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A transcendental approach to non-Archimedean metrics of
pseudoeffective classes

Tamás Darvas, Mingchen Xia, and Kewei Zhang

Abstract. We introduce the concept of non-Archimedean metrics attached to a transcendental
pseudoeffective cohomology class on a compact Kähler manifold. This is obtained via extending
the Ross–Witt Nyström correspondence to the relative case, and we point out that our construc-
tion agrees with that of Boucksom–Jonsson when the class is induced by a pseudoeffective
Q-line bundle.

We introduce the notion of a flag configuration attached to a transcendental big class, recov-
ering the notion of a test configuration in the ample case. We show that non-Archimedean
finite energy metrics are approximable by flag configurations, and very general versions of
the radial Ding energy are continuous, a novel result even in the ample case. As applications,
we characterize the delta invariant as the Ding semistability threshold of flag configurations and
filtrations, and prove a YTD type existence theorem for Kähler–Einstein metrics in terms of flag
configurations.

1. Introduction and results

In recent years, especially since the appearance of [4], the non-Archimedean approach
to K-stability has gained attention, as evidenced by recent works [10,13–15,17,34,47],
to name only a few papers in the fast expanding literature.

Studying K-stability for degenerate classes is a natural extension of the much stud-
ied ample case [4,18–21,30,60,61,70]. Recent works aim to understand existence of
canonical metrics in this context as well. Degenerate Kähler–Einstein metrics have
taken the forefront [29, 35, 48–50, 68], but one would think that the notion of con-
stant scalar curvature Kähler metrics also extends to big classes, as minimizers of the
K-energy functional. With the study still in its infancy [37,71], a better understanding
of K-stability of big classes is needed before substantial progress can be made. Our
work tries to fill some of this void.
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We propose a transcendental approach to non-Archimedean metrics, that allows
for their treatment even for a transcendental pseudoeffective class. Our analytic treat-
ment has a number of advantages. The envelope conjecture of Boucksom–Jonsson
naturally holds in our context, immediately recovering the main result of [16], as a
particular case. We show that very general versions of the radial Ding energy are
continuous, and that finite energy non-Archimedean metrics can be approximated by
algebraic objects called flag configurations (that reduce to test configurations in the
ample case). The latter two properties allow to characterize the analytically defined
delta invariant using algebraic data, and provide a YTD type existence theorem for big
Kähler–Einstein (KE) metrics, without using the minimal model program, connecting
with recent work of the first and third authors [29].

Transcendental non-Archimedean metrics. To state our main results, we fix some
terminology. Let X be a connected compact Kähler manifold and � a smooth closed
real .1; 1/-form representing a pseudoeffective cohomology class ¹�º. We denote by
PSH.X; �/ the space of � -psh functions, and all complex Monge–Ampère measures
in this work will be assumed to be pluripolar in the sense of [11].

A relative test curve is a map R 3 � 7!  � 2 PSH.X; �/ [ ¹�1º that is � -
decreasing, � -concave, and � -usc. Moreover,  � � �1 for all � big enough, and
as � ! �1, the a.e. limit  �1 2 PSH.X; �/ of  � exists. Such an object will be
denoted ¹ �º� , and we say that ¹ �º� is a test curve relative to  �1.

The relative test curve ¹ �º� is 	-maximal if  � D P Œ � �	 for all � 2 R, where
P Œ��	 is the following envelope:

P Œu�	 WD sup¹w 2 PSH.X; �/; w � 0;	.tw/ � 	.tu/; t � 0º:

Here 	.tu/ is the multiplier ideal sheaf of u, locally generated by holomorphic func-
tions f such that jf j2e�tu is integrable.

To exclude pathological behavior, we need to avoid vanishing mass. For any big
class ¹�º, by MTC	.X; �/ we denote the set of maximal test curves that additionally
satisfy

R
X
�n �1 > 0. As we will see in (21), given any Kähler metric ! on X , there

is a natural map
MTC	.X; �/! MTC	.X; � C !/:

This allows to define the space of non-Archimedean metrics associated with a pseu-
doeffective class ¹�º as the following projective limit in the category of sets:

PSHNA.�/ WD lim
 �
!2K

MTC	.X; � C !/;

where K denotes the directed set of Kähler metrics on X ordered by the reverse of
the usual partial order.
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We refer to Definition 3.3 for the precise details. Given f 2 C1.X/, there is
an obvious identification between PSHNA.�/ and PSHNA.� C ddcf / allowing us to
regard PSHNA.�/ as an invariant of the cohomology class ¹�º.

When ¹�º is the first Chern class of a Q-line bundle L, Boucksom and Jonsson
defined the space of non-Archimedean metrics PSHNA.Lan/ in [15] using algebraic
tools (see Section 2.3). In our first result we show that our construction agrees with
theirs in this important particular case.

Theorem 1.1 (Theorem 3.14). When ¹�º is the first Chern class of a pseudoeffective
Q-line bundle L, there is a natural bijection between PSHNA.�/ and PSH.Lan/.

The same holds for a pseudoeffective .1; 1/-class lying in the Néron–Severi group
with real coefficients, as we explain in Remark 3.15.

For the construction of the natural map between PSHNA.�/ and PSH.Lan/, we
refer to (30). Recently Boucksom–Jonsson have showed that the so-called envelope
conjecture holds in case ¹�º is the first Chern class of a Q-line bundle L [16]. We will
show that the same property holds in the transcendental case as well, thus recovering
the Boucksom–Jonsson result as a particular case, via the above isomorphism theo-
rem. Let us note here an equivalent formulation of the envelope conjecture, which is
easy to state:

Theorem 1.2 (Theorem 3.4). Suppose that ¹�º is a pseudoeffective class. Any boun-
ded from above increasing net of PSHNA.�/ has a supremum inside PSHNA.�/.

We refer to Theorem 3.4 for the precise statement, and see Conjecture 2.13 for the
equivalent form of the envelope conjecture in non-Archimedean geometry. Moreover,
in Corollary 3.16 we explain how the above result yields [16, Theorem A].

For general compact Kähler manifolds X , we cannot directly interpret PSHNA.�/

as a space of functions on Berkovich spaces, but an analogous study is still possi-
ble. The details can be found in [67]. On the other hand, there is a notion of the
Berkovich analytification of compact Kähler manifolds, allowing us to interpret ele-
ments PSHNA.�/ as functions on these generalized Berkovich spaces. The details will
appear in a forthcoming paper of Pietro Piccione.

Approximation of finite energy non-Archimedean metrics. Let us assume for the
rest of this introduction that ¹�º is a big class. A maximal test curve ¹ �º� is of finite
energy (notation: ¹ �º� 2 R1.X; �/) ifZ �

C
 

�1

�Z
X

�n � �

Z
X

�nV�

�
d� > �1;

where V� 2 PSH.X; �/ is the potential with minimal singularity. Such test curves are
in a one-to-one correspondence with finite energy geodesic rays, per the Ross–Witt
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Nyström correspondence, elaborated in [26, 29] (see Theorem 2.6 (iii) and (51)). As
proved in [25, Theorem 2.14] there is a chordal metric d c1 on R1.X; �/ making it a
complete metric space (see Section 2.2).

We identify the space of finite energy non-Archimedean metrics E1;NA.X; �/

with R1
	
.X; �/, the space of 	-maximal finite energy test curves. The definition

of E1;NA.X; �/ agrees with that of Boucksom–Jonsson in the ample case, and one
can approximate any finite energy non-Archimedean metric using test configurations,
by [27, Theorem 1.1]. We show in this paper that the analogous result holds in the big
case as well.

To state the result, let us define a flag configuration of a big cohomology class ¹�º
to be a (partial) flag of coherent analytic ideal sheaves

a0 � a1 � � � � � aN D 	.V� /:

By convention, a`D 0 for ` 2Z<0 and a` WD aN if ` 2Z�N . A flag configuration will
be conveniently denoted as an analytic coherent ideal sheaf on the product X �C:

a WD a0 C a1s C � � � C aN�1s
N�1
C aN .s

N / � O.X �C/;

where s denotes the coordinate on C D Spec CŒs�. In this transcendental big setting,
we avoid calling flag configurations actual test configurations, to avoid confusion with
the concepts introduced in [35] for big line bundles, which are not yet proved to be
equivalent with ours. In addition, in the Kähler case, there is notion of transcendental
test configuration introduced in [36, 59]. Further investigations are needed to find the
correct analogue of this notion is in the big case, and prove possible equivalency with
our flag configurations.

