L such that for all a 2 J the relation .I W a/ 2 L
holds, then I 2 L.

Condition .T4/ implies that L is closed under products and that the functor � is radical,
that is, �.M=�.M// D 0, for all M 2 R �Mod.

Proposition 2.2. If R is a left Noetherian ring and J1 � J2 � � � � is a descending chain
of two-sided ideals of R, then the set

A D
®
I Cl R j there exist elements n;m 2 N with .Jm/n � I

¯
is an idempotent filter.
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Proof. .T1/ If .Jm/n � I and I � I 0, then it is clear that .Jm/n � I 0.
.T2/ If I; I 0 2 A, then there exist elements n1; n2;m1;m2 2 N such that .Jm1/

n1 � I

and .Jm2/
n2 � I 0. If we consider n WD max¹n1; n2º and m WD max¹m1; m2º, it follows

that .Jm/n � I \ I 0.
.T3/ If I 2 A, then there exist elements n;m 2N such that .Jm/n � I . Fix a 2 R and

let r 2 .Jm/n. Since .Jm/n is an ideal of R, then ra 2 .Jm/n � I , and so, r 2 .I W a/, that
is, .Jm/n � .I W a/.

.T4/ Let I Cl R and J 2A such that for all a 2 J , we have that .I W a/ 2A. Since J 2
A there exist elements n;m 2N with .Jm/n � J . By assumption, R is left Noetherian, so
.Jm/

n is finitely generated by some elements a1; : : : ; al . Notice that ai 2 J for 1 � i � l ,
whence .I W ai /2A. In this way, there exist elements ki ;ji 2N such that .Jji /

ki � .I W ai /.
If k WD max¹kiº1�i�l and j WD max¹jiº1�i�l , then .Jj /k � .I W ai / for every 1 � i � l .

Let r 2 .Jj /k and s 2 .Jm/n. There exist elements r1; : : : ; rl 2 R such that s DPl
iD1 riai , and so, rsD

Pl
iD1 rriai . Since .Jj /k is an ideal ofR, we have that rri 2 .Jj /k

for all i . Thus, rriai 2 I whence rs 2 I . It follows that .JjCm/kCn � .Jj /k.Jm/n � I .

Consider a ring R, L an idempotent filter of left ideals of R and its associated radical
�. For an R-module M , we recall the quotient module Q�.M/ of M (Definition 2.4).
With this aim, we introduce Definition 2.3.

Definition 2.3. Let M 2 R �Mod. Consider the family �M of pairs .I; f / with I 2 L

and f W I ! M an R-homomorphism. We define the relation � on �M as .I1; f1/ �
.I2; f2/ if and only if there exists an element J 2L such that J � I1 \ I2 and f jJ D gjJ .

It is straightforward to see that � is an equivalence relation. The equivalence class of
the element .I; f / is denoted as ŒI; f �, and the set of equivalence classes will be written
as ML. For two elements ŒI; f �; ŒJ; g� 2 ML, we define their sum as ŒI; f �C ŒJ; g� D
ŒI \ J; f C g�. It is easy to see that this sum is well defined and that .ML;C/ is an
Abelian group.

It is also easy to see that if I;J 2L and f 2Hom.I;R/, then f �1.J /2L. In this way,
for elements ŒI; f � 2 RL and ŒJ; g� 2ML, we can define their product as ŒI; f � � ŒJ; g�D
Œf �1.J /; g ı f �. Notice that this product is well defined, and so, RL is actually a ring
with identity ŒR; idR�. Thus, ML is a left RL-module.

Let m 2 M . We define the application ˇ.m/ W R ! M given by ˇ.m/.r/ D rm.
It is well known that ˇ W M ! Hom.R; M/ is an isomorphism of R-modules. If we
consider 'M W M ! ML defined by 'M .m/ D ŒR; ˇ.m/�, it follows that 'R is a ring
homomorphism, and so, we can consider RL and ML as R-modules with the action
given by rŒI; f � WD ŒR; ˇ.r/�ŒI; f �. Note that 'M is actually a homomorphism of R-
modules. Since Ker.'M /D �.M/, the fundamental isomorphism theorem guarantees that
'M .M/ ŠM=�.M/. In this way, if �.M/ D 0, then we can embed M into ML.

For an element � 2 ML given by � D ŒI; f � and an element a 2 I , notice that a� D
ŒR; ˇ.f .a//� D 'M .f .a// which shows that I � � 'M .M/, that is, Coker.'M / is a �-
torsion module.
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Considering the notation and terminology above, we present the definition of the quo-
tient module of an object M in R �Mod.

Definition 2.4. The quotient module of M with respect to � is defined as Q�.M/ D

.M=�.M//L. Since L is idempotent, it follows that �.M=�.M// D 0. Hence, we can
embed M=�.M/ into Q�.M/.

Equivalently, the quotient module of M with respect to � is given by

Q�.M/ D lim
�!
I2L

HomR.I;M=�.M//;

where Q�.M/ turns out to be a module over the ring Q�.R/.
Following [44], recall that anR-moduleE is �-injective if for everyR-moduleM and

each submodule N such that �.M=N/ D M=N , every R-homomorphism N ! E can
be extended to an R-homomorphism M ! E. We say that E is �-closed (also known as
faithfully �-injective) if the extension of the homomorphism is unique. It is straightforward
to see that E is �-closed if and only if E is �-injective and �-torsion-free. By using these
notions, we can characterizeQ�.M/ in the following way:Q�.M/ is the unique �-closed
module containing N DM=�.M/ such that Q�.M/=N is �-torsion.

Example 2.5 ([33, page 111]). (i) Consider S a left Ore set in an arbitrary ring R. The set

L.S/ D ¹I Cl R j I \ S ¤ ;º

is an idempotent filter. If �S denotes its corresponding radical and QS .M/ is the module
of quotients of M , then it can be seen that QS .M/ is isomorphic to S�1M , i.e., the
classical Ore localization of M at S .

(ii) If R D
L
k�0Rk is a positively graded Noetherian ring and RC denotes the two-

sided ideal
L
k�1Rk , by Proposition 2.2 the set

L.�C/ D ¹I Cl R j there exists n 2 N with .RC/n � I º

is an idempotent filter. The corresponding radical is denoted by �C.

From the treatment above and having in mind that the filter L.�C/ is idempotent,
Van Oystaeyen and Willaert [33] formed the quotient category .R; �C/-gr, that is, the full
subcategory of Q�C.R/-gr consisting of modules of the form Q�C.M/ for some graded
R-module M . Notice that .R; �C/-gr is equivalent to the full subcategory of R-gr con-
sisting of the �C-closed modules. Define ProjR as the Noetherian objects in .R; �C/-gr.
Since they wanted to describe the objects of ProjR by means of objects of usual module
categories in the same way as for commutative algebras, they needed modules determined
by Ore localizations. This is the content of the following definition.

Definition 2.6 ([33, Definition 1]). The noncommutative positively graded Noetherian
k-algebra

R D k˚R1 ˚R2 ˚ � � � with R D kŒR1�
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is schematic if there is a finite set I of homogeneous left Ore sets of R such that for every
S 2 I we have that S \RC ¤ ;, and such that one of the following equivalent properties
is satisfied:

(i) for each element .rS /S2I 2
Q
S2I S there exists m 2 N such that .RC/m �P

S2I RrS ,

(ii)
T
S2I L.S/ D L.�C/,

(iii)
T
S2I �S .M/ D �C.M/ for all M 2 R �Mod,

(iv)
V
S2I �S D �C where

V
denotes the infimum of torsion theories.

In [33, 51], Van Oystaeyen and Willaert constructed the noncommutative site, a cate-
gory with coverings on which sheaves can be defined, and formulated the Serre’s theorem.
Examples 2.7 and 2.9 contain remarkable examples of schematic algebras.

Example 2.7. Recall that if R is a positively filtered k-algebra by the family .FnR/n�0
(i.e., F0R D k), � W R ! G.R/ is the principal symbol map, and yR is the Rees-ring of
R, it is well known that G.R/ and yR are positively graded and there is a canonical central
elementX in yR of degree 1 such that yR=hXiŠG.R/. If yR is Noetherian, this is equivalent
to G.R/ being Noetherian or the filtration of R being Zariskian. For R positively filtered
by .FnR/n�0, if G.R/ is schematic then yR is schematic [52, Theorem 1]. In this way,
since for an almost commutative ring R there exists a filtration on R such that G.R/
is commutative, it follows that its Rees-ring is schematic. For example, the algebra R
generated by three elements x; y and z of degree 1 with relations xy � yx D z2; xz �
zx D 0, and yz � zy D 0, is schematic since it is the Rees-ring of the first Weyl algebra
A1.k/ with respect to the Bernstein-filtration (this algebra is known as the homogenized
Weyl algebra).

Van Oystaeyen and Willaert [52, page 199] said that “it is probably not true that the
class of schematic algebras is closed under iterated Ore extensions since Ore sets in a ring
R need not be Ore in an Ore extensionRŒxI�; ı�”. Nevertheless, the following proposition
shows that under suitable conditions, these extensions are schematic.

Proposition 2.8 ([52, Theorem 3]). Given a positively graded ring R which is generated
by R1 and which is schematic by means of Ore sets Si , given � a graded automorphism of
R and ı a � -derivation of degree 1, then for all si 2

Q
Si and for all m 2 N, there exists

p 2 N such that

.RŒxI �; ı�C/
p
�

X
i

RŒxI �; ı�si CRŒxI �; ı�x
m;

where RŒxI �; ı� denotes the Ore extension considered with graduation .RŒxI �; ı�/n DLn
kD0Rkx

n�k .

Proposition 2.8 is one of the results that Van Oystaeyen and Willaert [52] used to show
that the algebras in Example 2.9 are schematic.
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Example 2.9 ([52, Examples 2–5]). (i) The coordinated ring of quantum 2 � 2-matrices
Oq.M2.C// with q 2 C is generated by elements a; b; c and d subject to the relations

ba D q�2ab; ca D q�2ac; bc D cb;

db D q�2bd; dc D q�2cd; ad � da D .q2 � q�2/bc:

(ii) Quantum Weyl algebras A Nq;ƒn defined by Alev and Dumas [1] are given by an
n � n matrix ƒ D .�ij / with �ij 2 k� and a row vector Nq D .q1; : : : ; qn/, where qi ¤ 0
for every i , the algebra is generated by elements x1; : : : ; xn; y1; : : : ; yn subject to relations
(i < j ) given by

xixj D �ijxjxi ;

xiyj D �j iyjxi ;

yjyi D �j iyiyj ;

xjyi D �ijyixj ;

xjyj D 1C qjyjxj C
X
i<j

.qi � 1/yixi ; where �ij D �ij qi :

(iii) Three-dimensional Sklyanin algebrasAk over a field k according to Artin et al. [4]
are graded k-algebras generated by three homogeneous elements x; y and z of degree 1
satisfying the relations

axy C byx C cz2 D 0; ayz C bzy C cx2 D 0; azx C bxz C cy2 D 0;

where a; b; c 2 k.
(iv) Color Lie super algebras are defined by Rittenberg and Wyler [40].

