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The mean number of 2-torsion elements in the class groups of
cubic orders

Ashvin A. Swaminathan

Abstract. We determine the mean number of 2-torsion elements in class groups of cubic orders,
when such orders are enumerated by discriminant. Specifically, we prove that when isomor-
phism classes of totally real (resp., complex) cubic orders are enumerated by discriminant, the
average 2-torsion in the class group is 1 C 1

4
�
�.2/
�.4/

(resp., 1 C 1
2
�
�.2/
�.4/

). In particular, we
find that the average 2-torsion in the class group increases when one ranges over all orders in
cubic fields instead of restricting to the subfamily of rings of integers of cubic fields, where the
average 2-torsion in the class group was first determined in work of Bhargava to be 5

4
(resp., 3

2
).

By work of Bhargava–Varma, proving this result amounts to obtaining an asymptotic count
of the number of “reducible” SL3.Z/-orbits on the space Z2 ˝Z Sym2 Z3 of 3 � 3 symmetric
integer matrices having bounded invariants and satisfying local conditions. In this paper, we
resolve the generalization of this orbit-counting problem where the dimension 3 is replaced by
any fixed odd integerN � 3. More precisely, we determine asymptotic formulas for the number
of reducible SLN .Z/-orbits on Z2 ˝Z Sym2ZN satisfying general infinite sets of congruence
conditions.

1. Introduction

1.1. Main results

A striking result of Bhargava’s thesis was the determination of the average size of
the 2-torsion subgroup in the class groups of cubic number fields, enumerated by
discriminant (see [1, Theorem 5.4] and [4, Theorem 5]). Specifically, Bhargava proved
that when totally real (resp., complex) cubic fields are enumerated by the absolute
values of their discriminants, the average 2-torsion in the class group is equal to 5

4

(resp., 3
2

). This result remains one of just a handful of cases of the heuristics on class
groups of number fields, formulated in the foundational works of Cohen–Lenstra [15],
Cohen–Martinet [16], and Malle [22], that have ever been proven.
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The main result of this paper constitutes a generalization of Bhargava’s break-
through to the full family of all orders in cubic fields. We prove the following result.

Theorem 1.1.A. When irreducible cubic orders O over Z are enumerated by the
absolute values of their discriminants, the average size of Cl.O/Œ2� is:

(a) 1C 1
4
�
�.2/
�.4/

for the family of totally real cubic orders O, and

(b) 1C 1
2
�
�.2/
�.4/

for the family of complex cubic orders O.

Remark. Note that �.2/
�.4/
D

15
�2
� 1:51982 > 1.

Let N D 2n C 1 � 3 be an odd integer, and let UN be the affine space over Z

whose R-points are given by binary N -ic forms over R for any Z-algebra R. When
N D 3, the Delone–Faddeev–Levi correspondence [20] states that the map sending
an irreducible binary cubic form f 2 U3.Z/ to the ring Rf of global sections of the
subscheme of P1Z cut out by f defines a bijection between the irreducible orbits of
GL2.Z/ onU3.Z/ and the set of isomorphism classes of orders in cubic number fields.
In light of this, studying cubic orders amounts to studying irreducible integral binary
cubic forms that lie in a fundamental region F for the action of GL2.Z/ on U3.R/.

The region F may be chosen so that the set of f 2F with discriminant disc.f /�
X is approximately the set of f 2 F whose coefficients are all � X1=4. Thus, we
expect that the averages in Theorem 1.1.A should remain the same if we replace the
family of cubic orders, enumerated by discriminant, with the family of cubic orders of
the form Rf ,1 where f runs through irreducible integral binary cubic forms enumer-
ated by height; here we define the height H.f / of a binary form to be the maximum
of the absolute values of its coefficients. Indeed, by modifying the proof of Theo-
rem 1.1.A, we obtain the following variant.

Theorem 1.1.B. When irreducible binary cubic forms f 2 U3.Z/ are enumerated by
height, the average size of Cl.Rf /Œ2� is:

(a) 1C 1
4
�
�.2/
�.4/

for the family of totally real binary cubic forms f , and

(b) 1C 1
2
�
�.2/
�.4/

for the family of complex binary cubic forms f .

To prove Theorems 1.1.A and 1.1.B, we utilize an orbit parametrization, discov-
ered by Bhargava when N D 3 (see [2, Theorem 4]), and generalized to all odd N by
Wood (see [30, Theorem 1.3]). Fix an irreducible binary N -ic form f 2 UN .Z/, and
assume f is primitive if N > 3. Let Kf WD Q˝Z Rf , and let WN denote the affine
space over Z whose R-points are given by pairs of symmetric N � N matrices over

1Note that each cubic order O in this family occurs infinitely many times, once for every f
such that O ' Rf !
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R. Then the Bhargava–Wood parametrization takes as input a pair .I; ı/, where I is
a 2-torsion ideal class of the order Rf and ı 2 K�

f
=K�2

f
is a generator of I 2 having

square norm, and it produces as output the SLN .Z/-orbit of a pair .A; B/ 2 WN .R/
such that

inv.A;B/ WD .�1/n det.xA � yB/ D f .x; y/:

The set of pairs .I; ı/ corresponding to a form f 2 UN .Z/ naturally partitions
into two subsets depending on whether or not ı � 1 2K�

f
=K�2

f
. Via the parametriza-

tion, pairs .I; ı/ with ı 6� 1 (resp., ı � 1) correspond to so-called irreducible (resp.,
reducible) SLN .Z/-orbits on WN .Z/. Here, (the SLN .Z/-orbit of) a pair .A; B/ 2
WN .Z/ is said to be reducible if, when A and B are viewed as symmetric bilinear
forms over Q, they share an isotropic space over Q of maximal dimension. Geomet-
rically, A and B may be viewed as defining a pair of quadric hypersurfaces in PN�1,
and the condition that .A; B/ is reducible is equivalent to stipulating that the (finite)
Fano scheme parametrizing maximal linear spaces contained in the intersection of
these two quadrics has a Q-rational point.

Note that if .I; ı/ is a pair with ı � 1, then I is the class of a 2-torsion ideal ofRf
(i.e., a fractional ideal of Rf that squares to the unit ideal). Thus, the set of reducible
SLN .Z/-orbits of pairs .A;B/ 2 inv�1.f /\WN .Z/ is in bijection with the 2-torsion
subgroup of the ideal group 	.Rf /. If Rf is the maximal order in Kf (i.e., Rf is
integrally closed in Kf ), then 	.Rf / is torsion-free, and the only 2-torsion ideal is
the trivial one. Thus, there is exactly one reducible orbit corresponding to f via the
parametrization, and the problem of determining the average size of the 2-torsion in
the class groups of maximal ordersRf amounts to counting just the irreducible orbits.
A systematic method for counting irreducible orbits of representations (where the
definition of “irreducible” depends on the representation) was developed by Bhargava
in his thesis (see, e.g., [6]) and was later vastly streamlined in the seminal work of
Bhargava and Shankar on Selmer groups of elliptic curves (see, e.g., [10]). Using this
method to count just the irreducible orbits, Bhargava and Varma proved the following
precursor to Theorem 1.1.A.

Theorem 1.2.A ([13, Theorem 2]). When irreducible cubic orders O are enumerated
by the absolute values of their discriminants, the average size of Cl.O/Œ2� is:

(a) 1C 1
4
� Avg

disc.O/>0
#	.O/Œ2� for the family of totally real cubic orders O, and

(b) 1C 1
2
� Avg

disc.O/<0
#	.O/Œ2� for the family of complex cubic orders O.

Just as Theorem 1.2.A was a precursor to Theorem 1.1.A, we have the following
result of Ho, Shankar, and Varma, which holds for any N and was a precursor to
Theorem 1.1.B in the case N D 3.



A. A. Swaminathan 228

Theorem 1.2.B ([21, Theorem 6]). Let UN .Z/.r/ be the set of irreducible forms
f 2 UN .Z/ having r real roots and .N � r/=2 pairs of complex roots. When forms
f 2 UN .Z/.r/, primitive if N > 3, are enumerated by height, the average size of
Cl.Rf /Œ2� is

1C 21�.NCr/=2 � Avg
f 2UN .Z/

.r/

f prim. ifN > 3

#	.Rf /Œ2�:

To determine precise numerical values of the average 2-torsion in the class group
for the families of orders considered in Theorems 1.2.A and 1.2.B, one needs to deter-
mine the average 2-torsion in their ideal groups. Via the Bhargava–Wood parametriza-
tion, this amounts to counting reducible SLN .Z/-orbits onWN .Z/. Systematic meth-
ods for counting reducible orbits were not available until recently, when the author, in
joint work with Shankar, Siad, and Varma, developed a new technique that applies to
reducible orbits of many representations of importance in arithmetic statistics [25].

In the context of the action of SLN onWN , our new technique proceeds according
to the following series of steps. First, we prove in Section 3 (see Proposition 3.2)
that the count of reducible SLN .Z/-orbits on WN .Z/ lying above irreducible binary
forms is the same as the corresponding count for GN .Z/-orbits on W 0

N .Z/, where
GN � SLN is a certain closed subgroup andW 0

N �WN is a certain linear subspace all
of whose Q-points are reducible (see Sections 2.2.4–2.2.5 for the precise definitions
ofGN andW 0

N ). Second, we prove that the action ofGN onW 0
N satisfies the following

strong local-to-global principle:

Theorem 1.3. Let f 2 UN .Z/ be a binaryN -ic form with nonzero discriminant. For
each prime p, choose .Ap; Bp/ 2 inv�1.f / \W 0

N .Zp/. Then there exists .A; B/ 2
W 0
N .Z/, unique up to the action of GN .Z/, such that .A; B/ is GN .Zp/-equivalent

to .Ap; Bp/ for each prime p.

To prove Theorem 1.3, we rely on [25, Theorem 22], which is a general result that
provides criteria under which the integral orbits of a representation satisfy a local-
to-global principle. Theorem 1.3 follows by verifying that the representation of GN
on W 0

N satisfies these criteria.
As a consequence of Theorem 1.3, counting GN .Z/-orbits onW 0

N .Z/ amounts to
counting GN .Zp/-orbits on W 0

N .Zp/ for every prime p. In Section 3.1 we combine
this local-to-global principle with results of Bhargava–Shankar–Wang [12] to obtain
an asymptotic for the count of reducible SLN .Z/-orbits on WN .Z/ satisfying certain
infinite families of congruence conditions, which we define precisely as follows.

Definition 1.4. We call a subset S � W 0
N .Z/ a big family in W 0

N .Z/ if

S D inv�1
�
UN .Z/

.r/
�
\W 0

N .Z/ \
\
p

Sp;
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where the sets Sp � W
0
N .Zp/ satisfy the following properties:

(1) Sp is GN .Zp/-invariant and is the preimage under reduction modulo pj of a
nonempty subset of W 0

N .Z=p
jZ/ for some j > 0 for each p; and

(2) for all sufficiently large p, Sp contains all elements .A; B/ 2 W 0
N .Zp/ such

that Q.A; B/ is a p-adic unit, where Q is a certain relative invariant for the
action of GN on W 0

N over Z (see Proposition 2.1 for the precise definition
of Q).

We call a subset S � WN .Z/ a big family in WN .Z/ if

S D inv�1
�
UN .Z/

.r/
�
\

\
p

Sp;

where the sets Sp � WN .Zp/ are SLN .Zp/-invariant, and the intersections Sp D

Sp \W
0
N .Zp/ define a big family

S D inv�1
�
UN .Z/

.r/
�
\W 0

N .Z/ \
\
p

Sp

in W 0
N .Z/.

Define the height of .A; B/ by H.A; B/ WD H.inv.A; B//. The following result
gives an asymptotic for the count of reducible SLN .Z/-orbits of bounded height in a
big family in WN .Z/.

Theorem 1.5. LetX > 0, and let N.r/N .X/ be the number of binary forms inUN .Z/.r/

whose coefficients are of size at most X . Let S � inv�1.UN .Z/.r// be a big family
in WN .Z/. Then the number of reducible SLN .Z/-orbits on S of height less than X
is given by

N.r/N .X/ �
Y
p

Z
f 2UN .Zp/

#
�

inv�1.f / \ Sp \W 0
N .Zp/

GN .Zp/

�
df C o.XNC1/;

where df is the Haar measure on UN .Zp/, normalized so that Vol.UN .Zp// D 1.