As we point out in (38), in case ¹�º is the first Chern class of a big line bundle L,
to a flag configuration one can associate a natural filtration F a of the section ring
R.X;L/. Extending a construction of Phong–Sturm/Ross–Witt Nyström [54, 56], we
show that even in the big case, one can associate a natural geodesic ray/maximal test
curve to any filtration (see Definition 4.4).

Next we show that finite energy non-Archimedean metrics can be approximated
by flag configurations or filtrations, extending [27, Theorem 1.1] to the big case, mak-
ing contact with the ideas of [4, Section 5].

Theorem 1.3 (Theorem 4.14). When ¹�º is the first Chern class of a big line bun-
dle L, elements of R1

	
.X; �/ D E1;NA.X; Lan/ can be d c1 -approximated by Phong–

Sturm rays of flag configurations.

As far as we are aware, approximation results of this nature have not been explored
in the big case before. However, in the Kähler case, perhaps the first result of this nat-
ure appeared in [2, Corollary 1.3], where Berman devised an approximation scheme
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for geodesic rays coming from deformations to the normal cone. Another related
result from the Kähler case is [26, Theorem 1.5]. With the usual difficulties associated
with big classes in place, techniques from the Kähler case do not seem to translate to
our setting.

Continuity of the radial Ding functional. Staying with an arbitrary big class ¹�º,
we consider qpsh functions  ; � on X , with � having analytic singularity type. After
adding some constants to either � and  , one can attach to .�; / a Radon probability
measure, following [3]:

� WD e�� !n: (1)

Next, following [38], one defines the �-Ding functional for � > 0. This is D�
� W

E1.X; �/! R, the �-Ding functional:

D�
�.'/ D �

1

�
log

Z
X

e��'d� � I� .'/ for ' 2 E1.X; �/;

where I� .�/ is the Monge–Ampère energy. For the above definition to make sense, we
assume that

c�ŒV� � WD sup
²
 � 0 W

Z
X

e�V� d� <1
³
> �;

which ensures that
R
X
e��'d� < 1 for any ' 2 E1.X; �/ (by [24, Theorem 1.1]

and [29, Theorem 2.3]).
The Euler–Lagrange equation of the �-Ding functional is the following twisted

Monge–Ampère equation [29]:

.� C ddcu/n D e��uC�� !n: (2)

Solutions to this equation, represent potentials along the continuity method for a
twisted KE metric, that solves the above equation in the particular case � D 1 [29].

Despite lack of convexity of D�
�, [29, Theorem 1.4] gives a formula for the slope

of the �-Ding functional along subgeodesic rays. Let .0;1/ 3 t 7! ut 2 E1.X; �/ be
a sublinear subgeodesic ray [29, §3]. Then

lim
t!1

D�
�.ut /

t
D � lim

t!1

I� .ut /

t
C sup¹� 2 R W c�Œyu� � � �º; (3)

where c�Œu� WD sup¹ � 0 W
R
X

e�u d� <1º and yu� is the Legendre transform of ut
as defined in (10). On the heels of the above result it is convenient to introduce

D�
�¹utº WD lim

t!1

D�
�.ut /

t
;

and we will call this expression the radial �-Ding functional of the subgeodesic ¹utºt .
This should be viewed as the transcendental analogue of the ˇı -functional in [69, §4].
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Under the Ross–Witt Nyström correspondence (see Theorem 2.6), we will also view
D�
�¹�º as a functional defined on the space R1.X; �/ of finite energy maximal test

curves.
In our next main result we show that the radial �-Ding functional is d c1-continuous.

Theorem 1.4 (Theorem 5.9). For any �2.0; c�ŒV� �/, the functional D�
�WR

1.X;�/!

R is d1c -continuous.

In case of numerical classes, there is a precise estimate due to Boucksom–Jonsson
for the non-Archimedean Ding functional [17, Proposition 3.15], implying continuity.
We wonder if this estimate can be extended to our radial transcendental setting.

Stability and KE metrics. We discuss applications to delta invariants and KE met-
rics for a big class ¹�º. Based on the Blum–Jonsson interpretation of the Fujita–Odaka
delta invariant [6, 14, 39], rooted in the non-Archimedean approach to K-stability
(see [4, Definition 7.2]), we recall the definition of the twisted delta invariant of our
data [29]:

ı�.¹�º/ WD inf
E

A�; .E/

S� .E/
: (4)

Here the infimum is taken over all prime divisors E over X , i.e., E is a prime divisor
on a modification � WY ! X of X (cf. [4, §B.5]). Also,

A�; .E/ WD AX .E/C �.�;E/ � �. ;E/;

where AX .E/ is the log discrepancy of E and �. ;E/ denotes the Lelong number of
�� along E (cf. [29, (13)]). The expected Lelong number S� .E/ of ¹�º along E is
defined by

S� .E/ WD
1

vol.¹�º/

Z �� .E/

0

vol.¹���º � x¹Eº/ dx;

where �� .E/ WD sup¹� 2 R W ¹���º � �¹Eº is bigº is the pseudoeffective threshold,
and the volume function vol.�/ is understood in the sense of [11].

In [29, Theorem 1.5] it was shown that ı� can be computed as the geodesic
semistability threshold of the �-Ding functionals. In our next main result we addi-
tionally argue that ı� can be computed as the non-Archimedean Ding semistability
threshold as well. For the definition of the non-Archimedean Ding functional D

�;NA
�

we refer to (54).

Theorem 1.5 (Theorem 5.6, Corollary 5.8). We have the following identities:

ı� D sup¹� > 0 W D�
�¹utº � 0 for all sublinear subgeodesic rays ut 2 E1.X; �/º

D sup¹� > 0 W D�
�¹utº � 0; ¹utºt 2 R1.X; �/º

D sup¹� > 0 W D�
�¹utº � 0; ¹utºt 2 R1

	.X; �/º:
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When ¹�º D c1.L/ for some big line bundle L on X , we further have

ı� D sup¹� > 0 W D�
�¹utº � 0 for all rays ¹utºt induced by filtrationsº

D sup¹� > 0 W D�
�¹utº � 0 for all rays ¹utºt induced by flag configurationsº

D sup¹� > 0 W D�;NA
� .u/ � 0 for all u 2 E1;NA.X; �/º:

Lastly, we turn to stability and assume that

¹�º D c1.�KX /:

For simplicity, we only treat the untwisted case, where  D 0 and � WD f 2 C1.X/
satisfying � C ddcf D Ric!.

Definition 1.6. We say that .X;�KX / is uniformly Ding stable with respect to flag
configurations, if there exists " > 0 such that

D1;NA
� .u/ � "JNA.u/

for any u D ¹utºt 2 E1;NA.X; �/ induced by flag configurations.

For the definition of the non-Archimedean J functional JNA
� we refer to (35). We

refer to Section 5.4 for more details, and specifically to (59) for an algebraic/valuative
interpretation of uniform Ding stability.

Combining Theorems 1.3, 1.4 and 1.5 with the results of [29], we prove a uniform
YTD type existence theorem for KE metrics.

Theorem 1.7 (Theorem 5.9). Suppose �KX is big. If .X;�KX / is uniformly Ding
stable with respect to flag configurations then there exists a KE metric. Specifically,
there exists u 2 PSH.X; �/ having minimal singularity type such that �u D Ric �u,
i.e.,

�nu D ef �u!n:

It follows from [68, Remark 1.3] and the main result of [49] that finite generation
of the anticanonical section ring and uniform Ding stability with respect to test con-
figurations (as defined by Dervan–Reboulet [35] in the big case) also imply existence
of KE metrics (for details see [29, Section 6.2]). One advantage of our Theorem 1.7
is that we do not impose any conditions on finite generation (or �KX being klt) a
priori. Similar to [29], our approach is purely analytical, but on the heels of [68] it is
natural to ask if one could give another proof of Theorem 1.7 using techniques of the
minimal model program.

Around the same time our paper appeared on arXiv, the very intriguing work [63]
was published, proving a YTD type existence theorem for Kähler–Einstein metrics
with prescribed singularity type. With a different motivation, Trusiani independently
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developed the theory of relative test curves, overlapping with our results in Sec-
tion 2.2.

2. Preliminaries

2.1. Finite energy pluripotential theory

We give a very brief account of finite energy pluripotential theory in the big case. For
a more complete treatment we refer to the papers [11, 22], [28, §3], [29, §3] and the
textbook [41].

