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Deformations of modified r-matrices and cohomologies of
related algebraic structures

Jun Jiang and Yunhe Sheng

Abstract. Modified r-matrices are solutions of the modified classical Yang—Baxter equation, intro-
duced by Semenov-Tian-Shansky, and play important roles in mathematical physics. In this paper,
first we introduce a cohomology theory for modified r-matrices. Then we study three kinds of
deformations of modified r-matrices using the established cohomology theory, including algebraic
deformations, geometric deformations and linear deformations. We give the differential graded Lie
algebra that governs algebraic deformations of modified r-matrices. For geometric deformations,
we prove the rigidity theorem and study when is a neighborhood of a modified r-matrix smooth in
the space of all modified r-matrix structures. In the study of trivial linear deformations, we introduce
the notion of a Nijenhuis element for a modified 7-matrix. Finally, applications are given to study
deformations of the complement of the diagonal Lie algebra and compatible Poisson structures.

1. Introduction

In the seminal work [26], Semenov-Tian-Shansky showed that solutions of the modified
classical Yang—Baxter equation, which we call modified r-matrices in this paper, play an
important role in studying solutions of Lax equations [24-26]. Furthermore, modified r-
matrices are intimately related to particular factorization problems in the corresponding
Lie algebras and Lie groups. This factorization problem was considered by Reshetikhin
and Semenov-Tian-Shansky in the framework of the enveloping algebra of a Lie algebra
with a modified r-matrix to study quantum integrable systems [23]. Any modified r-
matrix induces a post-Lie algebra [1], and a factorization theorem for group-like elements
of the completion of the Lie enveloping algebra of a post-Lie algebra was established by
Ebrahimi-Fard, Mencattini and Munthe-Kaas in [9, 10]. Recently, the global factorization
theorem for a Rota—Baxter Lie group was given in [15]. Moreover, modified r-matrices
are also useful for the construction of flat metrics and Frobenius manifolds [27], and com-
patible Poisson structures [18]. Note that in the associative algebra context, such objects
are called modified Rota—Baxter algebras by Zhang, Gao and Guo [30,31].

A classical approach to study a mathematical structure is to associate to it invariants.
Among these, cohomology theories occupy a central position as they enable for example
to control deformations or extension problems. Note that the cohomology theory for a

Mathematics Subject Classification 2020: 17B38 (primary); 17B56 (secondary).
Keywords: modified classical Yang—Baxter equation, modified r-matrix, cohomology, deformation.


https://creativecommons.org/licenses/by/4.0/

J. Jiang and Y. Sheng 430

skew-symmetric classical r-matrix was studied in [29] under the general framework of
relative Rota—Baxter operators (also called @-operators [17]). The first purpose of this
paper is to study the cohomology theory for a modified r-matrix. In [26], Semenov-Tian-
Shansky showed that a modified r-matrix R : g — g on a Lie algebra (g, [, |q) induces a
new Lie algebra gg in which the Lie bracket [-, -] g is given by

[x,y]r = [R(x), y]g + [x, R(Y)]q, Vx,y €g.

In [2], Bordemann showed that the induced Lie algebra gg represents on g. We use the
corresponding Chevalley—Eilenberg cohomology [4] of the Lie algebra gg with coeffi-
cients in g to define the cohomology of the modified r-matrix R. It is well known that
there is a one-to-one correspondence between the modified r-matrix R and the Rota—
Baxter operator B of weight 1 via the relation R = Id + 2B. The cohomology theory of
the latter was given in [16] and the Van Est type theorem was established. We also show
that the cohomology of the modified r-matrix R = Id + 2B and the cohomology of the
Rota—Baxter operator B are isomorphic.

The concept of a formal deformation of an algebraic structure began with the sem-
inal work of Gerstenhaber [13, 14] for associative algebras. Nijenhuis and Richardson
extended this study to Lie algebras [20,21]. There is a well-known slogan, often attributed
to Deligne, Drinfeld and Kontsevich: every reasonable deformation theory is controlled
by a differential graded Lie algebra, determined up to quasi-isomorphism. This slogan has
been made into a rigorous theorem by Lurie and Pridham [19,22]. It is also meaningful to
deform maps compatible with given algebraic structures. Recently, the deformation the-
ory of morphisms was developed in [3, 11, 12], the deformation theories of (9-operators
on Lie algebras and associative algebras were developed in [6,29]. The second purpose of
the paper is to study deformation theories of modified r-matrices. We study three kinds of
deformations of a modified r-matrix R:

» (algebraic deformations) first we consider an algebraic deformation R + R’ for a
certain linear map R’, and show that this kind of deformations are governed by a dif-
ferential graded Lie algebra. This fulfill the general slogan for the deformation theory
proposed by Deligne, Drinfeld and Kontsevich;

* (geometric deformations) then we consider a smooth geometric deformation R, such
that Rp = R using the approach developed by Crainic, Schitz and Struchiner in [5].
We show that the tangent space TgrOrbg of the orbit Orbp, is the space of 2-cobound-
aries B2(R). Consequently, the condition H2(R) = 0 will imply a certain rigidity
theorem, and the condition H3(R) = 0 will imply the space of modified r-matrices on
the Lie algebra g is a manifold in a neighborhood of R. We also give the necessary and
sufficient condition on a 2-cocycle giving a geometric deformation using the Kuranishi
map;

* (linear deformation) next we study a linear deformation R + {R.In particular, trivial
linear deformations lead to the concept of Nijenhuis elements for a modified r-matrix.
If x € g is a Nijenhuis element, then ad, is a Nijenhuis operator on the Lie algebra gg.
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Note that certain particular deformations of classical r-matrices are considered in [28] in
the study of integrable infinite-dimensional systems.

The paper is organized as follows. In Section 2, we define the cohomology of a mod-
ified r-matrix R using the Chevalley—Filenberg cohomology of the Lie algebra gg with
coefficients in g. In Section 3, we construct a differential graded Lie algebra that governs
algebraic deformations of a modified r-matrix. In Section 4, we study geometric defor-
mations of a modified 7-matrix. In Section 5, we study linear deformations of a modified
r-matrix. In Section 6, we study deformations of the complement of the diagonal Lie
algebra and compatible Poisson structures as applications.

2. Cohomologies of modified r-matrices

In this section, we establish the cohomology theory of a modified r-matrix R using the
Chevalley—FEilenberg cohomology of the Lie algebra gg with coefficients in g.

Definition 2.1 ([26]). Let (g, [, ]4) be a Lie algebra. A linear map R : ¢ — g is called
a modified r-matrix if it is a solution of the following modified classical Yang—Baxter
equation:

[R(x), R(¥)]g = R([R(x), ylg + [x, R(Y)lg) =[x, ¥]s, VX, €g. ¢))
Definition 2.2. Let R and R’ be modified r-matrices on a Lie algebra (g, [+, -]¢). A homo-
morphism from R to R’ is a Lie algebra homomorphism ¢ : g — g such that

poR =R og.

Remark 2.3. The notion of a modified Rota—Baxter operator of weight —1 on an asso-
ciative algebra was introduced in [8]. More precisely, it is a linear map P : A — A on an
associative algebra (4, -4) satisfying

Pu)-4 P(v)=P(Pu)gqv+u-4 P))—u-q4v, VYu,veA.

It is straightforward to see that if a linear map P : A — A is a modified Rota—Baxter
operator of weight —1 on an associative algebra (4, -4), then P is a modified r-matrix on
the Lie algebra (4, [+, -]4), where [-, |4 is the commutator Lie bracket.