Theorem 1.5 expresses the asymptotic count of reducible SLN .Z/-orbits on S of
bounded height in terms of a product of local integrals. The integrand of the integral
at p – namely, the number of GN .Zp/-orbits of pairs .A; B/ 2 Sp \W 0

N .Zp/ with
inv.A; B/ D f – appears to be quite difficult to evaluate in general, even for small
degrees N and simple choices of the sets Sp . On the other hand, the integral at p
can be rendered more tractable by performing a suitable change-of-variables, where
instead of integrating over f 2 UN .Zp/, one integrates over .A;B/ 2W 0

N .Zp/. Upon
performing this change-of-variables at each prime p, we obtain the following variant
of Theorem 1.5.
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Theorem 1.6. Let X > 0, and let S � inv�1.UN .Z/.r// be a big family in WN .Z/.
Then the number of reducible SLN .Z/-orbits on S of height less than X is given by

N.r/N .X/ �
Y
p

�p;n

Z
w2Sp\W

0
N
.Zp/
jQ.w/jp dw C o.X

NC1/;

where

�p;n WD .1 � p
�1/�1.1 � p�n�1/�1 �

nY
iD2

.1 � p�i /�1;

j � jp denotes the usual p-adic absolute value, and where dw denotes the Haar mea-
sure on W 0

N .Zp/, normalized so that Vol.W 0
N .Zp// D 1.

The formulation of the asymptotic given in Theorem 1.6 is far more conducive to
evaluation in specific examples. For instance, taking Sp DWN .Zp/ for every prime p,
we obtain the following asymptotic formula for the total count of reducible SLN .Z/-
orbits on WN .Z/.

Theorem 1.7. Suppose X > 0. Then the number of reducible SLN .Z/-orbits on
inv�1.UN .Z/.r// of height less than X is given by

N.r/N .X/ �
NY
iD2

�.i/C o.XNC1/:

Strikingly, Theorem 1.7 implies that the average number of reducible orbits lying
above an integral binary N -ic form is equal to

QN
iD2 �.i/, which is simply the funda-

mental volume of the group SLN (i.e., the volume of SLN .Z/n SLN .R/ with respect
to Haar measure on SLN .R/, suitably normalized). This phenomenon – that the aver-
age number of reducible orbits lying above a given set of invariants equals the fun-
damental volume of the group – holds for many other representations of interest in
arithmetic statistics. Indeed, as proven in [25, Theorem 1], this holds for the represen-
tation of the split orthogonal group on the space of N -ary quadratic forms for every
integer N � 3, odd or even; furthermore, as explained in [25, Question 2 and subse-
quent discussion], this also holds for the representations of GL2 on binary cubic and
quartic forms.

We now turn our attention to applying Theorem 1.6 to prove our main results on
class group statistics, namely Theorems 1.1.A and 1.1.B. We say that a pair .A;B/ 2
WN .Zp/ is projective if it corresponds to a 2-torsion ideal class under the Bhargava–
Wood parametrization. As explained in Definition 4.2 (see Section 4.2, to follow),
the condition of projectivity is given by a congruence condition modulo p for each
prime p.

It is possible to determine the proportion of projective elements of WN .Zp/ for
each prime p; this was essentially achieved in [13, §6] for N D 3 and [21, §6.1]
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for N � 3. On the other hand, to apply Theorem 1.6 it is necessary to determine the
proportion of projective elements ofW 0

N .Zp/ having a specifiedQ-invariant, and this
appears to be intractable in general. Nonetheless, whenN D 3, the condition of being
projective is not too complicated, and the relevant p-adic integrals can be evaluated.
We thus obtain the following result giving the average 2-torsion in the ideal groups of
cubic orders enumerated by discriminant.

Theorem 1.8.A. When either totally real or complex irreducible cubic orders O are
enumerated by the absolute values of their discriminants, the average 2-torsion in the
ideal group is �.2/

�.4/
.

We also simultaneously obtain the following variant of Theorem 1.8.A for the
family of cubic orders defined by binary cubic forms enumerated by height.

Theorem 1.8.B. When forms f 2 U3.Z/.r/ are enumerated by height, the average
2-torsion in the ideal group is �.2/

�.4/
.

Theorem 1.1.A (resp., Theorem 1.1.B) now follows immediately upon combin-
ing Theorem 1.2.A (resp., Theorem 1.2.B in the case N D 3) with Theorem 1.8.A
(resp., Theorem 1.8.B). As for orders defined by binary forms of higher odd degree,
we obtain the following weaker result by simply combining Theorem 1.7 with Theo-
rem 1.2.B.

Theorem 1.9. Let N > 3. When primitive forms f 2 UN .Z/.r/ are enumerated by
height, the average sizes of 	.Rf /Œ2� and Cl.Rf /Œ2� are bounded.

1.2. Historical context and related work

The problem of studying the arithmetic statistics of nonmaximal orders in number
fields dates back to the seminal work of Davenport [17,18], who determined the den-
sity of discriminants of orders in cubic fields (i.e., he obtained an asymptotic formula
for the number of cubic orders having bounded discriminant). This result was general-
ized in work of Bhargava, Shankar, and Tsimerman [11, Theorem 8], who determined
the density of discriminants of cubic orders satisfying general infinite sets of local
specifications. As for orders of higher degree, Bhargava used the parametrizations of
quartic/quintic orders that he developed in his thesis [3, 5] to determine asymptotic
formulas for the number of orders having bounded discriminant in quartic/quintic
fields with Galois group equal to the full symmetric group [4, 6].

More recently, progress has been made toward understanding the distribution of
class groups of orders in number fields. The first result in this direction is due to
Bhargava and Varma [14], who determined the average 3-torsion in the class groups of
quadratic orders. Specifically, they showed that when real (resp., complex) quadratic
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orders are enumerated by discriminant, the average 3-torsion in the class group is
given by 1C 1

3
�
�.2/
�.3/

(resp., 1C �.2/
�.3/

). This extends an earlier result of Davenport
and Heilbronn [19], who determined the corresponding average to be 4

3
(resp., 2) for

the family of maximal quadratic orders (i.e., rings of integers of quadratic number
fields).

As explained in Section 1.1, Bhargava and Varma proved Theorem 1.2.A, which
describes the average 2-torsion in the class groups of cubic orders in terms of the
average 2-torsion in their ideal groups [13], and their result was generalized to orders
defined by binary forms of any odd degree N � 3 by Ho, Shankar, and Varma,
who proved Theorem 1.2.B. A similar result was proven for monogenic orders –
i.e., orders defined by monic binary forms – of odd degree by Siad in [26, Theo-
rem 9]. In the case of monogenic orders of odd degree N , the problem of counting
2-torsion ideals boils down to a problem of counting reducible orbits of the afore-
mentioned representation of the split orthogonal group acting on the space of N -ary
quadratic forms. As explained in Section 1.1, asymptotics akin to Theorems 1.5–
1.7 were proven for reducible orbits of this representation in [25]; these asymptotics
were then applied in [28, §5.6] with N D 3 to determine the average 2-torsion in the
ideal groups of monogenic cubic orders. Combining this with the aforementioned
result of Siad, we deduced (see [28, Theorem 173]) that when monogenic cubic
orders are enumerated by height, the average 2-torsion in the class group is given
by 5

4
C

1
4
�
�.2/
�.3/

(resp., 3
2
C

1
2
�
�.2/
�.3/

). This extends an earlier result of Bhargava,
Hanke, and Shankar [9], who determined the corresponding average to be 3

2
(resp., 2)

for the family maximal monogenic cubic orders.
We note that the problem of counting reducible SLN .Z/-orbits on WN .Z/ was

first considered by Bhargava, Shankar, and Wang in [12], where they used geometry-
of-numbers methods to determine upper bounds of roughly the correct order of mag-
nitude on the number of reducible orbits having largeQ-invariant. They applied these
upper bounds to prove a squarefree sieve for binary forms. In this paper, their bounds
serve as a key ingredient in the proofs of our main theorems. Thus, we indirectly use
upper bounds for the count of reducible orbits to obtain precise asymptotics for this
count!

It is natural to ask what can be said for binary forms of even degree. We expect
that the methods of [27, 29] can be adapted to determine the average 2-torsion in the
class group of orders defined by binary forms of even degree in terms of the average
2-torsion in the ideal group; however, in the even-degree setting, the parametriza-
tion of 2-torsion ideal classes is significantly more complicated (e.g., it depends on
the leading coefficient of the binary forms under consideration, and one must count
reducible orbits in multiple families of representations). It is also natural to ask whe-
ther analogues of Theorems 1.5–1.7 can be proven for the action of SLN on pairs of
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N � N symmetric matrices, where N D 2n � 4 is even. This representation was
studied by Bhargava in [7] (cf. the closely related work of Bhargava, Gross, and
Wang [8]), where he shows that this representation does not possess an analogous
notion of reducibility and is thus able to determine asymptotics for the count of its
integral orbits.

2. Algebraic preliminaries

In this section, we introduce the representation of SLN on WN and prove several
useful results about the action of various subgroups of SLN on various linear sub-
spaces in WN . In particular, we define and study the subgroup GN and the linear
subspaceW 0

N referenced in Section 1.1. We conclude by proving Theorem 1.3, which
gives a local-to-global principle for the action of GN on W 0

N .

2.1. Action of SLN on WN

For integersm;m0 > 0, let Matm�m0 denote the affine scheme over Z whose R-points
are given by the set of m � m0 matrices with entries in R for any Z-algebra R. As
in Section 1.1, let N D 2n C 1 � 3 be an odd integer, and let WN be the space of
pairs of N � N symmetric matrices (i.e., we have WN .R/ D R2 ˝R Sym2 RN for
any Z-algebra R). The spaceWN has a natural structure of SLN -representation given
as follows: for any g 2 SLN .R/ and any .A;B/ 2 WN .R/, let

g � .A;B/ D
�
gAgT ; gBgT

�
2 WN .R/;

where for a matrix M , we denote by M T its transpose.
Let UN be the affine scheme over Z whoseR-points are binaryN -ic forms overR

for any Z-algebra R. Define a map invWWN ! UN as follows: given a pair .A;B/ 2
WN .R/, we set

inv.A;B/ WD .�1/n det.xA � yB/ 2 UN .R/:

One readily checks that the coefficients of inv.A; B/ are SLN -invariant; in fact, it is
known [24] that if fi WWN ! A1 is the map that takes .A; B/ 2 WN .R/ and returns
the xN�iyi -coefficient of inv.A; B/, then the ring of polynomial invariants for the
action of SLN on WN is freely generated by the functions fi for i 2 ¹0; : : : ; N º.
In [21, §4.1], an explicit algebraic section �0 defined over Z was constructed for the
map invWWN ! UN (by “algebraic” and “defined over Z,” we mean that the matrix
entries of �0 are polynomials with integer coefficients). Concretely, this section takes

f .x; y/ D

NX
iD0

fix
N�iyi 2 UN .R/
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to the pair

�0.f / D0BBBBBBBB@

2666666664

1

::
:

1

f0

1 f2

: :
: : : :

1 fN�1

3777777775
;

2666666664

1

::
:

1

1 �f1

: :
: : : :

1 �fN�2

�fN

3777777775

1CCCCCCCCA
;

where empty entries are used to denote zeros, and where we have inserted horizontal
and vertical lines immediately after row and column n in both matrices.

Let K be a field. As mentioned in Section 1.1, a pair .A; B/ 2 WN .K/ is said
to be reducible over K if the symmetric bilinear forms defined by A and B share a
maximal (i.e., n-dimensional) isotropic space, and irreducible otherwise. The condi-
tion of being (ir)reducible is evidently SLN .K/-invariant, so we may speak of the
(ir)reducible SLN .K/-orbits onWN .K/. If R is an integral domain with field of frac-
tionsK, we say that an SLN .R/-orbit onWN .R/ is (ir)reducible if the corresponding
property holds for the SLN .K/-orbit containing it.

In the caseN D 3, we will have occasion to combine the action of SL3 onW3 with
the action of GL2 on U3. Recall that GL2 acts on U3 via linear change-of-variable;
i.e., given 
 2 GL2.R/ and f 2 U3.R/, we have

.
 � f /.x; y/ D f ..x; y/ � 
/:

The ring of polynomial invariants for the action of GL2 on U3 is freely generated by
a single element known as the discriminant. We have an action of GL2 � SL3 on W3
defined as follows: given 
 D

�
a b
c d

�
2 GL2.R/, g 2 SL3.R/, and .A; B/ 2 WN .R/,

we set
.
; g/ � .A;B/ D

�
g.aA � bB/gT ; g.cA � dB/gT

�
:

The map invWW3 ! U3 is equivariant for the GL2-action, and the ring of polynomial
invariants for the action of GL2�SL3 onW3 is generated by the function obtained by
postcomposing the map inv with the discriminant map U3 ! A1.