Finite energy pluripotential theory. Let .X; !/ be a connected compact Kähler
manifold of dimension n and � a smooth closed real .1; 1/-form. A function

uWX ! R [ ¹�1º

is called quasi-plurisubharmonic (qpsh) if locally uD �C ', where � is smooth and '
is a plurisubharmonic (psh) function. We say that u is � -plurisubharmonic (� -psh) if it
is qpsh and �u WD � C ddcu� 0 as currents, with ddc

D
p
�1@x@=2� . We let PSH.X;�/

denote the space of � -psh functions on X .
The class ¹�º is big if there exists  2 PSH.X; �/ satisfying � � "! for some

" > 0. The class ¹�º is pseudoeffective if ¹� C "!º is big for any " > 0. We assume
that ¹�º is pseudoeffective in this section, unless specified otherwise.

Given u;v 2 PSH.X;�/, u is more singular than v, (notation: u� v) if there exists
C 2 R such that u � v C C . The potential u has the same singularity as v (notation:
u ' v) if u � v and v � u. The classes Œu� of this latter equivalence relation are
called singularity types. When ¹�º is merely big, all elements of PSH.X; �/ are very
singular, and we distinguish the potential with minimal singularity:

V� WD sup¹u 2 PSH.X; �/ W u � 0º:

A function u 2 PSH.X; �/ is said to have minimal singularity if it has the same sin-
gularity type as V� , i.e., Œu� D ŒV� �.

We call Œu� an analytic singularity type if it has a representative u 2 PSH.X; �/
that locally can be written as

u D c log
�X
j

jfj j
2

�
C g;

where c > 0, g is a bounded function and the fj are a finite set of holomorphic
functions. By a Demailly’s approximation theorem there are plenty of � -psh functions
with analytic singularity type if ¹�º is big [31, Section 14].
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In [11] the authors introduce the non-pluripolar Borel measure �nu of an element
u 2 PSH.X; �/, satisfying Z

X

�nu �

Z
X

�nV� DW vol.¹�º/:

It was proved in [64, Theorem 1.2] that for any u; v 2 PSH.X; �/ we have the follow-
ing monotonicity result for the masses: if v � u, thenZ

X

�nv �

Z
X

�nu :

We say that u 2 PSH.X; �/ is a full mass potential (u 2 E.X; �/) ifZ
X

�nu D

Z
X

�nV� :

Moreover, we say that u 2 E.X; �/ has finite energy (u 2 E1.X; �/) ifZ
X

ju � V� j�
n
u <1:

The class E1.X; �/ plays a central role in the variational theory of complex Monge–
Ampère equations, as detailed in [3, 11] and later works. Here we only mention that
the Monge–Ampère energy I� naturally extends to this space with the usual formula:

I� .u/ D
1

vol.¹�º/.nC 1/

nX
jD0

Z
X

.u � V� / �
j
u ^ �

n�j
V�

; u 2 E1.X; �/:

It is upper semi-continuous (usc) with respect to the L1 topology on PSH.X; �/.
Given any f WX ! Œ�1;C1�, one can consider the envelope

P� .f / WD usc
�
sup¹v 2 PSH.X; �/; v � f º

�
;

where usc denotes the upper-semicontinuous regularization. For u; v 2 PSH.X; �/,
we can then introduce the rooftop envelope P� .u; v/ WD P� .min.u; v//. We will write
P.� ; �/ D P� .� ; �/ when there is no risk of confusion.

With the help of these envelopes one can define a complete metric on E1.X; �/.
Indeed, as pointed out in [24, Theorem 2.10], for u; v 2 E1.X; �/ we have P.u; v/ 2
E1.X; �/ and the following expression defines a complete metric on E1.X; �/ [22,
Theorem 1.1]:

d1.u; v/ D I� .u/C I� .v/ � I� .P.u; v//:

In addition, d1-convergence implies L1-convergence of qpsh potentials [22, Theo-
rem 3.11]. Moreover, any two points of u0; u1 2 E1.X; �/ can be connected by a
special d1-geodesic Œ0; 1� 3 t 7! ut 2 E1.X; �/, called the finite energy geodesic seg-
ment between u0; u1.
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Envelopes of singularity type. We now discuss envelopes attached to singularity
types, going back to [56] in the Kähler case: given u; v 2 PSH.X; �/,

P� Œu�.v/ WD usc
�

lim
C!C1

P� .uC C; v/
�

D usc
�
sup¹w 2 PSH.X; �/ W w � v; Œw� � Œu�º

�
:

To lighten the notation, we also write P Œ��.�/ D P� Œ��.�/.
It is easy to see that P� Œu�.v/ depends only on the singularity type Œu�. When

v D V� , we simply write

P Œu� WD P� Œu� D P� Œu�.V� /

and call this potential the envelope of the singularity type Œu�. It follows from [23, The-
orem 3.8] that �n

P Œu�
� 1¹PŒu�D0º�

n. Also, by [23, Proposition 2.3 and Remark 2.5],
we have that Z

X

�nP Œu� D

Z
X

�nu :

An algebraic counterpart of P Œu�.v/ is the operator P Œu�	.v/ 2 PSH.X; �/, defined
by

P Œu�	.v/ WD sup¹w 2 PSH.X; �/ W w � v;	.tw/ � 	.tu/; t � 0º:

Here 	.tu/ is a multiplier ideal sheaf, locally generated by holomorphic functions f
such that jf j2e�tu is integrable. This type of envelope was first considered in [46]
and studied in detail in [27, §2.4], [28, 62].

Again, P Œu�	 WD P� Œu�	.V� /, and it is not difficult to see that P Œu�	 � P Œu� for
any u 2 PSH.X; �/.

We say u2 PSH.X;�/ is a model potential ifP� Œu�D u; it is an 	-model potential
if P� Œu�	 D u. By the above observation P Œu�	 � P Œu�, an 	-model potential is
always a model potential.

We note the following technical result about model potentials that will be needed
later.

Lemma 2.1. Let 'j 2 PSH.X; �/ be a decreasing sequence of model potentials. Let
'j & ' 2 PSH.X; �/. If ' has positive mass, then for any prime divisor E over X ,
we have

lim
j!1

�.'j ; E/ D �.';E/:

Proof. By [25, Proposition 4.6] we have
R
X
�n
'j
&
R
X
�n' :Hence, by [25, Lemma 4.3],

for any " 2 .0; 1/ and j big enough, there exists  j 2 PSH.X; �/ such that

.1 � "/'j C " j � ':
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This implies that for j big enough, we have

.1 � "/�.'j ; E/C "�. j ; E/ � �.';E/ � �.'j ; E/:

However, for E fixed, �.�;E/ is uniformly bounded (see, e.g., [7, Lemma 2.10])
for any � 2 PSH.X; �/. So letting "& 0 we conclude.

Finally, we state an effective version of Guan–Zhou’s strong openness theorem
that will be used multiple times in this work (see [4, 40], cf. [29, Theorem 2.2]).

Theorem 2.2. Suppose that there are qpsh functions on X such that uj % u a.e. If
f 2	.u/, then f 2	.uj / for all j big enough. More generally, if � is a qpsh function
with analytic singularities satisfying e��u 2L1.X/, then e��uj 2L1.X/ for all j big
enough.

2.2. The theory of relative test curves

Let X be a connected compact Kähler manifold of dimension n. Let � be a closed
smooth real .1; 1/-form on X representing a big cohomology class ¹�º, and set V DR
X
�nV�

.

Test curves. A map R 3 � 7! � 2 PSH.X;�/ is a relative test curve, denoted ¹ �º� ,
if � 7!  � .x/ is concave, decreasing and usc for any x 2 X . Moreover,  � � �1 for
all � big enough and the weakL1 limit  �1 WD lim�!�1 � 2 PSH.X; �/ exists. We
say that ¹ �º� is a relative test curve relative to  �1. If  �1 D V� we simply call
¹ �º� a test curve, and this particular case was studied in detail in [22, 29], having its
origins in [56], in the ample case.

The above definition allows us to introduce the following constant:

�C WD inf¹� 2 R W  � � �1º:

Using the convention P Œ�1� D �1, a relative test curve ¹ �º� can have the
following properties:

(i) ¹ �º� is maximal if P Œ � � D  � for any � 2 R.

(ii) A relative test curve ¹ �º� is a finite energy test curve if

I�¹ �º WD �
C

 C
1

V

Z �
C
 

�1

�Z
X

�n � �

Z
X

�nV�

�
d� > �1: (5)

(iii) We say that ¹ �º� is bounded if  � D  �1 for all � small enough.