Remark 2.4. Let R : ¢ — g be a linear map on a Lie algebra (g, [, -]5). Under the condi-
tion R? = Id, the following structures are equivalent:

* R is amodified r-matrix;

* R is a Nijenhuis operator;

* R s a product structure;

* there is a vector space direct sum decomposition g = g1 @ g» of g into subalgebras

g1 and g2 such that R is given by

R(x,u) = (x,—u), Vxe€gp,uc€aqg.
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Let (g, [, ]4) be a Lie algebra and R be a modified r-matrix. Semenov-Tian-Shansky
showed that (g, [, -]gr) is a Lie algebra which plays important roles in the study of inte-
grable systems [26], where

[x,y]r = [R(x), y]g + [x, R(Y)]q, Vx,y €g. 2

Recall that a matched pair of Lie algebras consists of Lie algebras (g, [, Ig), (. [, ]g).
a representation p : ¢ — gl(h) of g on h and a representation ¢ : § — gl(g) of § on g,
such that some compatibility conditions are satisfied. Bordemann further showed that the
induced Lie algebra gr represents on g which leads to a matched pair of Lie algebras
((a.[,-1g)s (g. [, -] r)) [2]. Here we give a direct proof to be self-contained.

Proposition 2.5. Let R be a modified r-matrix on a Lie algebra (g, [, |4). Define a linear
map p : g — gl(g) by

,O(X)y = [R(x)7y]Q_R([x’y]g)v Vx»y € g (3)
Then p is a representation of the Lie algebra (g, [, -|r) on the vector space g.

Proof. Forall x,y,z € g, by (1) and (3), we have

[p(x). p()]z

= p(xX)p(y)z — p(y)p(x)z

= p(x)([R(¥). zlg — R([y. z]g)) — p(»)([R(x). zlg — R([x, z]g))

= [R(x).[R(¥). zlglg — [R(x), R([y. zlg)lg — R([x. [R(¥). z]glq)
+ R([x. R([y. zlg)lg) — [R(¥). [R(x), zlglg + [R(y), R([x. z]g)]g
+ R([y.[R(x), z]glg) — R([y, R([x, z]g)]q)

= [[R(x). R(y)lg. zlg — R([R(x).[y. z]glg) — R([x. [R(¥). zlglg) + [x.[y.Z]qlg
+ R([R(Y), [x, z]lgla) — [y, [x, z]gla + R([y. [R(x), z]qlq)

= [[R(x), RW)lg. zlg + [[x. y]g. z]g — R([[R(x), ¥]g. z]g) — R([[x, R(»)]g. z]g).

and

p([x, yIr)z
= p([R(x), ylg + [x, R(¥)]g)z
= [R([R(x), y]g + [x, R(V)]g), z]g — R([[R(x), y]g + [x, R(¥)]g. Z]g)
= [[R(x), RY)lg. zlg + [[x. y]g. zlg — R([R(x), ¥]g. z]g) — R([[x, R(¥)]g. z]g)-

Therefore we have p([x, y]r) = [p(x), p(¥)], which means that p is a representation of
(g, [, -] r) on the vector space g. -
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Let dgE : Hom(AFg, g) — Hom(A¥*1g, g) be the corresponding Chevalley—Eilenberg
coboundary operator of the Lie algebra (g, [-, -|r) with coefficients in the representation
(. p). More precisely, for all f € Hom(AKg, g) and x1,..., Xty € g, we have

dR f(x1,... xkq1)
k+1

=Y (=)o) frrn . Rin L Xeg1)
i=1
+Z(_l)i+jf([xi,xj]R,x1,...,k\i,...,k\j,...,xk_l,_l)
i<j
k+1
= Z(—l)’H[R(x,-), f(xl, . ,5(?\1', . ,Xk+1)]g
i=1
k+1

= D DR, SO R X))

i=1

+ Z(—l)i+jf([R(xi),xj]g + [Xiy R(XG)] g X010 oo s Xy ooy Xj e e vy Xig1)-
i<j

“

Now, we define the cohomology of a modified r-matrix R : ¢ — @. Define the space
of 0-cochains C°(R) to be 0 and define the space of 1-cochains C!(R) to be g. Forn > 2,
define the space of n-cochains C"*(R) by C"(R) = Hom(A""!g, q).

Definition 2.6. Let (g, [+, :]4) be a Lie algebra and R be a modified r-matrix. The coho-
mology of the cochain complex (@f:"g Ci(R), dgE) is defined to be the cohomology for
the modified r-matrix R.

Denote the set of n-cocycles by Z"(R), the set of n-coboundaries by B”(R) and the
n-th cohomology group by

H"(R)=Z"(R)/B"(R), n=>0.
It is obvious that x € g is closed if and only if
ad, o R = Road,,

and f € Hom(g, g) is closed if and only if

[R(x). f(D]g = R([x. f()]g) = [R(Y). f(D)]g + R([y. f(x)]q)
= f([R(x). ylg + [x. R(¥)]g). ®)
forall x,y € g.

At the end of this section, we recall the cohomology theory of Rota—Baxter operators
given in [16], and establish its relation with the cohomology theory of modified r-matrices.
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Definition 2.7. Let (g, [-,]q) be a Lie algebra. A linear map B : ¢ — g is called a Rota—
Baxter operator of weight A if

[B(x), B(y)lg = B([B(x),y]g + [x, B(Y)]g + Alx, ¥]a), Vx,y €g.
The following result is well known.

Proposition 2.8. Let g be a Lie algebra and B € gl(g). The linear map 1d + 2B is a
modified r-matrix on g if and only if B is a Rota—Baxter operator of weight 1 on g.

Let B be a Rota—Baxter operator of weight 1 on a Lie algebra g. Consider the cochain
complex (@Zj Ck(B), dB), where C!(B) = g and Ck(B) =Hom(AK"1q,q) fork > 2,
and d2. is defined by

k+1

A2 fQur o uk) = 3 DT BAS e e i) uilg)
i=1
k+1

+ ) DB, f sy

i=1

+ Y (=D F(Bui). ujlg — [B(uj).uilg
i<j

+[u,-,uj]g,ul,...,ﬁ,-,...,uj,...,ukH),

where f € C¥*'(B)andu; e g, 1 <i <k + 1.
It was proved in [16] that (dé’;)2 = 0. The cohomology of the cochain complex
(@,jf{ Ck(B), dgE) is defined to be the cohomology of the Rota—Baxter operator B.

Theorem 2.9. With the above notations, we have
dR =2d3.

Consequently, for k > 1, the k-th cohomology group H*(B) of a Rota—Baxter operator
B is isomorphic with the k-th cohomology group H¥ (R) of the modified r-matrix R =
Id + 2B.

Proof. For k > 1, define linear maps ®; : CX(B) — C*(R) by ®; = 2¥2Id. Then the

following diagram is commutative:

2 @ RN
0 —— ¢ —— Hom(g,q) —— - —— Hom(A*g,gq) —— -+~

ildl ldl 2k-1 Idl
d& &

a& dce k a&
0 —— g ——Hom(g,g) —— --- —— Hom(A*g,g) ——--- .
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In fact, for any f € Hom(A¥g, q), x;i € g, 1 <i <k + 1, we have
dgg(quf)(XL ooy XEk41)

k+1 '
= k-1 ( Z(—1)1+1([xi, SO X Xk )]g
i=1
+2[B(x;), f(x1,..., Xi,. .. ,xk+1)]g)
k+1

— Z(—l)iﬂ[xi, SO X Xk )]g
i=1
k+1

_ Z(_l)i'HZB([xi, FACTT 7R ,Xk+1)]g)

i=1
Y D2 (i X g X R R Xeg1)
i<j
+ Y (D2 £ ([B(xi). xi1g + [ BOG)go X1 R B .,xk+1>)
i<j
k+1

= 2"(2(—1)"“<[B(xi>,f<xl, T

i=1
— B([x;i, f(x1,.... Xiso oo Xke+D)]g))
+ Y (=D f(B(xi), xjlg + [xi, B(x))]g

i<j

+[xi,xj]g,xl,...,)?i,...,)?j,...,xk+1))
= Qpy1 (A5 )KL Xer1),
which implies that d® = 2d2 and H*(B) =~ H*(R), k > 1. n

Example 2.10. Consider the Lie algebra g = sl(n, R). It is well known that the Cartan
subalgebra of s[(n,R) is H =span{E;; — E;+1;+1 | 1 <i <n — 1}. Denote the Borel sub-
algebra of sl(n, R) by B(sl(n,R)). It is well known that B(sl(n,R)) = H & span{E;; |
i <j}. Thussl(n,R) = B(sl(n,R)) & A as vector spaces, where A = span{E;; |i > j}.
Define a linear map R : sl(n, R) — sl(n, R) by
R(x+u)=x—u, VxeB(sl(n,R)),ucA.