2.2. Action of subgroups of SLN on linear subspaces in WN

For a matrix M , denote its row-i , column-j entry by Mij . We now introduce three
linear subspaces in WN and study the actions of certain subgroups of SLN on them.
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2.2.1. Action of SLn � SLnC1 on W
top

N
. LetW top

N � WN denote the linear subspace
whose R-points are given by

W
top
N .R/ WD

®
.A;B/ 2 WN .R/ W Aij D Bij D 0 if i; j � n or i; j � nC 1

¯
for any Z-algebra R. When it is convenient, we think of elements of W top

N as being
pairs of n � .nC 1/ matrices, by considering just the top-right n � .nC 1/ blocks.

Let SLn � SLnC1 � SLN be the subgroup consisting of block-diagonal matrices,
where the diagonal consists of one n � n block followed by one .nC 1/ � .nC 1/
block, both having determinant 1. The action of SLN on WN restricts to an action of
SLn �SLnC1 on W top

N .
We now describe the action of SLn �SLnC1 on W top

N over a field K.

Proposition 2.1. The ring of polynomial invariants of the action of SLn � SLnC1
on W top

N is generated by a single polynomial Q such that for any field K and any
Q0 2 K

�, the set
Q�1.Q0/ � W

top
N .K/

is nonempty and consists of a single .SLn�SLnC1/.K/-orbit. Moreover, the stabilizer
of any element of this orbit is trivial.

Proof. Proposition 2.1 amounts to stating that the representation of .SLn�SLnC1/.K/
on W top

N .K/ is “prehomogeneous,” and the proof is identical to that of [12, Proposi-
tion 3.1]. The main observation is that, for any integer n0 � 2, the representation of
.SLn � SLnC1/.K/ on W top

N .K/ in the case n D n0 is related to the representation
of .SLn � SLnC1/.K/ on W top

N .K/ in the case n D n0 � 1 by what Sato and Kimura
call a “castling transform” (see [23, §2]). Since the property of being prehomogeneous
is preserved under castling transforms, it suffices to prove the lemma in the case nD 1,
where the action of .SLn�SLnC1/.K/ onW top

N .K/ may be identified with the action
of SL2.K/ on Mat2�2.K/ by right-multiplication. The desired polynomial invariant
function Q for this action is given simply by the determinant.

We now describe the invariant Q for n > 1. Given a Z-algebra R and a pair
.A; B/ 2 W

top
N .R/, we take Q.A;B/ to be the “hyperdeterminant” of .A; B/, which

is defined explicitly as follows. For each i 2 ¹1; : : : ; n C 1º, let A.i/ and B.i/ be
the n � n matrices obtained from A and B , respectively, by considering the top-right
n � .nC 1/ block and deleting the i th column. Then Q.A; B/ is the determinant of
the .nC 1/ � .nC 1/ matrix whose row-i , column-j entry is the xn�jC1yj�1-entry
of the binary n-ic form .�1/iC1 det.xA.i/ � yB.i//.
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ThatQ�1.Q0/ is nonempty for anyQ0 2K� follows by examining the following
pair of matrices in W top

N .K/:0BBBB@
266664

1

1

: :
:

1

377775 ;
266664

˙Q0

1

: :
:

1

377775
1CCCCA (1)

The pair in (1) evidently hasQ-invariantQ0 or�Q0, depending on the choice of sign
of the entry “˙Q0.” In fact, this pair gives an explicit section of the map

QWW
top
N ! A1;

defined over Z. As for the claim about stabilizers, the action of SL2.K/ by right-
multiplication on matrices of nonzero determinant in Mat2�2.K/ obviously has trivial
stabilizers, and stabilizers are preserved under castling transforms.

2.2.2. Action of LN on W
top;0

N
. Let W top;0

N � W
top
N be the linear subspace whose

R-points are given by

W
top;0
N .R/ WD

®
.A;B/ 2 W

top
N .R/ W Aij D 0 if i C j � 2nC 1

and Bij D 0 if i C j � 2n
¯

for any Z-algebra R. Let LN � SLn�SLnC1 be the lower-triangular subgroup. Then
the action of SLn � SLnC1 on W top

N restricts to an action of LN on W top;0
N . Given

.A;B/ 2 W
top;0
N .R/, we have the following formula for the Q-invariant up to sign:

Q.A;B/ D ˙

nY
iD1

AnC1�ii;NC1�i

nY
iD1

B ii;N�i : (2)

We now describe this restricted action of LN .K/ on W top;0
N .K/ for K a field.

Proposition 2.2. Let K be a field, and let Q0 2 K�. Then the set

Q�1.Q0/ \W
top;0
N .K/

is nonempty and consists of a single LN .K/-orbit. Moreover, the stabilizer of any
element of this orbit is trivial.

Proof. The nonemptiness statement follows immediately from the existence of the
explicit section (1), which has image contained in W top;0

N . The statement about stabi-
lizers is obvious.

As for the transitivity statement, take .A;B/ 2Q�1.Q0/\W
top;0
N .K/. It suffices

to show that .A; B/ is LN .K/-equivalent to (1). First, by replacing .A; B/ with a



The mean number of 2-torsion elements in the class groups of cubic orders 237

suitable translate under the action of a diagonal element in LN .K/, we may assume
that Aij D 1 for all i C j D N C 1 and that Bij D 1 for all i C j D N , except when
.i; j / D .1; N � 1/, in which case B1.N�1/ D ˙Q0. Now, call a lower-triangular
unipotent element g 2 SLN .K/ elementary if gij D 0 for all but one pair .i; j / with
i > j . It is easy to verify by inspection that, by hitting .A;B/with a suitable sequence
of elementary unipotent elements of LN .K/, we can successively clear out the values
of the following matrix entries:

B1.2nC1/; A2.2nC1/; B2.2n/; B2.2nC1/; : : : ; (3)

Ak.2nC3�k/; : : : ; Ak.2nC1/; Bk.2nC2�k/; : : : ; Bk.2nC1/; : : : ;

An.nC3/; : : : ; An.2nC1/; Bn.nC2/; : : : ; Bn.2nC1/:

We may thus assume that the matrix entries of .A;B/ that are listed in (3) are all equal
to 0. But then .A;B/ is equal to (1), which is sufficient.

Corollary 2.3. If two elements of Q�1.Q0/ \ W
top;0
N .K/ are equivalent under the

action of g 2 .SLn �SLnC1/.K/, then we have g 2 LN .K/.

Proof. Suppose for some g1 2 .SLn�SLnC1/.K/ and elements .A1;B1/; .A2;B2/ 2
Q�1.Q0/ \W

top;0
N .K/, we have

g1 � .A1; B1/ D .A2; B2/:

By Proposition 2.2, there exists g2 2 LN .K/ such that

g2 � .A1; B1/ D .A2; B2/;

so g�12 g1 stabilizes .A1; B1/, but by Proposition 2.1, the stabilizer of .A1; B1/ in
.SLn �SLnC1/.K/ is trivial, so g1 D g2, as necessary.

2.2.3. Fundamental domain for .SLn � SLnC1/.Zp/ Õ W
top

N
.Zp/. Using the res-

ults of Sections 2.2.1–2.2.2, we now construct a fundamental domain for the action
of .SLn � SLnC1/.Zp/ on W top

N .Zp/; this fundamental domain plays a crucial role in
the proof of Theorem 1.7 (see Section 4.1).2

We start by choosing a convenient partition of W top
N .Zp/ into subsets indexed by

pairs of nonnegative-integer-vectors of length n. Given

Ea D .a1; : : : ; an/; Eb D .b1; : : : ; bn/ 2 Nn;

2Note that by a “fundamental domain” for the action of a group on a set, we mean a subset
that contains exactly one element of each orbit.
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define a subset L
Ea;Eb
.p/ as follows:

L
Ea;Eb
.p/ WD .SLn �SLnC1/.Zp/

�
®
.A;B/ 2 W

top;0
N .Zp/ W �p.Aij / D ai for .i; j / with i C j D N C 1,

�p.Bij / D bi for .i; j / with i C j D N
¯
:

Take .A; B/ 2 L
Ea;Eb
.p/. By the proof of Proposition 2.2, we can use the action of

.SLn �SLnC1/.Qp/ to make

Aij D 0 for each .i; j / with i C j > N C 1, and

Bij D 0 for each .i; j / with i C j > N ,

without changing Aij for each .i; j / with i C j D N C 1 and Bij for each .i; j / with
i C j D N . Then one readily computes using (2) that

jQ.A;B/j�1p D

nY
iD1

p.nC1�i/aiCibi : (4)

The following proposition gives the desired fundamental domain in terms of the
sets L

Ea;Eb
.p/.

Proposition 2.4. For each Ea; Eb 2 Nn, a fundamental domain for the action of

.SLn �SLnC1/.Zp/

on the set L
Ea;Eb
.p/ is given by®

.A;B/ 2 W
top;0
N .Zp/ W Aij D p

ai for .i; j / with i C j D N C 1,

Aij 2 ¹0; : : : ; p
aNC1�j � 1º:

for .i; j / with i C j > N C 1 and i � n,

Bij D p
bi for .i; j / with i C j D N and i > 1,

�p.B1.N�1// D b1,

Bij 2 ¹0; : : : ; p
bi � 1º for .i; j / with i C j > N and i � n

¯
: (5)

A fundamental domain for the action of .SLn �SLnC1/.Zp/ on the set®
.A;B/ 2 W

top
N .Zp/ W Q.A;B/ ¤ 0

¯
is given by the (disjoint) union of the set (5) over all Ea; Eb 2 Nn.
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Proof. First note that we have

L
Ea;Eb
.p/ \W

top;0
N .Zp/ D

®
.A;B/ 2 W

top;0
N .Zp/ W

�p.Aij / D ai for .i; j / with i C j D N C 1,

�p.Bij / D bi for .i; j / with i C j D N
¯
: (6)

Indeed, the left-hand side of (6) obviously contains the right-hand side. As for the
reverse containment, if .A; B/ 2 L

Ea;Eb
.p/ \W

top;0
N .Zp/, then there exist an element

g 2 .SLn � SLnC1/.Zp/ and a pair .A0; B 0/ belonging to the right-hand side of (6)
such that

.A;B/ D g � .A0; B 0/:

By Corollary 2.3, we must have g 2LN .Zp/, so since the action ofLN .Zp/ preserves
the right-hand side of (6), the pair .A;B/ must belong to it as well.

The next step is to show that the action of .SLn � SLnC1/.Zp/ can be used to
move points in W top

N .Zp/ into the linear subspace W top;0
N .Zp/.

Lemma 2.5. LetQ02Zp X ¹0º. Then every .SLn�SLnC1/.Zp/-orbit onQ�1.Q0/�
W

top
N .Zp/ meets W top;0

N .Zp/.

Proof of Lemma 2.5. The proof is similar to that of [28, Lemma 206]. Take

.A;B/ 2 Q�1.Q0/ \W
top
N .Zp/:

Then there exists g 2 .SLn�SLnC1/.Qp/ such that g � .A;B/ 2W top;0
N .Zp/, because

the section (1) of Q is defined over Zp with image contained in W top;0
N , and because

the elements of the setQ�1.Q0/\W
top
N .Zp/ belong to the same .SLn�SLnC1/.Qp/-

orbit by Proposition 2.1.
By the p-adic Iwasawa decomposition, we have that

.SLn �SLnC1/.Qp/ D LN .Qp/.SLn �SLnC1/.Zp/;

so there exists g1 2 LN .Qp/ and g2 2 .SLn � SLnC1/.Zp/ such that g D g1g2. But
LN acts onW top;0

N (see Section 2.2.2 for further details), so g2 � .A;B/ 2W
top;0
N .Qp/.

Since g2 2 .SLn � SLnC1/.Zp/ and .A; B/ 2 W top
N .Zp/, we must in fact have that

g2 � .A;B/ 2 W
top;0
N .Zp/.

