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Fell’s absorption principle for semigroup
operator algebras

Elias G. Katsoulis

Abstract. Fell’s absorption principle states that the left regular representation of a group absorbs
any unitary representation of the group when tensored with it. In a weakened form, this result carries
over to the left regular representation of a right LCM submonoid of a group and its Nica-covariant
isometric representations but it fails if the semigroup does not satisfy independence. In this paper,
we explain how to extend Fell’s absorption principle to an arbitrary submonoid P of a group G by
using an enhanced version of the left regular representation. Li’s semigroup C�-algebra C�s .P / and
its representations appear naturally in our context. Using the enhanced left regular representation,
we not only provide a very concrete presentation for the reduced object for C�s .P / but we also
resolve open problems and obtain very transparent proofs of earlier results. In particular, we address
the non-selfadjoint theory and we show that the non-selfadjoint object attached to the enhanced
left regular representation coincides with that of the left regular representation. We obtain a non-
selfadjoint version of Fell’s absorption principle involving the tensor algebra of a semigroup and
we use it to improve recent results of Clouâtre and Dor-On on the residual finite dimensionality
of certain C�-algebras associated with such tensor algebras. As another application, we give yet
another proof for the existence of a C�-algebra which is co-universal for equivariant, Li-covariant
representations of a submonoid P of a group G.

1. Introduction

Let G be a discrete group and let L WD ¹Lsºs2G be its left regular representation, i.e.,
Ls.ıt / D ıst , s; t 2 G, where ¹ıtºt2G is the canonical basis of `2.G/. If U WD ¹Usºs2G
is any unitary representation of G on a Hilbert space H , then Fell’s absorption principle
states that the representations L˝ I and L˝ U are unitarily equivalent and so the map

C�r .G/ 3 Ls 7! Ls ˝ Us 2 B.`
2.G/˝H /

extends to a �-isomorphism between the generated C�-algebras.
Let now P � G be a submonoid. Since its left regular representation on `2.P /,

denoted again as L, is now an isometric representation, one is naturally led to the study
of isometric representations of P on a Hilbert space (which coincide with the unitary
representations if P happens to be a group). If V D ¹Vpºp2P is such an isometric repre-
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sentation of P , one does not expect the representations L˝ I and L˝ V to be unitarily
equivalent as in the group case. (Indeed, if P D Nn¹1º, then L˝ I and L˝ L are not
unitarily equivalent.) Nevertheless, in the case where P is a right LCM submonoid of a
group, Fell’s absorption principle generalizes in the following form, which is well known
to experts.

Proposition 1.1. Let P be a right LCM submonoid of a group G and let V D ¹Vpºp2P
be a Nica-covariant representation of P . Then the map

Lp 7! Lp ˝ Vp (1.1)

extends to a �-isomorphism between the ambient C�-algebras.

In particular, one can take Vp DLp , p 2P , in Proposition 1.1 and therefore obtain that
the left regular representation of a right LCM submonoid is self-absorbing, in the sense
that (1.1) extends to a �-isomorphism. (We will not be defining right LCM submonoids
or Nica representations in this paper as we do not make use of them; the reader should
consult [8, 9] for the pertinent definitions and an extension of Proposition 1.1 to product
systems.)

Perhaps counter-intuitive, Proposition 1.1 may not hold if one drops the assumption
of P being a right LCM submonoid1. Indeed, it follows from [15, Proposition 2.24] that
if P does not satisfy independence, then the canonical map

Lp 7! Lp ˝ Lp 2 B.`
2.P /˝ `2.P //

does not extend to a �-homomorphism of the generated C�-algebras. (The definition for
independence appears just before Corollary 4.8; an important and quite accessible exam-
ple of a semigroup that does not satisfy independence appears in Example 6.1.) Thus
Fell’s absorption principle fails in its most basic form as the left regular representation
may not be self absorbing in general. The research in this paper was stimulated by this
phenomenon and motivated us to search for possible generalizations of Fell’s absorption
principles in the spirit of Proposition 1.1. As it turns out, this can be done and the key step
for such a generalization is an “enhancement” of the left regular representation (Defini-
tion 3.1). In Corollary 3.5 we show that the enhanced left regular representation is indeed
self-absorbing. Using this result as a first step, we introduce the C�-algebra xT .P /, which
is the full C�-algebra of the Fell bundle associated with the enhanced left regular repre-
sentation of P . We establish two versions of Fell’s absorption principle for submonoids
of groups. Theorem 3.8 generalizes Proposition 1.1 to arbitrary submonoids of groups
using the representations of xT .P / as a substitute for Nica-covariant representations. The-
orem 4.6 characterizes which isometric representations of a semigroup P are actually
absorbed by its enhanced left regular representation. In order to establish Theorem 4.6,

1The author was not aware of this pathology and is grateful to Marcelo Laca and Camila Sehnem for
making him aware of it.
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we discover that Li’s semigroup C�-algebra C�s .P / [15] and its representations play a
pivotal role. Indeed, in Theorem 4.3 we show that the universal algebra xT .P / is canon-
ically isomorphic with Li’s semigroup C�-algebra C�s .P /. This result is not only a key
ingredient in the proof of Theorem 4.6 but it also leads to short proofs of earlier results
that had more involved proofs. These improvements together with a pertinent discussion
appear at the second half of Section 4 and at the end of Section 5.

In Section 5, we look at the non-selfadjoint aspects of the theory. In Theorem 5.1
we show that the non-selfadjoint object attached to the enhanced left regular representa-
tion coincides with that attached to the left regular representation, i.e., the tensor algebra
T�.P /

C of P . In Theorem 5.4 we completely characterize the submonoids P for which
T�.P /

C admits a character ! satisfying !.Lp/ D 1, for all p 2 P . In Theorem 5.5 we
obtain a non-selfadjoint version of Fell’s absorption principle. In particular, we obtain a
characterization of which representations of P extend to coactions of P on the tensor
algebra T�.P /

C, provided that P is left reversible and contained in an amenable group.
We then use our non-selfadjoint version of Fell’s absorption principle in order to improve
recent results from Clouâtre and Dor-On [5] regarding the residual finite dimensionality
of the maximal C�-algebra of various tensor algebras. As another application, we give yet
another proof for the existence of a C�-algebra which is co-universal for equivariant, Li-
covariant representations of a submonoid P of a group G. This proof is quite elementary
and avoids the use of partial crossed products or strong covariance.

The paper ends with a short section containing examples and open problems.

2. Coactions and their Fell bundles

In this introductory section, which borrows heavily from [8, Section 3], we list several
prerequisites regarding coactions and their associated Fell bundles. We will not be defining
here what a Fell bundle is and we will not be listing the basic results of their C�-algebraic
theory. We suggest that the reader consults [10] for an expedited introduction and [11] for
a detailed treatment.

In what follows, G will always denote a fixed discrete group. We write ug , g 2 G, for
the generators of the universal group C�-algebras C�.G/ and lg , g 2G, for the generators
of the reduced group C�-algebra C�r .G/. We write l WC�.G/! C�r .G/ for the canonical
�-epimorphism. Recall that C�.G/ admits a faithful �-homomorphism

�WC�.G/! C�.G/˝ C�.G/ such that �.ug/ D ug ˝ ug :

Definition 2.1. Let A be an operator algebra. A coaction of a discrete group G on A is
a completely isometric representation ıWA! A˝ C�.G/ such that

P
g2G Ag is norm-

dense in A for spectral subspaces

Ag WD ¹a 2 A j ı.a/ D a˝ ugº:

If, in addition, the map .id˝ l/ı is injective then the coaction ı is called normal.
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A map ı as in Definition 2.1 automatically satisfies the coaction identity

.ı ˝ idC�.G//ı D .idA ˝�/ı: (2.1)

Indeed, (2.1) is readily seen to hold on Ag , g 2 G, and therefore on A, since
P
g2G Ag is

norm-dense in A.

It follows from the definition that if ıWA! A˝ C�.G/ is a coaction then

Ag � Ah � Agh for all g; h 2 G;

because ı is a homomorphism. Conversely, if there are subspaces ¹Agºg2G such thatP
g2G Ag is norm-dense in A and a representation ıWA! A˝ C�.G/ such that

ı.ag/ D ag ˝ ug for all ag 2 Ag ; g 2 G;

then ı is a coaction ofG on A. Indeed, ı satisfies the coaction identity and it is completely
isometric since .idA ˝ �/ı D idA.

In [8, Remark 3.2] it was noted that if ıWA!A˝C�.G/ is a coaction so that ı extends
to a �-homomorphism ıWC�.A/! C�.A/˝ C�.G/ satisfying the coaction identity

.ı ˝ id/ı.c/ D .id˝�/ı.c/ for all c 2 C�.A/;

then ı is automatically non-degenerate on C�.A/, i.e.,

ı.C�.A//ŒC�.A/˝ C�.G/� D C�.A/˝ C�.G/:

In [8, Remark 3.3] it was noted that Definition 2.1 coincides with that of Quigg [22]
when A is a C�-algebra. Furthermore, in this case ı is a faithful �-homomorphism and we
have that

.Ag/
�
D ¹a� 2 A j ı.a�/ D a� ˝ ug�1º D Ag�1 :

Also the coaction is then non-degenerate, i.e., it is a full coaction.
The following gives a sufficient condition for the existence of a compatible normal

coaction.