Remark 2.10. Of course, there are examples of non-schematic algebras. If we take the
graded algebra k¹x;yº=hyx � xy � x2i and suppose that char.k/D 0, then its subalgebra
generated by y and xy is not left schematic [52, page 203].

3. Semi-graded rings

Lezama and Latorre [29] presented a first approach to the noncommutative algebraic
geometry for non-N-graded algebras and finitely non-graded algebras by defining a new
class of rings, the semi-graded rings. These rings extend several kinds of noncommutative
rings of polynomial type such as Ore extensions [31, 32], families of differential opera-
tors generalizing Weyl algebras and universal enveloping algebras of finite dimensional
Lie algebras [6, 7, 43], algebras appearing in mathematical physics [22, 37, 60], down-up
algebras [9, 10, 25], ambiskew polynomial rings [23, 24], 3-dimensional skew polynomial
rings [8, 34, 37, 41], PBW extensions [7], and skew PBW extensions [15], among oth-
ers. A detailed list of examples of semi-graded rings and their relationships with other



Serre–Artin–Zhang–Verevkin theorem for semi-graded rings 503

algebras can be found in Fajardo et al. [14]. Ring-theoretical, algebraic and geometric
properties of semi-graded rings have been investigated in the literature by several authors
(e.g., [2, 11, 21, 35, 36, 38, 45–47] and references therein).

Definition 3.1 ([29, Definition 2.1]). Let R be a ring. R is said to be semi-graded (SG) if
there exists a collection ¹Rnºn2Z of subgroups Rn of the additive group RC such that the
following conditions hold:

(i) R D
L
n2ZRn,

(ii) for every m; n 2 Z, we have that RmRn �
L
k�mCnRk ,

(iii) 1 2 R0.

The collection ¹Rnºn2Z is called a semi-graduation of R, and we say that the elements
of Rn are homogeneous of degree n.

We say thatR is positively semi-graded ifRnD 0 for every n< 0. IfR and S are semi-
graded rings and f W R! S is a ring homomorphism, then we say that f is homogeneous
if f .Rn/ � Sn for every n 2 Z.

Definitions 3.2 and 3.3 recall the notion of finitely semi-graded ring and finitely semi-
graded algebra, respectively.

Definition 3.2 ([29, Definition 2.4]). A ring R is called finitely semi-graded (FSG) if it
satisfies the following conditions:

(i) R is SG,

(ii) there exist finitely many elements x1; : : : ;xn 2R such that the subring generated
by R0 and x1; : : : ; xn coincides with R,

(iii) for every n � 0, we have that Rn is a free R0-module of finite dimension.

Definition 3.3 ([28, Definition 10]). A k-algebraR is said to be finitely semi-graded (FSG)
if the following conditions hold:

(i) R is an FSG ring with semi-graduation given by R D
L
n�0Rn,

(ii) for every m; n � 1, we have that RmRn � R1 ˚ � � � ˚RmCn,

(iii) R is connected, i.e., R0 D k,

(iv) R is generated in degree 1.

From Definition 3.3, it is straightforward to see that if R is a k-algebra, then

RC WD
M
n�1

Rn

is a maximal ideal of R.
N-graded rings are SG. Finitely graded k-algebras, PBW extensions [7], 3-dimensional

skew polynomial rings [8], down-up algebras [9, 10], diffusion algebras [22], and skew
PBW extensions [15] are examples of FSG rings.



A. Chacón and A. Reyes 504

Definition 3.4 ([29, Definition 2.2]). Let R be an SG ring and let M be an R-module. We
say that M is semi-graded if there exists a collection ¹Mnºn2Z of subgroups Mn of the
additive group MC such that the following conditions hold:

(i) M D
L
n2ZMn,

(ii) for every m � 0 and n 2 Z, we have that RmMn �
L
k�mCnMk .

The collection ¹Mnºn2Z is called a semi-graduation of M , and we say that the ele-
ments of Mn are homogeneous of degree n.

M is said to be positively semi-graded if Mn D 0 for every n < 0. Let f W M ! N

be a homomorphism of R-modules, whereM andN are semi-graded R-modules. We say
that f is homogeneous if f .Mn/ � Nn for every n 2 Z.

Definition 3.5 ([29, Definition 2.3]). Let R be an SG ring, M an SG R-module and N a
submodule ofM . We say thatN is a semi-graded (SG) submodule of M ifN D

L
n2ZNn,

where Nn DMn \N . In this case, N is an SG R-module.

Proposition 3.6 ([29, Proposition 2.6]). If R is an SG ring, M is an SG R-module and N
is a submodule of M , then the following conditions are equivalent:

(1) N is a semi-graded submodule of M ,

(2) for every z 2 N , the homogeneous components of z are in N ,

(3) M=N is an SG R-module with semi-graduation given by

.M=N/n D .Mn CN/=N for every n 2 Z:

If M is an SG R-module and ¹Niºi2I is a family of SG submodules of M , then it is
clear that

T
i2I Ni is an SG submodule of M .

Let X be a subset of M . We define the SG submodule generated by X as the inter-
section of all SG submodules containing X , and we will denote it as hXiSG. If X D
¹x1; : : : ; xnº, then we write hXiSG D hx1; : : : ; xniSG. We will say that M is a finitely
generated SG R-module if there exist finitely many elements m1; : : : ; mn such that M D
hm1; : : : ; mni

SG. If M is simultaneously a module over different kinds of rings and there
is a risk of confusion, we write h�iSGR to indicate the ring R we are considering.

In a similar way, ifR is a positively SG ring, for t 2N we defineR�t as the intersection
of all two-sided ideals that are SG submodules containing

L
k�t Rk .

Remark 3.7. If R is a positively SG left Noetherian ring, then Proposition 2.2 shows that

L.�C/ D ¹I Cl R j there exist n;m 2 N with .R�m/n � I º

is an idempotent filter. The corresponding left exact radical is denoted by �C andQ�C.M/

is the module of quotients of M .

Next, we want to formalize several constructions concerning semi-graded rings which
are necessary to formulate the Serre’s theorem.
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3.1. Localization of semi-graded rings

With the aim of defining good Ore sets (Definition 3.8), for R an SG ring and an element
n 2 Z, we consider the following sets:

R0n D ¹r 2 Rn j for all m 2 Z; and for all h 2 Rm; rh 2 RnCmº;

R00n D ¹r 2 R
0
n j for all m 2 Z; and for all h 2 Rm; hr 2 RnCmº;

R0 D
[
n2Z

R0n;

R00 D
[
n2Z

R00n:

Definition 3.8. Let R be an SG ring and consider a left Ore set S of R. We say that S is
good if the following conditions hold:

(i) S � R00,

(ii) if s 2S and r 2R0, then there exist elements u2R0 and v 2S such that usD vr .

From Definition 3.8, it follows that for any elements s1; : : : ; sk 2 S , there exist r1; : : : ;
rk 2 R

0 such that risi D rj sj 2 S for every i; j .

Definition 3.9. LetR be an SG ring andM an SGR-module. We say thatM is localizable
semi-graded (LSG) if for every element .n;m/ 2 Z2 the inclusion R0nMm �MnCm holds.

Proposition 3.10. Let R be an SG ring, S a good left Ore set and M an LSG R-module.
Then, S�1M is an LSG R-module with semi-graduation given by

.S�1M/n D

²
f

s

ˇ̌̌̌
f 2

[
k2Z

Mk ; deg.f / � deg.s/ D n
³
:

Proof. First of all, let us show that .S�1M/n is a subgroup of S�1M . It is clear that
0 D 0

1
2 .S�1M/n and that .S�1M/n has additive inverses. Consider elements p

s
; q
t
2

.S�1M/n. Then, deg.p/ � deg.s/ D deg.q/ � deg.t/ D n. There exist elements u 2 R0

and v 2 S such that us D vt 2 S . Note that deg.u/C deg.s/ D deg.v/C deg.t/. Since
u; v 2 R0, it follows that up and vq are homogeneous elements satisfying deg.up/ D
deg.u/C deg.p/ D deg.v/C deg.q/ D deg.vq/, whence p

s
C

q
t
D

upCvq
vt

is a homoge-
neous elements of degree deg.v/C deg.q/ � .deg.v/C deg.t// D n.

It is clear that S�1M is the sum of the subgroups .S�1M/n, so let us show that the
sum is direct. Consider the sum

kX
iD1

mi

si
D 0

of homogeneous elements of S�1M with different degrees, that is, deg.mi / � deg.si / ¤
deg.mj / � deg.sj / for i ¤ j . There exist elements r1; : : : ; rk 2 R0 such that risi D rj sj
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for all i; j , which implies that

0 D

kX
iD1

mi

si
D

Pk
iD1 rimi

r1s1
:

Hence, there exists an element s 2 S such that 0 D s
Pk
iD1 rimi D

Pk
iD1 srimi .

Since s; ri 2 R0 and mi is homogeneous for 0 � i � k, then every one of the terms above
is homogeneous. By using that risi D rj sj , we have the equality deg.ri / C deg.si / D
deg.rj /C deg.sj /, whence deg.s/C deg.ri /C deg.mi / ¤ deg.s/C deg.rj /C deg.mj /,
which shows that srimi D 0. Thus, 0 D rimi

ri si
D

mi
si

.
Now, let us see thatRa.S�1M/b �

L
k�aCb.S

�1M/k . Let r2Ra and m
s
2 .S�1M/b .

There exist elements r 0 2 R and s0 2 S such that r 0s D s0r . Since s; s0 2 R00 and r is
homogeneous, we can take the element r 0 being homogeneous. Then, deg.r 0/D deg.s0/C
deg.r/� deg.s/, and using that r m

s
D

r 0m
s0

and r 0m 2
L
k�deg.r 0/Cdeg.m/Mk , it follows that

r 0m
s0
2
L
k�deg.r 0/Cdeg.m/�deg.s0/.S

�1M/k . Since deg.r 0/C deg.m/� deg.s0/D deg.r/C
deg.m/� deg.s/ D aC b, then r m

s
2
L
k�aCb.S

�1M/k . This fact proves that S�1M is
an SG R-module.

If we consider above the element r 2 R0a, then we can take r 0 2 R0 to obtain that
r 0m 2 Mdeg.r 0/Cdeg.m/, and so, r m

s
2 .S�1M/aCb . This shows that S�1M is an LSG R-

module.