Now, by Lemma 2.5 and Corollary 2.3, it suffices to show that (5) is a fundamen-
tal domain for the action of LN .Zp/ on L

Ea;Eb
.p/ \W

top;0
N .Zp/, but this follows by

adapting the proof of Proposition 2.2 to work over Zp . Take

.A;B/ 2 L
Ea;Eb
.p/ \W

top;0
N .Zp/:
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First, instead of using diagonal transformations to make

Aij D 1 for .i; j / with i C j D N C 1, and

Bij D 1 for .i; j / with i C j D N , except when .i; j / D .1;N � 1/;

we use these transformations to make

Aij D p
ai for .i; j / with i C j D N C 1, and

Bij D p
bi for .i; j / with i C j D N , except when .i; j / D .1;N � 1/.

Then, instead of using elementary unipotent transformations to make the remaining
matrix entries zero, we use these transformations to reduce these matrix entries mod-
ulo pa1 ; : : : ; pan ; pb1 ; : : : ; pbn . This establishes that each orbit for the action of
.SLn �SLnC1/.Zp/ on L

Ea;Eb
.p/ meets the set (5) at least once.

On the other hand, if .A;B/; .A0; B 0/ belong to the set (5) and there exists an ele-
ment g 2 .SLn �SLnC1/.Zp/ such that .A;B/ D g � .A0; B 0/, then by Corollary 2.3,
we must have g 2LN .Zp/. Write gD g1g2, where g1 is unipotent and g2 is diagonal.
Denote the diagonal entries of g2 by .g2/i i . Observe that we have the equalities

.g2/i i .g2/jjA
0
ij D .g � A

0/ij D Aij D p
ai D A0ij (7)

for .i; j / with i C j D N C 1 and i � n, and that we have

.g2/i i .g2/jjB
0
ij D .g � B

0/ij D Bij D p
bi D B 0ij (8)

for .i; j / with i C j D N and 1 < i � n. Combining (7) and (8) with the fact that
Q.A;B/ D Q.A0; B 0/ along with the formula (2), we see that (8) holds when i D 1
too. Then combining (7) and (8) with the condition det g2 D 1 yields the following
system of equations:

.g2/i i .g2/.N�i/.N�i/ D .g2/i i .g2/.NC1�i/.NC1�i/

D

NY
jD1

.g2/jj D 1 for each i 2 ¹1; : : : ; nº:

By comparing the products
Qn
iD1.g2/i i .g2/.N�i/.N�i/ and

QN
jD1.g2/jj , we deduce

that .g2/NN D 1, from which it follows that all .g2/i i D 1, and hence that g2 D id.
Next, denote the entries of g1 by .g1/ij . Then the condition B D g1 � B 0 implies

that
B1.2nC1/ � B

0
1.2nC1/ .mod pb1/;

so the condition B1.2nC1/; B 01.2nC1/ 2 ¹0; : : : ; p
b1 � 1º forces B1.2nC1/ D B 01.2nC1/

and hence that .g1/N.N�1/ D 0. Since .g1/N.N�1/ D 0, the condition A D g1 � A
0

implies that
A2.2nC1/ � A

0
2.2nC1/ .mod pa1/;
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so the condition A2.2nC1/;A02.2nC1/ 2 ¹0; : : : ; p
a1 � 1º forces A2.2nC1/ D A02.2nC1/,

and hence that .g1/21 D 0. Continuing in this manner according to the sequence of
matrix entries in (3), we see that the matrix entries of .A;B/ and .A0;B 0/ coincide.

2.2.4. The subgroup GN � SLN . Let GN � SLN be the subgroup whose R-points
are given by

GN .R/ WD ¹g 2 SLN .R/ W gij D 0 for all .i; j / such that i � n and j � nC 1º

for any Z-algebra R.
An algebraic group G is said to have class number 1 over Q if the group G.AQ/

of adelic rational points is the “Frobenius” product of the subgroup G.Q/ of rational
points with the subgroup G.AZ/ of adelic integral points, i.e., we have

G.AQ/ D G.Q/G.AZ/:

The following result establishes that this property holds for G D GN .

Proposition 2.6. The algebraic group GN has class number 1 over Q.

Proof. The idea of the proof is to realize GN as the Frobenius product of two sub-
groups, each of which has class number 1 over Q, and then to use this product
structure to deduce that GN itself has class number 1 over Q.

Let H1 be the lower-triangular unipotent subgroup of GN whose R-points are
given by

H1.R/ WD
®
h 2 GN .R/ W hi i D 1 for all i and

hjk D 0 if j < k or j > k � nC 1 or n � j > k
¯

for any Z-algebra R, and let H2 be the block-diagonal subgroup of GN whose R-
points are given by

H2.R/ WD ¹g 2 GLn.R/ � GLnC1.R/ W detg D 1º � GN .R/:

Lemma 2.7. The algebraic group GN is the Frobenius product of its subgroups H1
and H2, i.e., for any Z-algebra R, we have GN .R/ D H1.R/H2.R/. Moreover, we
have that H1.R/ \H2.R/ D 1.

Proof of Lemma 2.7. The second claim is clear from the definitions of H1 and H2.
As for the first claim, take g 2 GN .R/, and write it in box form as follows:

g D

"
g0 0

g000 g00

#
;
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where g0 2 GLn.R/, g00 2 GLnC1.R/, and g000 2 Mat.nC1/�n.R/. Then it is easy to
see that

g D

"
id 0

g000g0
�1 id

#
�

"
g0 0

0 g00

#
;

where by “id” (resp., “0”) we mean the identity (resp., zero) matrix of the relevant
dimensions.

The group H1 has class number 1 over Q because it is isomorphic to the additive
group Gn2Cn

a ; that H2 has class number 1 over Q follows immediately from the fact
that the same holds for the groups GLn and GLnC1. The next lemma gives a criterion
under which the Frobenius product of two groups of class number 1 over Q is itself a
group of class number 1 over Q.

Lemma 2.8. Let � be an algebraic group over Z that is the Frobenius product of
two sub-algebraic-groups �1 and �2, both of which have class number 1 over Q, and
suppose that �1.AZ/�2.Q/ � �2.Q/�1.AQ/. Then � has class number 1 over Q.

Proof of Lemma 2.8. Clearly, �.AQ/ � �.Q/�.AZ/. As for the reverse inclusion,
we have that

�.AQ/ D �1.AQ/�2.AQ/ D �1.Q/�1.AZ/�2.Q/�2.AZ/

� �1.Q/�2.Q/�1.AQ/�2.AZ/

D �1.Q/�2.Q/�1.Q/�1.AZ/�2.AZ/

D �.Q/�.AZ/:

By Lemma 2.8, it now suffices to check that the criterion

H1.AZ/H2.Q/ � H2.Q/H1.AQ/

holds. This is an immediate consequence of the following matrix identity:"
id 0

g000 id

#
�

"
g0 0

0 g00

#
D

"
g0 0

0 g00

#
�

"
id 0

g00
�1
g000g0 id

#
:

2.2.5. Action of GN on W 0
N

. LetW 0
N � WN be the linear subspace whose R-points

are defined by

W 0
N .R/ WD ¹.A;B/ 2 WN .R/ W Aij D Bij D 0 if i; j � nº

for any Z-algebra R. Notice that, when R is an integral domain, every pair .A; B/ 2
W 0
N .R/ is reducible. The action of SLN on WN restricts to an action of GN on W 0

N .



The mean number of 2-torsion elements in the class groups of cubic orders 243

We extend the definition of theQ-invariant to any pair .A;B/ 2W 0
N .R/ by defin-

ingQ.A;B/ to be theQ-invariant of the projection of .A;B/ onto the linear subspace
W

top
N .R/ that sends the .nC 1/ � .nC 1/ entries in the bottom-right of A and B to

zero. A fundamental property of the Q-invariant is that it divides the discriminant of
the invariant binary form to order two, i.e., we have, Q.A;B/2 j disc.inv.A; B// for
any .A;B/ 2 W 0

N .R/; for a proof, see [12, Theorem 3.5].
The function Q is notably not GN -invariant, despite being invariant under the

action of the subgroup SLn � SLnC1 � GN ; see, e.g., the proof of Proposition 3.3
(to follow). We note that the explicit section �0 described in Section 2.1 has image
contained in the locus of points in W 0

N with Q-invariant equal to .�1/nC1.
We now describe the action of GN on W 0

N over a field K.

Proposition 2.9. Let K be a field, and let f 2 UN .K/. Then the set

¹.A;B/ 2 inv�1.f / \W 0
N .K/ W Q.A;B/ ¤ 0º

is nonempty and consists of a single GN .K/-orbit. Moreover, the stabilizer of any
element of this orbit is trivial.

Proof. That inv�1.f /\W 0
N .R/ is nonempty holds over any Z-algebra R because of

the existence of the aforementioned explicit section �0.
To see that ¹.A; B/ 2 inv�1.f / \ W 0

N .K/ W Q.A; B/ ¤ 0º consists of a single
GN .K/-orbit, take .A0; B0/ 2 inv�1.f / \ W 0

N .K/ with Q0 D Q.A0; B0/ 2 K
�.

We claim that there exists g1 2 .SLn � SLnC1/.K/ � GN .K/ such that .A; B/ WD
g1 � .A0; B0/ has the following shape, where empty entries are used to denote zeros,
and star entries are used to denote numbers whose particular values are irrelevant:

.A;B/ D (9)0BBBBBBBBBB@

266666666666666664

1

1

::
:

1

� � � � � � �

1 � � � � � � �

: :
: :::

:::
: : :

:::
:::

1 � � � � � � �

1 � � � � � � �

377777777777777775
;

266666666666666664

˙Q0

1

::
:

1

1 � � � � � � �

: :
: :::

: : :
:::

:::
:::

1 � � � � � � �

˙Q0 � � � � � � �

� � � � � � �

377777777777777775

1CCCCCCCCCCA
:

In the above, we have inserted horizontal and vertical lines immediately after row
and column n in the matrices A and B . The claim follows from Proposition 2.1 upon
observing that by choosing the sign of the entry “˙Q0” appropriately, we can arrange
for Q.A; B/ D Q0. In fact, by postcomposing g1 with a suitable diagonal element
inGN .K/, we may take .A;B/ to be of the form (9), with the entries “˙Q0” replaced
by “1.”
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Now, just as in the proof of Proposition 2.2, by hitting .A; B/ with a suitable
sequence of elementary unipotent elements of GN .K/, we can successively clear out
the values of the following matrix entries:

A.nC1/.nC2/; : : : ; A.nC1/.2nC1/; B.nC1/.nC2/; : : : ; B.nC1/.2nC1/;

A.nC2/.nC3/; : : : ; A.nC2/.2nC1/; : : : ;

Bk.kC1/; : : : ; Bk.2nC1/; A.kC1/.kC2/; : : : ; A.kC1/.2nC1/; : : : ;

B.2n�1/2n; B.2n�1/.2nC1/; A.2n/.2nC1/; B.2n/.2nC1/: (10)

We may thus assume that the matrix entries of .A; B/ that are listed in (10) are all
equal to 0. But then .A;B/ lies in the image of the section �0, which is sufficient.

As for the claim about stabilizers, let .A0; B0/ be as above. Suppose g 2 GN .K/
stabilizes .A0; B0/. By Lemma 2.7, we may write g D g1g2, where gi 2 Hi .K/ for
each i 2 ¹1; 2º. Since the projection map W 0

N ! W
top
N is invariant under the action

of H1.K/, it follows that g2 must stabilize the projection of .A0; B0/ onto W top
N .K/.

Thus, by Proposition 2.1, we have g2 D id. Now, it is clear by inspection that the
action ofH1.K/ onW 0

N .K/ has trivial stabilizers, so g1D id, and thus gD g1g2D id
too.

We now work over Zp for a prime p. We note that the p-adic absolute value
jQ.A; B/jp is invariant under the action of GN .Zp/. The following result describes
the action of GN .Zp/ on the locus of pairs in W 0

N .Zp/ with p-adic unit Q-invariant.

Proposition 2.10. Let f 2 UN .Zp/. Then the set

¹.A;B/ 2 inv�1.f / \W 0
N .Zp/ W jQ.A;B/jp D 1º

is nonempty and consists of a single GN .Zp/-orbit. Moreover, the stabilizer of any
element of this orbit is trivial.

Proof. The nonemptiness statement follows immediately from the existence of the
explicit section �0, which has image contained in the locus of points in W 0

N with
Q-invariant equal to˙1.

Next, let W 00
N � W

0
N be the linear subspace whose R-points are given by

W 00
N .R/ WD

®
.A;B/ 2 W 0

N .R/ W Aij D 0 if i C j � 2nC 1

and Bij D 0 if i C j � 2n
¯
:

We remark that the explicit section �0 described in Section 2.1 has image contained
in W 00

N . For the transitivity statement, by Lemma 2.5 it suffices to show that

¹.A;B/ 2 inv�1.f / \W 00
N .Zp/ W jQ.A;B/jp D 1º
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is contained in a single GN .Zp/-orbit, and the proof of Proposition 2.9 can be easily
adapted to verify this.