Proposition 2.2 ([8, Proposition 3.4]). LetA be an operator algebra and letG be a group.
Suppose there are subspaces ¹Agºg2G such that

P
g2G Ag is norm-dense in A, and there

is a completely isometric homomorphism

ı�WA! A˝ C�r .G/

such that
ı�.a/ D a˝ lg for all a 2 Ag ; g 2 G:

Then A admits a normal coaction ı of G satisfying ı� D .id˝ l/ı.
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Let us close this section with a discussion on gradings of C�-algebras in the sense
of [11].

Definition 2.3. Let A be a C�-algebra and G a discrete group. A collection of closed
linear subspaces ¹Bgºg2G of A is called a grading of A by G if

(i) BgBh � Bgh,

(ii) B�g D Bg�1 ,

(iii)
P
g2G Bg is dense in A.

If in addition there is a conditional expectation EWB ! Be which vanishes on Bg for
g ¤ e, we say that the pair .¹Bgºg2G ; E/ is a topological grading of A.

When ı is a coaction on a C�-algebra A, the spectral subspaces Ag for g 2 G com-
prise a topological grading for A with conditional expectation Ee D .id˝ Fe/ ı ı where
FeWC�.G/! A is the e-th Fourier coefficient. Completely contractive mapsEg WB! Bg
can be similarly defined by setting Eg WD .id˝ Fg/ ı ı, where Fg WC�.G/! C is the
g-th Fourier coefficient.

A grading of a C�-algebra by a group constitutes a Fell bundle over the group, and
every Fell bundle arises this way, but not uniquely. Indeed, there may be many non-
isomorphic graded C�-algebras whose gradings are all equal to a pre-assigned Fell bun-
dle B. At one extreme sits the maximal C�-algebra C�.B/, which is universal for rep-
resentations of B, while at the other extreme is the minimal (reduced) cross-sectional
algebra C�r .B/ which is defined via the left regular representation of B. We refer again to
[10, 11] for the precise definitions and details.

3. Fell’s absorption principle for semigroup C�-algebras

If H is a Hilbert space then H˝n will denote its n-fold tensor product. Similarly, if S is a
bounded operator on H (or a representation of a semigroup on H ) then S˝n will denote
the n-fold tensor product.

Definition 3.1. Let P be a semigroup. The enhanced left regular representation of P is
the representation

xLWP ! B

� 1M
nD1

`2.P /˝n
�
I P 3 p 7!

1M
nD1

L˝np ;

where LD ¹Lpºp2P denotes the left regular representation of P . (For notational simplic-
ity, we will be writing Ǹ2.P / instead of

L1
nD1 `

2.P /˝n.)

In order to study the enhanced left regular representation in the context of C�-algebras,
we need to built a universal C�-algebra with the enhanced left regular representation as
a distinguished representation. For that reason, we will show that the algebra xT�.P / WD
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C�.xL/, being a reduced type object, admits a normal coaction and then we use Fell bundle
theory. But first we need to establish some notation.

Let P be a semigroup of a group G. For each k 2 N we consider the set of words of
length 2k in P ,

W.P /k WD ¹.p1; p2; : : : ; p2k�1; p2k/ j pj 2 P; for j D 1; 2; : : : ; 2kº

and we let W.P / WD
S1
kD0 W.P /k , with the understandingW.P /0 D ;. (When the con-

text makes it clear what P is, we simply write W instead of W.P /.) With each word
a 2 Wk we make the assignment

a D .p1; p2; : : : ; p2k�1; p2k/ 7! Pa WD p
�1
1 p2; : : : ; p

�1
2k�1p2k 2 G:

A word a 2W is said to be neutral if Pa D e, the neutral element of G. If V D ¹Vpºp2P is
an isometric representation of P and a D .p1; p2; : : : ; p2k�1; p2k/ 2 W , then we define

PVa WD V
�
p1
Vp2V

�
p3
� � �V �p2k�1Vp2k :

Proposition 3.2. Let P be a submonoid of a group G. Then there is a normal coaction

NıW xT�.P /! xT�.P /˝ C�.G/I xLp 7! xLp ˝ up:

Moreover, each spectral subspace xT�.P /g , g 2 G, of Nı satisfies

xT�.P /g D span¹ PxLa j a 2 W ; Pa D gº:

Proof. It is enough to establish a normal coaction

ıW T�.P /! T�.P /˝ C�.G/I Lp 7! Lp ˝ up

so that each spectral space T�.P /g , g 2 G, satisfies

T .P /g D span¹ PLa j a 2 W ; Pa D gº:

Then the desired coaction is the restriction of
1M
nD1

.id˝n ˝ ı/W
1M
nD1

T�.P /
˝n
!

1M
nD1

.T�.P /
˝n
˝ C�.G//

'

� 1M
nD1

T�.P /
˝n

�
˝ C�.G//

on yT�.P /.
The existence of such a coaction ı on T�.P / is well known. Indeed, consider the

operator U W `2.P /˝ `2.G/! `2.P /˝ `2.G/ be given by

U.ıp ˝ ıg/ D ıp ˝ ıpg for all p 2 P; g 2 G:

Then U is a unitary in B.`2.P /˝ `2.G// satisfying U.Lp ˝ I / D .Lp ˝ lp/U for all
p 2 P . Thus adU implements a normal coaction that promotes to desired coaction Nı by
Proposition 2.2.
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The existence of the coaction ı implies that other natural algebras associated with the
representation xL also admit coactions whose spectral subspaces have similar descriptions,
e.g.,

C�.xL˝ xL/ � yT�.P /˝ yT�.P /:

This will be a recurring theme in this paper. We now need the following.

Lemma 3.3 (cf. [13, Lemma 1.4]). Suppose F is a finite family of mutually commuting
projections in a unital C�-algebra and let �X 2 C for each X 2 F . For every subset A of
F define

QA WD
Y
X2A

X
Y

X2F nA

.1 �X/;

which includes the cases Q; D
Q
F .1 �X/ and QF D

Q
F X .

Then 1 D
P
A�F QA is a decomposition of the identity in mutually orthogonal pro-

jections, X
X2F

�XX D
X
;¤A�F

�X
X2A

�X

�
QA

and 


 X
X2F

�XX



 D max

²ˇ̌̌ X
X2F

�X

ˇ̌̌
j ; ¤ A � F; QA ¤ 0

³
:

Proposition 3.4. Let P be a submonoid of a group G. The mapping

xLp D

1M
nD1

L˝np 7! xLp ˝ Lp D

1M
nD2

L˝np ; p 2 P; (3.1)

extends to an isometric �-representation of xT�.P /.

Proof. It is elementary to verify that (3.1) extends to a well-defined �-representation �
of xT�. Now, arguments similar to that of Proposition 3.2 show that C�.�/ admits a co-
action Nı�, whose spectral subspaces C�.�/g , g 2 G, have a similar description to that
of Nı. Hence both xT�.P / and C�.�/ become graded C�-algebras and � induces a surjective
bundle homomorphism between the associated Fell bundles.

We show now that � is isometric on xT�.P /e . Consider a non-zero element of xT�.P /
of the form

˛ WD
X
F

�a
PxLa; (3.2)

where F is a finite collection of neutral words. We claim that k�.˛/k D k˛k. By way of
contradiction, assume otherwise. Then the second half of Lemma 3.3 implies the existence
of a non-empty A � F so that the projection

QA WD
Y
a2A

PxLa
Y

b2F nA

.1 � PxLb/
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satisfies kQA˛k D k˛k and yet �.QA/ D 0. However, for the non-zero projection QA to
satisfy �.QA/ D 0, we must have thatY

a2A

PLa
Y

b2F nA

.1 � PLb/ ¤ 0

while all other direct summands satisfyY
a2A

PL˝na

Y
b2F nA

.1 � PL˝n
b
/ D 0; n D 2; 3; : : :

However,
.1 � PLb/

˝2
� 1 � PL˝2

b
for all b 2 F nA;

and so � Y
b2F nA

.1 � PLb/

�˝2
�

Y
b2F nA

.1 � PL˝2
b
/:

But then,

0 ¤

�Y
a2A

PLa
Y

b2F nA

.1 � PLb/

�˝2
D

�Y
a2A

PLa

�˝2� Y
b2F nA

.1 � PLb/

�˝2
�

Y
a2A

PL˝2a

Y
b2F nA

.1 � PL˝2
b
/

� �.QA/: (3.3)

This contradiction shows that � is isometric on sums of the form (3.2) and therefore on
the generated subspace of xT�.P /, i.e., xT�.P /e .

From the above, it follows that � induces a bundle isomorphism between ¹ xT�.P /gºg2G
and ¹C�.�/ºg2G and so � induces a �-isomorphism between the reduced cross-sectional
C�-algebras C�r .¹ xT�.P /gºg2G/ and C�r .¹C

�.�/gºg2G/ which coincides with � on fibers.
However, both xT�.P / and C�.�/ admit faithful expectations that act as the identity on the
unit fibers and annihilate all other fibers. Hence by [10, Proposition 3.7] we have

C�r .¹ xT�.P /gºg2G/ ' xT�.P / and C�r .¹C
�.�/gºg2G/ ' C�.�/

canonically and the proof of the proposition is complete.