The next result shows that the localization of an SG ring by considering a good Ore set
is also an SG ring.

Proposition 3.11. Let R be an SG ring and S a good left Ore set. Then, S�1R is an SG
ring with semigraduation given by

.S�1R/n D

²
f

s

ˇ̌̌̌
f 2

[
k2Z

Rk ; deg.f / � deg.s/ D n
³
:

Proof. It is clear that R is an LSG R-module so S�1R is an SG R-module with the sem-
igraduation above, and hence, S�1R D

L
k2Z.S

�1R/k . It is easy to see that 1 D 1
1
2

.S�1R/0. We only have to show that

.S�1R/n.S
�1R/m �

M
k�nCm

.S�1R/k :

Let r1
s1
2 .S�1R/n and r2

s2
2 .S�1R/m. There exist elements u 2R and v 2 S such that

vr1 D us2 which implies that r1
s1

r2
s2
D

ur2
vs1

. Again, since s2; v 2R00 and r1 is homogeneous
we can take u as a homogeneous element. Hence, ur2 2

L
k�deg.u/Cdeg.r2/ Rk , and so,

ur2
vs1
2
L
k�deg.u/Cdeg.r2/�deg.v/�deg.s1/.S

�1R/k , i.e., ur2
vs1
2
L
k�nCm.S

�1R/k .

Proposition 3.12. Let R be an SG ring, S a good left Ore set and M an LSG R-module.
Then, S�1M is an SG S�1R-module.
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Proof. We know that S�1M is an S�1R-module and an SG R-module which guarantees
the direct sum S�1M D

L
k2Z.S

�1M/k . In this way, we have to prove that .S�1R/n
.S�1M/m �

L
k�nCm.S

�1M/k . Consider elements r
s1
2 .S�1R/n and a

s2
2 .S�1M/m.

There exist elements u 2 R and v 2 S such that vr D us2 which implies that r
s1

a
s2
D

ua
vs1

.
Since s2; v 2 R00 and r is homogeneous, we can take u as an homogeneous element.
Thus, ua 2

L
k�deg.u/Cdeg.a/ Rk , and so, ua

vs1
2
L
k�deg.u/Cdeg.a/�deg.v/�deg.s1/.S�1R/k ,

i.e., ua
vs1
2
L
k�nCm.S

�1R/k .

3.2. Category of semi-graded rings

We define the category SGR of semi-graded rings whose objects are the semi-graded rings
and morphisms are the homogeneous ring homomorphisms. For a semi-graded ring R,
SGR � R will denote the category of semi-graded modules over R where the morphisms
are the homogeneous R�homomorphisms. It is straightforward to see that SGR � R is
preadditive, and that the zero object of the category is the trivial module.

Let f WM !N be a morphism in SGR�R. Since Ker.f / and Im.f / are semi-graded
submodules, it follows that N= Im.f / is a semi-graded module. This fact guarantees that
the category SGR � R has kernels and cokernels. If f is a monomorphism of SGR � R,
then f is the kernel of the canonical homomorphism j W N ! N= Im.f /. If f is an
epimorphism, then f is the cokernel of the inclusion i W Ker.f /! M . In this way, the
category SGR �R is normal and conormal.

If ¹Miºi2I is a family of objects of SGR � R, then their direct sum
L
i2I Mi is a

semi-graded ring with semi-graduation given by�M
i2I

Mi

�
p

WD

M
i2I

.Mi /p for each p 2 Z:

It is easy to see that this object with the natural inclusions coincides with the coproduct
of the family of objects ¹Miºi2I in SGR �R. Therefore, SGR �R is an Abelian category.

We define LSG�R as the full subcategory of SGR�R whose objects are the LSG mod-
ules. This subcategory is closed for subobjects, quotients and coproducts, which shows
that it is Abelian.

4. Schematicness of semi-graded rings

Following Van Oystaeyen and Willaert’s ideas developed in [33], in this section, we define
the notion of schematicness in the setting of semi-graded rings. For a positively SG ring
R, we define RC D

L
k�1Rk and say that a left Ore set S is non-trivial if S \RC ¤ ;.

Definition 4.1. Let R be a positively SG left Noetherian ring. R is called (left) schematic
if there is a finite set I of non-trivial good left Ore sets of R such that for each .xS /S2I 2Q
S2I S there exist t; m 2 N such that .R�t /m �

P
S2I Rxs .
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The following result illustrates some characterizations of being schematic (cf. Defini-
tion 2.6).

Proposition 4.2. Let R be a positively SG left Noetherian algebra and S1; : : : ; Sn a finite
set of non-trivial good left Ore sets of R. The following conditions are equivalent:

(1) for each .x1; : : : ; xn/ 2
Qn
iD1Si there exist elements t;m 2N such that .R�t /m �P

S2I Rxs ,

(2) let I Cl R. If I has no trivial intersection with every Si , then I contains a power
of R�t for some t 2 N,

(3)
Tn
iD1 L.Si / D L.�C/.

Proof. The equivalence (1),(2) and the implication (3))(1) are straightforward.
(1))(3) Let I 2

Tn
iD1 L.Si /. There exist elements x1; : : : ; xn such that xi 2 I \ Si

for every i . Thus,
Pn
iD1Rxi � I and there exist t;m with .R�t /m � I , which shows that

I 2 L.�C/.
Now, let I 2 L.�C/. There exist t;m such that .R�t /m � I . By using that Si \RC ¤

;, there exist elements si 2 Si such that deg.si / � 1 for all i . Then, sti 2 R�t , s
tm
i 2

.R�t /
m � I , and therefore, I \ Si ¤ ;. This shows that I 2

Tn
iD1 L.Si /.

If R is schematic by considering the good left Ore sets Si , then
Tn
iD1 �Si .M/ D

�C.M/ for every R-module M . If M is an LSG R-module, then for each i D 1; : : : ; n we
have that �Si .M/ is an SG submodule, and so, �C.M/ is also an SG submodule. These
facts imply that M=�C.M/ is an SG R-module, and so, it is a submodule of Q�C.M/.
The idea is to show that Q�C.M/ is semi-graded. For the remainder of the section, we
will take L WD L.�C/.

Let us start by taking an LSG R-module M such that �C.M/ D 0. It is clear that
Q�C.M/ DML and 'M .M/ ŠM . Thus, 'M .M/ is a submodule of ML which is an SG
R-module where 'M .m/ is homogeneous of degree k if and only if m is homogeneous of
degree k. If we want ML to be an LSG R-module, it must satisfy that if � is homogeneous
of degree k, then for every s 2 R0 the element s� 2 .'M .M//deg.s/Ck . Since there exists
I 2 L with I � � 'M .M/ the following definition makes sense.

Definition 4.3. Let � 2 ML. We say that the element � is homogeneous of degree k if
there exists I 2 L such that I � � 'M .M/, and for every element s 2 I \R0 we have that
s� 2 .'M .M//deg.s/Ck .

Notice that if the condition above is satisfied for I , then it also holds for every J � I .
Lemma 4.5 shows that this condition is true for ideals containing I .

Remark 4.4. Since the good Ore sets Si are non-trivial there exist elements s0i 2 Si \RC
for i D 1; : : : ; n, whence ˛i D deg.s0i / > 0. If we define m WD lcm¹˛iº1�i�n and s00i WD
.s0i /

m=˛i , we obtain that s00i 2Si \RC, and all of them have the same degree. If we consider
an element I 2 L, there exist t; n 2 Z such that .R�t /n � I . Thus, si D .s00i /

tn 2 I \ Si
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which implies that
Pn
iD1Rsi � I . In this way, for each I 2L, there exist elements si 2 Si ,

all with the same positive degree, satisfying the relation
Pn
iD1Rsi � I .

Lemma 4.5. Let I; J 2 L be ideals such that I � J and I �; J � � 'M .M/. If for every
s 2 I \R0, the element s� belongs to .'M .M//deg.s/Ck , then the same property holds for
each s 2 J \R0.

Proof. Let s 2 J \ R0. Then, s� 2 'M .M/, and so, there exist homogeneous elements
�j ; j D l1; : : : ; lr of 'M .M/ with �j 2 .'M .M//j and s� D

P
�j . As we said before,

if the property holds for I , then it is true for any ideal contained in I , so we can take
I D .R�t /

m for some t;m 2N. From above, there exist si 2 Si for i D 1; : : : ; n such thatP
Rsi � I and deg.si /D ˇ for each 1� i � n. In particular, every element si 2 I whence

sis 2 I (recall that I is a two-sided ideal). By assumption, sis� 2 .'M .M//deg.s/CˇCk for
each i .

On the other hand, if we consider the expression sis� D
P
si�j in terms of homoge-

neous elements of 'M .M/, then for each j ¤ k C deg.s/ the equality si�j D 0 holds.
Since this is true for every i it follows that �j 2

Tn
iD1 �Si .'M .M// D �C.'M .M// D 0

(recall that �C.M/ D 0). Therefore, s� D �deg.s/Ck .

From Lemma 4.5, it is sufficient to guarantee the property by considering any ideal I
such that I � � 'M .M/. Our next purpose is to give a more simple method to verify that
the element � is homogeneous. Let � D ŒI;f �. Since I � � 'M .M/ the element � is homo-
geneous of degree k if and only if for each s 2 I \ R0 the element s� D ŒR; ˇ.f .s//� D
'M .f .s//2 .'M .M//deg.s/Ck , or equivalently, for all s 2 I \R0 the element f .s/ belongs
to Mdeg.s/Ck .

For a morphism f W I ! M , we will say that f is homogeneous of degree k if for
each s 2 I \ R0 the element f .s/ is homogeneous of degree deg.s/C k. Hence, ŒI; f �
is homogeneous of degree k (in ML) if and only if f is homogeneous of degree k. Let
.ML/k be the family of homogeneous elements of degree k. It is clear that .ML/k is a
subgroup and 'M .Mk/ � .ML/k .

Remark 4.6. We will say that the morphism f W I ! M is strongly homogeneous of
degree k if for every homogeneous element s 2 I the element f .s/ is homogeneous of
degree deg.s/C k. It is clear that in the setting of graded rings, the notions of homoge-
neous morphism and strongly homogeneous morphism coincide.

On the other hand, ŒI; f � it will be called strongly homogeneous of degree k if some
of its representative elements is strongly homogeneous of degree k. Let .ML/k be the
family of strongly homogeneous elements of degree k. It is straightforward to see that
RL D

L
.RL/k is a graded ring and ML D

L
.ML/k is an RL-graded module. Note

also that if s 2 R00 then 'R.s/ 2 RL; in particular, RL, is an extension of the graded ring
'R.

L
R00
k
/. As it is clear, RL is an R-submodule of RL if and only if R is graded. This

last remark shows that in the setting of non-graded rings is not appropriate to consider
strongly homogeneous morphisms.
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Proposition 4.7. The sum
P
.ML/k is direct.