(iv) ¹ �º� is 	-maximal if P Œ � �	 D  � for any � 2 R. Since  � � P Œ � � �
P Œ � �	 , we notice that ¹ �º� is maximal if it is 	-maximal.
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Subgeodesic rays. A psh subgeodesic ray, denoted ¹utºt , is an assignment .0;1/ 3
t 7! ut 2 PSH.X; �/ such that

ˆ.x; z/ WD u� log jzj2.x/ (6)

is p�1� -plurisubharmonic onX ���, where��C is the unit disk and��D� n ¹0º,
and p1WX ��! X is the projection.

A sublinear subgeodesic ray is a psh subgeodesic ray ¹utºt such that the weak L1

limit u0 WD limt!0C ut 2 PSH.X; �/ exists and for some C 2 R we have

ut � u0 C Ct:

In this case, we say that ¹utºt is a sublinear subgeodesic emanating from u0.
A psh geodesic segment in PSH.X; �/ from ' to  is a map Œa; b� 3 t 7! ut 2

PSH.X; �/ such that ˆ.x; z/ WD u� log jzj2.x/ is ��� -psh on

X � ¹z 2 C W exp.�b/ < jzj2 < exp.�a/º:

Moreover, for any S1-invariant p�1� -psh function ‰ on X � ¹z 2 C W exp.�b/ <
jzj2 < exp.�a/º such that

lim
t!b�

‰.�; e�b/ �  ; lim
t!aC

‰.�; e�a/ � ' (7)

almost everywhere, we have ‰ � ˆ. Furthermore, ˆ assumes the correct boundary
values:

lim
t!b�

ˆ.�; e�b/ D  ; lim
t!aC

ˆ.�; e�a/ D ':

A psh geodesic ray is a sublinear subgeodesic ray t 7! ut such that Œa; b� 3 t 7!
ut 2 PSH.X; �/ is a psh geodesic segment for all a; b 2 .0;1/.

The geometry of finite energy rays. A finite energy geodesic ray Œ0;1/ 3 t 7! ut 2

E1.X; �/ is simply a psh geodesic ray with u0 D V� . The space of such finite energy
rays, denoted R1.X; �/, was studied in [25] (see [26] for the Kähler case).

Using linearity/convexity one can define the chordal metric between two rays:

d c1
�
¹utºt ; ¹vtºt

�
D lim

t!1

d1.ut ; vt /

t
; ¹utºt ; ¹vtºt 2 R1.X; �/:

It was shown in [25, Theorem 2.14] that .R1.X; �/; d c1 / is a complete metric space.
Given any ray ¹utºt 2 R1.X; �/, we define its radial energy as

I�¹utº WD lim
t!1

I� .ut /

t
: (8)

The limit exists as I� .ut / is linear in t .
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As in the case of the metric space structure of .E1.X; �/; d1/, for any rays ¹utºt ,
¹vtºt 2R1.X;�/ one can define ¹ut ^ vtºt 2R1.X;�/ (resp. ¹ut _ vtºt2R1.X;�/),
the biggest (resp. smallest) ray satisfying

ut ^ vt � min.ut ; vt / (resp. ut _ vt � max.ut ; vt /)

for all t � 0.
These two special rays satisfy the Pythagorean formula and Pythagorean inequal-

ity respectively ([66, Theorem 1.3], [25, Proposition 2.15]), for C D C.n/:

d c1
�
¹utºt ; ¹vtºt

�
D d c1

�
¹utºt ; ¹ut ^ vtºt

�
C d c1

�
¹ut ^ vtºt ; ¹vtºt

�
;

Cd c1
�
¹utºt ; ¹vtºt

�
� d c1

�
¹utºt ; ¹ut _ vtºt

�
C d c1

�
¹ut _ vtºt ; ¹vtºt

�
:

(9)

We note the following result, that is, the radial analogue of [5, Proposition 2.6].

Proposition 2.3. Let ¹ukt ºt ; ¹utº 2 R1.X; �/ such that d c1 .¹u
k
t ºt ; ¹utºt /! 0. Then

there exists a subsequence, again denoted ¹ukt ºt and ¹vkt ºt ; ¹w
k
t ºt 2 R1.X; �/ such

that

(i) wkt � u
k
t � v

k
t for any fixed t � 0;

(ii) wkt % ut and vkt & ut for any fixed t � 0;

(iii) d c1 .¹w
k
t ºt ; ¹utºt /! 0 and d c1 .¹v

k
t ºt ; ¹utºt /! 0.

Proof. The proof follows the argument of [5, Proposition 2.6] in case of potentials.
In fact, the sequence ¹wkt º is constructed using the exact same ideas, with (9) used in
the appropriate places.

The sequence of ¹vkt º is constructed following the argument of [25, Proposi-
tion 4.2] word-for-word, using the radial Pythagorean inequality (9) in the appropriate
places.

The Ross–Witt Nyström correspondence. We adopt the following convention: rel-
ative test curves will always be parametrized by � , whereas rays will be parametrized
by t . Hence, ¹�tºt will always refer to some kind of ray, whereas ¹ �º� will refer to
some type of test curve. As we will now point out, rays and test curves are dual to
each other, so one should think of the parameters t and � to be dual to each other as
well.

To any sublinear subgeodesic ray ¹�tºt (relative test curve ¹ �º� ) we can asso-
ciate its (inverse) partial Legendre transform at x 2 X as

y�� .x/ WD inf
t>0

�
�t .x/ � t�

�
; � 2 R;

{ t .x/ WD sup
�2R

�
 � .x/C t�

�
; t > 0:

(10)
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We say that a ray ¹utºt 2 R1.X; �/ is 	-maximal if ¹yu�º� is 	-maximal. The
set of 	-maximal finite energy rays is denoted by R1

	
.X; �/. As we will see later,

there is a bijection between R1
	
.X; �/ and the set of non-Archimedean finite energy

potentials.

Lemma 2.4. Let ¹ �º� be a test curve relative to �. Then sup� . � .x/C t�/ is usc
with respect to .t; x/ 2 .0;1/ �X . In particular, { t 2 PSH.X; �/ for all t > 0, and
¹ { tºt is a sublinear subgeodesic ray emanating from �.

Proof. The argument is exactly the same as in the particular case when �DV� , proved
in [29, Proposition 3.6], itself inspired from the ideas of [22].

We note the following simple result, that will have important consequences in the
sequel.

Lemma 2.5. Let ¹ �º� be a test curve relative to �, with
R
X
�n� > 0. Then P Œ { t � D

P Œ�� for all t > 0.

Proof. We may assume that � � 0, and we observe that  � C t� � { t � � C t�C for
all � < �C and t > 0. Taking envelopes with respect to singularity type, we find

P Œ � � � P Œ { t � � P Œ��: (11)

But for almost all x 2 X , we have

�.x/ D lim
�!�1

 � .x/ � lim
�!�1

P Œ � �:

It follows that for almost all x 2 X that �.x/ � P Œ { t �.x/: As both sides are � -psh, it
follows that the inequality holds everywhere. As both sides have positive mass, we get
that P Œ�� � P Œ { t � due to [23, Theorem 3.12]. Together with (11), we conclude.

Lastly we state the versions of the Ross–Witt Nyström correspondence between
test curves and rays that will be needed in this work.

Theorem 2.6. Let � 2 PSH.X; �/ with
R
X
�n� > 0. The following hold:

(i) The map ¹ �º� 7! ¹ { tºt gives a bijection from the set of test curves relative
to � to the set of sublinear subgeodesic rays in PSH.X;�/ emanating from �,
with inverse ¹utºt 7! ¹yu�º� .

(ii) The map of (i) gives a bijection between the set of maximal test curves rela-
tive to �, and the set of psh geodesic rays in PSH.X; �/ emanating from �.

(iii) The map of (i) gives a bijection between the set of finite energy maximal test
curves, and the set of finite energy psh geodesic rays R1.X; �/. In addition,
under this correspondence, the radial I� functional (8) is equal to the energy
of the test curve (5).
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Proof. Using Proposition 2.4, the proof of the first and second part are carried out in
exactly the same manner as the particular case � D V� [29, Theorem 3.7 (i), (ii)]. The
last part of the theorem is simply [29, Theorem 3.9].