Unlike the left regular representation, the enhanced left regular representation of a
semigroup is always self-absorbing. Indeed, we have the following.

Corollary 3.5. Let P be a submonoid of a group G. The mapping

xT�.P / 3 xLp 7! xLp ˝ xLp 2 C�.xL˝ xL/

extends to a �-isomorphism between the ambient C�-algebras.
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Proof. It is easy to see that the mapping

xLp ˝ xLp 7!

1M
nD2

L˝np ; p 2 P;

extends to an isometric representation of C�.xL˝ xL/. In the previous Proposition we
established that

xLp D

1M
nD1

L˝np 7!

1M
nD2

L˝np ; p 2 P;

extends to an isometric �-representation of xT�.P / and the conclusion follows.

In order to obtain our isometric Fell’s absorption principle, we now need to identify a
suitable analogue of Nica-covariance that applies to isometric representations of arbitrary
semigroups.

It is known [8, Proposition 4.3] that the Nica-covariant representations of a right
LCM semigroup P are exactly the isometric representations of P which extend to �-
representations of the full cross-sectional C�-algebra of the Fell bundle ¹T�.P /gºg2G
arising from the coaction ı appearing in the proof of Proposition 3.2. Following this lead,
let

xT .P / WD C�.¹ xT�.P /gºg2G/

be the full cross-sectional C�-algebra of the Fell bundle ¹ xT�.P /gºg2G . Let Nt be the
natural �-embedding of ¹ xT�.P /gºg2G in xT .P / and let x�W xT .P / ! xT�.P / be the �-
homomorphism that makes the diagram

xT .P /

x�
��

¹ xT�.P /gºg2G

Nt

66

� � // xT�.P /

commutative. For ease of notation, we write Ntp instead of Nt .xLp/, p 2P . Observe that since
xT .P / and xT�.P / are cross-sectional C�-algebra of the same bundle, x�W xT .P /! xT�.P /
is a �-isomorphism on the unit fiber xT .P /e .

Lemma 3.6. Let P be a submonoid of a group G. Then the map

C�.xL˝ xL/ 3 xLp ˝ xLp 7! xLp ˝ Ntp 2 C�.xL˝ Nt /; p 2 P;

extends to a �-isomorphism between the generated C�-algebras.

Proof. Arguing as in the proof of Proposition 3.2, one can see that the C�-algebras C�.xL˝
xL/ and C�.xL ˝ Nt / admit coactions whose spectral subspaces ¹C�.xL ˝ xL/gºg2G and
C�.xL˝ Nt /gºg2G respectively satisfy

C�.xL˝ xL/g D span
®
PxLa ˝

PxLa j a 2 W ; Pa D g
¯
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and
C�.xL˝ Nt /g D span

®
PxLa ˝ PNta j a 2 W ; Pa D g

¯
;

for all g 2 G. Furthermore, both C�.xL˝ xL/ and C�.xL˝ Nt / admit faithful expectations
that act as the identity map on the zero fibers C�.xL˝ xL/e and C�.xL˝ xL/e and annihilate
all other spectral subspaces. Hence

C�.xL˝ xL/ ' C�r .¹C
�.xL˝ xL/gºg2G/ and C�.xL˝ Nt / ' C�r .¹C

�.xL˝ Nt /gºg2G/:

Now the map
id˝ x�W xT�.P /˝ xT .P /! xT�.P /˝ xT�.P /

establishes a bundle homomorphism from the Fell bundle ¹C�.xL ˝ Nt /gºg2G onto
¹C�.xL˝ xL/gºg2G . However, the restriction of id˝ x� on xT�.P /e ˝ xT .P /e is injective
because x�j xT .P /e is injective. Since

C�.xL˝ Nt /e � xT�.P /˝ xT .P /;

the bundle homomorphism from the Fell bundle ¹C�.xL˝Nt /gºg2G onto ¹C�.xL˝xL/gºg2G
is actually an isomorphism, which promotes to a �-isomorphism between their reduced
cross-sectional C�-algebras. This completes the proof.

The Nica-covariant representations of a right LCM semigroup are faithful on mono-
mials, i.e., if ¹Vpºp2P is a Nica-covariant representation of a right LCM semigroup P
and

L�p1Lp2L
�
p3
� � �L�p2k�1Lp2k ¤ 0 for some p1; p2; : : : ; p2k 2 P;

then
V �p1Vp2V

�
p3
� � �V �p2k�1Vp2k ¤ 0:

This property follows directly from the definition of a right LCM group but one can also
deduce it from Proposition 1.1. Indeed, if ¹Vpºp2P is a Nica-covariant representation of
a right LCM semigroup P , then the injectivity of the �-homomorphism coming from
(1.1) implies that ¹Vpºp2P is necessarily faithful on monomials because the left regular
representation is. We now observe that this property also holds for our analogue of Nica-
covariant representations, which appear in (3.4) below.

Lemma 3.7. Let P be a submonoid of a group G and let � W xT .P / ! B.H / be a �-
representation. Then the semigroup representation

P 3 p 7! �.Ntp/ 2 B.H / (3.4)

is faithful on monomials.

Proof. We need to show that if a 2 W is a neutral word with PxLa ¤ 0, then �.PNta/ ¤ 0.
Let ¹ıpºp2P be the canonical basis of `2.P /. Since PxLa ¤ 0, we have that PLa ¤ 0 and so
there exists q 2 P with ıq 2 PLa.`2.P //. Therefore

PLq PL
�
q.`

2.P // D span¹ıqp j p 2 P º � PLa.`2.P //
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and so PLa PLq PL�q D PLq PL
�
q . This in turn implies PxLa PxLq PxL�q D

PxLq
PxL�q and since x�W xT .P /!

xT�.P / is a �-isomorphism on the unit fiber xT .P /e , we have PNta PNtq PNt�q D PNtq PNt
�
q . Apply now �

to obtain
�.PNta/�.PNtq/�.PNt

�
q / D �.

PNtq/�.PNt
�
q /: (3.5)

However, �.PNtq/ is an isometry and so �.PNtq/�.PNt�q / ¤ 0. This implies that the right side of
(3.5) and in particular �.PNta/ is non-zero, as desired.

We have arrived at our first version of Fell’s absorption principle.

Theorem 3.8 (Fell’s absorption principle for semigroups; first version). Let P be a sub-
monoid of a group G. Let xL be the enhanced left regular representation of P and let � be
a �-representation of xT .P /. Then the map

xT�.P / 3 xLp 7! xLp ˝ �.Ntp/; p 2 P; (3.6)

extends to an injective representation of xT�.P /.

Proof. By combining Corollary 3.5 with Lemma 3.6, we conclude that the map

xT� 3 xLp 7! xLp ˝ Ntp 2 C�.xL˝ Nt /; p 2 P;

extends to a �-homomorphism (actually isomorphism) between the ambient C�-algebras.
By composing this �-homomorphism with

id˝ � W xT�.P /˝ xT .P /! xT�.P /˝ �. xT .P //;

we obtain that the map in (3.6) extends to a (well-defined) �-homomorphism � between
the ambient C�-algebras. It remains to establish its injectivity.

Arguments similar to that of Lemma 3.2 show that C�.�/ admits a coaction Nı�, whose
spectral subspaces C�.�/g satisfy

C�.�/g D span¹ PxLa ˝ �.PNta/ j a 2 W ; Pa D gº; g 2 G:

Hence both xT�.P / and C�.�/ become graded C�-algebras and � induces a surjective bun-
dle homomorphism between the associated Fell bundles.

We show now that � is isometric on xT�.P /e . Consider a non-zero element of xT�.P /
of the form

˛ WD
X
F

�a
PxLa; (3.7)

where F is a finite collection of neutral words. We claim that k�.˛/k D k˛k. The second
half of Lemma 3.3 implies the existence of a non-empty A � F so that the projection

QA WD
Y
a2A

PxLa
Y

b2F nA

.1 � PxLb/

satisfies kQA˛k D k˛k. It suffices to show that �.QA/ ¤ 0.
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Indeed, note that
.1 � PxLb/˝ 1 � 1 �

PxLb ˝ �.
PNtb/;

for all b 2 F nA. Furthermore,
Q
a2A �.

PNta/ ¤ 0 because the representation � is faithful
on monomials (Lemma 3.7). Therefore

0 ¤ QA ˝

�Y
a2A

�.PNta/

�
D

�Y
a2A

PxLa
Y

b2F nA

.1 � PxLb/

�
˝

�Y
a2A

�.PNta/

�
D

�Y
a

PxLa ˝ �.PNta/

� Y
b2F nA

.1 � PxLb/˝ 1

�

�Y
a

PxLa ˝ �.PNta/

� Y
b2F nA

.1 � PxLb ˝ �.
PNtb//

D �

�Y
a2A

PxLa
Y

b2F nA

.1 � PxLb/

�
D �.QA/:

This arguments above show that � is isometric on sums of the form (3.7) and therefore on
the generated subspace of xT�.P /, i.e., xT�.P /e .