Finally, the statement about stabilizers follows immediately from Proposition 2.9,
which implies that the stabilizer in GN .Qp/, and hence in GN .Zp/, of any .A; B/ 2
inv�1.f / \W 0

N .Zp/ is trivial. This concludes the proof of Proposition 2.10.

2.2.6. Fundamental domain for GN .Zp/ Õ W 0
N

.Zp/. Using the results of the pre-
ceding subsubsections, we now construct a fundamental domain for the action of
GN .Zp/ on W 0

N .Zp/. Given Ea D .a1; : : : ; an/, Eb D .b1; : : : ; bn/ 2 Nn, define a sub-
set W

Ea;Eb
.p/ as follows:

W
Ea;Eb
.p/ WD

®
.A;B/ 2 W 00

N .Zp/ W Aij D p
ai for .i; j / with i C j D N C 1,

Bij D p
bi for .i; j / with i C j D N

¯
: (11)

The following result gives the desired fundamental domain in terms of W
Ea;Eb
.p/.

Proposition 2.11. A fundamental domain for the action of GN .Zp/ on the set

¹.A;B/ 2 W 0
N .Zp/ W Q.A;B/ ¤ 0º

is given by G
Ea;Eb2Nn

F
Ea;Eb
.p/;

where the sets F
Ea;Eb
.p/ are defined as follows:

F
Ea;Eb
.p/ WD

®
.A;B/ 2 W

Ea;Eb
.p/ W

Aij 2 ¹0; : : : ; p
aNC1�j � 1º for .i; j / with i C j > N C 1, i < j ,

Bij 2 ¹0; : : : ; p
bi � 1º for .i; j / with i C j > N , i � n,

Bij 2 ¹0; : : : ; p
bN�i � 1º for .i; j / with i C j > N , n < i < j

¯
: (12)

Proof. This follows by adapting the proof of Proposition 2.9 to work over Zp (just
as we adapted the proof of Proposition 2.2 to obtain Proposition 2.4). It follows
from Proposition 2.4 that every .A0; B 0/ 2 W 0

N .Zp/ with Q.A0; B 0/ ¤ 0 is GN .Zp/-
equivalent to an element .A;B/ 2 W 00

N .Zp/ with

Aij D p
ai for .i; j / with i C j D N C 1;

Bij D p
bi for .i; j / with i C j D N and i > 1, and

B1.N�1/ D u � p
b1 for some u 2 Z�p , where Ea; Eb 2 Nn.

Using the action of the diagonal matrix with diagonal entries .u�1; 1; : : : ; 1; u/ 2
GN .Zp/, we can further arrange that .A; B/ 2 W

Ea;Eb
.p/. So take .A; B/ 2 W

Ea;Eb
.p/.
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Instead of using elementary unipotent transformations to make the remaining nondi-
agonal matrix entries zero, we use these transformations to reduce these matrix entries
modulo pa1 ; : : : ; pan ; pb1 ; : : : ; pbn . This establishes that each orbit for the action of
GN .Zp/ on W

Ea;Eb
.p/ meets F

Ea;Eb
.p/ at least once.

On the other hand, suppose we have .A;B/; .A0; B 0/ 2 F
Ea;Eb
.p/ and g 2 GN .Zp/

such that .A;B/D g � .A0;B 0/. Write gD g1g2, where gi2Hi .Zp/ for each i 2¹1; 2º,
and factor g2 as g2 D g02g

00
2 , where g02 is a diagonal matrix with diagonal entries

.u; 1; : : : ; 1; u�1/ for some u 2 Z�p , and where g002 2 .SLn � SLnC1/.Zp/. Since
g�11 � .A;B/ and .A0; B 0/ both lie in W

Ea;Eb
.p/, we have by (2) along the invariance

of Q under the action of SLn �SLnC1 that

Q.g�11 � .A;B// D Q.g
00
2 � .A

0; B 0//:

But g�11 � .A;B/ D g
0
2 � .g

00
2 � .A

0; B 0//, so

u �Q.g002 � .A
0; B 0// D Q.g02 � .g

00
2 � .A

0; B 0// D Q.g002 � .A
0; B 0//;

from which it follows that uD 1 and g2 D g002 2 .SLn�SLnC1/.Zp/. Then, since the
projections of g�11 � .A; B/ and .A0; B 0/ onto W top;0

N .Zp/ belong to the fundamental
domain (5), it follows that g2 D id.

Next, denote the entries of g1 by .g1/ij . The condition A D g1 � A0 implies that

A.nC1/.nC2/ � A
0
.nC1/.nC2/ .mod pan/;

and then the condition A.nC1/.nC2/; A0.nC1/.nC2/ 2 ¹0; : : : ; p
an � 1º forces

A.nC1/.nC2/ D A
0
.nC1/.nC2/;

and hence that .g1/.nC1/n D 0. As .g1/.nC1/n D 0, the condition A D g1 �A0 implies
that

A.nC1/.nC3/ � A
0
.nC1/.nC3/ .mod pan�1/;

so the condition A.nC1/.nC3/; A0.nC1/.nC3/ 2 ¹0; : : : ; p
an�1 � 1º forces

A.nC1/.nC3/ D A
0
.nC1/.nC3/;

and hence that .g1/.nC1/.n�1/ D 0.
Continuing in this manner according to the sequence of matrix entries in (10) (and

using the conditionB D g1 �B 0 when appropriate), we deduce that g1D id, and hence
that .A;B/ D .A0; B 0/.

We now cover each of the sets F
Ea;Eb
.p/ with a finite disjoint union of images of

sections of the map inv. Fix Ea; Eb 2 Nn. Fix the matrix entries

Aij D p
ai for .i; j / with .i; j / D N C 1,

Bij D p
bi for .i; j / with i C j D N ,
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just as in (11). Further fix matrix entries

Aij 2 ¹0; : : : ; p
aNC1�j � 1º for each .i; j / with i C j > N C 1 and i < j ,

Bij 2 ¹0; : : : ; p
bi � 1º for each .i; j / with i C j > N and i � n, and

Bij 2 ¹0; : : : ; p
bN�i � 1º for each .i; j / with i C j > N and n < i < j ;

just as in (12). Call the data of these chosen matrix entries .Aı; Bı/; then we may
regard .Aı; Bı/ as a function on ZNC1p which takes a tuple

t D .A.nC1/.nC1/; : : : ; ANN ; B.nC1/.nC1/; : : : ; BNN / 2 ZNC1p

and produces the pair of matrices .A;B/with the previously fixed off-diagonal matrix
entries, and with diagonal entries given by the components of t .

We may now speak of the quantity inv.Aı; Bı/, which is a binary form whose
coefficients may be thought of as an affine linear transformation of the N C 1 inde-
terminates

A.nC1/.nC1/; : : : ; ANN ; B.nC1/.nC1/; : : : ; BNN :

Write the coefficients of the indeterminates in an .NC1/�.NC1/matrixM.Aı;Bı/
as follows: the i th row corresponds to the coefficient of xN�iC1yi�1 in inv.Aı; Bı/,
and the columns correspond to the coefficients of

A.nC1/.nC1/; B.nC1/.nC1/; A.nC2/.nC2/; B.nC2/.nC2/; : : : ; ANN ; BNN ;

in that order. Then one verifies by inspection that M.Aı; Bı/ is lower-triangular, and
the diagonal entries are monomials in the matrix entries Aij with i C j D N C 1 and
.i; j / ¤ .nC 1; nC 1/, along with the matrix entries Bij with i C j D N (note that
these are precisely the matrix entries dividing the Q-invariant, and that none of them
are zero). Thus, M.Aı; Bı/ is invertible over Qp , and there exists a column vector
C.Aı; Bı/ 2 ZNC1p such that

M.Aı; Bı/

�
�
A.nC1/.nC1/ B.nC1/.nC1/ A.nC2/.nC2/ B.nC2/.nC2/ � � � ANN BNN

�T
C C.Aı; Bı/

is the column vector whose entries are the coefficients of inv.Aı; Bı/. Consequently,
we arrive at the following result.

Lemma 2.12. Let .Aı; Bı/ be fixed as above. Given f 2 UN .Zp/, there exists a
unique tuple t 2 QNC1

p such that inv.Aı; Bı/.t/ D f . Moreover, for any GN .Zp/-
invariant subset Sp � W

0
N .Zp/ that is the preimage under reduction modulo pj

of a nonempty subset of W 0
N .Z=p

jZ/ for some j > 0, the set U.Aı; Bı/ of forms
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f 2 UN .Zp/ such that .Aı; Bı/.t/ 2 F
Ea;Eb
.p/ \ Sp , where t 2 ZNC1p is the tuple

corresponding to f , is the closure of a nonempty open subset. In fact, U.Aı; Bı/ is
defined by congruence conditions modulo a power of p depending only on Ea, Eb, n,
and j .

Proposition 2.11 and Lemma 2.12 imply the following result, which plays a cru-
cial role in the proof of Theorem 1.5 (see Section 3.1).

Proposition 2.13. For any Sp as in Lemma 2.12, the function that sends f 2UN .Zp/
to the number of GN .Zp/-equivalence classes of pairs in inv�1.f / \W

Ea;Eb
.p/ \Sp

is locally constant. This function is defined by congruence conditions modulo a power
of p depending only on Ea, Eb, n, and Sp , and is also absolutely bounded by such a
power of p.

Proof. We first prove local constancy. By Proposition 2.11, it suffices to show that the
function that sends f 2 UN .Zp/ to the number of pairs .A;B/ 2 F

Ea;Eb
.p/\Sp with

inv.A; B/ D f is locally constant. So take f 2 UN .Zp/. Among the pairs .Aı; Bı/
constructed above, let Sf be the subset of pairs such that f 2 U.Aı; Bı/, and let xSf
be the complement of Sf . Let

U1 D

[
.Aı;Bı/2xSf

U.Aı; Bı/ and U2 D

\
.Aı;Bı/2Sf

U.Aı; Bı/:

Then for any g 62 U1 (resp., g 2 U2), the number of pairs .A; B/ 2 F
Ea;Eb
.p/ \ Sp

with inv.A; B/ D g is at most (resp., at least) #Sf . Hence, for any g 2 U2 �U1,
the number of pairs .A; B/ 2 F

Ea;Eb
.p/ \ Sp with inv.A; B/ D g is equal to #Sf .

This establishes the desired local constancy, as each U.Aı; Bı/ is the closure of a
nonempty open subset, so U2 �U1 is an open neighborhood of f .

That the function is defined by congruence conditions modulo a power of p
depending only on Ea, Eb, and n follows from the fact that this holds for each of the
sets U.Aı; Bı/, and hence also for the set U2 �U1. Finally, the claimed bound is an
immediate corollary of Proposition 2.11 and Lemma 2.12.

2.3. Proof of Theorem 1.3

We claim that the integral orbits of GN on W 0
N satisfy the desired local-to-global

principle as long as the following four properties hold:

(1) the algebraic group GN has class number 1 over Q;

(2) for every f 2 UN .C/ with nonzero discriminant, the set inv�1.f /\W 0
N .C/

is nonempty and consists of a single GN .C/-orbit;

(3) for every f 2UN .C/with nonzero discriminant, each element of inv�1.f /\
W 0
N .C/ has trivial stabilizer in GN .C/; and
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(4) for every f 2 UN .Z/ with nonzero discriminant, the set inv�1.f / \W 0
N .Z/

is nonempty.

This claim follows from [25, Theorem 22], which is a general theorem giving cri-
teria under which the orbits of a finite-dimensional representation of an algebraic
group satisfy a local-to-global principle. Note that the first three properties above
have already been verified in Propositions 2.6 and 2.9, and the fourth property fol-
lows immediately from the existence of the explicit section �0. This completes the
proof of Theorem 1.3.

For the sake of concreteness, we now give a self-contained proof of Theorem 1.3.
Given a principal ideal domain R with fraction field K and an element w 2 W 0

N .R/

having nonzero Q-invariant, write

GN .K/w WD ¹g 2 GN .K/ W g � w 2 GN .R/º:

Then the set of GN .R/-orbits contained in the GN .K/-orbit of w is in bijection with
the double coset space

GN .R/nGN .K/w=StabGN .K/.w/ D GN .R/nGN .K/w ;

where the last step follows from Proposition 2.9.
Now, fix w0 2 W 0

N .Z/ with Q.w0/ ¤ 0, and suppose for each prime p we have
wp 2 W

0
N .Zp/ with inv.wp/ D f . Our goal is to construct an element w 2 W 0

N .Z/,
unique up to the action ofGN .Z/, that isGN .Zp/-equivalent to wp for each prime p.
To do this, consider the diagonal embedding GN .Q/ ,!