By Remark 2.4, we obtain that R is a modified r-matrix on the Lie algebra sl(n, R).
Assume that a = x + u € sl(n,R) where x € B(sl(n,R)) and u € A, such that dﬁa =0,
that is

dfa(y) = [R(y).a] = R([y.a]) =0, Vy e sl(n,R).
* Forany y € A,[R(y),a] — R([y,a]) = 0 implies that x € H.
* Forany y € B(sl(n,R)), [R(¥),a] — R([y,a]) = 0 implies that u = 0.

Thus dR®a = 0 if and only if @ € H. Therefore, H'(R) =~ R"~1.
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Example 2.11. Consider the Lie algebra g = s[(2, R), where the Lie bracket is given
by [e, f] = h, [h,e] = 2e and [h, f] = —2f with respect to the basis {e, f, h}. Then
R : s[(2,R) — s[(2,R) defined by

1 0 O
R(e, f,h)=(e, )0 -1 0},
0 0 1

is a modified r-matrix. Let

T =\t trn trz]: EI(Z,R) — %[(2, ]R)
I31 I3z I33

satisfy deT = 0. Then we obtain

0=1[e.T(NH]+[f. T —R(e. T(/D + R/ T(e)).
0=le.,T(W)]—[h.T(e)] = R(le, T(W]) + R([h, T(e)]) + 4T (e)
and
0=—[£TMW]—[h.T(H] = RIS TMH)D + R, T(f)D-
Thus we have 1] = t51 = t3; = 0 and 55 = ;3 = 0. By Example 2.10, we have B?(R) =

R ~ g — g ~ R2 2 ~ T2
IdeE:kerd&_Hl_(IQ):R . Thus H (R)_R .

3. Algebraic deformations of modified r -matrices

In this section, we construct a differential graded Lie algebra that governs algebraic defor-
mations of a modified r-matrix.
Let (g, [, -]q) be a Lie algebra. Further, we consider the graded vector space C*(g) =
,':3 Hom(A¥ g, ). Define a skew-symmetric bracket operation

[-.-] : Hom(A?g, g) x Hom(A%g, g) — Hom(A? g, g)
by
[fgl(x1,x2,. .., Xp+q)
N Z D7 (e, -+ > Xo @) Xolg+D]as Xolg+2) -+ > Xo(ptq))

0eS(q,1,p—1)

B D DN Co Vi
oeS(p,1,q—1)

“&([f(Xeq). -+ Xa(p)s Xa(p+D]s: Xo(p+2): - - -+ Xo(p+q))

+ DR Y (D f Koy Xa(p): € Xa(pt1)s - - Xo(pra)la: (6)
oeS(p.q)

for all f € Hom(A?g, g), g € Hom(A%gq, g).
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Then we have the following theorem characterizing modified r-matrices.

Theorem 3.1. Let (g, [-,-]q) be a Lie algebra. Then (C*(g), [-,-]) is a graded Lie algebra
and its Maurer—Cartan elements are precisely Rota—Baxter operators of weight 0.
Moreover, a linear map R € gl(g) is a modified r-matrix on the Lie algebra g if and
only if R satisfies the equation
[R, R] = 27, @)

where we denote [-,-]q by 7.

Proof. By [29, Corollary 6.1], (C*(g), [, ]) is a graded Lie algebra.
For R € gl(g), we have

[R. R](x.y) = 2(R([R(x). ylg) — R([R(y). x]g) — [R(x). R(y)]g). Vx.y €g.

By this equality, we can deduce that on the one hand R is a Rota—Baxter operator of weight
0 if and only if [R, R] = 0, i.e., R is a Maurer—Cartan element. On the other hand, R is a
modified 7-matrix on the Lie algebra g if and only if R satisfies (7). ]

Proposition 3.2. Let R be a modified r-matrix on a Lie algebra (g, [-,-]q). Then [R, R]
is in the center of the graded Lie algebra (C*(g), [-,])-

Proof. Denote the Lie bracket [-,]q by 7. Since R is a modified r-matrix on the Lie
algebra g, we have [R, R] = 27 via Theorem 3.1. For all f € Hom(AKg, g), by (6), we
have

|I27T7 f]](X1, e ’xkvxk+lvxk+2)
= 2( > D@ (o). Xow)s Kotk 1) Xot2)
oeS(k,1,1)

= Y D) @Koy Yo @) Ko@) Xo(@): - Xo(k+2)
0eS(2,1,k—1)

+ Y )Pl oa)y Xo@): f (Ko@) - ,xo<k+2>>))

0€S(2,k)
=0,

which implies that [R, R] is in the center of C*(g). [

We denote [R,-] by dg. Now we obtain the differential graded Lie algebra that governs
algebraic deformations of a modified r-matrix.

Theorem 3.3. With the above notations, (C*(q), [, ‘], dr) is a differential graded Lie
algebra.

Moreover, R + R’ is still a modified r-matrix on the Lie algebra (g, |-, -1g) if and only
if R' is a Maurer—Cartan element of the differential graded Lie algebra (C*(g), [-,], dr)-
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Proof. 1t follows from the graded Jacobi identity that dr is a graded derivation on the
graded Lie algebra (C*(g), [, -]). By Proposition 3.2, we have

G f = [R.IR. £1] = [[R. R]. f]— [R. [R. {1},
which implies that
G f = [R.[R. /1] = IR K. /] = 0.

Therefore, (C*(g). [-, -], dr) is a differential graded Lie algebra.
Let R’ be a linear map from g to g. Then R + R’ is a modified r-matrix if and only if

[R+R,R+ R =2m,
that is
/ 1 !/ / !/ 1 !/ !/
0= [[R,R]]+§[[R,R]] =dgrR —|—5[[R,Rﬂ.
Thus R + R’ is still a modified r-matrix on the Lie algebra (g, [+, ]¢) if and only if R’ is
a Maurer—Cartan element of the differential graded Lie algebra (C*(g), [, ‘], dr)- |

At the end of this section, we establish the relationship between the coboundary oper-
ator dR and the differential dg.

Proposition 3.4. Let R be a modified r-matrix on a Lie algebra (g, [+, ]g). Then we have
(/) = (=D)"'[R. []. V[ €Hom(A""'g.q).
Proof. For any f € Hom(A""!q,q) and x;, 1 <i < n, by (6), we have
D" YR, f1(x1s. .., Xn)

- (—1)"-1( S RIS oty Xatr1): Yotm]e)

oeS(n—1,1)

—E=D"N YT DTSRG m): Xo@)ar Ko@) - - - Xam)

oeS(1,1,n—-2)
+ D YT (D[R f (Ko@) - xg(,,))]g)
oeS(1,n—1)

=D DRI Cor e R Xn), Xilg)

i=1

+ Y D (ARG X 1ge X1 Riv o R Xn)

i<j

PR Xilge X1 R Ry m)

+ Y DR, SO, Ri e Xa) g

i=1
= dé(f)(xl,-..,xn).
We finish the proof. .
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4. Geometric deformations of modified r -matrices

In this section, we study geometric deformations of modified r-matrices following the
approach developed by Crainic, Schatz and Struchiner. We show that the condition
H?(R) = 0 will imply a certain rigidity theorem, and the condition H3(R) = 0 will
imply the space of modified r-matrices on the Lie algebra g is a manifold in a neighbor-
hood of R. We also give the necessary and sufficient condition on a 2-cocycle giving a
geometric deformation using the Kuranishi map.