From the above it follows that � induces a bundle isomorphism between ¹ xT�.P /gºg2G
and ¹C�.�/ºg2G and so � induces a �-isomorphism between the reduced cross-sectional
C�-algebras C�r .¹ xT�.P /gºg2G/ and C�r .¹C

�.�/gºg2G/ which coincides with � on fibers.
However, both xT�.P / and C�.�/ admit faithful expectations that act as the identity on the
unit fiber and annihilate all other fibers. Hence by [10, Proposition 3.7] we have that

C�r .¹ xT�.P /gºg2G/ ' xT�.P / and C�r .¹C
�.�/gºg2G/ ' C�.�/

canonically and the proof of the theorem is complete.

Remark 3.9. In the case where P is a right LCM submonoid of a group G, Proposi-
tion 1.1 implies that the map

T�.P / 3 Lp 7! xLp 2 xT�.P /

extends to an isomorphism between the ambient C�-algebras and so Theorem 3.8 reduces
to Proposition 1.1 in that case.

4. xT .P/ coincides with Li’s semigroup C�-algebra C�s .P/

Theorem 3.8 brings the spotlight on the representations of P coming from xT .P /. It is
therefore desirable to have an explicit description for such representations in terms of
relations, which will make them more usable. Such a description can be achieved by intro-
ducing Li’s semigroup C�-algebra C�s .P / [16] and its defining relations. This will allow
us to give a more concrete version of Fell’s absorption principle and actually characterize
which isometric representations of P can be absorbed by the enhanced left regular repre-
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sentation. On the other hand, we will be able to connect Li’s semigroup C�-algebra with
a very concrete object, i.e., xT�.P /. Using this connection, we will give easy to remem-
ber proofs of some earlier results requiring the consideration of inverse semigroup theory.
More applications will appear in the next section. For the moment, we need some addi-
tional notation.

If a D .p1; p2; : : : ; p2k�1; p2k/ is a word in W.P /, we write

K.a/ WD P \ .p�12k p2k�1/P \ .p
�1
2k p2k�1p

�1
2k�2p2k�3/P \ � � � \ .

Pza/P;

for the constructible right ideal associated with a. It is easy to see that if ¹ıpºp2P is the
canonical orthonormal basis for `2.P /, then

K.a/ D ¹p j PLaıp D ıp; p 2 P º:

We let
J .P / WD ¹K.a/ j a 2 W.P /º;

dropping the reference to P and simply writing J , if there is no source of confusion.

Definition 4.1 ([16, Definition 3.2]). Let P be a submonoid of a groupG and let J be the
collection of all constructible right ideals of P . Li’s semigroup C�-algebra of P , denoted
as C�s .P /, is the universal C�-algebra generated by a family of isometries ¹vpºp2P and
projections ¹eSºS2J[¹;º such that

(i) vpvq D vpq , whenever p; q 2 P ;

(ii) e; D 0;

(iii) Pva D eS , whenever S 2 J and a 2 W satisfy Pa D e and K.a/ D S .

It turns out that C�s .P / admits a “lighter” set of axioms that makes it easier to identify
its representations. Indeed, Laca and Sehnem show in [14, Proposition 3.22] that C�s .P /
is canonically isomorphic to the universal C�-algebra generated by a family of elements
¹wp j p 2 P º subject to the relations

(T1) we D 1;

(T2) Pwa D 0, if K.a/ D ; with Pa D e;

(T3) Pwa D Pwb if a and b are neutral words with K.a/ D K.b/.

In particular, any map wW P ! B.H / satisfying the relations (T1), (T2) and (T3) is a
representation of P by isometries. In this paper we will use the Laca and Sehnem picture
for C�s .P / and we will call any representation satisfying the relations (T1), (T2) and (T3)
a Li-covariant representation of P .

Lemma 4.2. Let X be a set and ¹XiºkiD1 be subsets of X so that their n-fold cartesian
products satisfy

X .n/ D

k[
iD1

X
.n/
i for all n 2 N:

Then there exists i0 2 ¹1; 2; : : : ; kº so that X D Xi0 .
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Proof. Indeed, if not, then for each 1 � i � k, choose xi 2 XnXi and note that

.x1; x2; : : : ; xk/ 2 X
.k/
n

k[
iD1

X
.k/
i ;

a contradiction.

Theorem 4.3. Let P be a submonoid of a groupG. Then xT .P / is canonically isomorphic
with Li’s semigroup C�-algebra C�s .P /.

Proof. Since all three relations (T1), (T2) and (T3) manifest in the unit fiber of xT�.P /
with wp D xLp , p 2 P , the isometries ¹Ntpºp2P � xT .P / will also satisfy properties (T1),
(T2) and (T3). By universality, there exists a �-homomorphism

�WC�s .P /! xT .P /I wp 7! Ntp; for all p 2 P:

In order to produce an inverse for �, we need to establish that C�s .P / is a cross-sectional
C�-algebra for the Fell bundle ¹ xT�.P /gºg2G .

It is easily seen that C�s .P / admits a coaction ıs W C�s .P / ! C�s .P / ˝ C�.G/ with
spectral subspaces satisfying

C�s .P /g D span¹ Pwa j a 2 W ; Pa D gº; g 2 G:

Let �g be the restriction of .x�/ ı � on the fiber C�s .P /g , g 2G. We will show that ¹�gºg2G
promotes to an isomorphism between the Fell bundles ¹C�s .P /gºg2G and ¹ xT�.P /gºg2G .

Consider a non-zero element of C�s .P / of the form

˛ WD
X
F

�a Pwa;

where F is a finite collection of neutral words.

Claim. k�e.˛/k D k˛k.

Proof of claim. By way of contradiction assume otherwise. Then the second half of Lem-
ma 3.3 implies the existence of a non-empty A � F so that the projection

QA WD
Y
a2A

Pwa
Y

b2F nA

.1 � Pwb/

satisfies kQA˛k D k˛k and yet

�e.QA/ D
Y
a2A

PxLa
Y

b2F nA

.1 � PxLb/ D 0:

By concatenating all words in A we obtain a0 2 W so that

Pwa0 D
Y
a2A

Pwa and PxLa0 D
Y
a2A

PxLa
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and so
QA D

Y
b2F nA

. Pwa0 � Pwa0b/ (4.1)

while

�e.QA/ D
Y

b2F nA

. PxLa0 �
PxLa0b/ D

1M
nD1

� Y
b2F nA

. PL˝na0 �
PL˝n
a0b
/

�
D 0:

The right side of the last equality implies that K.a0/.n/ D
S
b2F nAK.a0b/

.n/, for all
n 2 N, and so Lemma 4.2 implies that there exists b0 2 F nA so that K.a0/ D K.a0b0/.
Hence (T3) implies that Pwa0 D Pwa0b0 and so by substituting in (4.1) we obtain that
QA D 0, a contradiction that proves the claim.

The claim shows now that �e is isometric on a dense subset of C�s .P /e and so an
injective �-isomorphism between C�s .P /e and xT�.P /e . Using the C�-identity, it follows
that �g is well defined and isometric for all g 2 G. It is routine to verify the rest of
the properties that establish that ¹�gºg2G is an isomorphism between the Fell bundles
¹C�s .P /gºg2G and ¹ xT�.P /gºg2G , as desired.

Since C�s .P / is a cross-sectional C�-algebra for the Fell bundle ¹ xT�.P /gºg2G , there
exists a surjective �-homomorphism

xT .P / D C�.¹ xT�.P /gºg2G/! C�s .P /I Ntp 7! wp; for all p 2 P:

This is the desired inverse for � and the proof of the theorem is complete.

Remark 4.4. It follows now from the proof of Theorem 4.3 that the unit fiber of
¹C�s .P /gºg2G demonstrates a remarkable property which we record here for future refer-
ence.

If ¹aiºniD0 is a finite collection of neutral words in W and
Qn
iD1. Pwa0 � Pwa0ai / D 0,

then necessarily Pwa0 D Pwa0ai for some i D 1; 2; : : : ; n.

Corollary 4.5. Let P be a submonoid of an amenable group G. Then Li’s semigroup C�-
algebra C�s .P / is canonically isomorphic with xT�.P /, i.e., the C�-algebra generated by
the enhanced left regular representation.

We now state Fell’s absorption principle for submonoids of groups and characterize
which isometric representations can actually be absorbed by the enhanced left regular
representation.

Theorem 4.6 (Fell’s absorption principle for semigroups; second version). Let P be a
submonoid of a group G and let xL be the enhanced left regular representation of P . If
V D ¹Vpºp2P is an isometric representation of P , then the following are equivalent.

(i) The map
xT�.P / 3 xLp 7! xLp ˝ Vp; p 2 P;

extends to an injective �-homomorphism.

(ii) PVa D PVb , provided that a; b 2 W are neutral words with K.a/ D K.b/ ¤ ;.