Test curves relative to potentials � with
R
X
�n� D 0 exhibit pathological behavior

(cf. [25, Section 4]). To exclude these, we introduce

MTC.X; �/ D
²
¹��º� � PSH.X; �/ relative test W

Z
X

�n�1 > 0

³
; (12)

with “MTC” indicating maximal test curve. Similarly, the test curves in MTC.X; �/
that are 	-maximal will be denoted by MTC	.X;�/. For now, we record the following
simple observation, that already uses the positive mass assumption crucially.

Lemma 2.7. Suppose that ¹ �º� 2 MTC.X; �/. Then  �1 D P Œ �1�.

Proof. We have that  � %  �1 a.e., as � ! �1 and  � D P Œ � �. By [25, Corol-
lary 4.7], we conclude that  �1 D P Œ �1�.

The next two results show 	-maximal test curves are preserved under monotone
limits.

Lemma 2.8. Let ¹ i�º� 2 MTC	.�/ be a decreasing net (in the sense that  i� is
decreasing for each � ). Let  � WD infi  i� . Assume that for some � 2 R,  � is not
identically �1, and it has positive mass. Then ¹ �º� 2 MTC	.�/.

Proof. Since  �1 �  � , we get that  �1 has positive mass by [64, Theorem 1.2].
It suffices to observe that  � is 	-model whenever it is not �1. Indeed,

 � � P� Œ � �	 � inf
i
P� Œ 

i
� �	

D inf
i
 i� D  � :

Lemma 2.9. Let ¹ i�º� 2MTC	.�/ be an increasing net in i , and assume that �C WD
supi �

i;C
 <1. Let  � WD usc.supi  

i
� / for � ¤ �C and  

�
C
 

WD lim
�%�

C
 

 � . Then

¹ �º� 2 MTC	.�/.

Proof. Showing that  � is 	-model and has positive mass for � < �C is a conse-
quence of [64, Theorem 1.2] and [27, Lemma 2.21 (iii)]. That 

�
C
 

is 	-model follows
from [27, Lemma 2.21 (i)].
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Maximization. We adapt the maximization process of test curves from the works [22,
29, 56] to our relative setting. Let ¹ �º� be a relative test curve with

R
X
�n �1 > 0.

The maximization of ¹ �º� is simply the relative test curve ¹��º� such that

�� WD

8̂̂<̂
:̂
P Œ � � if � < �C ;

lim
�%�

C
 

�� if � D �C ;

�1; if � > �C :

(13)

The condition
R
X
�n �1 > 0, [64, Theorem 1.2] and � -concavity of � 7!  � imply thatR

X
�n � > 0 for all � < �C . By [23, Theorem 3.12], we obtain that ¹��º� is a maximal

test curve relative to ��1 D P Œ �1� (by [25, Corollary 4.7]).
Lastly, along the same lines as above, we introduce the 	-maximization of a rela-

tive test curve ¹ �º� with
R
X
�n �1 > 0. The 	-maximization of ¹ �º� is the relative

test curve ¹��º� defined by

�� WD

8̂̂<̂
:̂
P Œ � �	 if � < �C ;

lim
�%�

C
 

�� if � D �C ;

�1 if � > �C :

By definition, ¹��º� is an 	-maximal test curve relative to ��1 D P Œ �1�	 by [27,
Lemma 2.21 (iii)].

The maximization/	-maximization of a sublinear (sub)geodesic ¹utºt will simply
be the inverse Legendre transform of the maximization/	-maximization of ¹yu�º� .

2.3. The non-Archimedean formalism of Boucksom–Jonsson

In this section, we recall the basics of the space of non-Archimedean psh metrics, as
defined by Boucksom–Jonsson [15].

The space of valuations. Let X be an irreducible reduced variety over C of dimen-
sion n. We recall the notion of Berkovich analytification X an of X with respect to
the trivial valuation on C. Recall that a (real-valued) valuation on X (or a valuation
of C.X/) is a map vWC.X/! .�1;1� satisfying the following:

(i) For f 2 C.X/, v.f / D1 if and only if f D 0.

(ii) For f; g 2 C.X/, v.fg/ D v.f /C v.g/.

(iii) For f; g 2 C.X/, v.f C g/ � min¹v.f /; v.g/º.

The set of valuations on X is denoted by Xval. The center of a valuation v is the
scheme-theoretic point c D c.v/ of X such that v � 0 on OX;c and v > 0 on the
maximal ideal mX;c of OX;c . The center is unique if it exists. It exists if X is proper.
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In the remainder of this section, we assume that X is projective.
As a set, X an is the set of semi-valuations on X , in other words, real-valued valu-

ations v on irreducible reduced subvarieties Y in X that is trivial on C. We call Y the
support of the semi-valuation v. In other words,

X an
D

a
Y

Y val:

We will write vtriv 2 X
an for the trivial valuation on X : vtriv.f / D 0 for any f 2

C.X/�. We endow X an with the coarsest topology such that

(i) for any Zariski open subset U � X , the subset U an ofX an consisting of semi-
valuations whose supports meet U is open;

(ii) for each Zariski open subset U �X and each f 2H 0.U;OX / (here OX is the
sheaf of regular functions), the map jf jWU an ! R sending v to exp.�v.f //
is continuous.

See [1] for more details.
We will be most interested in divisorial valuations. Recall that a divisorial val-

uation on X is a valuation of the form t ordE , where t 2 Q>0 and E is a prime
divisor over X . The set of divisorial valuations on X is denoted by Xdiv. When Q>0

is replaced by R>0, we can similarly define a space Xdiv
R .

Given any coherent ideal a on X and any v 2 X an, we define

v.a/ WD min¹v.f / W f 2 ac.v/º 2 Œ0;1�; (14)

where c.v/ is the center of the valuation v on X .
Given any valuation v on X , the Gauss extension of v is a valuation �.v/ on

X �A1:

�.v/

�X
i

fi t
i

�
WD min

i

�
v.fi /C i

�
: (15)

Here t is the standard coordinate on A1 D Spec CŒt �. The key property is that when v
is a divisorial valuation, then so it �.v/. See [13, Lemma 4.2].

Non-Archimedean plurisubharmonic functions. Let X be an irreducible complex
projective variety of dimension n and L be a holomorphic pseudoeffective Q-line
bundle on X . Through the GAGA morphism X an ! X of ringed spaces, L can be
pulled-back to an analytic line bundle Lan on X . The purpose of this section is to
study the psh metrics on Lan. We will follow the approach of [15], which avoids the
direct treatment of Lan itself.

Following [15, Definition 2.18], we define H
gf
Q.L/, the set of (rational) generi-

cally finite Fubini–Study functions �WX an! Œ�1;1/, that are of the following form:

� D
1

m
max
j
¹log jsj j C �j º:
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Herem2Z>0 is an integer such thatLm is a line bundle, the sj ’s are a finite collection
of non-vanishing sections inH 0.X;Lm/, and �j 2Q. We followed the convention of
Boucksom–Jonsson by writing log jsj j.v/ D �v.sj /.

Now we come to the main definition of this subsection.

Definition 2.10 ([15, Definition 4.1]). A psh metric on Lan is a function

�WX an
! Œ�1;1/

that is not identically �1, and is the pointwise limit of a decreasing net .�i /i2I ,
where �i 2 H

gf
Q.L

an
i / for some Q-line bundles Li on X satisfying c1.Li /! c1.L/

in NS1.X/R.

The set of psh metrics on Lan is denoted by PSH.Lan/. We endow PSH.Lan/

with the topology of pointwise convergence on Xdiv. This topology is Hausdorff as
functions in PSH.Lan/ are completely determined by their restriction on Xdiv.

Theorem 2.11 ([15, Theorem 4.22]). Let � 2 PSH.Lan/ and let  WX an ! Œ�1;1/

be a usc function. Assume that � �  on Xdiv, then the same holds on X an.

Next we note that we may use sequences instead of nets in the definition of
PSH.Lan/.

Theorem 2.12 ([15, Corollary 12.18]). Let S be an ample line bundle on X . Let
� 2 PSH.Lan/. Then there is a sequence of rational numbers "i & 0 and a decreasing
sequence �i 2 H

gf
Q..LC "iS/

an/ such that � is the pointwise limit of �i , as i !1.

The space PSH.Lan/ inherits most of the expected properties of (Archimedean)
psh functions ([15, Theorem 4.7]). However, the following compactness result is not
known.

Conjecture 2.13 ([15, §5]). Assume that X is unibranch, then every bounded from
above increasing net of elements in PSH.Lan/ converges in PSH.Lan/.