Definition 4.1. Let R be a modified r-matrix on a Lie algebra (g, [, ]g). A geometric
deformation of R is a smooth one parameter family of modified r-matrices R; on the Lie
algebra (g, [+, ]g) such that Ry = R.

Definition 4.2. Two geometric deformations R; and R of R are called equivalent if
there exists a smooth family of modified r-matrices isomorphisms ¢; : R; — R such that
@o = Id, where ¢, are inner automorphisms of the Lie algebra g.

Let R; be a geometric deformation of R. Denote %|,:0 R; by Ro. Then there is the
following proposition.

Proposition 4.3. With the above notations, Roisa 2-cocycle in C%(R). Moreover; if R;
and R), are equivalent geometric deformations of R, then [Ro] = [Ry] in H*(R).

Proof. Since R, is a geometric deformation of R, for any x, y € g, we have
[R(x), RO(J’)]Q + [RO(X), R()’)]g

d
— E |t=0[R[(x), Rt(y)]g

d
= E|t=0(Rt([Rt(x)a ylg + [x. R (P)]g) — [x. ylg)
= Ro([R(x), ylg + [x, R(V]g) + R([Ro(x), ylg + [x, Ro()]g)- ®

Thus by (5) and (8), we have dgE(RO) =0.
Assume that ¢, is an isomorphism from R; to R}, that is

@1 (R (x)) = R;(got(x)), Vx €g.

Denote %hzo(p, by @o. Then we have @o(R(x)) + Ro(x) = R(¢o(x)) + R{)(x). Since
@; are inner automorphisms of the Lie algebra g, it follows that ¢ is an inner derivation
of the Lie algebra g. Thus there exists y € g such that ¢9 = ad,. Therefore, we have

[y, R(x)]g + Ro(x) = R([y. x]g) + Ry(x).

which implies Ry — R} = d& (y). Thus [Ro] = [R()] in H2(R). [
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Next, we consider under which conditions does a cocycle f € Z2(R) determine a
geometric deformation R;. Define the Kuranishi map K : Z2(R) — H3(R) by

KN =[I£f1]. YfeZ*®.

Now we give a necessary condition of the above question. The sufficient condition
need some preparations and will be given at the end of this section.

Proposition 4.4. Assume that there exists a geometric deformation R; of R on a Lie
algebra (g, [,-]q) such that Ry = f € Z?(R), then K(f) = 0.

Proof. Consider the Taylor expansion of R; around ¢ = 0, then we have

2
R:(x) = R(x) + tf(x) + %g(x) +o(r3).

Since [Ry(x). Re(M]g = Re([R(x). g + [x. Ri(»)]g) — [x. ¥]g and f € Z2(R), we
have

2

%(dé(g)(x, Y)+20f (). fFDg =2/ ([f (). ¥]g + [x. f(D)]g)) +0(t?) = 0. (9)

Thus by (6) and (9), we obtain [ f, ] = d® g, which implies that K(f) = 0. [

Let E = M be a vector bundle. Assume that there is a smooth action - : G x E — E
of a Lie group G on E preserving the zero-section Z : M — E. It follows that M inherits
a G-action. We also denote the action of G on M by - : G x M — M. Forall x € M,
define a smooth map uy : G — M by ux(g) = g - x. Denote the tangent map from g to
Ty M by D(ftx)es, Where eg is the unit of G.

Definition 4.5 ([5]). A sections : M — E is called equivariant if s satisfies
s(g-x)=g-s(x), VgeG,xeM.

Denote the zero set of a section s : M — E by z(s) = {x € M | s(x) = 0}. A zero
X € M of s is called non-degenerate if the sequence

D(jex)e, DV(s)x
g o oM 2% g,

is exact, where DV (s), is the vertical derivative of s at x.

Proposition 4.6 ([5]). Let s be an equivariant section of the vector bundle E L M and x
be a non-degenerate zero of s. Then there is an open neighborhood U of x and a smooth
map p : U — G such that for all m € U with s(m) = 0, one has p(m) -x = m. In
particular, the orbit of x under the action of G and the zero set of s coincide in an open
neighborhood of x.
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Proposition 4.7 ([5]). Let E and F be vector bundles over a smooth manifold M. Let
s € U'(E) be a section and ¢ € I'(Hom(E, F)) be a vector bundle map such that ¢ o s = 0.
Suppose that x € M is s(x) = 0 such that

DV (s)x dx
"M —— E, — F,

is exact. Then s~1(0) is locally a manifold around x of dimension dimker(D?(s),).

Denote the group whose elements are inner automorphisms of a Lie algebra g by
InnAut(g). Then its Lie algebra is the Lie algebra of inner derivations of g and denote it
by InnDer(g). Define an action of InnAut(g) on Hom(g, g) by

- : InnAut(g) x Hom(g, g) — Hom(g,q), A-f = AfA"!,

for all A € InnAut(g), f € Hom(g, g). Assume that R is a modified r-matrix on a Lie
algebra g, then the orbit Orbg = {4 - R | A € InnAut(g)} of R is a manifold. Define a map
1R :InnAut(g) — Hom(g, g) by ur(A4) = A+ R. Then TrOrbg is D(itr)e; (InnDer(g)),
where D(LR)e, is the tangent map of g at eg.

Proposition 4.8. With the above notations, TrOrbg is B?(R).

Proof. Since TROrbr = D(itr)e, (InnDer(g)), for any v € TrOrbg, there exists x € g
such that

d
v = E|,=o exp(tady) - R

d
= E|,=o(exp(tadx)R exp(—tady))
= ady R — Rad,
= —dRx.
Thus we have TgOrbg = B?(R). ]

Theorem 4.9. Let R be a modified r-matrix on a Lie algebra (g, [+, "|g)- If H*(R) = 0,
then there exists an open neighborhood U C Hom(g, g) of R and a smoothmap p : U —
InnAut(g) such that p(R’) - R = R’ for every modified r-matrix R' € U.

Proof. Denote by M = Hom(g, g) and E = Hom(q, q) x Hom(AZ%g, g). Then E is a
trivial vector bundle over M with fiber Hom(A2g, g). Define an action of InnAut(g) on
the manifold E by

cInnAut(q) x E = E, A-(fia) = (AfA7!, Aa o A7Y),

for (f.a) € E, A € InnAut(g), where Ao o A~ (x,y) = Aa(A7'x, A" 'y) forany x, y €
g. Define a section s : M — E by

s(f)=(f£S(f). VfeM,



J. Jiang and Y. Sheng 442

where S : Hom(g, g) — Hom(AZg, q) is given by

SO y) = [f(x), fW]a = S ), yla + [x, fD]e) + [x, Y4,

for all f € Hom(g, g), x, y € g. Then for any A € InnAut(g), f € M and x,y € g, we
have

AS(f)o A7 x, y) = A(f (A" x), f(AT P)]g = F(F(AT1x), A7 y]g
+ A7 %, f(AT Y)]g) + 1A x, A7 y]g)
= [Af(A715), Af (A7 p)lg — AfATH([AS (A7 0), )]
+ [x, Af (AT )]g) + [x, g
= S(AfA™N)(x, ).
Thus we have
A-s(f) = (AfA7HAS(f)o AT =s(A- f),

which implies that s is an equivariant section.
Since R is a modified r-matrix on the Lie algebra g, it follows that R € z(s). Moreover,
since E is a trivial vector bundle, we have DV(s)g = D(S)r : TRM — ER. For any

g € Hom(g, g), x,y € g,
d
D(S)r(g)(x,y) = EIr:oS(R +1g)(x,y)

d
= Tli=o([R) + 18(x). R + 18]