E. G. Katsoulis 416

Proof. Verifying that (i) implies (ii) is elementary. Assume that (ii) holds. It is easy to see
that the representation xL˝ V satisfies (T1), (T2) and (T3) and so the map

wp 7! xLp ˝ Vp; p 2 P;

extends to a representation of Li’s algebra C�s .P /. By composing with the canonical iso-
morphism of Theorem 4.3 we obtain a representation � of xT .P / satisfying �.Ntp/ D
xLp ˝ Vp , for all p 2 P . Theorem 3.8 implies now that the map

xLp 7! xLp ˝ �.Ntp/ D xLp ˝ xLp ˝ Vp; p 2 P; (4.2)

extends to a �-isomorphism between the generated C�-algebras.
On the other hand, we have from Corollary 3.5 that xLp ˝ xLp 7! xLp , p 2 P , extends

to a �-isomorphism and so by a fundamental property of the spatial tensor product of
C�-algebras, the same is true for

xLp ˝ xLp ˝ Vp 7! xLp ˝ Vp; p 2 P: (4.3)

The conclusion follows now by composing the �-isomorphisms coming from (4.2) and
(4.3).

Remark 4.7. One might hope that the strategy in the proof of Theorem 4.6 might also
work for the map

T�.P / 3 Lp 7! Lp ˝ Vp; p 2 P;

and thus show that it extends to an injective �-homomorphism from the Toeplitz algebra
T�.P /. We remind the reader that this cannot be done even in the simplest case where V
is the left regular representation.

The enhanced left regular representation and the connection with C�s .P / of Theo-
rem 4.3 offers great insight in the structure of semigroup C�-algebras. Apart from estab-
lishing Theorem 4.6 and Corollary 4.5 it will allow us to obtain direct proofs for results
which were obtained elsewhere with more involved proofs. Here is a first example; in
Section 5 we will see more applications.

Recall that a cancellative semigroup P is said to satisfy independence if for every
X 2 J and all X1; X2; : : : ; Xn 2 J,

X D

n[
iD1

Xi

implies that X D Xi for some i D 1; 2; : : : ; n. In [12, Corollary 3.3] it was shown that if
the map

C�s .P / 3 wp 7! Lp 2 T�.P /; p 2 P;

is an isomorphism, thenP satisfies independence. The proof is based on [12, Theorem 3.2]
and an earlier result of Norling [19, Theorem 3.2.14] requiring inverse semigroup theory.
Here is a proof that avoids that theory.
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Corollary 4.8 ([12, Corollary 3.3]). Let P be a submonoid of a group G. If the map

C�s .P /e 3 Pwa 7! PLa 2 T�.P /e; a 2 W ; Pa D e; (4.4)

is injective, then P satisfies independence.

Proof. Consider the map

T�.P /e 3 PLa 7! Pwa 7!
PxLa 7!

PxLa ˝
PxLa 7! PLa ˝ PLa; a 2 W ; Pa D e;

where the first arrow (from the left) comes from the inverse of (4.4), the second arrow
comes from the universality of C�s .P / ' xT .P /, the third comes from Corollary 3.5 and
the fourth from restricting to a reducing subspace. The conclusion follows now from com-
bining [15, Proposition 2.24 (v)] with [15, Corollary 2.22].

5. The non-selfadjoint theory

It is natural to ask how the concepts explored in the previous sections manifest in the non-
selfadjoint context. Indeed, consider the non-selfadjoint algebra xT�.P /C generated by the
image of the enhanced left regular representation of a submonoid P . Such an algebra is
xT�.P /

C the “enhanced” analogue of the familiar tensor algebra T�.P /
C which has been

studied extensively [5, 6, 8, 9, 12, 17, 18]. One might ask, how can xT�.P /C be compared
to T�.P /

C. The following answers that question.

Theorem 5.1. Let P be a submonoid of a group G and let xT�.P /C denote the non-
selfadjoint algebra generated by the enhanced left regular representations xL. Then
xT�.P /

C is completely isometrically isomorphic to T�.P /
C via a map that sends gen-

erators to generators.

Proof. Consider the normal coaction

ıW T�.P /! T�.P /˝ C�.G/I Lp 7! Lp ˝ up

appearing in the proof of Proposition 3.2 and note that the completely contractive map
defined by

T�.P /
C
3 Lp

ı
7��! Lp ˝ up 7! Lp ˝ .lpj`2.P // D Lp ˝ Lp

is multiplicative because `2.P / is invariant by all lp , p 2 P . Iterations of the above argu-
ment show that the maps

T�.P /
C
3 Lp 7! L˝np ; n D 3; 4; : : :

are completely contractive and multiplicative. By taking a direct sum of all these maps, we
produce a completely isometric map from T�.P /

C onto xT�.P /C, which sends generators
to generators.
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Consider the inverse semigroup 	L WD ¹ PLa j a 2 Wº � T�.P /. The reduced C�-alge-
bra C�

�
.	L/ associated with 	L is the C�-algebra generated by the operators l.w/W

`2.	Ln¹0º/! `2.	Ln¹0º/ determined by

l.w/ıx D

´
ıwx if w�w � xx�;

0 otherwise;

with w 2 	L. By [12, Theorem 3.10] and Theorem 4.3, we have that xT�.P / is canon-
ically isomorphic to C�

�
.	L/. Therefore Theorem 5.1 leads to the following alternative

description of the tensor algebra T�.P /
C.

Corollary 5.2. Let P be a submonoid of a group G. Then the map

T�.P /
C
3 Lp ! lp 2 C��.	L/; p 2 P;

extends to a completely isometric representation of T�.P /
C.

We can now use our theory to see that in contrast with its selfadjoint counterpart,
T�.P /

C admits a semigroup comultiplication for an arbitrary submonoid P . This not
only extends [5, Corollary 5.5] but also makes the RFD-coaction theory developed in [5]
available for all submonoids, not just the ones satisfying independence. We will have to
say more about this theory shortly.

Corollary 5.3. Let P be a submonoid of a group G. Then there is a completely isometric
comultiplication �P on T�.P /

C given by �P .Lp/ D Lp ˝ Lp , p 2 P .

Proof. Let  W T�.P /C ! xT�.P /C be the isomorphism of Theorem 5.1 and let

�W xT�.P /! xT�.P /˝ xT�.P /I xLp 7! xLp ˝ xLp; p 2 P;

be the map of Corollary 3.5. Then the map �P WD . �1 ˝  �1/� is the desired co-
multiplication.

Of course we could obtain a more general result than that of Corollary 5.3 by invok-
ing our Fell’s absorption principle (Theorem 4.6) instead of Corollary 3.5 in its proof.
Instead we follow a different path and we obtain a much stronger result. We begin with
Theorem 5.4 below in order to characterize for which submonoids P , the tensor algebra
T C
�
.P / admits a special kind of character. Apart from its intrinsic interest, this character-

ization will allow us later on to clarify one of the assumptions of [5, Theorem 4.6] and
obtain a non-selfadjoint Fell’s absorption principle (Theorem 5.5). We remark that the
requirement below that P has to be contained in an amenable group is not as strict as it
appears at first. Many highly non-amenable groups contain as semigroups submonoids of
amenable groups. The most distinguished example of such a behavior is that of the free
semigroup on n-generators, which is contained in an amenable (actually solvable) group.
(See [7, p. 238] for more information.)
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Theorem 5.4. If P is a submonoid of a group G, then the following are equivalent.

(i) T�.P /
C admits a unimodular character !, i.e., j!.Lp/j D 1, for all p 2 P .

(ii) P is left reversible, i.e., pP \ qP ¤ ; for any p; q 2 P , and it embeds in an
amenable group.

Proof. Assume first that T�.P /
C admits a character ! with j!.Lp/j D 1, for all p 2 P .

Extend ! to a positive linear form y! on T�.P / and notice that for any p 2 P , we have

y!.L�p/y!.Lp/ D y!.Lp/y!.Lp/ D 1 D y!.I / D y!.L
�
pLp/;

and so all Lp , p 2 P , belong to the right multiplicative domain of y! ([21, p. 39]). Accord-
ing to [21, Theorem 3.18 (i)]

¹a 2 T�.P / j y!.a/y!.a/ D y!.a
�a/º

D ¹a 2 T�.P / j y!.b/y!.a/ D y!.ba/; for all b 2 T�.P /º;

and so with a D Lp and b D LpL�p in the above, we obtain

y!.Lp/ D y!..LpL
�
p/Lp/ D y!.LpL

�
p/y!.Lp/;

i.e., y!.LpL�p/ D 1. Hence

y!.LpL
�
p/ D y!.Lp/y!.L

�
p/;

and so all Lp , p 2 P , belong to the left multiplicative domain of y!. Therefore, y! is a
multiplicative form on T�.P / and so P is left amenable, see [15, Section 4.1]. By [20,
Proposition (1.25)] P is left reversible and by [20, Proposition (1.27)] P embeds in an
amenable group.

Conversely assume that P embeds in an amenable groupG0. Theorem 5.1 implies that
it is enough to show that xT�.P /C admits a unimodular character. We will show instead
that C�s .P / admits a character and this will suffice since the amenability ofG0 implies that
xT�.P / D C�s .P / and so xT�.P /C � xT�.P / inherits that character.

Consider the semigroup representation P 3 p 7! 1 2C. This representation obviously
satisfies the defining relations (T1) and (T3) for C�s .P /. It also satisfies (T2) because when
P is left reversible, thenK.a/¤ ; for any non-empty neutral word a 2W . This is a well-
known fact but we sketch a proof for completeness.