Proof. Let ŒIi ; fi � 2 .ML/ki for i D 1; : : : ; m with ki ¤ kj if i ¤ j . Notice that ifP
ŒIi ; fi � D 0 then there exists J �

T
Ii , J 2 L, such that .

P
fi /jJ D

P
fi jJ D 0.

We can take J D
P
Rsj for some sj 2 Sj . Let s 2 J \ R0 with deg.s/ D l . Then,

0 D .
P
fi /.s/ D

P
fi .s/ and since fi .s/ is homogeneous of degree l C ki and all ele-

ments ki are different, then we have a sum of homogeneous elements of different degrees
equal to zero, whence fi .s/D 0 for each i . In particular, fi .sj /D 0 for all i; j . Therefore,
fi .x/ D 0 for all x 2 J , and so, ŒJ; fi jJ � D ŒIi ; fi � D 0.

Let ŒI; f � 2 ML with I D
Pn
iD1 Rsi for some elements si 2 Si \ R00k . Since there

are finitely si ’s we may assume that the homogeneous decompositions of the elements
f .si / have the same length, say f .si / D

Pˇ
tD˛.f .si //tCk , where .f .si //j is the j th

homogeneous component of f .si /. By taking ft .si / D .f .si //tCk , we have that f .si / DPˇ
tD˛ ft .si /. For elements t D ˛; : : : ; ˇ, we define the maps ft W I ! M in the natural

way as ft .
P
aisi / D

P
aift .si /. However, we have to show that these maps are well

defined. This is the content of the following proposition.

Proposition 4.8. ft is well defined for every element t D ˛; : : : ; ˇ.

Proof. We divide the proof into three parts.

• Suppose that 0 D
P
aisi , with ai 2 Rk1 for every i (recall that si 2 R00k). Fix i . Since

sj 2R
00 for each 1� j � n, there exist elements uj 2R0 and vj 2 Si such that uj si D

vj sj . In particular, deg.uj / D deg.vj / and since uj ; vj 2 R0, ujf .si / D vjf .sj / and
M is LSG, if we compare the homogeneous components of the same degree then we
obtain that ujft .si / D vjft .sj / for each ˛ � t � ˇ.
Now, by using that v1 2 Si and a1 2 R there exist elements b1 2 R and c1 2 Si such
that b1v1 D c1a1. Repeating this argument with the elements v2 and c1a2 we find that
b2 2 R and c2 2 Si satisfy the equality b2v2 D c2c1a2. Continuing in this way, for
every 1� j � nwe will find elements bj 2R and cj 2 Si such that bj vj D

Qj
iD1 ciaj

(notice that the elements bi ’s can be taken homogeneous). If we define c WD
Qn
iD1 ci 2

Si and dj D
Qn
iDjC1 cibj , then we have that dj vj D caj for every 1 � j � n. Hence,

0 D c
Pn
jD1 aj sj D

Pn
jD1 dj vj sj D

Pn
jD1 djuj si D rsi , where r D

Pn
jD1 djuj .

Note that the elements djuj are homogeneous of the same degree, which implies that
r is also homogeneous. Since 0 D rsi , by the first condition of the noncommutative
localization there exists an element s 2 Si such that sr D 0.
Considering the equalities

sc

nX
jD1

ajft .sj / D s

nX
jD1

dj vjft .sj / D s

nX
jD1

djujft .si / D srft .si / D 0;

it follows that
Pn
jD1 ajft .sj / 2 �Si .M/. Since this holds for every element i we have

that
Pn
jD1 ajft .sj / 2

T
�Si .M/ D �C.M/ D 0, whence

Pn
jD1 ajft .sj / D 0.
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• Suppose that 0 D
Pn
iD1 aisi (the elements ai ’s are not necessarily homogeneous).

Since there are only finitely elements ai ’s we consider the sum ai D
Pl2
jDl1

bi;j with

bi;j 2 Rj . In this way, 0 D
Pn
iD1

Pl2
jDl1

bi;j si D
Pl2
jDl1

Pn
iD1 bi;j si . Now, using

that
Pn
iD1 bi;j si 2 RjCk is the homogeneous component of degree j C k, it follows

that 0 D
Pn
iD1 bi;j si . By the first part above, we can assert that

Pn
iD1 bi;jft .si / D 0,

whence

0 D

l2X
jDl1

nX
iD1

bi;jft .si /

D

nX
iD1

l2X
jDl1

bi;jft .si /

D

nX
iD1

aift .si / for ˛ � t � ˇ:

• Let r be an element of
P
Rsi . Suppose that we have two expressions for r given by

r D
P
aisi D

P
bisi . Then, 0 D

P
.ai � bi /si . By the second part above, we obtain

that
P
.ai � bi /ft .si / D 0, and so,

P
aift .si / D

P
bift .si / for ˛ � t � ˇ. This

means that the expression for ft .r/ does not depend on the decomposition of r .

From the proof of Proposition 4.8, it follows that the maps ft ’s are R�homomor-
phisms. The next proposition establishes that these are homogeneous of degree t .

Proposition 4.9. The map ft is homogeneous of degree t .

Proof. Consider s 2 I \ R0 with deg.s/ D l . Let .ft .s//m be the homogeneous compo-
nent of degreem in the expression of ft .s/. For a fixed i , there exist elements vi 2 Si and
ui 2R

0 such that uisi D vis, which implies that vift .s/D uift .si /. Since ft .si /2MtCk ,
ui ; vi 2 R

00 and M is LSG, when we compare the homogeneous components of these ele-
ments we obtain that ifm¤ t C l , then vi .ft .s//m D 0, whence .ft .s//m 2 �Si .'M .M//.
Note that this fact holds for every i , hence, .ft .s//m2

T
�Si .'M .M//D�C.'M .M//D0.

Therefore, ft .s/ D .ft .s//tCl which guarantees that ft is homogeneous of degree t .

Propositions 4.7, 4.8, and 4.9 imply the following important result.

Proposition 4.10. If M is an LSG R-module with �C.M/ D 0, then Q�C.M/ D ML is
an LSG R-module with semigraduation given by

ML D

M
k

.ML/k :

Theorem 4.11. If M is an LSG R-module, then Q�C.M/ is an LSG R-module.

Proof. It follows from Proposition 4.10 and the equalities �C.M=�C.M//D0,Q�C.M/D

Q�C.M=�C.M//.
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5. Serre–Artin–Zhang–Verevkin theorem

In this section, we prove the Serre–Artin–Zhang–Verevkin theorem for semi-graded rings
(Theorem 5.23) using a different approach than the one presented by Lezama [27, 29].

Briefly, this theorem was partially formulated by Lezama and Latorre [29, Theo-
rem 6.12], where it was assumed that the semi-graded left Noetherian ring is a domain.
Nevertheless, as is well known, the Serre–Artin–Zhang–Verevkin theorem for finitely
graded algebras does not include this restriction, so that this assumption was eliminated by
Lezama [27, Theorem 1.24] (see also [14, Section 18.4, Theorem 18.5.13]). More exactly,
he proved the theorem for an SG ring R D

L
n�0Rn satisfying the following conditions:

(C1) R is left Noetherian,

(C2) R0 is left Noetherian,

(C3) for every n, we have that Rn is a finitely generated left R0-module,

(C4) R0 � Z.R/.

Notice that condition (C4) implies that R0 is a commutative Noetherian ring.
Universal enveloping algebras of finite-dimensional Lie algebras, some quantum alge-

bras with three generators and some examples of 3-dimensional skew polynomial alge-
bras [8, 34, 37] illustrate the Serre–Artin–Zhang–Verevkin theorem [27, Example 1.26]
and [14, Example 18.5.15].

We start with the following preliminary result.

Lemma 5.1. Let R be a positively SG left Noetherian ring and S a non-trivial left Ore set
of R. Then, L.�C/ � L.S/.

Proof. Let I 2 L.�C/. There exist elements t; n 2 N such that Rn�t � I . Since S is
non-trivial there exists s 2 S with deg.s/ � 1 whence stn 2 Rn�t . This fact shows that
S \ I ¤ ;.

Lemma 5.1 says that if M is an R-module and S is a non-trivial left Ore set of R then
�C.M/ � �S .M/.

Lemma 5.2. Let R be a positively SG left Noetherian ring and S a non-trivial good left
Ore set. If M is an LSG R-module then S�1.M/ Š S�1.Q�C.M//.

Proof. Let

f WS�1M �! S�1.M=�C.M//;

m

s
7�!

Nm

s
:

It is clear that f is surjective. Let m
s
2Ker.f /. Then, Nm

s
D 0, and so, there exists s0 2 S

such that s0 Nm D 0, i.e., s0m 2 �C.M/ � �S .M/. There exists s00 2 S with s00s0m D 0 and
since s00s0 2 S it follows that m

s
D 0. Therefore, S�1.M/ Š S�1.M=�C.M//.
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Now, let

gWS�1.M=�C.M// �! S�1.Q�C.M//;

Na

s
7�!

h. Na/

s
;

where h is the isomorphism between M=�C.M/ and 'M .M/. Since h is injective so g
also is. Let �

s
2 S�1.Q�C.M//. Then, there exist elements t; n 2 N such that .Rn�t /� �

'M .M/. Since S is non-trivial repeating the argument above in the proof of Lemma 5.1 we
can assert that there exists s0 2 S such that s00 D .s0/tn 2 Rn�t . In this way s00� 2 'M .M/,
and so, there exist m 2 M such that s00� D 'M .m/, whence g. Nm

s00s
/ D h. Nm/

s00s
D

'M .m/
s00s

D

s00�
s00s
D

�
s
. We conclude that S�1.Q�C.M// Š S�1.M=�C.M// Š S�1.M/.

For the rest of this section, R denotes a schematic ring (recall that by Definition 4.1 R
is left Noetherian). Consider the full subcategory .R;�C/� LSG of LSG�R whose objects
are the �C-closed modules. If M is an R-module �C-closed and N is a submodule of M ,
then N is �C-closed if and only if M=N is �C-torsion-free [44, Proposition 4.2, Chapter
IX]. Hence, it is clear that the intersection of �C-closed modules is �C-closed. This fact
allows us to consider the submodule �C-closed generated by a subset of M . If we define

N c
D ¹x 2M j .N W x/ 2 L.�C/º;

then it is clear that N c is the submodule �C-closed generated by N , and in fact N c DM

if and only if M=N is �C-torsion.
Notice that in the category .R; �C/ � LSG the subobjects are the submodules LSG-

�C-closed that are closed under arbitrary intersections. The submodule LSG-�C-closed
generated by X � M will be denoted as hXiSG�� . We will say that M is LSG-�C-finitely
generated if there exists a finite set X � M with hXiSG�� D M . Let ProjR be the full
subcategory of .R; �C/ � LSG consisting of LSG-�C-finitely generated modules.