Q
p GN .Qp/. We claim that

this embedding induces a bijection

GN .Z/nGN .Q/w0 !
Y
p

GN .Zp/nGN .Qp/w0 : (13)

Note that the product on the right-hand side of (13) is in fact a finite product, because
if p is a prime such that GN .Zp/nGN .Qp/w0 ¤ 1, then by Proposition 2.10, we
must have p j Q.wp/ j disc.f /. Verifying injectivity of the map in (13) is easy: if
g1; g2 2 GN .Q/w0 have the same image, then

g1g
�1
2 2 GN .Q/ \

\
p

GN .Zp/ D GN .Z/:

As for surjectivity, if .gp/p 2
Q
pGN .Zp/nGN .Qp/w0 , then sinceGN has class num-

ber 1 over Q (by Proposition 2.6), there exists g 2 GN .Q/ such that g maps to gp
under the map GN .Q/! GN .Zp/nGN .Qp/; but then

g � w0 2 W
0
N .Q/ \

\
p

W 0
N .Zp/ D W

0
N .Z/;

implying that g 2 GN .Q/w0 .
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By Proposition 2.9, which implies that the GN .Qp/-orbit of w0 is equal to that
of wp for each prime p, we may view the tuple .wp/p as an element of the right-hand
side of (13). Then, under the bijection, the tuple .wp/p corresponds to the GN .Z/-
orbit of the desired element w 2 W 0

N .Z/, as necessary.

As an immediate consequence of Theorem 1.3 along with Proposition 2.10, we
have the following result concerning global integral orbits having unit Q-invariant.

Corollary 2.14. Let f 2 UN .Z/. Then the set

¹.A;B/ 2 inv�1.f / \W 0
N .Z/ W jQ.A;B/j D 1º

is nonempty and consists of a single GN .Z/-orbit.

3. Asymptotic formulas for the count of reducible orbits

In this section, we use the local-to-global principle in Theorem 1.3 to deduce Theo-
rem 1.5, which gives an asymptotic formula for the count of reducible SLN .Z/-orbits
on WN .Z/ in terms of a product of local integrals. We then perform a change-of-
variables argument to rewrite each of these integrals in a more convenient form, thus
proving Theorem 1.6.

3.1. Proof of Theorem 1.5

Let S be a big family in W 0
N .Z/. We start by proving the following asymptotic for-

mula for the count of GN .Z/-orbits on S of bounded height.

Theorem 3.1. The number of GN .Z/-orbits on S of height up to X is given by

N.r/N .X/ �
Y
p

Z
f 2UN .Zp/

#
�

inv�1.f / \Sp

GN .Zp/

�
df C o.XNC1/: (14)

Moreover, when N D 3, the number of .GL2 �G3/.Z/-orbits on S with discriminant
having absolute value less than X is given by

N.r/� .X/ �
Y
p

Z
f 2U3.Zp/

#
�

inv�1.f / \Sp

G3.Zp/

�
df C o.X/; (15)

where N.r/� .X/ is the number of GL2.Z/-orbits of irreducible binary cubic forms in
U3.Z/.r/ of discriminant up to X in absolute value.
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Remark. The techniques for counting orbits developed in the works of Bhargava
et al. work systematically for quite general representations of reductive groups. The-
orem 3.1 constitutes a rare example of a situation in which we can determine precise
asymptotics for the integral orbits of the action of a nonreductive group (namely,GN ).

Proof of Theorem 3.1. We first prove (14), and then we explain how the proof of (15)
differs. The proof is analogous to that of [25, Theorem 24], but we include the details
for the sake of completeness. Fix an integer b � 1, and factorize it into primes as

b D
Y
p

pep :

We start by proving an analogue of Theorem 3.1 with S replaced by the subfamily

S.b/ WD ¹w 2 S W jQ.w/j D bºI

note that S.b/ is itself a big family in W 0
N .Z/, where

S.b/p D ¹w 2 Sp W jQ.w/jp D jbjpº:

If S.b/ D ¿, then there is nothing to prove, so assume that S.b/ ¤ ¿. For each
prime p j b, we partition UN .Zp/ as

UN .Zp/ D

mpG
jD1

Up;j ;

where each Up;j is a level set for the function that sends f 2 UN .Zp/ to

#
�
GN .Zp/n.inv�1.f / \S.b/p/

�
:

Write “E.m/” to mean “a power of m that depends only on n and S.” Then Proposi-
tion 2.13 implies that UN .Zp/ can be covered by open sets, each of which is defined
by congruence conditions modulo E.pep /, such that this orbit-counting function is
constant on each open. It follows that Up;j is defined by congruence conditions mod-
ulo E.pep /. The quantity #.GN .Zp/n.inv�1.f / \ S.b/p// is independent of the
choice of f 2 Up;j (by the definition of a level set) and by Proposition 2.13, this
quantity is� E.pep /.

Now for each prime p − b, Proposition 2.10 tells us that

#
�
GN .Zp/n.inv�1.f / \S.b/p/

�
D 1
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for each f 2 inv.S.b/p/. It then follows from Theorem 1.3 that the quantity

#
�

inv�1.f / \S.b/

GN .Z/

�
D

Y
p

#
�

inv�1.f / \S.b/p

GN .Zp/

�
D

Y
pjb

#
�

inv�1.f / \S.b/p

GN .Zp/

�
(16)

is independent of the choice of f 2 inv.S.b// \
T
p Up;jp for each tuple .jp/pjb 2Q

pjb¹1; : : : ; mpº. Therefore, we haveX
f 2UN .Z/\

T
p Up;jp

H.f /<X

#
�

inv�1.f / \S.b/

GN .Z/

�
D #

�
inv�1.f �/ \S.b/

GN .Z/

�

�

X
f 2inv.S.b//\

T
p Up;jp

H.f /<X

1; (17)

where f � 2 inv.S.b// \
T
pjb Up;jp is any fixed element. Since S is a big family,

and since the aforementioned explicit section �0 has image contained in the locus of
pairs .A;B/ with Q.A;B/ D ˙1, it follows that

inv.S.b/p/ D UN .Zp/

for every p � 1 that does not divide b. As the set inv.S.b// \
T
p Up;jp is defined

by congruence conditions modulo E.b/, since inv.S.b/p/\ Up;jp is defined by con-
gruence conditions modulo E.pep / for each p, we obtain the following asymptotic:X

f 2inv.S.b//\
T
p Up;jp

H.f /<X

1 D N.r/N .X/ �
Y
pjb

Z
f 2inv.S.b/p/\Up;jp

df

�

Y
p−b

Z
f 2inv.S.b/p/

df CO
�
E.b/XNC1�ı

�
(18)

for some sufficiently small ı > 0. Substituting the asymptotic (18) into the right-hand
side of (17), applying (16) to the resulting expression, and summing that over tuples
.jp/pjb 2

Q
pjb¹1; : : : ; mpº gives the following:X

f 2UN .Z/
H.f /<X

#
�

inv�1.f / \S.b/

GN .Z/

�
D N.r/N .X/

�

Y
p

Z
f 2UN .Zp/

#
�

inv�1.f / \S.b/p

GN .Zp/

�
df CO

�
E.b/XNC1�ı

�
: (19)
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Next, we prove that the theorem holds with “D” replaced by “�.” For any real
number M > 1, let SŒM � WD ¹w 2 S W jQ.w/j < M º. Summing (19) over b < M

givesX
f 2UN .Z/
H.f /<X

#
�

inv�1.f / \SŒM �

G.Z/

�
D N.r/N .X/

�

X
b<M

Y
p

Z
f 2UN .Zp/

#
�

inv�1.f / \S.b/p

G.Zp/

�
df CO

�
E.M/XNC1�ı

�
: (20)

Dividing through by N.r/N .X/, lettingX !1, and replacing S with SŒM �, it follows
from (20) that

lim inf
X!1

P
f 2UN .Z/
H.f /<X

#
� inv�1.f /\S

GN .Z/

�
N.r/N .X/

�

X
b<M

Y
p

Z
f 2UN .Zp/

#
�

inv�1.f / \S.b/p

GN .Zp/

�
df:

(21)
Now, letting M !1 on the right-hand side of (21) and factoring the sum into an
Euler product, we obtain the following:

1X
bD1

Y
p

Z
f 2UN .Zp/

#
�

inv�1.f / \S.b/p

GN .Zp/

�
df

D

Y
p

1X
eD0

Z
f 2UN .Zp/

#
�

inv�1.f / \S.pe/p

GN .Zp/

�
df

D

Y
p

Z
f 2UN .Zp/

#
�

inv�1.f / \Sp

GN .Zp/

�
df: (22)

Combining (21) with (22), we find that Theorem 3.1 holds with “D” replaced by “�.”
It thus remains to prove the theorem with “D” replaced by “�.” Let SŒM �0 WD

SXSŒM �. Then for each w 2 SŒM �0, we have that jQ.w/j �M . In [12], Bhargava,
Shankar, and Wang determined bounds for the number of reducible SLN .Z/-orbits
on WN .Z/ having large Q-invariant (for those orbits on which the notion of Q-
invariant can be extended naturally). In particular, by [12, (14), (16), and Theorem 4.1]
along with Proposition 3.2 (to follow), we can choose ı 2 .0; 1/ so thatX

f 2UN .Z/
H.f /<X

#
�

inv�1.f / \SŒM �0

GN .Z/

�
D O"

�
XNC1C"=M

�
CO

�
XNC1�ı

�
: (23)
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On the other hand, it follows from (20) thatX
f 2UN .Z/
H.f /<X

#
�

inv�1.f / \SŒM �

GN .Z/

�
� N.r/N .X/

�

Y
p

Z
f 2UN .Zp/

#
�

inv�1.f / \Sp

GN .Zp/

�
df CO

�
E.M/XNC1�ı

�
: (24)

Taking M to grow as a sufficiently small power of X and combining (23) with (24)
yields (14).

As for the proof of (15), the only steps that differ are the deductions of (18)
and (23). For (18), one simply applies the asymptotics for counting GL2.Z/-orbits
of binary cubic forms satisfying local conditions obtained by Bhargava, Shankar, and
Tsimerman in [11, Theorem 26]. For (23), one simply applies the estimate proven by
Bhargava in [4, Proposition 23].

To deduce Theorem 1.5 from Theorem 3.1, we require the following result relating
GN .Z/-orbits on W 0

N .Z/ with reducible SLN .Z/-orbits on WN .Z/.

Proposition 3.2. Let f 2 UN .Z/ be irreducible. The GN .Z/-orbits on inv�1.f / \
W 0
N .Z/ are in bijection with the reducible SLN .Z/-orbits on inv�1.f / \WN .Z/.

Analogously, let� 2 ZX ¹0º. The .GL2�G3/.Z/-orbits on disc�1.�/\W 0
3 .Z/

are in bijection with the reducible .GL2 �SL3/.Z/-orbits on disc�1.�/ \W3.Z/.

Proof. We first claim that if we have .A1; B1/; .A2; B2/ 2 inv�1.f / \W 0
N .Z/ and

g1 2 SLN .Z/ such that
g1 � .A1; B1/ D .A2; B2/;

then g1 2 GN .Z/. Indeed, by Proposition 2.9, there exists g2 2 GN .Q/ such that

g2 � .A1; B1/ D .A2; B2/;

so g�11 g2 2 SLN .Q/ stabilizes .A1;B1/. But by [29, Proposition 14], the stabilizer in
SLN .Z/ of any element of inv�1.f / is trivial, so

g1 D g2 2 SLN .Z/ \GN .Q/ D GN .Z/;

as claimed.
It follows from the above claim that there are at least as many reducible SLN .Z/-

orbits on inv�1.f /\WN .Z/ as there areGN .Z/-orbits inv�1.f /\W 0
N .Z/. It there-

fore suffices to show that every reducible SLN .Z/-orbit on WN .Z/ meets the linear
subspace W 0

N .Z/, but this was proven in [12, §3.4, bottom of p. 12]. The proof of the
analogous claim about .GL2 �G3/.Z/-orbits on disc�1.�/ \ W 0

3 .Z/ is essentially
identical, with [29, Proposition 14] replaced by [4, §2.1, p. 1039].
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Theorem 1.5 now follows from Theorem 3.1 and Proposition 3.2 by taking S D

S \W 0
N .Z/, where S is a big family in WN .Z/.