This prediction is equivalent to the so-called envelope conjecture [15, Conjec-
ture 5.14]: the regularized supremum of a bounded from above family of functions in
PSH.Lan/ lies in PSH.Lan/. See [15, Theorem 5.11] for the proof of the equivalence.
This conjecture is proved when X is smooth and L is nef in [15]. More recently,
in [16], Boucksom–Jonsson further established the case when X is smooth and L is
pseudoeffective.
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3. Non-Archimedean psh functions and the envelope conjecture

In this section, we study the space of non-Archimedean psh functions. The main
technical difficulty is to find the correct definition of these objects for a big/pseudo-
effective cohomology class. As our class ¹�º may be transcendental, we will give a
completely analytic definition. However, we will point out that our choices coincide
with the analogous algebraic notions of [15], whenever ¹�º is the first Chern class of
a Q-line bundle.

3.1. Relative test curves and non-Archimedean metrics

Let X be a connected projective manifold of dimension n. Let � be a closed smooth
real .1; 1/-form on X representing a big cohomology class ¹�º.

For ' 2 PSH.X; �/, we define the analytification 'anWX an ! Œ�1; 0� as follows:

'an.v/ WD �v.'/ D � lim
k!1

1

k
v.	.k'//: (16)

The quantity inside the limit is defined in (14). In addition, by the subadditivity
of multiplier ideals [32], we have that 	..k C k0/'/ � 	.k'/	.k0'/: It then follows
from v.ab/ � v.a/C v.b/ that

v
�
	..k C k0/'/

�
� v.	.k'//C v.	.k0'//:

In particular, thanks to Fekete’s lemma (see [45, Lemma 2.3]), the limit in (16) exists.
When v D t ordE for some prime divisor E over X , 'an.v/ D �t�.'; E/, by [4,

Lemma B.4]. Here �.';E/ is the Lelong number of ' along E:

�.';E/D inf
x2E

�.'; x/; �.'; x/ D sup¹� > 0 W ' � � log jz � xj2 CO.1/ near xº:

Note that our definition of Lelong number differs from the classical one by a factor
of 2.

The analytification of a relative test curve ¹ �º� is anWXdiv!Œ�1;1/ defined as

 an.v/ WD sup
���
C
 

�
 an
� .v/C �

�
: (17)

With the convention .�1/an.v/D�1, we can even allow � 2R in the supremum
of (17). Since � 7!  � is � -decreasing, we observe that it suffices to take supremum
over � < �C in (17).

We point out that  an can be computed using the subgeodesic corresponding to
the test curve.
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Proposition 3.1. Let ¹ �º� be relative a test curve with �C � 0. Let ‰ be the poten-
tial on X ��� corresponding to ¹ { tºt given by ‰.x; z/ WD { � log jzj2.x/ (recall (6)).
Since �C � 0, ‰ extends to a qpsh potential on X ��. Moreover,

 an.v/ D ��.v/.‰/ for v 2 Xdiv: (18)

We will often refer to ‰ as the potential of the test curve ¹ �º� . The right-hand
side of (18) agrees with { an.v/ as defined in [4], when � D c1.L;h/ for some Hermit-
ian ample line bundle .L; h/ (see [4, Section 4.3]).

Proof. The proof is the same as [27, Proposition 3.13], that deals with the ample case.
We briefly recall the argument. We start with observing that

‰.x; ı/ D sup
���
C
 

�
 � .x/ � log jıj2�

�
for x 2 X , ı 2 ��:

By definition of �.v/ 2 .X �C/div in (15), we have

�.v/
�
log jıj2

�
D 1 and �.v/. � / D v. � /:

So we have that �.v/. � .x/� log jıj2�/ D v. � /� � . Lastly, since �.v/ is a diviso-
rial valuation on X ��, by [27, Lemma 3.14], we conclude that

�.v/.‰/ D inf
���
C
 

�
v. � / � �

�
;

finishing the proof.

Piecewise linear curves. Next we introduce the notion of a piecewise linear curve
¹ �º� in PSH.X; �/ associated with  �j 2 PSH.X; �/, for a finite number of param-
eters �0 > �1 > � � � > �N . The piecewise linear curve is the affine interpolation of this
data:

(i)  � D  �N for � � �N .

(ii) For t 2 .0; 1/, we have  .1�t/�iCt�iC1 D .1 � t / �i C t �iC1 .

(iii)  � D �1 for � > �0.

Observe that ¹ �º� is � -usc but may not be � -concave. Despite this we introduce
the analytification  an of ¹ �º� as follows:

 an.v/ WD sup
���0

�
 an
� .v/C �

�
D max

�i

�
 an
�i
.v/C �i

�
for v 2 X an: (19)

Given a bounded from above usc function f defined on an interval of R, the
concave envelope zf of f is the minimal concave function lying above f . Recall that
f and zf have the same inverse Legendre transform.
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Lemma 3.2. Let ¹ �º� be a piecewise linear curve in PSH.X; �/, then the � -concave
envelope ¹ z �º� of ¹ �º� is a relative test curve. Moreover,

 an
D z an on Xdiv: (20)

Proof. For the first part, recall that ¹ z �º� is the Legendre transform of the inverse
Legendre transform

{ t WD sup
�2R

. � C t�/ for t > 0

of ¹ �º� . So by Theorem 2.6, it suffices to show that ¹ { tºt is a subgeodesic. This is
clear because

{ t D max
jD0;:::;N

. �j C t�j /:

Each term in the maximum is clearly a subgeodesic, hence so is ¹ { tºt .
In order to prove (20), we may assume that � D�1when � > 0. Note that by the

same arguments as Proposition 3.1,  an.v/ D ��.v/.‰/, where ‰ is the potential on
X �� corresponding to the subgeodesic ¹ { tºt . So (20) follows from Proposition 3.1
applied to ¹ z �º� , and � -Legendre duality.

3.2. Transcendental non-Archimedean metrics

Let X be a connected compact Kähler manifold of dimension n. Let � be a closed
smooth real .1; 1/-form on X representing a big cohomology class ¹�º.

We are ready to introduce the set of non-Archimedean psh metrics for a general
pseudoeffective transcendental class ¹�º. Let K denote the set of Kähler metrics onX
endowed with the partial order: ! �!0 if ! �!0 as forms. Clearly, K is a directed set.

For ! � !0, there is a natural transition map from

MTC	.� C !/ 7! MTC	.� C !
0/

described as follows (recall (12)). To ¹ �º� 2 MTC	.� C !/ we associate ¹ 0�º� 2
MTC	.� C !

0/, where

 0� WD

8̂̂<̂
:̂
P�C!0 Œ � �	 if � < �C ;

lim
�%�

C
 

 0� if � D �C ;

�1 if � > �C :

(21)

Note that ¹ 0�º� is still maximal with positive mass. With this in hand, we can define
the space of non-Archimedean functions.
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Definition 3.3. The space of non-Archimedean functions of a pseudoeffective class
¹�º is the following projective limit in the category of sets:

PSHNA.�/ WD lim
 �
!2K

MTC	.� C !/:

Notice that the above limit is well defined since

P�C!00 ŒP�C!0 Œ � �	�	 D P�C!00 Œ � �	

if ! �!0 �!00 and ¹ �º� 2MTC	.� C!/. We argue the identity: it follows from [27,
Proposition 2.18 (ii)] that  � '	 P�C!0 Œ � �	 , so they have the same P�C!00 Œ��	-
envelope, giving the desired identity. As an example, if ¹ �º� is a test curve relative to
a potential � with

R
X
�n� D 0, then ¹P�C! Œ � �	º� for various ! 2K gives an example

of an element in PSHNA.�/ not lying in MTC	.�/.
We next introduce a partial order on PSHNA.�/: for � D ¹¹�!� º�º!2K , �0 D

¹¹�0!� º�º!2K 2 PSHNA.�/, we say � � �0 if �!� � �
0!
� for all ! 2 K and � 2 R.

Observe that for � D ¹¹�!� º�º!2K 2 PSHNA.�/, �C�! does not depend on the choice
of !. We denote the common value by �C� .

When ¹�º is big, note that there exists a natural inclusion MTC	.�/ ,! PSHNA.�/.
Indeed, with ¹��º� 2MTC	.�/ one simply associates ¹¹�!� º�º! 2 PSHNA.�/, where

�!� WD

8̂̂<̂
:̂
P�C! Œ�� �	 if � < �C� ;

lim
�%�

C
�

�!� if � D �C� ;

�1 if � > �C� :

(22)

Lastly, let us note that the counterpart of Conjecture 2.13 naturally holds in the
setting of PSHNA.�/.