— (R +12)([R() + 18(x). ¥l + [¥, RY) + 18()]g) + [x. Vg )
= [g(x), R(]g + [R(x), g(1)]g = R([g(x), y]g + [x, g(})]g)
—&([R(x), ylg + [x, R(»)]q)
= d&e(g)(x. y). (10)
By Proposition 4.8 and H?(R) = 0, we have that R is a non-degenerate zero of s. By

Proposition 4.6, there exists an open neighborhood U C Hom(g, g) of R and a smooth
map p : U — InnAut(g) such that p(R) - R = R’ for every modified r-matrix R € U. m

Theorem 4.10. Let R be a modified r-matrix on a Lie algebra (g, [-,"]g)- If H*(R) = 0,
then the space of modified matrices on the Lie algebra g is a manifold in a neighborhood
of R whose dimension is dim Z2(R).

Proof. Denote by M = Hom(q, g), E =Hom(g. q) x Hom(A?g,q) and F = Hom(q, g) x
Hom(A3q, ). Then E and F are trivial vector bundles over M with fiber Hom(AZ2q, q)
and Hom(A3g, g) respectively. Define a smooth map ¢ : E — F by

¢(f.0) = (f.[fe]), VfeM, acHom(A’g, q).

Thus ¢ is a vector bundle map.
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Moreover, denote the Lie bracket [-, -] by 7, define s(f) = = — %[[ /. f]- By Propo-
sition 3.2, we know that 7 lies in the center, we have

pos() = (£LAxI=SIATL ) = (£

which implies ¢ o s = 0. Moreover, denote ¢g : Egr — Fr by ¢(R, ), then ¢pgr = d§E.
By (10) and H3(R) = 0, we have that

D'l)
TaM 2% £p 25 g
is exact. By Proposition 4.7, we obtain that the space of modified r-matrices on the Lie
algebra q is a manifold in a neighborhood of R, whose dimension is dim Z?(R). ]

At the end of this section, we give the sufficient condition on a 2-cocycle to give a
geometric deformation. Recall that the necessary condition is given in Proposition 4.4
using the Kuranishi map.

Corollary 4.11. With the above notations, if H>(R) = 0, then any f € Z?(R) gives rise
to a geometric deformation of R.

Proof. Since R is a modified r-matrix and H3(R) = 0, we have that the space W of
modified r-matrices on the Lie algebra g is a manifold in a neighborhood of R, whose
dimension is dim Z2(R). Assume y(t) € W, by Proposition 4.3, we have y(0) € Z2(R).
Moreover, dim W = dim Z?(R), then TRW = Z?(R). Thus any f € Z2(R) gives rise
to a geometric deformation of R. ]

5. Linear deformations of modified r -matrices

In this section, we study linear deformations of a modified r-matrix using the established
cohomology theory. In particular, a trivial linear deformation leads to a Nijenhuis element
for a modified r-matrix R.

Definition 5.1. Let R be a modified r-matrix on the Lie algebra (g, [-, :]q) and R: g—>gq
be a linear map. If there exists a positive number ¢ € R such that R; = R + tRis still a
modified r-matrix on the Lie algebra (g, [, ]¢) forall € (—e¢, €), we say that R generates
a linear deformation of the modified r-matrix R.

Definition 5.2. Let R : ¢ — g be a modified r-matrix on g. Two linear deformations
Rl =R+ {R, and R?=R+ 1 R, are said to be equivalent if there exists an x € g such
that

@r = Idg + rady,

satisfies the following conditions:

(1) (pl([yvz]g) = [‘Pt(J’)’ ‘Pt(z)]g’ Vy’Z € g’
(ii) R?O% = ¢ ORtl-
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Theorem 5.3. Let R : g — g generate a linear deformation of the modified r-matrix R.
Then R is a 2-cocycle.

Let R} and R? be equivalent linear deformations of R generated by R 1 and 1?2 respec-
tively. Then [ﬁl] = [132] in H?(R).

Proof. Since R; = R + ¢ R is a modified r-matrix on the Lie algebra (g, [, ‘lq), we have

[Ri(x). Rt (P)]g = Ri([Re(x). ylg + [x. Ri(P)]g) — [x. ¥]g. Vx.y €g.
Consider the coefficients of 7 and ¢? respectively, we have
[R(x). R()]g + [R(x). R(y)]g
= R(R(). ylg + [x. RDg) + RAR(). ylg + . RD]g). Y.y € g. (11)

and
[R(x), R(y)lg = R(R(x), y]g + [x, R(1)]g)- (12)

By (11), we deduce that Risa 2-cocycle of the modified r-matrix R.
If R} and R? are equivalent linear deformations of R, then there exists x € g such that

(Idg + rady)(R + 1 R1)(u) = (R + 1 Ry)(Idg + rady)(u), Vu € g,
which implies
Ri() = Ro(u) = [R(u), x]g — R(lu, x]g), Vu €g. (13)

By (13), we have
Ry — Ry =dRx,

where dR is given by (4). Thus [R,] = [R,] in H2(R). n

Definition 5.4. A linear deformation of a modified r-matrix R generated by R is trivial
if there exists an x € g such that Id + rad, is an isomorphism from R; = R + tR to R.

Definition 5.5. Let R be a modified r-matrix on a Lie algebra (g, [, ]5). An element
x € g is called a Nijenhuis element associated to R if x satisfies

[[x, ¥la. [x, zlglg = O, (14)
[x. [x, R(Wglg = [x, R([x, ylg)lg- (15)
forall y,z € g.

Let R generate a trivial linear deformation of a modified r-matrix R on a Lie algebra
(g, [, ]q)- Then there exists x € g such that

(Id+ tadx)[yvz]g = [y + [[X, y]g»z + [[X,Z]g]g,
R(y + t[x, y]g) = (Id + rad,)(R(y) + 1 R(»)),
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for all y, z € g. Therefore, we have

[ ¥lg. v 2lals = 0. [x. R()]g = 0. R(lx.yl) = [x. RY)g + R().
Thus a trivial linear deformation gives rise to a Nijenhuis element.

Theorem 5.6. Let R be a modified r-matrix on a Lie algebra g. Then for any Nijenhuis
element x € g, Ry = R+ tdéx is a trivial linear deformation of the modified r-matrix R.

Proof. Denote by R = d(I:QEx. To show that R; is a linear deformation of R, it suffices to
show that (11) and (12) hold. Note that (11) means that Ris closed, which holds naturally
since now R = dR x is exact. Thus, we need to verify that equation (12) holds. For any
¥,z € g, by (4), we obtain ﬁ(y) =[R(y). x]qg — R([y. x]g). Moreover, by (1), (14) and
(15), it follows that

[R(Ly., x]g), R((z, x]g)]q
CLYR(R(Ly, xlg). [2, Xlalg + (s xg. R([2, x]g)]s)
R(IR(Ly, x1g). [z, x1g]) + R([ly, x]g. R([z, x]g)]q)

R([[R([y.x]g). 21g. X]g) + R([z. [R([y. x]g). x]g])
+ R([[y. R(1z. x]g)lg. X]g) + R([y. [x. R([z. x]g)]qlq)

CEIRR (Y, xg). 2)g» xlg) + R([x. [2. [x. R()]gla))
+ R([[% R([z. x])lg. X]g) — R([x. [y, [, R(Z)]g]g]g)’
—[[R(»), xIg, R([z, x]g)]g

—[[R(y). R([z. x]g)lg. X]g — [R(¥). [x. R([z. x]g)]g]g

—[R([R(¥). [z. x]glg). X]g — [R([y. R([z, x]g)]g). X]g

+ [[y. [z, x]glg, XIg — [R(¥). [x, R([z. x]¢)]qlq

PR L RAR). 2l — (R, [R(). gly). 3]s
—[R([y. R([z. x]g)lg). xlg + [[y. [z. x]glg. X]g + [x, [x.[R(¥), R(2)]glglg
+ [[x, [R(¥). x]glg. R(2)]g

P b R Rl — b [ [ Zlalals + [y 2. xlgla. g

—[R([z, [R(J’)vx]g]g)7x]g —[R([y, R([Zax]g)]g)’x]g
— [[x. R([x, y]glg), R(2)]g.