Proposition 5.3. If N is an SG submodule of M , then N c also is.

Proof. Let m D m1 C � � � Cmk 2 N c with mi 2 Mli . There exists I 2 L.�C/ such that
I � .N W m/. Since R is schematic by the good left Ore set Si for i D 1; : : : ; n, say, then
there exist elements si 2 Si with

P
Rsi � I , whence sim 2 N for all i . Since N is SG

and si 2 R00 then simj 2 N for each i; j . Thus,
Pn
iD1Rsi � .N W mj / which shows that

mj 2 N
c .

From these facts, we have the equality hXiSG�� D .hXiSG/c for each X �M . In this
way, M is LSG-�C-finitely generated if and only if there exists a finite set X � M such
that .hXiSG/c DM , or equivalently, M=M1 is �C-torsion with M1 D hXi

SG.
We define the notion of noncommutative site.

Definition 5.4. Let O be the set of non-trivial good left Ore sets of R and W the free
monoid on O. We define the category W as follows: the objects of W are the elements



A. Chacón and A. Reyes 514

of W, while for two words W and W 0 we define the morphisms of W, denoted by
Hom.W 0; W /, as a singleton ¹W 0 ! W º if there exists an increasing injection from the
letters of W to the letters of W 0, i.e., W D S1 : : : Sn and W 0 D V0S1V1S2V2 : : : SnVn
for some letters Si and some (possibly empty) words Vi . In other cases, Hom.W 0; W / is
defined to be empty.

It is easy to see that W is a thin category (i.e., a category where between two objects
there is at most one morphism). We denote the empty word as 1, which is the final object
of the category.

If W D S1 : : : Sn 2W n ¹1º and M is an LSG R-module, we define

QW .M/ D S�1n R˝R � � � ˝R S
�1
1 R˝R M:

Lemma 5.2 asserts that if W ¤ 1 then QW .M/ Š QW .Q�C.M//.
If W D S1 : : : Sn 2 W n ¹1º, we say that w 2 W if w D s1 : : : sn with si 2 Si . We

associate a set of left ideals to W , namely,

L.W / D ¹I Cl R j there exists w 2 W such that w 2 I º:

Let L.1/ WD L.�C/.

Lemma 5.5. Let W 2 W n ¹1º and w; w0 2 W . Then, there exists w00 2 W such that
w00 D aw and w00 D bw0 for some elements a; b 2 R.

Proof. We prove the assertion by induction on the length of elements of W . If W D S1,
then by Ore’s condition, there exist elements a 2 R and b 2 S1 such that aw D bw0 2 S1.

Let the assertion hold for every element of length k. Let W D S1 : : : SkC1; zW D

S2 : : :SkC1; wD s1 : : : skC1; w
0D s01 : : : s

0
kC1
2W , xD s2 : : : skC1, and x0D s02 : : : s

0
kC1

.
By the inductive step, there exist elements a; b 2 R such that ax D bx0 2 zW . Since S1 is
a left Ore set then there exist s001 2 S1 and a1 2 R such that a1s1 D s001a. Hence, a1w D
a1s1xD s

00
1axD s

00
1bx

0 2W . Again, by the Ore’s condition, there exist s�1 2 S1 and b1 2R
such that b1s01 D s

�
1 s
00
1b, and so, b1w0 D b1s01x

0 D s�1 s
00
1bx

0 D s�1a1w 2 W .

Remark 5.6. Lemma 5.5 can be extended to a finite collection of words, i.e. ifw1; : : : ;wi2
W then there exist a1; : : : ; an 2 R such that a1w1 D a2w2 D � � � D anwn 2 W .

Lemma 5.7. LetW 2Wn ¹1º,w 2W and a 2R. There exist elementsw0 2W and b 2R
with w0a D bw.

Proof. We prove by induction on the length of words ofW . IfW D S1, then the assertion
is precisely the Ore’s condition.

Suppose that the lemma holds for each element of length k. Let W D S1 : : : SkC1,
zW D S2 : : : SkC1; w D s1 : : : skC1, and x D s2 : : : skC1. By the inductive step, there exist

elements x0 2 zW and b 2 R such that x0a D bx. Since S1 is an Ore set there exist s01 2 S1
and b0 2 R such that s01b D b

0s1, whence s01x
0a D s01bx D b

0s1x D b
0w.
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Lemmas 5.5 and 5.7 allow us to conclude that L.W / is a filter. In the case W ¤ 1

we will call �W the pre-radical associated to L.W /. It can be seen that for every LSG
R-module M the following equality holds:

�W .M/ D ¹m 2M j there exists w 2 W such that wm D 0º D Ker.M ! QW .M//:

Following [33, page 113] a global cover is a finite subset ¹Wi j i 2 I º of W such
that

T
i2I L.Wi / D L.�C/. For W 2 W, Cov.W / is defined as the set of all sets of the

morphisms of W of the form ¹WiW ! W j i 2 I º, where ¹Wi j i 2 I º is a global cover.
It is clear that ¹1º is a global cover that will be called trivial. Notice that the schematic
condition guarantees the existence of at least one non-trivial global cover. This collection
of coverings is not a Grothendieck topology of W but satisfies similar conditions (Propo-
sition 5.9) that allow us to talk about sheaves on W. For this reason, Van Oystaeyen and
Willaert called the category W with this coverings the noncommutative site (cf. [51]).

The proof of the following lemma is analogous to the setting of graded rings [33,
Lemma 1]. We include it for the completeness of the paper.

Lemma 5.8. If ¹Wi j i 2 I º is a global cover, then for all V 2W we have that\
i2I

L.WiV / D L.V /:

Proof. If I 2 L.V /, there exists v 2 V such that v 2 I . For wi 2 Wi , we have that wiv 2
WiV and wiv 2 I , and so, I 2 L.WiV /. It follows that L.V / �

T
i2I L.WiV /.

Let I 2
T
i2I L.WiV /. For each i , there exist vi 2 V andwi 2Wi such thatwivi 2 I .

By Remark 5.6, there exist a1; : : : ; an 2 R and v 2 V such that v D aivi for every i .
Lemma 5.7 guarantees that there exist w0i 2 Wi and bi 2 R with w0iai D biwi . Since
w0i 2

P
Rw0i and ¹Wi j i 2 I º is a global cover there exist elements n; t 2 N such that

Rn�t �
P
Rw0i . Multiplying by v we obtain .Rn�t /v � I . If S is the first letter of V , there

exists s 2 S \Rn�t . Finally, sv 2 I and sv 2 V , and thus, I 2 L.V /.

Proposition 5.9. The category W together with the sets Cov.W / for any elementW 2W
satisfies the following properties:

.G1/ ¹W ! W º 2 Cov.W /,

.G2/ ¹Wi !W j i 2 I º 2 Cov.W / and for all i 2 I W ¹Wij !Wi j j 2 Iiº 2 Cov.Wi /
we have that ¹Wij ! Wi ! W j i 2 I; j 2 Iiº 2 Cov.W /,

.G3/ if ¹WiW ! W j i 2 I º 2 Cov.W /, W 0 ! W 2W, and if we define WiW �W
W 0 D WiW

0, then ¹WiW �W W 0 ! W 0 j i 2 I º 2 Cov.W 0/.

Proof. .G1/ holds since ¹1º is a global cover. .G2/ is a direct consequence of Lemma 5.8.
.G3/ is clear.

Definitions 5.10 and 5.11 introduce the notion of presheaf and sheaf, respectively, in
the setting of the category W.
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Definition 5.10. A presheaf F on W is a contravariant functor from W to the category
LSG � R such that for all W 2 W n ¹1º the sections F.W / of F on W are SG S�1R-
modules, where S denotes the last letter of W and F.1/ is an SGQ�C.R/-module.

Since F.1/ denotes the global sections, we will denote it as ��.F/. We abbreviate
F.V ! W / as �WV W F.W /! F.V /. If W D 1, then we will write �V instead of �1V .

Definition 5.11. A presheaf F on W is a sheaf if it satisfies the following two properties:

(i) Separatedness: for all elements W 2W and each global cover ¹Wi j i 2 I º, if
m 2 F.W / satisfies that for every i 2 I we have that �WWiW .m/D 0 in F.WiW /,
then m D 0,

(ii) Gluing: 8W 2W and each global cover ¹Wi j i 2 I º, given .mi / 2
Q
i F.WiW /

satisfying

�
WiW
WiWjW

.mi / D �
WjW

WiWjW
.mj / for all .i; j / 2 I � I;

there exists an element m 2 F.W / such that

�WWiW .m/ D mi for all i 2 I:

Proposition 5.12. A presheaf F is a sheaf if and only if for every wordW and each global
cover ¹Wi j i 2 I º, F.W / (with the arrows given by F) is the limit of the diagram

F.WiW /

**

// F.WiWjW /

F.WjW /

44

// F.WjWiW /

(5.1)

Proof. Suppose that F is a sheaf. Let M be an SG R-module with morphisms fi W M !
F.WiW / which are compatibles with the morphisms �WiWWiWjW

and �WiWWJWiW
. Consider

an element m 2 M . By using this compatibility, we have that the element .fi .m// ofQ
i F.WiW / satisfies the equality

�
WiW
WiWjW

fi .m/ D �
WjW

WiWjW
fj .m/ for all .i; j / 2 I � I:

In this way, there is a unique element m0 2 F.W / such that �WWiW .m
0/ D fi .m/, for

each i 2 I . If we define the map ˇ W M ! F.W / as ˇ.m/ D m0, then it is clear that
ˇ is a homogeneous R-homomorphism and it is the only one that satisfies the equality
�WWiW ı ˇ D fi for all i 2 I . Hence, F.W / is the limit of the diagram (5.1).

On the other hand, suppose that F.W / is the limit of the diagram (5.1). Let m 2
F.W / such that �WWiW .m/D 0 for each i 2 I . This means thatm 2

T
Ker.�WWiW /, and by

assumption on F.W / we have that
T

Ker.�WWiW / D 0, whence m D 0. Let

A WD

²
.mi / 2

Y
F.WiW / j �

WiW
WiWjW

.mi / D �
WjW

WiWjW
.mj / for all .i; j / 2 I � I

³
:
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It is clear that A is an SG R-submodule of
Q

F.WiW /, which guarantees the existence of
only one homogeneous R-homomorphism ˇ W A! F.W / such that �WWiW ı ˇ D �i for
all i 2 I , where �i denotes the usual projection. In this way, ˇ.mi / is the element that
satisfies the gluing condition.