Theorem 3.4. Suppose that ¹�iºi2I � PSHNA.�/ is an increasing net with

sup
i2I

�C
�i
<1:

Then there exists � 2 PSHNA.�/ such that for any ! 2 K , �i;!� % �!� almost every-
where for all � < �C� and

�C� D sup
i2I

�C
�i
:

Proof. Let !2K . By Lemma 2.9, there exists ¹�!� º� 2MCT	.�/ such that �i;!� %�!�
almost everywhere for all � < limi �

C

�i
D �C� and �!

�
C
�

D lim
�%�

C
�

�!� almost every-
where.

Let ! � !0. Since �!� '	 �
!0

� for all � < �C� [27, Proposition 2.18 (ii)], we obtain
that �!

0

� D P�C!0 Œ�
!
� �	 , hence � D ¹¹�!� º�º! 2 PSHNA.�/.
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3.3. Comparison with Boucksom–Jonsson’s NA metrics

Let X be a connected projective manifold of dimension n. Assume furthermore that
¹�º D c1.L/ for some big Q-line bundleL onX . We will compare the sets PSHNA.�/

introduced in the previous section and the space PSH.Lan/ recalled in Section 2.3.

Lemma 3.5. For any ' 2 PSH.X; �/, we have that 'an 2 PSH.Lan/.

Proof. After replacing L with a sufficiently high power, we may assume that L is a
line bundle. Take a very ample line bundle H on X . By Siu’s uniform global gen-
eration theorem ([58], [31, Theorem 6.27]), there exists b > 0 large enough so that
H b ˝Lk ˝	.k'/ is globally generated for all k > 0. Let ¹siº be a finite set of global
sections that generate the sheaf H b ˝ Lk ˝ 	.k'/. Then v.	.k'// D mini .v.si //.
It follows that v 7! �k�1v.	.k'// lies in H

gf
Q..LC

b
k
H/an/. Picking km WD 2m and

letting m!1, we conclude that 'an 2 PSH.Lan/.

Lemma 3.6. Let ¹ �º� be a piecewise linear curve in PSH.X; �/. Then  an, as
defined in (19), extends to an element  an 2 PSH.Lan/.

Proof. The result follows from definition (19), [15, Theorem 4.7 (ii)] and Lemma 3.5.

Lemma 3.7. Let R be a commutative C-algebra of finite type and I be an ideal
of RŒt�. If for any a 2 S1, a�I � I , then I is stable under the C�-action. Moreover,
there are ideals I0 � I1 � � � � � Im in R so that

I D I0 C I1t C � � � C Im.t
m/: (23)

Proof. It suffices to argue that I can be expanded as in (23). To see this, assume that
a 2 I . We can write a D a0 C a1t C � � � C amtm with ai 2 R. Then our assumption
implies that

P
i ai�

i t i 2 I as well for all � 2 S1. So by the Lagrange interpolation
formula, ai t i 2 I for all i . Therefore, we can write I as I0 C I1t C I2t2 C � � � for
some ideals I0 � I1 � � � � inR. But asR is noetherian, there ism� 0 so that Im0 D Im
for m0 > m. Equation (23) follows.

Lemma 3.8. LetX be a complex projective variety and pWX �C!X be the natural
projection. Assume that 	 is an analytic coherent ideal sheaf on X �C. Assume that
	jX�C� D p

�J for some coherent ideal sheaf J on X . Then 	 is the analytification
of an algebraic coherent ideal sheaf.

Proof. Let qWX � .P1 n ¹0º/ ! X be the natural projection. As C� � P1 n ¹0º,
we can glue q�J with 	 to get an analytic coherent ideal sheaf on X � P1. By the
GAGA principle, this ideal sheaf is necessarily algebraic, hence so is its restriction to
X �C.
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Next we point out a version of Siu’s uniform global generatedness lemma [57]
that we will need in the proof of our next theorem.

Lemma 3.9. Let L be a big line bundle on X such that c1.L/ D ¹�º and ˆ 2
PSH.X ��;p�1� ), where� is the unit disk. LetG be an ample line bundle onX . Then
there exists k > 0, only dependent on X and G such that p�1 .G

k ˝Lm/˝ 	.mˆ/ is
globally generated for all m 2 N.

Proof. The argument for this is exactly the same as the one in [4, Lemma 5.6] with
Nadal’s vanishing replaced by the family version proved by Matsumura in [51, Theo-
rem 1.7]. Alternatively, one can adapt the proof of [31, Theorem 6.27] to our setting,
with only one small change: instead of applying Nadel’s theorem directly, one needs
to use [31, Corollary 5.3] when solving the x@-problem in the argument.

Proposition 3.10. Let � 2 PSH.X; �/ be a model potential with positive mass. Let ˆ
be the p�1� -psh function on X � � corresponding to a psh geodesic ray ¹�tºt in
PSH.X; �/ emanating from �, with sup�1 � 0. Then the function

v 7! ��.v/.ˆ/ for v 2 Xdiv

admits a unique extension to an element in PSH.Lan/.

Proof. We may assume that L is a line bundle. Observe that the extension is unique
if it exists by Theorem 2.11.

Claim. For each m 2 Z>0, we have 	.mˆ/jX��� D p
�
1	.m�/jX��� . In particular,

	.mˆ/ admits an extension to a coherent ideal sheaf on X �C.

To prove the claim it is enough to show that

	.mˆ/jX��� D 	
�
.m� ı p1/jX���

�
D p�1	.m�/jX��� : (24)

We observe that 	..m� ıp1/jX���/�p
�
1	.m�/jX��� by [31, Proposition 14.3] and

the reverse inclusion is obvious. So it suffices to establish the first equality in (24). If
we could prove this, then the C�-invariant extension of 	.mˆ/ to X � C� would be
simply 	..m� ı p1/jX�C�/. Consider the annulus

�a;b D ¹z 2 C W exp.�b/ < jzj2 < exp.�a/º � ��

for 0 < a < b. To argue (24), it suffices to show that

	.mˆ/jX��a;b D 	
�
.m� ı p1/jX��a;b

�
for arbitrary a; b.
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First, we notice that due to convexity of (sub)geodesics in the time variable, we
have

ˆ.x; z/jX��a;b � �.x/C C

for some C > 0. Second, since � has positive mass, due to Lemma 2.5 and [23,
Theorem 1.3], we have that ˆ.�; exp.�b//;ˆ.�; exp.�b// 2 E.X; �; �/. By [42, The-
orem 2.9], there exists

 WD P�
�
ˆ.�; exp.�a//;ˆ.�; exp.�b//

�
2 E.X; �; �/

such that  .z/ � ˆ.x; z/jX��a;b . This last inequality follows from the comparison
principle built into the definition of psh geodesic segments, recalled in (7). We con-
clude that

	
�
.m ı p1/jX��a;b

�
� 	.mˆ/jX��a;b � 	

�
.m� ı p1/jX��a;b

�
: (25)

By [23, Theorem 1.3], we have that P. C C; �/ % P Œ�� D � a.e. on X as
C %1. Since ŒP. C C; �/� D Œ �, by Theorem 2.2 we conclude that

	
�
.m ı p1/jX��a;b

�
D 	

�
.m� ı p1/jX��a;b

�
:

Together with (25) this finishes the proof of (24).

From the claim and Lemma 3.7 and Lemma 3.8, we get that

	.mˆ/ D a0 C a1t C � � � C aN�1t
N�1
C aN .t

N /; (26)

where the ai ’s are coherent ideal sheaves on X .
Using Lemma 3.9, there exists T ! X ample such that p�1T ˝ L

m ˝ 	.mˆ/

is globally generated, which is equivalent to T ˝ Lm ˝ ai being globally generated
for all i (in contrast with the case where � is bounded, explored in [4], aN ¤ OX in
general).

We define

'm.v/ WD �
1

m
�.v/

�
	.mˆ/

�
D �

1

m
min
i

�
v.ai /C i

�
; v 2 Xdiv:

From the right-hand side of the formula, observe that 'm can be extended to an ele-
ment in H

gf
Q..LCm

�1T /an/, which we denote by the same symbol. For v 2 Xdiv,
it follows from the well-known argument using the Ohsawa–Takegoshi extension the-
orem (see [4, Lemma B.4]) that

��.v/.ˆ/ D lim
m!1

�
1

2m
�.v/

�
	.2mˆ/

�
D lim
m!1

'2m.v/

and the right-hand side defines an element in PSH.Lan/ by definition, since ¹'2mºm
is decreasing.
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Corollary 3.11. Let ¹ �º� be a test curve relative to � 2 PSH.X; �/. Then the map
 anWXdiv ! R admits a unique extension to  an 2 PSH.Lan/.