—~

)

and

- [R([y, X]g), [R(Z)v X]Q]Q

2 [R([R(). ¥lg. x1g). x]g + [R(Y. [R(2). x]gla). x]g + [R((z. R([y. x]p)]g)- ¥]q

— [z, [y, xlglg> X]g + [R(2), [x, R([y, X]g)]alg-
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By (14) and the above equations, we have

[R(). R(2)]g — RAR(Y). 2l + [y, R(2)]g)
= [[R(¥), x]g — R([y, x]q), [R(2), x]g — R([z, x]g)]q
— [R(IR(Y). xlg = R([y. x]g). z]). x]g + R([[R(¥). x]g — R([y. x]g). z]g. X]q)
— [R([y. [R(2), x]g — R([z. x]g)]g). x]g + R([[y. [R(2). x]g — R([z. x]g)]g. X]g)
= —[[R(y). xlg. R([z. x]g)]g + [R([y. x]g). R([z. x]g)]q
— [R([y. x]g). [R(2). x]glg — [R([[R(Y). x]g — R([y. x]g). z]). x]g
+ R([[[R(y). x]g — R([y, x]g). z]g. x]g)
— [R(Iy. [R(2). xlg — R([z. x]g)]g). x]g + R([[y. [R(2). x]g — R([z. x]g)]g. X]g)
=0.
Thus R; = R + tdéx is a linear deformation of the modified r-matrix R. Since x € g
is a Nijenhuis element, we have (Id + fady)[y, zlg = [y + t[x, y]g. z + t[x. z]q]q and

R o (Id + tady) = (Id + tady) o (R + tdXx). Thus for any Nijenhuis element x € g,
R; = R + tdR x is a trivial linear deformation of the modified r-matrix R. |

At the end of this section, we consider the relation between linear deformations of
modified r-matrices and linear deformations of the induced Lie algebras. Recall that a
skew-symmetric bilinear map w : A2g — g generates a linear deformation of a Lie alge-
bra (g, [, ]q) if [, ] = [-,*]q + o defines a Lie algebra structure on g for all € (—¢, €).

Proposition 5.7. Let R generate a linear deformation of a modified r-matrix R on a Lie
algebra (g, [, *]q)- Then w defined by

o(x,y) = [R(x), y]g + [x, RD)lg, VYx.y € g,

generates a linear deformation of the Lie algebra (g, [-, -|r) given by the modified r-
matrix R, which is exactly the one associated to the linear deformation of the modified
r-matrix R.

Proof. Tt is obvious that

[x, g, = [R(x), ¥]g + [x, RD)]g + t([R(x), ¥]g + [x, RD)]g) = [x, y]r + tor(x, y).

Since [, -] g, are Lie algebra structures, we have that @ generates a linear deformation of
the Lie algebra (g, [-,]r) given by the modified r-matrix R. L]

The notion of a Nijenhuis operator on a Lie algebra (g, [-, ]) was given in [7], which
gives rise to a trivial linear deformation of the Lie algebra (g, [, ]q)-

Definition 5.8 ([7]). Let (g, [, ]q) be a Lie algebra. A linear map N : g — g is called
Nijenhuis operator if

[N(x), N(»)lg = N(IN(x). y]g + [x, NO")Ig) — N*([x. y]g). Vx.y €g.
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Theorem 5.9. Let x € g be a Nijenhuis element associated to a modified matrix R. Then
ady is a Nijenhuis operator on the Lie algebra (g, [-,]Rr).

Proof. Forany x,y,z € g, by (14) and (15), we have

[adxy, adxz]R

= [R([x, y]a). [x. z]glg + [[x, ¥]a, R([x, Z]g)]a

= [[R([x. ylq). xlg. zlg + [x. [R([x, ¥]q). z]glg + [[x, R([x, z]g)]q. ¥]g
+ [x. [y, R([x, z]g)]glg

= —[[x. [x, RW)lglg. zlg + [x. [R([x, ¥]g). zlglg + [[x, [x, R(2)]glg. ¥]g
+ [x, [y, R([x, z]g)]glg

= —[x. [[x, RWlq. zlglg + [x, [R([x. ¥]g). Z]glg + [x. [[x, R(2)]g. Y]ala
+ [x, [y, R([x, z]g)]glg

and

adx([adxy» Z]R + [yv ade]R) - adyzc([yv Z]R)
=[x, [R([x, ¥]g): zlglg + [[x, ¥]g. R(2)]g + [x. [R(). [x. z]glala
+ [x, [y, R([x, z]g)]ala — [x, [x, [R(), Z]glgla — [X, [x, [y, R(2)]glglg-

Thus [adyy, adyz]r = ady([adyy, z]r + [V, adyxz]g) — ad2([y, z] ), which implies that
ad, is a Nijenhuis operator on the Lie algebra (g, [, /| r)- L]

6. Applications

In this section, we give some applications of the above deformation theories, including
deformations of complements of the diagonal Lie algebra ga and compatible Poisson
structures.

6.1. Deformations of complements

Let (g. [, -]q) be a Lie algebra, then we have a direct-product Lie algebra structure [-, |
on g @ g, where

[(x1, Y1), (x2, y2)]le = ([x1,X2]g, [V1, ¥2lg)s  VXi,yi €g,i=1,2.

Define the subspace ga by ga = {(x, x) | Vx € g} and the subspace g_A = {(x, —x) |
Vx € g}. It is obvious that ga is a Lie subalgebra of g & g, while g_a is not a Lie
subalgebra. To find a complement of ga which is also a Lie subalgebra, it is natural to
consider the graph of certain linear map from g_a to ga. It is known that a complement
of ga is isomorphic to a graph of a linear map from g_a to ga. Let R € gl(g) be a linear
map. Define a linear map R: G—A — QA by

R(x,—x) = (—R(x),—R(x)), Vx €g.
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Proposition 6.1. With the above notations, the graph ﬁ(ﬁ) = {iéu +u|lueg_alisa
Lie subalgebra of (g ® g, [, -|@) if and only if R is a modified r-matrix.

Proof. Forall x,y € g, we have

[(=R(x), =R(x)) + (x,=x), (=R (»),=R(»)) + (¥, =)o
= ([x, ylg. [x. ¥la) + ([R(x), R()]g, [R(x), R(¥)]g)
+ (—[R(x), ylg. [R(x), y]g) + (=[x, R(M)]g. [x. R(¥)]g)
= ([x. ylg + [R(x), R(Y)]g. [x, y]g + [R(x), R(¥)]g)
+ (—=[R(x). ylg — [x, R(Wg. [R(x). ylg + [x, R()]q)-

Thus ﬁ(ﬁ) is a Lie subalgebra if and only if

R([R(x), ylg + [x, R(¥)]g) = [x. ylg + [R(x). R(¥)]q,
i.e., R is a modified r-matrix. n

Proposition 6.2. Let R be a modified r-matrix. Then (g, ‘g(ﬁ)) is a matched pair of Lie
algebras.