Definition 5.13. Let M be an LSG R-module. We define the presheaf yM in the following
way: for objects, we have that yM.1/ D Q�C.M/, and for W 2 W n ¹1º, we have that
yM.W / DQW .M/. Now, for morphisms, ifW ¤ 1 then to the map V ! W we assign it

the canonical morphism such that the following diagram commutes:

QW .M/
�WV // QV .M/

M

88OO

while for the morphism W ! 1, we assign the composition map

Q�C.M/! QW .Q�C.M//! QW .M/;

where the first arrow is the natural map and the second arrow is precisely the isomorphism
obtained in Lemma 5.2.

IfW D S1 : : : Sn andw 2W , sayw D s1 : : : sn, then the element 1
sn
˝ � � � ˝

1
s1
˝m 2

QW .M/will be denoted as m
w

. In particular, m
1

stands for 1˝m inQS .M/, for 1˝ 1˝m
in QST .M/, and so on, which element is meant depends on the module it belongs to.

The proofs of the following two lemmas follow the same ideas as those presented in
the setting of N-graded rings [33, Lemmas 2 and 3].

Lemma 5.14. Given elements m
w
2 QW .M/ and a 2 R, there exist w0 2 W and b 2 R

such that w0a D bw and am
w
D

bm
w 0
2 QW .M/.

Proof. LetW DS1 : : :Sn andwD s1 : : : sn. We consider anD a and define ai recursively.
More exactly, for an element ai the Ore’s condition guarantees the existence of elements
s0i 2 Si and ai�1 2 R such that s0iai D ai�1si . Hence, am

w
D

1
s0n
˝ : : :˝ 1

s01
˝ a0m. If we

define b D a0 and w0 D s01 : : : s
0
n, then the assertion follows.

Lemma 5.15. If m
w
D

m0

1
in QW .M/ for some element m0 2M , then there exist Qw 2 W

and r 2 R such that Qw D rw and Qwm0 D rm.

Proof. Induction on the length n of the word w D s1 : : : sn. The case n D 1 is clear.
Suppose that the assertion holds for any word of length less than n. LetW 0 D S1 : : : Sn�1
and w0 D s1 : : : sn�1. Then, 1

sn
˝

m
w 0
D 1˝ m0

1
2 S�1n .QW 0/, so that there exist elements

a; b 2 R such that a m
w 0
D bm

0

1
D

bm0

1
2 QW 0.M/ and asn D b 2 Sn. By Lemma 5.14,

there exist elements w00 2 W 0 and c 2 R with w00a D cw0 and cm
w 00
D a m

w 0
D

bm0

1
. By

hypothesis, there exist w000 2 W 0 and d 2 R such that w000 D dw00 and w000bm0 D dcm, so
that if we consider Qw D w000b and x D dc the assertion follows.
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Let ¹Wi j i 2 I º be a global cover. The limit of the diagram

QW .QWi .M// //

))

QW .QWj .QWi .M///

QW .QWj .M//

55

// QW .QWi .QWj .M///

(5.2)

will be denoted by �W . yM/. Notice that due to the universal property of the limit, for
the family ¹M ! QWi .M/ j i 2 I º there is a unique morphism ' W M ! �1. yM/. This
morphism is of great importance in the following lemma.

Lemma 5.16. Let ' W M ! �1. yM/ the morphism described above. Then, Coker.'/ is
�C-torsion.

Proof. Let � D .mi
wi
/i 2 �1. yM/ with wi 2 Wi and 1

wi
˝ 1 ˝ mi D 1 ˝ 1

wj
˝ mj 2

QWi .QWj .M//8i; j . Fix j . Then, 1˝mi
wi
D

1
wj
˝mj

1
2QWi .M/ whence by Lemma 5.15,

there exist elements w0i 2 Wi and ai 2 R such that w0i D aiwi and w0i .
1
wj
˝ mj / D

ai .1 ˝ mi /, that is, w0i .
mj
wj
/ D aimi

1
2 QWj .M/. By taking I WD

P
i2I Rw

0
i , it is clear

that I 2
T
i L.Wi / D L.�C/. There exist elements tj ; nj 2 N such that Rnj�tj � I , which

shows that .Rnj�tj /
mj
wj

is contained in the direct image of the map M ! QWj .M/, that is,

.R
nj
�tj
/
mj
wj
� Im.M !QWj .M//. If n WD max¹ni j i 2 I º and t WD max¹ti j i 2 I º, then

it is straightforward to see that this reasoning is true for every element j .
Let a 2 Rn�t . Then, a� D .ni

1
/i for some elements ni 2 M with 1˝ 1˝ ni D 1˝

1˝ nj in QWi .QWj .M// for every i; j . Fix i . Lemma 5.15 guarantees that for each j
there exist elements Qwj 2 Wi and xj 2 R such that Qwj D xj and Qwj

nj
1
D xj

ni
1

. Now,
by Remark 5.6, we can find elements w�i 2 Wi with w�i

ni
1
D w�i

nj
1

for all j . Hence,
w�i a� D '.w

�
i ni /. As above, by defining J D

P
i2I Rw

�
i , there exist elements t 0.a/ and

n0.a/ (notice that all elements depend on a) such that .Rn
0.a/

�t 0.a/
/a� � '.M/. Since R

is a left Noetherian ring, Rn�t is finitely generated, say by the elements a1; : : : ar . By
defining, n0 D max¹n.ak/ j 1 � k � rº and t 0 D max¹t 0.ak/ j 1 � k � rº we have that
.RnCn

0

�tCt 0/� � '.M/, i.e., Coker.'/ is �C-torsion, which concludes the proof.

Proposition 5.17. The presheaf yM is a sheaf.

Proof. Fix a global cover ¹Wi j i 2 I º and let ' WM ! �1. yM/ be the map established in
Lemma 5.16. Let us see that �1. yM/ŠQ�C.M/D yM.1/. Since for the family ¹Q�C.M/!

QWi j i 2 I º the universal property of the limit guarantees the existence of a unique
morphism � W Q�C.M/! �1. yM/, we obtain the following commutative diagram:

�1. yM/ // QWi .M/ // QWj .QWi .M//

M //

'

;;

Q�C.M/

�

OO

�i

99

(5.3)
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It is clear that Ker.�/ �
T

Ker.�i / D
T
�Wi .Q�C.M// D �C.Q�C.M// D 0. On

the other hand, since Im.'/ � Im.�/ and �1. yM/= Im.'/ is �C-torsion (Lemma 5.16) it
follows that �1. yM/= Im.�/ is �C-torsion also. Besides, if Si is the last letter of Wi then
QWi .M/ is �Si -torsion-free, and so, it is �C-torsion-free. In this way, �1. yM/ is the limit
of objects that are �C-torsion-free, and it is clear that �1. yM/ is �C-torsion-free also. Since
we have the short exact sequence

0! Q�C.M/! �1. yM/! �1. yM/= Im.�/! 0;

it follows that Q�C.M/ Š �1. yM/ [16, Proposition 3.4].
Finally, by recalling that QW is an exact functor that commutes with finite limits, if

W ¤ 1, then we have that

�W . yM/ Š QW .�1. yM// Š QW .Q�C.M// Š QW .M/ D yM.W /:

By Remark 5.12, it follows that yM is a sheaf.

Next, we define the notion of affine cover and quasi-coherent sheaf.

Definition 5.18. An affine cover is a finite subset ¹Ti j i 2 I º of O such that
T
i2I L.Ti /D

L.�C/.

Definition 5.19. A sheaf F is quasi-coherent if there exists an affine cover ¹Ti j i 2 I º, and
for each i 2 I there exists an SG T �1i R-module Mi such that for all morphisms V ! W

in the category W, we have a commutative diagram given by

F.TiW /
�
TiW

Ti V //

��

F.TiV /

��

QW .Mi / // QV .Mi /

(5.4)

where the vertical maps are isomorphisms in LSG �R and Q1.�/ WD Q�C.�/. F is called
coherent if moreover all Mi are finitely generated SG T �1i R-modules.

Remark 5.20. Note that the sheaf yM is quasi-coherent for each object in the category
LSG �R. If M is finitely generated SG module, then yM is coherent.

The proof of the following proposition is analogous to the proof of [33, Theorem 1].
For the completeness of the paper, we include it here.

Proposition 5.21. If F is a quasi-coherent sheaf on W and ��.F/ denotes its global
sections F.1/, then F is isomorphic to 1��.F/, the sheaf associated to ��.F/.

Proof. First of all, notice that we can suppose that Mi is �C-closed because if this is not
the case then we can replace it by Q�C.Mi / and the commutative diagram 5.4 holds. We
want to see that F.W / Š QW .��.F// for all W 2 W. If W ¤ 1 then by Remark 5.12
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and the fact that QW commutes with finite limits (recall that QW is an exact functor), it
follows that F.W / is the limit of the diagram (5.1), while QW .��.F// is the limit of the
diagram

QW .F.Wi //

++

// QW .F.WiWj //

QW .F.Wj //

33

// QW .F.WjWi //

(5.5)

Notice that we have the isomorphism F.Ti / Š Q�C.Mi / D Mi , and by the diagram 5.4,
for everyW there exists an isomorphism  Wi WQW .F.Ti //! F.TiW /. IfW D S1 : : : Sn
and Wt WD S1 : : : St , then we obtain the following commutative diagram:

F.Ti /
�
Ti
TiW1 //

��

F.TiW1/
�
TiW1
TiW2 //

 
W1
i

��

F.TiW2/ //

 
W2
i

��

� � � // F.TiWn�1/
�
TiWn�1
TiW //

 
Wn�1
i

��

F.TiW /

 Wi
��

F.Ti / // QW1.F.Ti //
// QW2.F.Ti //

// � � � // QWn�1.F.Ti //
// QW .F.Ti //

Since QWt .F.Ti // is an S�1t R-module, and so, F.TiWt / also is, for an element st 2
St , we can multiply by s�1t , whence the commutativity of the diagram above guarantees
that

 Wi

� 1
sn
˝ � � � ˝

1

s1
˝m

�
D s�1n �

TiWn�1
TiW

�
s�1n�1�

TiWn�2
TiWn�1

�
: : : s�12 �

TiW1
TiW2

�
s�11 �

Ti
TiW1

.m/
�
: : :
��
: (5.6)

On the other hand, we have that

F.TiTjW / Š QTjW .F.Ti // D QW .QTj .F.Ti /// Š QW .F.TiTj //:

If we write  Wij W QW .F.TiTj //! F.TiTjW / as the isomorphism above, by using a
similar diagram to the above, it can be seen that

 Wij

� 1
sn
˝ � � � ˝

1

s1
˝m

�
D s�1n �

TiTjWn�1
TiTjW

�
s�1n�1�

TiTjWn�2
TiTjWn�1

�
: : : s�12 �

TiTjW1
TiTjW2

�
s�11 �

Ti
TiTjW1

.m/
�
: : :
��
: (5.7)