3.2. Change-of-variables formulas, and proof of Theorem 1.6

The purpose of this section is to deduce Theorem 1.6 from Theorem 1.5. The objec-
tive is, for each prime p, to reexpress the integral over UN .Zp/ that occurs in the
asymptotic given by Theorem 1.5 in terms of an integral overW 0

N .Zp/. To do this, we
first write the integral over UN .Zp/ as an integral over GN .Zp/ � UN .Zp/; we then
perform a change-of-variables to relate the natural measure on GN � UN with the
natural measure on W 0

N (note that dimGN � UN D dimGN C dimUN D dimW 0
N ).

We also prove a second change-of-variables formula relating the natural measure
onW top

N with the natural measure on .SLn�SLnC1/�A1, where A1 parametrizes the
Q-invariant (note that dim..SLn�SLnC1/�A1/D dim SLnC dim SLnC1C dim A1

D dimW
top
N ). This second change-of-variables plays a crucial role in the proof of

Theorem 1.7 (see Section 4.1, to follow).

3.2.1. Explicit choices of volume forms. We start by making explicit choices of
volume forms on UN , W 0

N , and GN . Take df , dw, dh1, and dh2 to be generators of
the Z-modules of right-invariant volume forms onUN ,W 0

N ,H1, andH2, respectively,
all defined over Z. On GN we take the measure dg D dh1dh2 (recall that GN is the
Frobenius product of H1 and H2 by Lemma 2.7).

We now give an explicit formula for dg on an open subscheme of GN . For a
square matrix M , we denote the minor obtained by deleting the first row and column
by M.1;1/; if M is 1-dimensional, then we set M.1;1/ WD 1. Let GıN be the open sub-
scheme of GN whose R-points are given by matrices

g D

"
g0 0

g000 g00

#
2 GN .R/

such that g0
.1;1/
2 R� for any Z-algebra R. Then we may realize GıN as an open

subscheme of the affine space

M WD Spec Z
�
¹Mij W 1 � i; j � n, where .i; j / ¤ .1; 1/ and j � n if i � n º

�
via the map that sends a matrix g 2 GN .R/ to its list of matrix entries gij , excluding
the entries gij for any .i; j / such that i � n and j � nC 1 or .i; j / D .1; 1/.

Let
Q
dMij be the Haar measure on M, normalized so that M.Z/ has covol-

ume 1 in M.R/. We denote by
Q
dgij the restriction of this measure to GıN via the

embedding GıN �M defined above, and by abuse of notation, we also denote by dg
the restriction to GıN of the volume form on GN . Then a calculation shows that the
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measure �
g0.1;1/

��1
.detg00/n�1 �

Y
dgij

is invariant under the right-action of GN , and so on GıN , we have

dg D
�
g0.1;1/

��1
.detg00/n�1 �

Y
dgij ;

up to sign. As for the left-action of GN , if we take

h D

"
h0 0

h000 h00

#
2 GN .R/; (25)

then one readily verifies that

d.hg/ D �.h/dg; where �.h/ WD j det h00jN : (26)

Note that the formula (26) holds on all of GN , not just on the open subscheme GıN .
We finish by making explicit choices of the volume forms on A1 and SLn�SLnC1.

Take dq to be any volume form on A1 defined over Z, and take dh to be any volume
form on SLn � SLnC1 defined over Z. The forms dq and dh are necessarily left- and
right-invariant.

3.2.2. Stating the change-of-variables formulas. We are now in position to state
our change-of-variables formula relating the measure dw on W 0

N with the measure
dg df on GN � UN .

Proposition 3.3. LetRDR or Zp for a prime p. Let �WW 0
N .R/!R be an integrable

function. Then there exists a nonzero rational number J 2 Q�, possibly depending
on N , such that

1

jJj

Z
w2W 0

N
.R/

�.w/jQ.w/j dw

D

Z
f 2UN .R/
�.f /¤0

X
Œw�2

inv�1.f /\W0
N
.R/

GN .R/

Z
g2GN .R/

�.g � w/ dg df;

where j � j denotes the usual absolute value on R.

Proof. We follow the general strategy used in the proof of [25, Proposition 14]. Take
R D R, and let U � UN .R/ be an open set and let � WU! W 0

N .R/ be a continuous
section of inv (note that such a section exists, namely the aforementioned explicit
section �0). We first claim that for some J 2 Q�, we haveZ

w2GN .R/��.U/
�.w/jQ.w/j dw D jJj

Z
f 2U

Z
g2GN .R/

�.g � �.f // dg df: (27)
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By the Stone–Weierstrass theorem, it suffices to treat the case where � is piecewise
analytic. In that case, we haveZ

w2GN .R/��.U/
�.w/jQ.w/j dw D

Z
f 2U

Z
g2GN .R/

jJ.g; f /j�.g � �.f // dg df;

where J� .g; f / is the determinant of the Jacobian matrix coming from the change-
of-variables taking the measure Q.w/ dw on W 0

N to the product measure dg df on
GN � UN .

We now show that J� .g; f / is independent of g. Take h 2 GN .R/, and consider
the transformation on W 0

N .R/ that sends w 7! h � w. Then there exists a function
�QWGN .R/! R>0 such that

Q.h � w/d.h � w/ D �Q.h/Q.w/ dwI

indeed, one checks that if h is expressed as in (25), we have

Q.h � w/ D j det h00j�1Q.w/ and d.h � w/ D j det h00jNC1 � dw;

so �Q.h/ D j det h00jN . On the other hand, the transformation w 7! h � w acts on
GN .R/ �U by sending .g; f / 7! .hg; f /. Letting �WGN .R/! R>0 be as in (26),
we have that

J� .hg; f /d.hg/ df D �.h/J� .hg; f / dg df:

But we also have that

J� .hg; f /d.hg/ df D Q.h � w/ d.h � w/

D �Q.h/Q.w/ dw D �Q.h/J� .g; f / dg df:

Upon comparing the above two displayed equations, and using the fact that

�.h/ D j det h00jN D �Q.h/;

we deduce that the function J� .g; f / is independent of g.
That J� .g; f / is independent of � follows from an argument identical to Step 2

in the proof of [10, Proposition 3.10] (this step requires that the measure dg be right-
invariant). Thus, we can take � to be the polynomial section �0. With this choice of
section, that J�0.g; f / is independent of f and equal to a nonzero rational constant
follows from an argument identical to Steps 3 and 4 in the proof of [10, Proposi-
tion 3.10].

We have thus proven (27). Proposition 3.3 – including the case where R D Zp for
a prime p – now follows from (27) and the principle of permanence of identities, just
as [10, Proposition 3.7] is deduced from [10, Proposition 3.10].
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We shall also require the following change-of-variables formula relating the push-
forward of the measure dw from W 0

N to W top
N with the product of the Haar measure

on SLn �SLnC1 and the measure dq on A1. The proof is analogous to that of Propo-
sition 3.3, so we omit it.

Proposition 3.4. Let p be prime. Let �WW top
N .Zp/! R be an integrable function,

and extend � to a function on W 0
N by precomposing with the natural projection map

W 0
N !W

top
N . Then there exists a nonzero rational number J0 2Q�, possibly depend-

ing on N , such thatZ
w2W 0

N
.Zp/

�.w/

jQ.w/j
dw D jJ0jp

�

Z
q2ZpX¹0º

X
Œw�2

Q�1.q/\W
top
N
.Zp/

.SLn�SLnC1/.Zp/

Z
h2.SLn �SLnC1/.Zp/

�.h � w/ dh dq:

We now compute the constants jJj and jJ0j and show, in particular, that they do
not actually depend on N .

Lemma 3.5. We have that jJj D jJ0j = 1.

Proof. We first prove that jJ=J0j D 1. By Corollary 2.14, there is exactly oneGN .Z/-
orbit on W 0

N .Z/ with unit Q-invariant lying above a binary form f 2 UN .Z/. In
particular, the average number of GN .Z/-orbits on W 0

N .Z/ with unit Q-invariant is
equal to 1. On the other hand, combining Theorem 3.1 with Propositions 3.3 and 3.4
and Lemma 3.6 and using the formula (33), we find that the average number of
GN .Z/-orbits on W 0

N .Z/ with unit Q-invariant is equal to

jJj �
Y
p

1

Vol.GN .Zp//

Z
w2LE0;E0.p/

dw D
ˇ̌̌ J

J0

ˇ̌̌
:

Next, to compute jJ0j, it suffices to compute jJ0jp for each p, because J0 2 Q�.
To do this, we construct convenient sets in W top

N .Zp/ and compute their volumes
in two different ways: first, using Proposition 3.4, and second, by means of a point
count over Fp . Equating the results of the two volume computations yields then
the value of jJ0jp .

To this end, fix xq 2 F�p , and let �pWW
top
N .Zp/! R be the indicator function of

the set
† WD

®
.A;B/ 2 W

top
N .Zp/ W Q.A;B/ � xq .modp/

¯
:

By Propositions 2.1 and 2.4, the group .SLn�SLnC1/.Zp/ acts simply transitively on
the set of elements in † having any fixed Q-invariant. Hence, from Proposition 3.4,
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we obtain

Vol.†/ D jJ0jp � Vol
�
.SLn �SLnC1/.Zp/

� Z
q2Zp

q�xq .modp/

dq

D jJ0jp � Vol
�
.SLn �SLnC1/.Zp/

�
� p�1: (28)

On the other hand, Proposition 2.1 implies that the group .SLn � SLnC1/.Fp/ acts
simply transitively on the mod-p reduction x† of †. Thus, we have

#x† D #.SLn �SLnC1/.Fp/: (29)

Since

Vol.†/ D p� dimW top
N � #x†;

Vol
�
.SLn �SLnC1/.Zp/

�
D p� dim.SLn �SLnC1/ � #.SLn �SLnC1/.Fp/;

and
1C dim SLn �SLnC1 D dimW

top
N ;

it follows from (28) and (29) that jJ0jp D 1 for all p.

We now turn our attention to the proof of Theorem 1.6. For this, let S be a big
family in WN .Z/. An application of Proposition 3.3 with R D Zp and with � equal
to the indicator function of Sp \W 0

N .Zp/, along with Lemma 3.5, yields thatZ
f 2UN .Zp/

#
�

inv�1.f / \ Sp \W 0
N .Zp/

GN .Zp/

�
df

D
1

Vol.GN .Zp//

Z
w2Sp\W

0
N
.Zp/
jQ.w/jp dw: (30)

In the next lemma, we determine Vol.GN .Zp//.

Lemma 3.6. We have that

Vol
�
GN .Zp/

�
D ��1p;n D .1 � p

�1/.1 � p�n�1/ �

nY
iD2

.1 � p�i /2;

and also that

Vol
�
.SLn �SLnC1/.Zp/

�
D .1 � p�n�1/ �

nY
iD2

.1 � p�i /2:
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Proof. We prove only the claimed formula for Vol.GN .Zp//, as the other formula
can be proven similarly. Since GN is smooth over Z, we have that

Vol
�
GN .Zp/

�
D #GN .Fp/=pdimGN :

It is easy to see that dimGN D 3n
2 C 3n, and by Lemma 2.7, we have that

#GN .Fp/ D #H1.Fp/ � #H2.Fp/

D #An
2Cn.Fp/ �

�
# SLn.Fp/ � # GLnC1.Fp/

�
D pn

2Cn
� .p � 1/�1 �

n�1Y
iD0

.pn � pi / �

nY
iD0

.pnC1 � pi /:

Finally, substituting the formula for Vol.GN .Zp// given by Lemma 3.6 into (30)
and combining the result with Theorem 1.5 yields Theorem 1.6.

4. Evaluation of local volumes for applications

In this section, we evaluate the local integrals in Theorem 1.6 in two cases:

(1) where Sp D WN .Zp/ for each prime p; and

(2) where Sp is the set of projective elements in W3.Zp/ for each prime p.

As a consequence of (1), we deduce Theorem 1.7, and as a consequence of (2), we
deduce Theorems 1.8.A and 1.8.B.

4.1. Proof of Theorem 1.7

To deduce Theorem 1.7 from Theorem 1.6, we must take S D WN .Z/ and evaluate
the integral over Zp for each prime p. We do this as follows.