Indeed, it suffices to show that for any word b 2 W and p 2 P , we have PLbLp ¤ 0
(or equivalently, PLbLpL�p ¤ 0), provided that PLb ¤ 0. Now PLbLpL�p ¤ 0 means that its
domain projection has to be non-zero, i.e., K.b.e; p/.p; e// ¤ ;. Let q 2 K.b/, which is
non-empty by assumption, and so qP � K.b/. But then [14, Proposition 2.6 (5)] implies
that

K.b.e; p/.p; e// D K.b/ \K..e; p/.p; e// � qP \ pP ¤ ;;

because P is left reversible and we are done.
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Since the semigroup representation P 3 p 7! 1 2 C satisfies all the defining relations
of C�s .P /, it induces a representation on C, i.e., a unimodular character for C�s .P /, as
desired.

The initial motivation for our Theorem 5.4 came from one of the main results of [5],
Theorem 4.6, which has as one of its assumptions that the tensor algebra T�.P /

C admits
a character ! satisfying !.Lp/ D 1, for all p 2 P . Theorem 5.4 clarifies now that the
presence of such a character ! is equivalent to P being left reversible and embedding in
an amenable group. Here is a more significant application of Theorem 5.4.

Theorem 5.5 (Fell’s absorption principle for semigroups; non-selfadjoint version). Let
P be a submonoid of a group G, let L be the left regular representation of P and let
V D ¹Vpºp2P be a representation of P by isometries on a Hilbert space H . Consider

(i) the representation V D ¹Vpºp2P extends to a completely contractive represen-
tation of T�.P /

C;

(ii) the map
T�.P /

C
3 Lp 7! Lp ˝ Vp; p 2 P;

extends to a completely isometric representation of T�.P /
C.

Then (i) H) (ii). If P is left reversible and G amenable, then (ii) H) (i).

Proof. Assume that we have a completely contractive representation

�V W T�.P /
C
! B.H /I Lp 7! Vp; p 2 P:

If �P is the comultiplication of Corollary 5.3, then the completely contractive map � WD
.id˝ �V / ı�P indeed satisfies �.Lp/D Lp ˝ Vp , for all p 2 P . We need to verify now
that � is completely isometric, not just a complete contraction. For that, we use a familiar
trick.

Consider the isometry

W W `2.P /˝H ! `2.P /˝H I ıp ˝ h 7! ıp ˝ Vph; p 2 P; h 2 H ;

where ¹ıpºp2P is the canonical orthonormal basis of `2.P /. It is easy to verify that

W.Lp ˝ I / D .Lp ˝ Vp/W; for all p 2 P;

by applying the left and right sides of the above equation on a vector of the form ıs ˝ Vth.
Therefore, 
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for any finite collection of pi 2 P and complex numbers �i , i D 1; 2; : : : ; n. Hence � is
an isometry. A matricial analogue of the above argument establishes that � is a complete
isometry and we are done.

Assume now that P is left reversible, G is amenable and that the map

T�.P /
C
3 Lp 7! Lp ˝ Vp; p 2 P;

extends to a completely isometric representation � of T�.P /
C. Theorem 5.4 implies now

the existence of a character! satisfying!.Lp/D 1, for all p 2P . Then the map .!˝ id/�
is a completely contractive representation of T�.P /

C satisfying

.! ˝ id/�.Lp/ D 1˝ Vp ' Vp; for all p 2 P;

and the conclusion follows.

One can recast Theorem 5.5 using the language of semigroup coactions of Clouâtre
and Dor-On [5].

Definition 5.6 (Clouâtre and Dor-On [5]). Let A be an operator algebra, P be a can-
cellative discrete semigroup and let T C

�
.P / denote the non-selfadjoint algebra generated

by the left regular representation of P . A completely isometric homomorphism ıWA!

A˝ T C
�
.P / is said to be a coaction of P on A if the linear span of the spectral subspaces

Ap WD ¹a 2 A j ı.a/ D a˝ Lpº; p 2 P;

is norm dense in A.

In light of the above definition, our Theorem 5.5 characterizes the semigroup repre-
sentations of P that lead to coactions of P on T�.P /

C. In [5], Clouâtre and Dor-On make
heavy use of these semigroup coactions in order to investigate questions regarding resid-
ual finite dimensionality in the context of general operator algebras. In particular, they are
interested when the maximal C�-cover C�max.A/ of an operator algebra A is residually
finite dimensional (RFD). All of their results are confined however to semigroups which
are independent, the reason being that they utilize heavily the selfadjoint theory and, as
we have already mentioned, there are significant issues with the left regular representation
beyond independent semigroups.

The following result was obtained by Clouâtre and Dor-On [5] only in the case where
P is independent and it required an intricate proof.

Theorem 5.7. Let P and Q be submonoids of groups G and H respectively. Let �WG !
H be a group homomorphism such that �.P / � Q. Then the map

T�.P /
C
3 LPp 7! LPp ˝ L

Q

�.p/
2 T�.P /

C
˝ T�.Q/

C

extends to a coaction of Q on T�.P /
C.
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Proof. First notice that the group homomorphism �WG ! H induces now a �-homo-
morphism

�� WC�.G/! C�.H/I ug 7! u�.g/:

Consider again the normal coaction

ıW T�.P /! T�.P /˝ C�.G/I LPp 7! LPp ˝ up

appearing in the proof of Proposition 3.2 and note that the completely contractive map ı�
defined on T�.P /

C by

T�.P /
C
3 LPp

ı
7�! LPp ˝ up

id˝��
7����! LPp ˝ u�.g/ 7! LPp ˝ .l�.p/j`2.Q// D L

P
p ˝ L

Q

�.p/

is multiplicative because `2.Q/ � `2.H/ is invariant by all lq 2 C�r .H/, q 2 Q. Since
each ı�.Lp/, p 2 P , is an isometry, Theorem 5.5 implies that the map

T�.P /
C
3 LPp 7! LPp ˝ ı�.Lp/ D L

P
p ˝ L

P
p ˝ L�.p/; p 2 P;

extends to a completely isometric representation of T�.P /
C. However, Corollary 5.3

shows that the map

T�.P /
C
˝ T�.P /

C
3 LPp ˝ L

P
p 7! LPp ; p 2 P;

extends to a completely isometric map and the conclusion follows by composing the maps
above.

We can now obtain a strengthening of one of the main results in [5]. Let P and Q be
submonoids of groups G and H respectively. Clouâtre and Dor-On define a homomor-
phism �WG ! H as a .P;Q/-map if �.P / � Q and the set ��1.q/ \ P is finite for any
q 2 Q. Maps with similar properties have been considered many times before, starting
with [13] where they were called controlled maps.

Recall that a cancellative semigroup P is said to have the finite divisor property (or
FDP) if each element of P admits finitely many factorizations.

Theorem 5.8. Let P and Q be countable submonoids of groups G and H , with H
amenable. Assume that Q is left reversible and has FDP. If there exists a .P; Q/-map
from G to H , then C�max.T�.P /

C/ is residually finite dimensional.

Proof. The proof is identical to that of [5, Theorem 5.7] if one instead of using [5, Theo-
rem 5.4] in their proof now one uses our Theorem 5.7.

Theorem 5.8 improves [5, Theorem 5.7], one of the main results of that paper, in
two ways. First, it removes the assumption that the semigroups involved are independent.
Furthermore, [5, Theorem 5.7] asks that the semigroup Q is left amenable. As it can be
seen in [7, Theorem 5.5.42] and its proof, left amenable semigroups embed in amenable
groups. Furthermore, their Toeplitz algebra has to be nuclear. By asking P to be merely
left reversible we dispose of the nuclearity requirement.
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Our Theorem 5.8 allows us to obtain the following improvement of [5, Corollary 5.8].

Corollary 5.9. Let P be a submonoid of an amenable group G. If P is left reversible and
has FDP, then C�max.T�.P /

C/ is RFD.

Using the results of this paper and ideas from [8], we also obtain yet another (perhaps
more transparent) proof for the existence of a co-universal C�-algebra for equivariant,
Li-covariant representations.

If A is an operator algebra and ıWA! A˝ C�.G/ is a coaction on A, then we will
refer to the triple .A; G; ı/ as a cosystem. A map �WA ! A0 between two cosystems
.A; G; ı/ and .A0; G; ı0/ is said to be G-equivariant, or simply equivariant, if ı0� D
.� ˝ id/ı.

Definition 5.10. Let .A; G; ı/ be a cosystem. A triple .C 0; �0; ı0/ is called a C�-cover
for .A; G; ı/ if .C 0; G; ı0/ forms a cosystem and .C 0; �0/ forms a C�-cover of A with
�WA! C 0 being equivariant.

Definition 5.11. Let .A;G; ı/ be a cosystem. The C�-envelope of .A;G; ı/ is a C�-cover
for .A; G; ı/, denoted by .C�env.A; G; ı/; �env; ıenv/, that satisfies the following property:
for any other C�-cover .C 0; �0; ı0/ of .A; G; ı/ there exists an equivariant �-epimorphism
�WC 0 ! C�env.A; G; ı/ that makes the diagram

C 0

�

��

A

�0

66

�env // C�env.A; G; ı/

commutative. We will often omit the embedding �env and the coaction ıenv and refer to the
triple simply as C�env.A; G; ı/.