Notice that �TiWt

TiTjWt
and �TiWt

TjTiWt
are S�1t R-linear for t D 1; : : : ; n, since both are

R-homomorphisms between S�1t R-modules. In this way, the expressions (5.6) and (5.7)
imply the commutativity of the following two diagrams:

QW .F.Ti //
QW .�

Ti
Ti Tj

/
//

 i

��

QW .F.TiTj //

 ij

��

F.TiW /
�
TiW

Ti Tj W
// F.TiTjW /

QW .F.Ti //
QW .�

Ti
Tj Ti

/
//

 i

��

QW .F.TjTi //

 j i

��

F.TiW /
�
TiW

Tj TiW
// F.TjTiW /
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Hence, it is clear that diagrams (5.1) and (5.5) have isomorphic limits, that is, F Š
QW .F.��//. Besides, for a morphism V ! W the map �WV is determined by the maps

�
TiW
TiV

and �TiTjWTiTjV
, which shows that the diagram

QW .��.F// //

��

Qv.��.F//

��

F.W /
�wv // F.V /

is commutative.
ForW D 1, we have to show that ��.F/ŠQ�C.��.F//. Since F.Ti / and F.TiTj / are

�C-torsion-free (F.Ti /ŠMi and F.TiTj /Š T
�1
j .F.Ti //), then ��.F/ is �C-torsion-free

because it is the limit of objects �C-torsion-free. Let us see that ��.F/ is �C-injective. By
[16, Proposition 3.2], it is sufficient to show that for all I 2L.�C/ everyR-homomorphism
f W I ! ��.F/ can be extended to a R-homomorphism g W R! ��.F/.

Since F.Ti / is �C-injective the map �Ti ı f can be extended to a map gi WR! F.Ti /.
If xi D gi .1/, then gi .r/ D rxi for every r 2 R. In particular, for each a 2 I we have
that a�TiTiTj .xi /D �

Ti
TiTj

.�Ti .f .a///D �
Tj
TiTj

.�Tj .f .a///D a�
Tj
TiTj

.xj /, which shows that
there exists an element x 2��.F/ such that �Ti .x/D xi for every i . Notice that the map g W
I ! ��.F/ defined by g.r/ D rx extends f , so we conclude ��.F/ D Q�C.��.F//.

Theorem 5.22. The category of quasi-coherent sheaves is equivalent to the category
.R; �C/ � LSG.

Proof. Let F be a quasi-coherent sheaf. From the last part of the proof of the Proposi-
tion 5.21 we have that ��.F/ is an object of .R; �C/ � LSG. Moreover, if M belongs to
.R; �C/ � LSG then M Š Q�C.M/. In this way, b� and ��� are functors between the
category .R; �C/ � LSG and the category of quasi-coherent sheaves, which are equivalent
by Propositions 5.17 and 5.21.

By taking the category of coherent sheaves cohR as the full subcategory of quasi-
coherent sheaves that consists of coherent sheaves, and having in mind that ProjR is the
full subcategory of .R; �C/ � LSG consisting of LSG-�C-finitely generated modules, we
arrive at the most important result of the paper: the Serre–Artin–Zhang–Verevkin theorem
for semi-graded rings.

Theorem 5.23 (Serre–Artin–Zhang–Verevkin theorem). The category of coherent sheaves
is equivalent to ProjR.

Proof. From Theorem 5.22, it is sufficient to show that M belongs to ProjR if and only if
yM is coherent.

We fix a cover ¹Ti j i 2 I º. IfM is an element of ProjR, then there existm1; : : : ;mk 2
M such that M=N is �C-torsion with N D hm1; : : : ; mkiSG. Let fi W M ! T �1i M be
the canonical map. It is straightforward to see that hm1

1
; : : : ;

mk
1
i
SG
R D fi .N /, and that the
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T �1i M -submodule Ji D hm11 ; : : : ;
mk
1
i
SG
T�1i R

satisfies the relation fi .N /� Ji . Letm 2M .

Since M=N is �C-torsion there exists I 2 L.�C/ such that Im � N . By using that Ti is
non-trivial, there exists ti 2 I \ Ti , whence tim 2 N , which shows that tim

1
2 fi .N /.

Since Ji is a T �1i R-module and tim
1
2 Ji then Ji D T �1i M , that is, T �1i M is finitely

generated as an SG T �1i R-module.
Suppose that every one of the t�1i M is a finitely generated SG T �1i R-module. Note

that if T �1i M D h
m1;i
s1;i
; : : : ;

mti ;i

sti ;i
i
SG
T�1i R

then T �1i M D h
m1;i
1
; : : : ;

mti ;i

1
i
SG
T�1i R

. Since there

are finite elements i ’s, the union set
S
i2I ¹m1;i ; : : : ; mti ;iº is also finite, ¹m1; : : : ; mkº

say. If we define N D hm1; : : : ; mkiSG, it is straightforward to see that T �1i N is an SG
T �1i R-submodule of T �1i M , whence T �1i N D T �1i M .

For an elementm 2M , since m
1
2 T �1i N there exist elements ni 2N and ti 2 Ti such

that m
1
D

ni
ti

. There exist ci ; di 2 R such that cim D dini and ci D di ti 2 Ti , whence
cim 2 N . By using that ci 2 Ti for each i 2 I and that ¹Ti j2 I º is an affine cover it
follows that I D

P
Rci 2 L.�C/. We conclude that Im � N , and therefore, M=N is

�C-torsion.

Next, we show that the notion of schematicness in the semi-graded setting generalizes
the corresponding concept in the case of connected and N-graded algebras introduced and
studied by Van Oystaeyen and Willaert [33, 49, 50, 52, 58].

Remark 5.24. Consider a positively graded left Noetherian ring R. It is clear that RC D
R�1. Note that if R is generated in degree one then R�t D .RC/

t , which shows that
L.�C/D ¹I Cl R j there exists n 2N with .RC/n � I º. On the other hand, the LSGmod-
ules are exactly the same N-graded modules and the good left Ore sets coincide with the
homogeneous left Ore sets. In this way, the notion of schematic ring presented in this paper
generalizes the corresponding notion introduced by Van Oystaeyen and Willaert [33]. Last,
but not least, notice that in the N-graded setting the left Noetherianity of R implies that
the finitely generated objects of .R; �C/ � LSG are the Noetherian objects, which shows
that Theorem 5.23 generalizes [33, Theorem 3].

We present some examples that illustrate our Theorem 5.23 in the case of non-N-
graded rings where [33, Theorem 3] cannot be applied.

Example 5.25. (i) Consider the first Weyl algebra A1.k/ D k¹x; yº=hyx � xy � 1i over
a field k of char.k/ D p > 0. It is well known that A1.k/ is a non-N-graded ring, the
set ¹xnym j n; m 2 Nº is k-basis of A1.k/, and that A1.k/ is a Noetherian ring. Since
xp; yp 2Z.A1.k// it is clear that ¹xpk j k 2Nº and ¹ypk j k 2Nº are good left Ore sets.
Besides, if k1; k2 2N then A1.k/xpk1 CA1.k/ypk2 is a two-sided ideal of A1.k/ which
is a left SG submodule, whence A1.k/�pk1Cpk2 � A1.k/x

pk1 C A1.k/ypk2 . Therefore,
A1.k/ is a schematic algebra and Theorem 5.23 holds.

(ii) In a similar way, it can be shown that the nth Weyl algebra An.k/ is schematicness
when char.k/ D p > 0.

(iii) The well-known Jordan plane k¹x;yº=hyx�xy�y2i is schematic when char.k/D
p > 0 since the sets ¹xpk j k 2 Nº and ¹ypk j k 2 Nº are good left Ore sets.
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For the skew PBW extensions introduced by Gallego and Lezama [15] (cf. [36, 39]),
which are examples of non-N-graded rings, Proposition 5.26 establishes sufficient condi-
tions to guarantee their schematicness.

Proposition 5.26. Let A D �.R/hx1; : : : ; xni be a bijective skew PBW extension over a
left Noetherian ring R with the usual semi-graduation, that is, deg.xi / D 1 and deg.r/ D
0, for every i and each r 2 R. If for every i , there exists mi � 1 such that xmii 2 Z.A/
then A is schematic.

Proof. From [14, Theorem 3.1.5] we know that A is left Noetherian. Since xmii 2 Z.A/ it
follows that ¹xmimi j m 2 Nº is a non-trivial good left Ore set for every i . Let us see that
these sets satisfy the schematicness condition. Let ti 2 N. Then,

Pn
iD1 Rx

mi ti
i is a two-

sided ideal and an SG submodule of A. If t WD
P
mi ti , then

L
m�t Rm �

Pn
iD1Rx

mi ti
i ,

and thus, R�t �
Pn
iD1Rx

mi ti
i .

Examples 5.27 and 5.28 show that the theory presented by Lezama about Serre–Artin–
Zhang–Verevkin theorem and the one developed in this paper are independent.

Example 5.27. Proposition 5.26 guarantees that ifR is a left Noetherian noncommutative
ring then AD RŒx� is schematic, and so, Theorem 5.23 holds for A. Notice that this result
cannot be obtained from the theory developed by Lezama [27, 29] because it does not
satisfy Lezama’s assumption (C4) that says that A0 D R is a commutative ring. In the
particular case of the k-algebra R D Mn.k/, since R is not connected it does not satisfy
the definition of schematicness given by Van Oystaeyen and Willaert (Definition 2.6),
and it is not a finitely semi-graded algebra in the sense of Lezama [29, Definition 2.4].
However, from our point of view, the algebra is schematic and Theorem 5.23 holds.

Example 5.28. Consider A as the 3-dimensional skew polynomial algebra subject to the
relations

yz D zy; xz D zx; yx D xy � z:

Following the ideas presented by Lezama [27, 29], it can be seen that this algebra
satisfies the Serre–Artin–Zhang–Verevkin theorem [14, Example 18.5.15 (v)].

It is straightforward to see that the following relations hold:

ynx D xyn � nyn�1z and yxn D xny � nxn�1z for n > 0:

If char.k/ D p > 0 then xp; yp; z 2 Z.A/, and so, Proposition 5.26 implies that A is
schematic.