Proof. Ttis obviousthatg & g = ga @ ﬁ(ﬁ) since ga N ‘5(1?) = 0. Then the conclusion
follows from the fact that both ga and §(R) are Lie subalgebras. ]

Summarizing the above studies, we have the following conclusion.

Theorem 6.3. Let R; be a geometric deformation of a modified r-matrix R. Then g(l’ét)
is a deformation of the complement §(R). Moreover, (ga, §(R;)) are matched pairs of
Lie algebras.

6.2. Compatible Poisson structures

A compatible Poisson structure consists of two Poisson structures 7, 7’ on a manifold M
such that r + 7’ is also a Poisson structure on the manifold M.

Let R be a modified r-matrix on a Lie algebra g. Then (g, [, -]g) is a Lie algebra and
we denote by (g*, {-, -} r) the corresponding linear Poisson manifold.

Proposition 6.4. Let R be a modified r-matrix on a Lie algebra g and R; = R + iR bea
linear deformation of R. For any t1,1 € R, {-,-}Rr, and {-,-}r,, are compatible Poisson
structures on g*.

Proof. By the fact that R + %IQ is also a modified r-matrix on the Lie algebra g, we

have
I+ 4

2R+ [x R0+ T2 RD)).

which implies that [, ], + [, -] r,, is also a Lie bracket on the Lie algebra g by (2). Thus,
forany 71,12 € R, {-,-}g, and{:,-}g,, are compatible Poisson structures on a*. |

o ylR, + IR, = 2([RE) +



Deformations of modified r-matrices and cohomologies of related algebraic structures 449

Acknowledgments. We give warmest thanks to Jianghua Lu and Chenchang Zhu for
helpful comments.

Funding. This research is supported by NSFC (11922110) and China Postdoctoral Sci-
ence Foundation (2023M741349).

References

[1] C.Bai, L. Guo, and X. Ni, Nonabelian generalized Lax pairs, the classical Yang—Baxter equa-
tion and PostLie algebras. Comm. Math. Phys. 297 (2010), no. 2, 553-596 Zbl 1206.17020
MR 2651910
[2] M. Bordemann, Generalized Lax pairs, the modified classical Yang—Baxter equation, and
affine geometry of Lie groups. Comm. Math. Phys. 135 (1990), no. 1, 201-216
Zbl 0714.58025 MR 1086757
[3] D. V. Borisov, Formal deformations of morphisms of associative algebras. Int. Math. Res. Not.
(2005), no. 41, 2499-2523 Zbl 1126.16017 MR 2181057
[4] C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras. Trans.
Amer. Math. Soc. 63 (1948), 85-124 Zbl 0031.24803 MR 0024908
[5] M. Crainic, F. Schitz, and I. Struchiner, A survey on stability and rigidity results for Lie
algebras. Indag. Math. (N.S.) 25 (2014), no. 5, 957-976 Zbl 1328.17001 MR 3264783
[6] A. Das, Deformations of associative Rota—Baxter operators. J. Algebra 560 (2020), 144-180
Zbl 1458.16008 MR 4104452
[7] 1. Dorfman, Dirac structures and integrability of nonlinear evolution equations. Nonlinear
Science: Theory and Applications, John Wiley & Sons, Ltd., Chichester, 1993 MR 1237398
[8] K. Ebrahimi-Fard, Loday-type algebras and the Rota—Baxter relation. Lett. Math. Phys. 61
(2002), no. 2, 139-147 Zbl 1035.17001 MR 1936573
[9] K. Ebrahimi-Fard and I. Mencattini, Post-Lie algebras, factorization theorems and isospec-
tral flows. In Discrete mechanics, geometric integration and Lie—Butcher series, pp. 231-285,
Springer Proc. Math. Stat. 267, Springer, Cham, 2018 MR 3883647
[10] K. Ebrahimi-Fard, I. Mencattini, and H. Munthe-Kaas, Post-Lie algebras and factorization
theorems. J. Geom. Phys. 119 (2017), 19-33 Zbl 1402.17021 MR 3661521
[11] Y. Frégier and M. Zambon, Simultaneous deformations and Poisson geometry. Compos. Math.
151 (2015), no. 9, 1763-1790 Zbl 1383.17009 MR 3406444
[12] Y. Frégier and M. Zambon, Simultaneous deformations of algebras and morphisms via derived
brackets. J. Pure Appl. Algebra 219 (2015), no. 12, 5344-5362 Zbl 1356.17021
MR 3390025
[13] M. Gerstenhaber, The cohomology structure of an associative ring. Ann. of Math. (2) 78
(1963),267-288 Zbl 0131.27302 MR 0161898
[14] M. Gerstenhaber, On the deformation of rings and algebras. Ann. of Math. (2) 79 (1964), 59—
103 Zbl 0123.03101 MR 0171807
[15] L. Guo, H. Lang, and Y. Sheng, Integration and geometrization of Rota—Baxter Lie algebras.
Adv. Math. 387 (2021), article no. 107834 Zbl 1468.17026 MR 4271483
[16] J.Jiang, Y. Sheng, and C. Zhu, Lie theory and cohomology of relative Rota—Baxter operators.
J. Lond. Math. Soc. (2) 109 (2024), no. 2, article no. e12836 Zbl 07811234


https://doi.org/10.1007/s00220-010-0998-7
https://doi.org/10.1007/s00220-010-0998-7
https://zbmath.org/?q=an:1206.17020
https://mathscinet.ams.org/mathscinet-getitem?mr=2651910
https://doi.org/10.1007/bf02097662
https://doi.org/10.1007/bf02097662
https://zbmath.org/?q=an:0714.58025
https://mathscinet.ams.org/mathscinet-getitem?mr=1086757
https://doi.org/10.1155/IMRN.2005.2499
https://zbmath.org/?q=an:1126.16017
https://mathscinet.ams.org/mathscinet-getitem?mr=2181057
https://doi.org/10.2307/1990637
https://zbmath.org/?q=an:0031.24803
https://mathscinet.ams.org/mathscinet-getitem?mr=0024908
https://doi.org/10.1016/j.indag.2014.07.015
https://doi.org/10.1016/j.indag.2014.07.015
https://zbmath.org/?q=an:1328.17001
https://mathscinet.ams.org/mathscinet-getitem?mr=3264783
https://doi.org/10.1016/j.jalgebra.2020.05.016
https://zbmath.org/?q=an:1458.16008
https://mathscinet.ams.org/mathscinet-getitem?mr=4104452
https://mathscinet.ams.org/mathscinet-getitem?mr=1237398
https://doi.org/10.1023/A:1020712215075
https://zbmath.org/?q=an:1035.17001
https://mathscinet.ams.org/mathscinet-getitem?mr=1936573
https://doi.org/10.1007/978-3-030-01397-4_7
https://doi.org/10.1007/978-3-030-01397-4_7
https://mathscinet.ams.org/mathscinet-getitem?mr=3883647
https://doi.org/10.1016/j.geomphys.2017.04.007
https://doi.org/10.1016/j.geomphys.2017.04.007
https://zbmath.org/?q=an:1402.17021
https://mathscinet.ams.org/mathscinet-getitem?mr=3661521
https://doi.org/10.1112/S0010437X15007277
https://zbmath.org/?q=an:1383.17009
https://mathscinet.ams.org/mathscinet-getitem?mr=3406444
https://doi.org/10.1016/j.jpaa.2015.05.018
https://doi.org/10.1016/j.jpaa.2015.05.018
https://zbmath.org/?q=an:1356.17021
https://mathscinet.ams.org/mathscinet-getitem?mr=3390025
https://doi.org/10.2307/1970343
https://zbmath.org/?q=an:0131.27302
https://mathscinet.ams.org/mathscinet-getitem?mr=0161898
https://doi.org/10.2307/1970484
https://zbmath.org/?q=an:0123.03101
https://mathscinet.ams.org/mathscinet-getitem?mr=0171807
https://doi.org/10.1016/j.aim.2021.107834
https://zbmath.org/?q=an:1468.17026
https://mathscinet.ams.org/mathscinet-getitem?mr=4271483
https://doi.org/10.1112/jlms.12863
https://zbmath.org/?q=an:07811234