As in the case of the C�-envelope for an operator algebra, it is easily seen that if the
C�-envelope for a cosystem exists, then it is unique up to a natural notion of isomorphism
for cosystems. The existence of the C�-envelope for an arbitrary cosystem was established
in [8, Theorem 3.8], where it was used as a means to solve an open problem from [4]. For
information regarding C�-envelopes and their theory, the reader should consult [3, 21].
The origins of the theory go back to the seminal work of Arveson from the late 60’s [1,2].

In Theorem 5.1 we saw that xT�.P / contains canonically a completely isometric copy
of the tensor algebra T�.P /

C. Our next result shows that a variety of other C�-algebras
may also contain a copy of the tensor algebra T�.P /

C ' xT�.P /
C.

Theorem 5.12. Let P be a submonoid of a group G. Let .B; G; ı/ be a cosystem for
which there exists an equivariant epimorphism

�W xT�.P /! B:

Then �j xT�.P /C is completely isometric and therefore .B; G; ı/ forms a C�-cover for the
cosystem . xT�.P /

C; G; ı
C
/.
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Proof. Consider the unital completely positive map

 WC�.G/! C�r .G/! B. Ǹ2.P //I ug 7! Nlg 7! P Ǹ2.P /
Nlg j Ǹ2.P /

which is multiplicative on the subalgebra of C�.G/ generated by all up , p 2 P . Since
 .up/ D xLp for all p 2 P , the following diagram of completely contractive homomor-
phisms:

xT�.P /
C

�

��

// B ˝ xT�.P /

B // B ˝ C�.G/

id˝ 

OO

commutes. By Theorem 3.8 the upper horizontal map is a restriction of an injective �-
homomorphism and thus it is completely isometric. Hence � is completely isometric.

Note that we could have obtained Theorem 5.1 as a corollary of Theorem 5.12 by
considering the equivariant epimorphism

xT�.P / 3 xLp 7! Lp 2 T�.P /; p 2 P:

However, the current proof is more direct as it does not require the use of our Fell’s
absorption principle (Theorem 3.8).

Definition 5.13. We say that a Li-covariant representation v of a submonoid G is gauge-
compatible, or simply equivariant if C�.v/ admits a coaction of G that makes the canoni-
cal epimorphism xT .P /! C�.v/ equivariant with respect to the natural (gauge) coaction
of G on xT .P /.

Definition 5.14. Let P be a submonoid of a group G. Suppose .C; G; 
/ is a cosystem
and j WP ! C is a Li-covariant isometric representation, with integrated version denoted
by j�WC�s .P /! C . We say that .C;G;
; j / has the co-universal property for equivariant,
Li-covariant representations of P if

(i) j�WC�s .P /! C is Oı-
 equivariant; and

(ii) for every equivariant, Li-covariant representation vWP ! C�.v/, there is a sur-
jective �-homomorphism �WC�.v/! C such that

�.vp/ D jp; for all p 2 P:

Notice that, as observed at the beginning of [4, Section 4], the map � is automatically
equivariant because j� and t� are surjective.

Our next result shows that the C�-envelope of the tensor algebra T�.P /
C taken with

its natural coaction satisfies the co-universal property. This result was first obtained in [12]
and was later generalized in [24]. Both proofs make use of strong covariance, as developed
in [23]. Our proof below is self-contained and perhaps more transparent.
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Theorem 5.15. Let P be a submonoid of a group G. Let

ı
C
W xT�.P /

C
! xT�.P /

C
˝ C�.G/

be the restriction of the coaction from Proposition 3.2 to xT�.P /C. Then the C�-envelope
.C�env.

xT�.P /
C; G; ı

C
/; ıenv; �env/ of the cosystem . xT�.P /

C; G; ı
C
/ satisfies the co-univer-

sal property associated with equivariant, Li-covariant representations of P .

Proof. By definition, .C�env.
xT�.P /

C; G; ı
C
/; ıenv; �env/ is generated by a Li-covariant, G-

compatible representation of P . It remains to show that it has the required co-universal
property.

Let xE be the faithful conditional expectation on xT�.P / and let

x�WC�s .P / ' xT .P /! xT�.P /

be the enhanced left regular representation. Then by [10, Proposition 3.6] we have

ker x� D ¹a 2 xT .P / j xE.a�a/ D 0º:

Let v be an equivariant, Li-covariant representation of P . Then C�.v/ admits a G-
grading and let us write B D ¹Bgºg2G for this grading of C�.v/. Due to the existence
of the conditional expectation on C�.v/, by [10, Theorem 3.3] there exists a canonical
equivariant �-epimorphism

�WC�s .P /! C�.v/! C�r .B/

where C�r .B/ is the reduced cross-sectional C�-algebra of the Fell bundle B. If E 0 is the
associated faithful conditional expectation on C�r .B/, then � intertwines xE and E 0 due to
its equivariance.

Let a 2 ker x�. As � intertwines the conditional expectations xE and E 0, we derive that
E 0.�.a�a// D 0 and so �.a/ D 0, because E 0 is faithful. Since a was arbitrary in ker x�
we get that ker x� � ker�. Hence there is an induced �-homomorphism �0 that makes the
following diagram:

C�s .P /
�

//

x�

$$

C�r .B/

xT�.P /

�0
::

commutative. By construction, �0 is equivariant and so Proposition 5.12 implies that
C�
�
.B/ is a C�-cover of . xT�.P /C; G; ı

C
/. Therefore we have the following �-epimor-

phisms:
C�.v/! C�r .B/! C�env.

xT�.P /
C; G; ı

C
/;

which establishes that .C�env.
xT�.P /

C; G; ı
C
/; ıenv; �env/ satisfies the co-universal property

for P , as desired.
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6. Concluding remarks and open problems

(i). In this paper, we advocate for an alternative approach in the study of semigroups and
their Hilbert space representation theory. An approach which instead of having the left reg-
ular representation as a centerpiece, it focuses on the enhanced left regular representation.
Such an approach is of course dedicated to semigroups which do not satisfy independence.
Therefore it seems fitting to present a very accessible example of a submonoid that does
not satisfy independence for the benefit of the uninitiated reader. The example is taken
from [7], where a variety of additional examples can be found. Additional examples can
be found in [14, Section 9.2].

Example 6.1. Consider the additive semigroup P WD Nn¹1º. Following [7, p. 229] we
show that P does not satisfy independence.

Indeed, consider the constructible ideals

k C P D LkL
�
k D ¹k; k C 2; k C 3; : : : º; k D 2; 3; : : :

Then
5CN D .2C P / \ .3C P /

is also a constructible ideal. However, 5C N D .5C P / [ .6C P /, and yet 5C N ¤
k C P , for any k D 2; 3; : : : Hence P does not satisfy independence.

Actually, a similar argument shows that any numerical semigroup of the form NnF
with F � N finite, fails the independent condition.

(ii). We would like to know the answer to the following problem.

Problem 6.2. Let P be a submonoid of a group G, let L be the left regular representation
of P and let V D ¹Vpºp2P be a representation of P by isometries on a Hilbert space H .
Characterize the representations V for which Lp 7! Lp ˝ Vp extends to an isometric
representation of T�.P /

C.

Theorem 5.5 gives an answer when P is a left reversible submonoid of an amenable
group. We are wondering what happens beyond that case.

(iii). Does a true Fell’s absorption principle hold for an arbitrary submonoid P of a
group G? In other words, we have the following problem.

Problem 6.3. Let P be a submonoid of a group G. Is there some faithful representation
¹Spºp2P of xT�.P / so that for any other representation ¹Vpºp2P of xT�.P /, the representa-
tions ¹Sp ˝ I ºp2P and ¹Sp ˝ Vpºp2P are unitarily equivalent?

It is an easy consequence of Theorem 3.8 that the map

Sp ˝ I 7! Sp ˝ Vp; p 2 P;

will extend to an isomorphism of the generated C�-algebras. Problem 6.3 asks whether
there is a representation ¹Spºp2P of xT�.P / so that this isomorphism is always unitarily
implemented.



Fell’s absorption principle for semigroup operator algebras 427

Funding. Elias Katsoulis was partially supported by the NSF grant DMS-2054781.