Consider the case char.k/ D 0. Let us see that A00n D ¹az
n j a 2 k; n 2 Nº. With this

aim, consider ˛ 2 A00n. Then, ˛ is a homogeneous element of degree n, and we can write

˛ D
X
iCj�n

ai;jx
iyj zn�i�j :
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Since that

˛x D
X
iCj�n

ai;jx
iyjxzn�i�j

D

X
iCj�n

ai;jx
i .xyj � jyj�1z/zn�i�j

D

X
iCj�n

ai;jx
iC1yj zn�i�j �

X
iCj�n

jai;jx
iyj�1zn�i�jC1;

the element ˛x is homogeneous of degree n C 1, and so, jai;j D 0 for each i; j . In a
similar way, for the element y˛ we obtain that iai;j D 0 for each i; j . These facts imply
that the only non-zero coefficient is precisely a0;0, that is, ˛ D a0;0zn. This shows that

A00n D ¹az
n
j a 2 k; n 2 Nº:

Now, let us prove thatA is not schematic. Since z 2Z.A/ then S D ¹azk j a 2 k�; k 2
Nº is a good left Ore set. Note that for all m 2 N we have that xm 2 A�mnRz, whence
S does not satisfy the schematicness condition. Besides, due to the reasoning above it
is clear that S contains any other good left Ore of A, and so, if S does not satisfy the
schematicness condition, then no other set will.

Finally, Proposition 5.29 presents necessary conditions to assert the schematicness of
skew PBW extensions with two indeterminates.

Proposition 5.29. Let A D �.k/hx; yi be a skew PBW extension over k defined by the
relation

yx D dxy C ex C fy C g; where d 2 k� and e; f; g 2 k: (5.8)

A is schematic if and only if one of the following cases holds:

(1) yx D dxy (quantum plane, Manin’s plane),

(2) yx D xy C g with char.k/ D p > 0,

(3) yx D dxy C g with d ¤ 1 and dp D 1 for some p 2 N.

Proof. We divide the proof into four parts.

(a) Let P WD dx C f , Q WD ex C g, xP WD dy C e and xQ WD fy C g. Notice that
the binomial theorem holds for P and xP , that is,

P i D

iX
kD0

�
i

k

�
d i�kf kxi�k xP i D

iX
kD0

�
i

k

�
d i�kekyi�k for all i > 0;

and
yx D Py CQ D x xP C xQ:

Let us see some relations of commutativity between x and y.
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For n � 1, the following identities

yxn D P ny C

n�1X
iD0

P n�1�ixiQ;

ynx D x xP n C

n�1X
iD0

xP n�1�iyi xQ

hold.
The case n D 1 is clear. Suppose that the assertion holds for n. Then,

yxnC1 D

�
P ny C

n�1X
iD0

P n�1�ixiQ

�
x

D P n.Py CQ/C

n�1X
iD0

P n�1�ixiC1Q

D P nC1y C

�
P n C

n�1X
iD0

P n�1�ixiC1
�
Q

D P nC1y C

nX
iD0

P n�ixiQ;

which concludes the proof. In a similar way, we can prove the other equality.

(b) For n > 0, we write �n WD
Pn�1
iD0 d

i .
Let us see that if � D axn (resp., � D ayn) belongs toR00n with a¤ 0, then f D 0
(resp., e D 0). In the case Q ¤ 0 (resp., xQ ¤ 0), it follows that �n D 0.
The equalities

y� D ayxn

D a

�
P ny C

n�1X
iD0

P n�1�ixiQ

�
D a

� nX
kD0

�
n

k

�
dn�kf kxn�ky C

n�1X
iD0

P n�1�ixiQ

�
show that the element y� is homogeneous of degree nC 1, and that the mono-
mials having the indeterminate y satisfy that if k ¤ 0 then a

�
n
k

�
dn�kf k D 0. In

particular, if k D n then af n D 0 whence f D 0.
Now, with respect to the other monomials, it is clear that these form a polynomial
element of degree less than nC 1, which shows that

a

n�1X
iD0

P n�1�ixiQ D 0:
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Since f D 0, we get that P D dx, and so,

0 D a

n�1X
iD0

P n�1�ixiQ D a

� n�1X
iD0

dn�1�i
�
xn�1Q:

Thus, if Q ¤ 0, then

0 D

n�1X
iD0

dn�1�i D

n�1X
iD0

d i D �n:

The proof for the case ayn is analogous.

(c) Let n � 1 and consider the expression

� D

nX
iD0

aix
iyn�i 2 R00n:

Let us show that if xQ ¤ 0 (resp., Q ¤ 0) and � ¤ anxn (resp., � ¤ a0yn), then
e D 0 (resp., f D 0) and �k D 0 for some 0 � k � n.
Note that �x is a homogeneous element of degree nC 1. We have the following
equalities:

�x D anx
nC1
C

n�1X
iD0

aix
iyn�ix

D anx
nC1
C

n�1X
iD0

aix
i

�
x xP n�i C

n�1�iX
jD0

xP n�1�i�jyj xQ

�

D anx
nC1
C

n�1X
iD0

�
aix

iC1 xP n�i C aix
i

n�1�iX
jD0

xP n�1�i�jyj xQ

�
: (5.9)

Suppose that there exists 0 � i � n � 1 such that ai ¤ 0 and let t WD min¹0 �
i � n j ai ¤ 0º. Then,

�x D anx
nC1
C

n�1X
iDt

�
aix

iC1 xP n�i C aix
i

n�1�iX
jD0

xP n�1�i�jyj xQ

�
:

Notice that the lower exponent of x appears when i D t and we have that

atx
t

n�1�tX
jD0

xP n�1�t�jyj xQ

is a polynomial element of degree less than nC 1 that has no other terms of �x,
whence necessarily this polynomial has to be the zero element. Since at ¤ 0, it
follows that � n�1�tX

jD0

xP n�1�t�jyj
�
xQ D 0:
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By using that xQ ¤ 0, we have that
Pn�1�t
jD0

xP n�1�t�jyj D 0. Hence,

0 D

n�1�tX
jD0

xP n�1�t�jyj

D

n�1�tX
jD0

� n�1�t�jX
kD0

�
n � 1 � t � j

k

�
dn�1�t�j�kekyn�1�t�j�k

�
yj

D

n�1�tX
jD0

n�1�t�jX
kD0

�
n � 1 � t � j

k

�
dn�1�t�j�kekyn�1�t�k : (5.10)

The coefficient of the monomial y0 is obtained when j D 0 and k D n � 1 � t ,
which implies that�

n � 1 � t

n � 1 � t

�
dn�1�t�0�.n�1�t/en�t�1 D en�t�1 D 0;

whence n � 1 ¤ t and e D 0. By replacing in the expression (5.10), it follows
that

0 D

n�1�tX
jD0

dn�1�t�jyn�1�t ;

and so,

0 D

n�1�tX
jD0

dn�1�t�j D

n�1�tX
jD0

d j D �n�t :

The condition that there exists n > 0 such that �n D 0 is recursive, so we will
call it Condition U. It can be seen that this condition is satisfied if and only if one
of the following conditions hold:

• d D 1 and char.k/ D p > 0,

• d ¤ 1 and there exists p > 0 such that dp D 1.

(d) With the analysis above, we can determine the schematicness of the skew PBW
extensions defined by relation (5.8).
First of all, note that if d D 0, Part (c) implies that A00 D k since Condition U
does not hold. Thus, the skew PBW extension A is not schematic. From now on,
consider d ¤ 0. It is clear that the case eD f D gD 0 shows thatA is schematic.
Let us see what happens if one of these three elements is non-zero and Condition
U does not hold.
Let � 2 A00n with n > 1. If g ¤ 0, then Q ¤ 0 ¤ xQ, and by Part (c) we have that
� D anx

n D a0y
n, whence � D 0, and so, A00 D k, which shows that A is not

schematic. If e ¤ 0 thenQ ¤ 0, and Part (c) implies that � D a0yn, that is � D 0
(Part (b) above). In this case A is not schematic. Similarly, if f ¤ 0 then A is not
schematic.
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Let us see the case where Condition U holds (with the less value of p satisfying
this condition), and two of the three elements e;f;g being non-zero. If e¤ 0¤ f ,
then Part (c) implies that � D 0, whence A is not schematic. If e ¤ 0 ¤ g and
f D 0, it follows that xp 2 Z.R/. On the other hand, Q ¤ 0 ¤ xQ, and so, Part
(c) shows that � D anxn with p j n. In this way, A00 D ¹axpk j a 2 k; k 2Nº and
hence, S D ¹axpk j a 2 k�; k 2 Nº is the greatest left Ore set, and since S does
not satisfy the condition of schematicness (due to the powers of y), it is clear that
A is not schematic. Analogously, one can check that if f ¤ 0¤ g and e D 0 then
A is not schematic.
Now, let us see the situation where Condition U is satisfied and only one element
is non-zero. If e ¤ 0 and f D 0 D g, then xQ D 0, and so, equation 5.9 can be
written as

�x D anx
nC1
C

n�1X
iD0

n�iX
kD0

�
n � i

k

�
aid

n�i�kekxiC1yn�i�k :

Note that every value of i corresponds to only one power of x, and when k¤ 0 the
degree of xiC1yn�i�k is less than nC 1. These facts show

�
n�i
k

�
aid

n�i�kek D 0

for each 0 � i � n� 1 and all 0 < k � n� i . In particular, if k D 1 then ai D 0,
and so, � D anxn. Part (b) above implies that p j n whence A is not schematic
by the same reason as above in the case e ¤ 0 ¤ g and f D 0. Analogously, if
f ¤ 0 and e D 0 D g it follows that A is not schematic.
Finally, if Condition U holds and g ¤ 0 with e D 0D f then it is straightforward
to see that xp; yp 2 Z.R/, whence A is schematic.

Remark 5.30. Proposition 5.29 shows that there are Ore extensions over schematic rings
that are not schematic. This is consistent with Proposition 2.8.

6. Conclusions and future work

In this paper, we have defined the notion of schematic ring in the context of semi-graded
objects and illustrated our Theorem 5.23 with some non-N-graded algebras. With the aim
of obtaining new examples of schematic algebras in this more general setting, it is of
interest to generalize the criterion formulated by Van Oystayen and Willaert [52, Lemma
2] that says that ifR is an N-graded k-algebra such that its centerZ.R/ is Noetherian and
such that R is a finitely generated Z.R/-module, then R is schematic. The importance of
this criterion can be appreciated in [13] where the authors investigated the schematicness
of skew Ore polynomials of higher order generated by homogeneous quadratic relations
defined by Golovashkin and Maksimov [17, 18]. Since these algebras are non-N-graded,
the research on its schematicness will be crucial for another families of noncommutative
rings.
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Now, having in mind that Willaert [58] studied the least possible number of Ore
sets satisfying the condition of schematicness for N-graded algebras and called it the
schematic dimension, a natural task is to investigate this notion in the setting of semi-
graded rings. Also, an important topic of future research for these rings is the Čech
cohomology developed by Van Oystayen and Willaert [50, 52].

Funding. The second author was supported by the research fund of Faculty of Science,
Code HERMES 53880, Universidad Nacional de Colombia - Sede Bogotá, Colombia.
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