Proposition 4.1. Fix a prime p. Then we have that

1

Vol.GN .Zp//

Z
w2W 0

N
.Zp/
jQ.w/jp dw D

NY
iD2

1

1 � p�i
:

Proof. Our strategy is to partitionW 0
N .Zp/ into the union over Ea; Eb 2Nn of the preim-

age under projection
� WW 0

N .Zp/! W
top
N .Zp/
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of the set L
Ea;Eb
.p/ defined in Section 2.2.3. Taking � to be the indicator function of

��1.L
Ea;Eb
.p// and applying Proposition 3.4 and Lemma 3.5 yields thatZ
w2��1.L

Ea;Eb
.p//

jQ.w/jp dw D
Vol..SLn �SLnC1/.Zp//
.
Qn
iD1 p

.nC1�i/aiCibi /2

�

Z
q2Zp

�p.q/D
Pn
iD1.nC1�i/aiCibi

#
� Q�1.q/ \L

Ea;Eb
.p/

.SLn �SLnC1/.Zp/

�
dq: (31)

Now, let �p denote the usual p-adic valuation. Proposition 2.4 along with the for-
mula (4) for the Q-invariant implies that we have for all q with

�p.q/ D

nX
iD1

.nC 1 � i/ai C ibi

that

#
� Q�1.q/ \L

Ea;Eb
.p/

.SLn �SLnC1/.Zp/

�
D

nY
iD1

p.n�i/aiCibi ; (32)

so substituting (32) along with the calculation of Vol..SLn�SLnC1.Zp// from Lem-
ma 3.6 into the right-hand side of (31) yieldsZ

w2��1.L
Ea;Eb
.p//

jQ.w/jp dw

D
.1 � p�1/.1 � p�n�1/ �

Qn
iD2.1 � p

�i /2 �
Qn
iD1 p

.n�i/aiCibi

.
Qn
iD1 p

.nC1�i/aiCibi /3
: (33)

Summing (33) over all Ea; Eb 2 Nn and using the calculation of Vol.GN .Zp// from
Lemma 3.6, we have that

1

Vol.GN .Zp//

Z
w2W 0

N
.Zp/
jQ.w/jp dw

D
1

Vol.GN .Zp//

X
Ea;Eb2Nn

Z
w2��1.L

Ea;Eb
.p//

jQ.w/jp dw

D

nY
iD1

X
Ea2Nn

1

p.2nC3�2i/ai
�

X
Eb2Nn

1

p2ibi

D

nY
iD1

1

1 � p�.N�.2i�2//
�

1

1 � p�2i
D

NY
iD2

1

1 � p�i
;

which is the desired result.

Theorem 1.7 now follows by combining Proposition 4.1 with Theorem 1.6, and
by evaluating the resulting Euler product.



A. A. Swaminathan 262

4.2. Proofs of Theorems 1.8.A and 1.8.B

Let R be a principal ideal domain.

Definition 4.2. We say that (the .GL2 � SL3/.R/-orbit of) a pair .A; B/ 2 W3.R/ is
projective if the following property is satisfied. Write

inv.A;B/ D
3X
iD0

fix
3�iyi ;

and for each k 2 ¹0; 1; 2º, let C .k/ be the 3 � 3 matrix over R defined as follows:

C .0/ D BA�B; C .1/ D B; C .2/ D A;

where A� denotes the adjugate matrix of A. LetM 2Mat3�6.R/ be the matrix whose
kth row consists of the entries of C .k/ lying on or above the diagonal, written as a list
in some order that is uniform over k. Then the pair .A; B/ is projective if and only if
the greatest common divisor of the 3 � 3 minors of M is equal to 1.

One can check from the above definition that

(1) projectivity is a .GL2 �SL3/.R/-invariant condition;

(2) projectivity over Z is equivalent to projectivity over Zp for every prime p;

(3) projectivity over Zp is a mod-p condition (i.e., whether or not a pair .A; B/
is projective is determined by the residue class of .A;B/ modulo p); and

(4) any pair .A; B/ 2 W 0
3 .Fp/ with Q.A; B/ ¤ 0 is projective – this last claim

follows from Proposition 2.9, which implies that it suffices to verify the claim
for the image of the section �0, which is easily done. In particular, the set of
projective elements of W3.Z/ is a big family in W3.Z/.

The motivation to introduce the notion of projectivity is the following parametriza-
tion result, which relates 2-torsion ideals of rings defined by binary cubic forms to
projective reducible SL3.Z/-orbits on W3.Z/:

Theorem 4.3. The elements of the group 	.Rf /Œ2� are in natural bijection with the
projective reducible SL3.Z/-orbits of pairs .A;B/ 2 W3.Z/ with

� det.xA � yB/ D f .x; y/:

Proof. Consider the set Hf of equivalence classes of pairs .I; ı/, where I is a frac-
tional ideal of Rf and ı 2 K�

f
are such that we have the containment I 2 � .ı/ and

equality of norms N.I /2 D N.ı/, and where two such pairs .I1; ı1/ and .I2; ı2/ are
equivalent if there exists � 2 K�

f
such that

I1 D �I2 and ı1 D �
2ı2:
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By [30, Theorem 5.7], the set Hf is in natural bijection with the set of SL3.Z/-orbits
of pairs .A;B/ 2W3.Z/with�det.xA� yB/D f .x;y/; for an explicit construction
of this bijection, see [21, §2.2, p. 1007].

Now, we have an injection 	.Rf /Œ2� ,!Hf , given by sending I to the equivalence
class of .I; 1/; thus, we may regard 	.Rf /Œ2� as a subset of Hf , and it suffices to
determine the image of this subset under the bijection referenced above. This image
was determined in [13, Lemma 16] to be the set of projective reducible SL3.Z/-orbits
of pairs .A; B/ 2 W3.Z/ with � det.xA � yB/ D f .x; y/. Note that a different but
equivalent definition of projectivity is used in [13] – there, an orbit is projective if it
corresponds to the equivalence class of a pair .I; ı/with I invertible. The equivalence
of the two definitions can be shown using the aforementioned explicit construction of
the bijection (see [21, §2.2, p. 1007]), from which it follows that I is invertible if and
only if it corresponds to a pair .A; B/ such that the gcd criterion in Definition 4.2 is
satisfied.

By Theorem 4.3, proving Theorems 1.8.A and 1.8.B amounts to determining
asymptotics for the number of projective reducible SL3.Z/-orbits onW3.Z/. An argu-
ment entirely analogous to the proof of Proposition 3.2 implies that these asymptotics
are the same as the asymptotics for the number of projectiveG3.Z/-orbits onW 0

3 .Z/.
By Theorem 3.1, Proposition 3.3, and Lemma 3.5, this amounts to evaluating a certain
p-adic integral for each prime p, which we do as follows.

Proposition 4.4. Fix a prime p. Then we have that

1

Vol.G3.Zp//

Z
w2W 0

3
.Zp/

w is proj.

jQ.w/jp dw D 1C p
�2:

Proof. Our strategy is to slice up the set of projective elements of W 0
3 .Zp/ into level

sets for the function w 7! �p.Q.w//, to evaluate the integral on each level set, and to
sum up the results. To this end, given an integer k � 1, let

Lk WD ¹.A;B/ 2 W
0
3 .Zp/ W �p.Q.A;B// D k � 1º;

given a; b; c; d 2 Fp , let

Sa;b;c;d WD
®
.A;B/ 2 W 0

3 .Fp/ W A12 D a; A13 D b;

B12 D c; B13 D d; and .A;B/ is proj.
¯
;

and given m 2 Z=pkZ, denote by xm the mod-p reduction of m. Then we have thatZ
w2Lk
w is proj.

jQ.w/jp dw D p
1�k
� p�4k

�

X
M2Mat2�2.Z=pkZ/
�p.detM/Dk�1

p�6 � #S xM11; xM12; xM21; xM22 : (34)
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We now determine the size of the set Sa;b;c;d for each choice of a; b; c; d 2 Fp:

• Let .A; B/ 2 W 0
3 .Fp/. As mentioned above, if Q.A; B/ ¤ 0, then .A; B/ is

projective. Thus, if ad � bc ¤ 0, then #Sa;b;c;d D p6.

• Now suppose that Q.A; B/ D 0. A calculation reveals that if p divides all of
A12, A13, B12, and B13, then .A; B/ is not projective. Thus, for .A; B/ to be projec-
tive, at least one of these four matrix entries must be a unit. We now fiber over these
four matrix entries and determine the number of possibilities for the pair .A; B/ in
each fiber. Fix four elements a; b; c; d 2 Fp with

ad � bc D 0 and ¹0º ¤ ¹a; b; c; dº:

We claim that #Sa;b;c;d is independent of the choice of a;b;c;d . Indeed, if a0;b0; c0;d 0

2 Fp with
a0d 0 � b0c0 D 0 and ¹0º ¤ ¹a0; b0; c0; d 0º;

then there exists 
 2 H2.Fp/ such that if we set .A0; B 0/ WD 
 � .A;B/, then

.A012; A
0
13; B

0
12; B

0
13/ D .a; b; c; d/:

Thus, 
 induces a bijection between Sa;b;c;d and Sa0;b0;c0;d 0 , so it suffices to compute
#S0;1;0;0. A calculation reveals that a pair .A;B/ with

.A12; A13; B12; B13/ D .0; 1; 0; 0/

is projective if and only if B22B33 � B223 ¤ 0. Using this characterization, it is easy
to check that #S0;1;0;0 D p5.p � 1/.

Substituting the formulas for #Sa;b;c;d obtained above into the right-hand side
of (34), we find thatZ

w2Lk
w is proj:

jQ.w/jp dw D p
1�5k

�

´
c.k/ if k D 1;

p�1.p � 1/ � c.k/ if k � 2.
(35)

where

c.k/ WD #¹M 2 Mat2�2.Z=pkZ/ W �p.detM/ D k � 1 and M 6� 0 .mod p/º:

Let c0.k/ WD #¹M 2 Mat2�2.Z=pkZ/ W �p.detM/ D k � 1º. Then we have

c.k/ D c0.k/ � p4c0.k � 2/; (36)

where for convenience we set c0.m/ D 0 if m � 0. The next lemma computes c0.k/.

Lemma 4.5. Let k � 1 be as above. Then c0.k/ D p2k�1.p2 � 1/.pk � 1/.
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Proof of Lemma 4.5. For d 2 Z=pkZ, let

M.d/ WD ¹M 2 Mat2�2.Z=pkZ/ WM11M22 DM12M21 D dº;

and let
N.d/ WD ¹.a; b/ 2 .Z=pkZ/2 W ab D dº:

ThenM.d/DN.d/2, and so if we set c00.k/ WD #¹M 2Mat2�2.Z=pkZ/ W detM D 0º
of matrices over Z=pkZ with determinant 0, then we have

c00.k/ D
X

d2Z=pkZ

M.d/ D
X

d2Z=pkZ

N.d/2: (37)

Let � denote Euler’s totient function. First suppose �p.d/ < k, and fix a number
j 2 ¹0; : : : ; �p.d/º. If d factors as d D ab where �p.a/ D j , then we have that there
are �.pk�j / choices for a and �.pk��p.d/Cj /�.pk��p.d//�1 choices for b. Summing
over all j , we find that

N.d/ D

�p.d/X
jD0

�.pk��p.d//�1�.pk�j /�.pk��p.d/Cj / if �p.d/ < k. (38)

Now suppose d � 0 .mod pk/. Suppose d factors as d D ab, let i D �p.a/ if
�p.a/ < k and i D k otherwise. Then there are �.pk�i / choices for a, and for each
j 2 ¹k � i; : : : ; kº, there are �.pk�j / choices for b. Summing over all i and j , we
find that

N.0/ D

kX
iD0

kX
jDk�i

�.pk�i /�.pk�j /: (39)

Substituting the results of (38) and (39) into (37) and evaluating the sum, we deduce
that

c00.k/ D p2k�1
�
pk.p C 1/ � 1

�
: (40)

Finally, note that we have

c0.k/ D p4c00.k � 1/ � c00.k/:

Substituting in the formula (40) for c00.k/ yields the lemma.

Substituting the formula for c0.k/ given by Lemma 4.5 into (36) yields

c.k/ D c0.k/ � p4c0.k � 2/ D

´
p.p � 1/.p2 � 1/ if k D 1,

p3k�3.p2 � 1/2 if k � 2.

Substituting this expression for c.k/ into the right-hand side of (35), summing up
over all positive integers k, and dividing by the volume Vol.G3.Zp// as given in
Lemma 3.6 yields the proposition.
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