References

[1] W. B. Arveson, Subalgebras of C�-algebras. Acta Math. 123 (1969), 141–224
Zbl 0194.15701 MR 0253059

[2] W. Arveson, Subalgebras of C�-algebras. II. Acta Math. 128 (1972), no. 3-4, 271–308
Zbl 0245.46098 MR 0394232

[3] D. P. Blecher and C. Le Merdy, Operator algebras and their modules—an operator space
approach. Lond. Math. Soc. Monogr., New Ser. 30, The Clarendon Press, Oxford University
Press, Oxford, 2004 Zbl 1061.47002 MR 2111973

[4] T. M. Carlsen, N. S. Larsen, A. Sims, and S. T. Vittadello, Co-universal algebras associated
to product systems, and gauge-invariant uniqueness theorems. Proc. Lond. Math. Soc. (3) 103
(2011), no. 4, 563–600 Zbl 1236.46060 MR 2837016

[5] R. Clouâtre and A. Dor-On, Finite-dimensional approximations and semigroup coactions for
operator algebras. Int. Math. Res. Not. IMRN (2023), no. 24, 22138–22184 Zbl 07795396
MR 4681311

[6] R. Clouâtre and C. Ramsey, Residually finite-dimensional operator algebras. J. Funct. Anal.
277 (2019), no. 8, 2572–2616 Zbl 07093502 MR 3990728

[7] J. Cuntz, S. Echterhoff, X. Li, and G. Yu, K-theory for group C�-algebras and semigroup
C�-algebras. Oberwolfach Semin. 47, Birkhäuser/Springer, Cham, 2017 Zbl 1390.46001
MR 3618901

[8] A. Dor-On, E. T. A. Kakariadis, E. Katsoulis, M. Laca, and X. Li, C*-envelopes for operator
algebras with a coaction and co-universal C*-algebras for product systems. Adv. Math. 400
(2022), article no. 108286 Zbl 1500.46045 MR 4387241

[9] A. Dor-On and E. Katsoulis, Tensor algebras of product systems and their C�-envelopes.
J. Funct. Anal. 278 (2020), no. 7, article no. 108416 Zbl 1441.46044 MR 4053621

[10] R. Exel, Amenability for Fell bundles. J. Reine Angew. Math. 492 (1997), 41–73
Zbl 0881.46046 MR 1488064

[11] R. Exel, Partial dynamical systems, Fell bundles and applications. Math. Surveys Monogr.
224, American Mathematical Society, Providence, RI, 2017 Zbl 1405.46003 MR 3699795

[12] E. T. A. Kakariadis, E. G. Katsoulis, M. Laca, and X. Li, Boundary quotient C�-algebras of
semigroups. J. Lond. Math. Soc. (2) 105 (2022), no. 4, 2136–2166 Zbl 07730464
MR 4440533

[13] M. Laca and I. Raeburn, Semigroup crossed products and the Toeplitz algebras of nonabelian
groups. J. Funct. Anal. 139 (1996), no. 2, 415–440 Zbl 0887.46040 MR 1402771

[14] M. Laca and C. Sehnem, Toeplitz algebras of semigroups. Trans. Amer. Math. Soc. 375 (2022),
no. 10, 7443–7507 Zbl 1507.46048 MR 4491431

[15] X. Li, Semigroup C�-algebras and amenability of semigroups. J. Funct. Anal. 262 (2012),
no. 10, 4302–4340 Zbl 1243.22006 MR 2900468

[16] X. Li, Nuclearity of semigroup C�-algebras and the connection to amenability. Adv. Math.
244 (2013), 626–662 Zbl 1293.46030 MR 3077884

[17] P. S. Muhly and B. Solel, Tensor algebras overC�-correspondences: representations, dilations,
and C�-envelopes. J. Funct. Anal. 158 (1998), no. 2, 389–457 Zbl 0912.46070
MR 1648483

https://doi.org/10.1007/BF02392388
https://zbmath.org/?q=an:0194.15701
https://mathscinet.ams.org/mathscinet-getitem?mr=0253059
https://doi.org/10.1007/BF02392166
https://zbmath.org/?q=an:0245.46098
https://mathscinet.ams.org/mathscinet-getitem?mr=0394232
https://doi.org/10.1093/acprof:oso/9780198526599.001.0001
https://doi.org/10.1093/acprof:oso/9780198526599.001.0001
https://zbmath.org/?q=an:1061.47002
https://mathscinet.ams.org/mathscinet-getitem?mr=2111973
https://doi.org/10.1112/plms/pdq028
https://doi.org/10.1112/plms/pdq028
https://zbmath.org/?q=an:1236.46060
https://mathscinet.ams.org/mathscinet-getitem?mr=2837016
https://doi.org/10.1093/imrn/rnad062
https://doi.org/10.1093/imrn/rnad062
https://zbmath.org/?q=an:07795396
https://mathscinet.ams.org/mathscinet-getitem?mr=4681311
https://doi.org/10.1016/j.jfa.2018.12.016
https://zbmath.org/?q=an:07093502
https://mathscinet.ams.org/mathscinet-getitem?mr=3990728
https://doi.org/10.1007/978-3-319-59915-1
https://doi.org/10.1007/978-3-319-59915-1
https://zbmath.org/?q=an:1390.46001
https://mathscinet.ams.org/mathscinet-getitem?mr=3618901
https://doi.org/10.1016/j.aim.2022.108286
https://doi.org/10.1016/j.aim.2022.108286
https://zbmath.org/?q=an:1500.46045
https://mathscinet.ams.org/mathscinet-getitem?mr=4387241
https://doi.org/10.1016/j.jfa.2019.108416
https://zbmath.org/?q=an:1441.46044
https://mathscinet.ams.org/mathscinet-getitem?mr=4053621
https://doi.org/10.1515/crll.1997.492.41
https://zbmath.org/?q=an:0881.46046
https://mathscinet.ams.org/mathscinet-getitem?mr=1488064
https://doi.org/10.1090/surv/224
https://zbmath.org/?q=an:1405.46003
https://mathscinet.ams.org/mathscinet-getitem?mr=3699795
https://doi.org/10.1112/jlms.12557
https://doi.org/10.1112/jlms.12557
https://zbmath.org/?q=an:07730464
https://mathscinet.ams.org/mathscinet-getitem?mr=4440533
https://doi.org/10.1006/jfan.1996.0091
https://doi.org/10.1006/jfan.1996.0091
https://zbmath.org/?q=an:0887.46040
https://mathscinet.ams.org/mathscinet-getitem?mr=1402771
https://doi.org/10.1090/tran/8743
https://zbmath.org/?q=an:1507.46048
https://mathscinet.ams.org/mathscinet-getitem?mr=4491431
https://doi.org/10.1016/j.jfa.2012.02.020
https://zbmath.org/?q=an:1243.22006
https://mathscinet.ams.org/mathscinet-getitem?mr=2900468
https://doi.org/10.1016/j.aim.2013.05.016
https://zbmath.org/?q=an:1293.46030
https://mathscinet.ams.org/mathscinet-getitem?mr=3077884
https://doi.org/10.1006/jfan.1998.3294
https://doi.org/10.1006/jfan.1998.3294
https://zbmath.org/?q=an:0912.46070
https://mathscinet.ams.org/mathscinet-getitem?mr=1648483


E. G. Katsoulis 428

[18] P. S. Muhly and B. Solel, On the Morita equivalence of tensor algebras. Proc. London Math.
Soc. (3) 81 (2000), no. 1, 113–168 Zbl 1036.46046 MR 1757049

[19] M. D. Norling, Inverse semigroup C�-algebras associated with left cancellative semigroups.
Proc. Edinb. Math. Soc. (2) 57 (2014), no. 2, 533–564 Zbl 1303.46040 MR 3200323

[20] A. L. T. Paterson, Amenability. Math. Surveys Monogr. 29, American Mathematical Society,
Providence, RI, 1988 Zbl 0648.43001 MR 0961261

[21] V. Paulsen, Completely bounded maps and operator algebras. Cambridge Stud. Adv. Math.
78, Cambridge University Press, Cambridge, 2002 Zbl 1029.47003 MR 1976867

[22] J. C. Quigg, Discrete C�-coactions and C�-algebraic bundles. J. Austral. Math. Soc. Ser. A 60
(1996), no. 2, 204–221 Zbl 0851.46047 MR 1375586

[23] C. F. Sehnem, On C�-algebras associated to product systems. J. Funct. Anal. 277 (2019), no. 2,
558–593 Zbl 1428.46035 MR 3952163

[24] C. F. Sehnem, C�-envelopes of tensor algebras of product systems. J. Funct. Anal. 283 (2022),
no. 12, article no. 109707 Zbl 1509.46034 MR 4488124

Received 8 April 2023; revised 19 June 2023.

Elias G. Katsoulis
Department of Mathematics, East Carolina University, Greenville, NC 27858, USA;
katsoulise@ecu.edu

https://doi.org/10.1112/S0024611500012405
https://zbmath.org/?q=an:1036.46046
https://mathscinet.ams.org/mathscinet-getitem?mr=1757049
https://doi.org/10.1017/S0013091513000540
https://zbmath.org/?q=an:1303.46040
https://mathscinet.ams.org/mathscinet-getitem?mr=3200323
https://doi.org/10.1090/surv/029
https://zbmath.org/?q=an:0648.43001
https://mathscinet.ams.org/mathscinet-getitem?mr=0961261
https://doi.org/10.1112/s0024609304213595
https://zbmath.org/?q=an:1029.47003
https://mathscinet.ams.org/mathscinet-getitem?mr=1976867
https://zbmath.org/?q=an:0851.46047
https://mathscinet.ams.org/mathscinet-getitem?mr=1375586
https://doi.org/10.1016/j.jfa.2018.10.012
https://zbmath.org/?q=an:1428.46035
https://mathscinet.ams.org/mathscinet-getitem?mr=3952163
https://doi.org/10.1016/j.jfa.2022.109707
https://zbmath.org/?q=an:1509.46034
https://mathscinet.ams.org/mathscinet-getitem?mr=4488124
mailto:katsoulise@ecu.edu

	1. Introduction
	2. Coactions and their Fell bundles
	3. Fell's absorption principle for semigroup C*-algebras
	4. barT(P) coincides with Li's semigroup C*-algebra C*_s(P)
	5. The non-selfadjoint theory
	6. Concluding remarks and open problems
	References