(17]
(18]
(19]
(20]
(21]
(22]
(23]

(24]

[25]

[26]

(27]

(28]

(29]
(30]

(31]

J. Jiang and Y. Sheng 450

B. A. Kupershmidt, What a classical r-matrix really is. J. Nonlinear Math. Phys. 6 (1999),
no. 4, 448-488 Zbl 1015.17015 MR 1722068

L.-C. Li, Classical r-matrices and compatible Poisson structures for Lax equations on Poisson
algebras. Comm. Math. Phys. 203 (1999), no. 3, 573-592 Zbl 0949.37053 MR 1700162

J. Lurie, DAG X: Formal moduli problems. 2011, http://www.math.harvard.edu/~lurie/papers/
DAG-X.pdf, visited on line 7 March 2024

A. Nijenhuis and R. W. Richardson, Jr., Cohomology and deformations in graded Lie algebras.
Bull. Amer. Math. Soc. 72 (1966), 1-29 Zbl 0136.30502 MR 0195995

A. Nijenhuis and R. W. Richardson, Jr., Commutative algebra cohomology and deformations
of Lie and associative algebras. J. Algebra 9 (1968), 42-53 Zbl 0175.31302 MR 0225830

J. P. Pridham, Unifying derived deformation theories. Adv. Math. 224 (2010), no. 3, 772-826
Zbl 1195.14012 MR 2628795

N. Y. Reshetikhin and M. A. Semenov-Tian-Shansky, Quantum R-matrices and factorization
problems. J. Geom. Phys. 5 (1988), no. 4, 533-550 (1989) Zbl 0711.17008 MR 1075721

A. G. Reyman and M. A. Semenov-Tian-Shansky, Reduction of Hamiltonian systems, affine
Lie algebras and Lax equations. Invent. Math. 54 (1979), no. 1, 81-100 Zbl 0403.58004

MR 0549548

M. A. Semenov-Tian-Shansky, Integrable systems and factorization problems. In Factorization
and integrable systems (Faro, 2000), pp. 155-218, Oper. Theory Adv. Appl. 141, Birkhéuser,
Basel, 2003 Zbl 1030.37048 MR 2021098

M. A. Semenov-Tian-Shansky, What is a classical r-matrix? Funct. Anal. Appl. 17 (1983),
259-272. Translation from Funktsional. Anal. i Prilozhen. 17 (1983), no. 4, 17-33

Zbl 0535.58031 MR 0725413

B. M. Szablikowski, Classical r-matrix like approach to Frobenius manifolds, WDV'V equa-
tions and flat metrics. J. Phys. A 48 (2015), no. 31, article no. 315203 Zbl 1334.37082

MR 3371210

B. M. Szablikowski and M. Blaszak, On deformations of standard R-matrices for integrable
infinite-dimensional systems. J. Math. Phys. 46 (2005), no. 4, article no. 042702

Zbl 1067.37102 MR 2131246

R. Tang, C. Bai, L. Guo, and Y. Sheng, Deformations and their controlling cohomologies of
O-operators. Comm. Math. Phys. 368 (2019), no. 2, 665-700 Zbl 1440.17015 MR 3949721
X. Zhang, X. Gao, and L. Guo, Free modified Rota—Baxter algebras and Hopf algebras. Int.
Electron. J. Algebra 25 (2019), 12-34 Zbl 1406.16034 MR 3904855

X. Zhang, X. Gao, and L. Guo, Modified Rota—Baxter algebras, shuffle products and Hopf
algebras. Bull. Malays. Math. Sci. Soc. 42 (2019), no. 6, 3047-3072 Zbl 1466.16039

MR 3999078

Received 12 April 2023; revised 19 June 2023.

Jun Jiang
Department of Mathematics, Jilin University, 130012 Changchun, P. R. China; junjiang @jlu.edu.cn

Yunhe Sheng
Department of Mathematics, Jilin University, 130012 Changchun, P. R. China;
shengyh@jlu.edu.cn


https://doi.org/10.2991/jnmp.1999.6.4.5
https://zbmath.org/?q=an:1015.17015
https://mathscinet.ams.org/mathscinet-getitem?mr=1722068
https://doi.org/10.1007/s002200050626
https://doi.org/10.1007/s002200050626
https://zbmath.org/?q=an:0949.37053
https://mathscinet.ams.org/mathscinet-getitem?mr=1700162
http://www.math.harvard.edu/~lurie/papers/DAG-X.pdf
http://www.math.harvard.edu/~lurie/papers/DAG-X.pdf
https://doi.org/10.1090/S0002-9904-1966-11401-5
https://zbmath.org/?q=an:0136.30502
https://mathscinet.ams.org/mathscinet-getitem?mr=0195995
https://doi.org/10.1016/0021-8693(68)90004-5
https://doi.org/10.1016/0021-8693(68)90004-5
https://zbmath.org/?q=an:0175.31302
https://mathscinet.ams.org/mathscinet-getitem?mr=0225830
https://doi.org/10.1016/j.aim.2009.12.009
https://zbmath.org/?q=an:1195.14012
https://mathscinet.ams.org/mathscinet-getitem?mr=2628795
https://doi.org/10.1016/0393-0440(88)90018-6
https://doi.org/10.1016/0393-0440(88)90018-6
https://zbmath.org/?q=an:0711.17008
https://mathscinet.ams.org/mathscinet-getitem?mr=1075721
https://doi.org/10.1007/BF01391179
https://doi.org/10.1007/BF01391179
https://zbmath.org/?q=an:0403.58004
https://mathscinet.ams.org/mathscinet-getitem?mr=0549548
https://doi.org/10.1007/978-3-0348-8003-9_4
https://zbmath.org/?q=an:1030.37048
https://mathscinet.ams.org/mathscinet-getitem?mr=2021098
https://doi.org/10.1007/BF01076717
https://zbmath.org/?q=an:0535.58031
https://mathscinet.ams.org/mathscinet-getitem?mr=0725413
https://doi.org/10.1088/1751-8113/48/31/315203
https://doi.org/10.1088/1751-8113/48/31/315203
https://zbmath.org/?q=an:1334.37082
https://mathscinet.ams.org/mathscinet-getitem?mr=3371210
https://doi.org/10.1063/1.1868373
https://doi.org/10.1063/1.1868373
https://zbmath.org/?q=an:1067.37102
https://mathscinet.ams.org/mathscinet-getitem?mr=2131246
https://doi.org/10.1007/s00220-019-03286-x
https://doi.org/10.1007/s00220-019-03286-x
https://zbmath.org/?q=an:1440.17015
https://mathscinet.ams.org/mathscinet-getitem?mr=3949721
https://doi.org/10.24330/ieja.504101
https://zbmath.org/?q=an:1406.16034
https://mathscinet.ams.org/mathscinet-getitem?mr=3904855
https://doi.org/10.1007/s40840-018-0648-3
https://doi.org/10.1007/s40840-018-0648-3
https://zbmath.org/?q=an:1466.16039
https://mathscinet.ams.org/mathscinet-getitem?mr=3999078
mailto:junjiang@jlu.edu.cn
mailto:shengyh@jlu.edu.cn

	1. Introduction
	2. Cohomologies of modified r-matrices
	3. Algebraic deformations of modified r-matrices
	4. Geometric deformations of modified r-matrices
	5. Linear deformations of modified r-matrices
	6. Applications
	6.1. Deformations of complements
	6.2. Compatible Poisson structures

	References