Proof. Observe that the extension is unique if it exists by Theorem 2.11. We may
assume that �C D 0, without loss of generality.

Let us first assume that � has positive mass. If ¹��º� is the maximization of ¹ �º�
then �an D an by definition. Hence, we can assume that ¹ �º� is maximal, i.e., ¹ { tºt
is a psh geodesic emanating from P Œ��. The result now follows from Proposition 3.10
and Proposition 3.1.

In general, take an ample line bundle S on X . Then the previous case shows
that  an 2 PSH..LC �S/an/ for any rational � > 0. It follows that  an 2 PSH.Lan/

by [15, Theorem 4.5].

Before we can prove Theorem 1.1, we deal with an intermediate case.

Theorem 3.12. Assume that ¹�º D c1.L/ for some big line bundle L on X . The
following hold:

(i) Let ¹ �º� ; ¹��º� 2 MTC	.�/. If  an � �an then  � � �� for any � 2 R. In
particular, the map ¹ �º� 7!  an is an injection MTC	.�/ ,! PSH.Lan/.

(ii) The image of the map

MTC	.�/ 3 ¹ �º� 7!  an
2 PSH.Lan/

contains PSH..L � T /an/ for any ample Q-line bundle T on X such that
L � T is big.

Proof. First observe that the map MTC	.�/! PSH.Lan/ is well defined by Corol-
lary 3.11.

We argue (i). Let v 2 Xdiv and t 2 QC. Then, using (17) we notice that

t an
�1
t
v
�
D sup
���
C
 

�
 an
� .v/C t�

�
:

Using the condition  an � �an, we obtain that

sup
�2R

�
 an
� .v/C t�

�
� sup
�2R

�
�an
� .v/C t�

�
:

As a result, since QC is dense in RC, the above inequality holds for all t � 0. Since
� 7!  an

� .v/;  
an
� .v/ are both concave, taking the t -Legendre transform of both sides

we conclude that  an
� .v/ � �

an
� .v/ for all � 2 R. Since the potentials  � ; �� are

	-models, from [27, Corollary 2.16] we obtain that  � � �� for all � 2 R.
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To argue (ii), we take � 2 PSH..L � T /an/ � PSH.Lan/, and we want to write
it as  an for some  2 MTC	.�/. Before we deal with this, let us only consider
� 2 H

gf
Q.L/, say

� D m�1 max
i

�
log jsi j C �i

�
;

where si are a finite number of sections of Lm and �i 2 Q.
We may assume that �1 � �2 � � � � � �N . Write I� for the set of i such that

�i D �. We denote the finitely many � so that I� is non-empty as �0 > � � � > �N .
Define a curve  � as follows:

 �i D
1

m
max
i2I�i

�
log jsi j2hm C �i

�
:

We define ¹ �º� to be the piecewise linear curve associated with the  �i (recall the
definition preceding (19)). Let ¹ 0�º� be the � -concave envelope of ¹ �º� .

By Lemma 3.2,  0an D  an D � on Xdiv. By Lemma 3.6 and Theorem 2.11, the
same holds on X an. We can replace  0� with P Œ 0� �	 when � < �C and  0

�C
with

the limit value of P Œ 0� �	 as � increases to �C . Defined this way, ¹ 0�º� is an 	-
maximal test curve, and we still have  0an D � on Xdiv. However, we may not have
that ¹ 0�º� 2 MTC	.�/ as  0�1 may not have positive mass.

Now we consider � 2 H
gf
Q.L � T / � H

gf
Q.L/ for some ample Q-line bundle T

such that L � T is still big. We may assume that T is a line bundle. Fix a smooth
strictly psh Hermitian metric hT on T with Chern form !.

Let ¹ 0�º� � PSH.X; � � !/ be the 	-maximal test curve with respect to � � !,
such that  0an D �, constructed above. We define �� 2 PSH.X; �/ in the following
manner:

�� WD P� Œ 
0
� �	; � < �

C

 0 ; �
�
C

 0
WD lim

�%�
C

 0

�� :

We get that ¹��º� � PSH.X; �/ is 	-maximal and �an D �.
Finally, we only need to argue that ¹��º� 2 MTC	.�/. This follows from the fact

that P� Œ 0� �	 � P� Œ 
0
� � and [64, Theorem 1.2]:Z

X

�n�� D

Z
X

�n
P� Œ 

0
� �	
�

Z
X

�n
P� Œ 

0
� �
D

Z
X

�
.� � !/ 0� C !

�n
�

Z
X

!n: (27)

Finally, we deal with the case when � 2 PSH..L � S/an/ for some ample Q-line
bundle S on X . By Theorem 2.12, we can take an ample line bundle S on X , a
decreasing sequence of rational numbers ci ! 0 and a decreasing sequence

�i 2 H
gf
Q

�
.L � S C ciS/

an�
� H

gf
Q.L

an/

converging to �. We will assume that ci � 1=2 for all i .
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Fix a smooth psh metric hS on S with !D c1.S;hS / > 0. By the previous step, we
can find ¹ i�º� 2MTC	.�/ such that  i;an D �i . Moreover, due to (27), we have thatZ

X

�n
 i�
� .1 � ci /

n

Z
X

!n �
1

2n

Z
X

!n; � 2 R: (28)

Since .�i /an�.�iC1/an, due to Theorem 3.12 (i), we obtain that ¹ i�º� is i -decreasing.
Let  � D infi  i� . By [25, Proposition 4.6] and Lemma 2.8, ¹ �º� 2 MTC	.�/ withZ

X

�n � �
1

2n

Z
X

!n:

We need to show that  an D �. Using (28), again, Lemma 2.1 implies that  an
� D

infi  
i;an
� when � < �C . To finish, we need to show that for any v 2 Xdiv, we have

sup
�2R

inf
i

�
 i;an
� .v/C �

�
D inf

i

sup
�2R

�
 i;an
� .v/C �

�
: (29)

Due to Lemma 2.1, we have that � 7!  
i;an
� .v/ is concave and usc on R. So (29)

follows from Lemma 3.13, proved below.

We state the following result from convex analysis, a special case of [53, Theo-
rem 2].

Lemma 3.13. Let fi WR! Œ�1;1/ (i 2 I ) be a monotone net of proper usc concave
functions and f WR! Œ�1;1/ another proper usc concave function. Assume that
fi .�/! f .�/ for all � 2 R. Then

{f D lim
i

{fi :

Recall the definition of PSHNA.�/ from Definition 3.3. When ¹�º D c1.L/ for
some pseudoeffective Q-line bundle L, we now define the map

PSHNA.�/ 3 � 7! �an
2 PSH.Lan/: (30)

Let � D ¹¹�!� º�º!2K 2 PSHNA.�/. Let ! 2 K be such that ¹!º D c1.T /, for
a Q-ample line bundle T . We get that ¹�!� º� 2 MTC	.� C !/, and hence .�!/an 2

PSH..LC T /an/ by Theorem 3.12 (i). We make the following preliminary definition:

�an
WD .�!/an: (31)

Among other things, we need to show that this definition is independent of the choice
of !: Let !0 2 K 0 such that ¹!0º D c1.T

0/, for some Q-ample line bundle T 0 and
! � !0. Then we have that

P�C!0 Œ�
!
� �	 D �

!0

� ; � < �C� :
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As a result, using [27, Proposition 2.18 (ii)], we get that .�!� /
anD .�!

0

� /
an; � < �C� .

Comparing with (17), we arrive at .�!/an D .�!
0

/an, as desired. Moreover, our above
analysis also shows that �an 2

T
L0 PSH..LC L0/an/, where L0 runs over all ample

Q-line bundles on X . The latter space is equal to PSH.Lan/ by [15, Theorem 4.5], so
our map � 7! �an from (31) is indeed well defined.

Observe that
�an.vtriv/ D �

C

� ; (32)

where vtriv denotes the trivial valuation.
We show that the map of (30) is actually a bijection, giving a transcendental inter-

pretation of the non-Archimedean metrics of Boucksom–Jonsson.

Theorem 3.14. Assume that ¹�º D c1.L/ for some pseudoeffective Q-line bundle L.
The map of (30) is a bijection. In addition, let �; � 2 PSHNA.�/. If �an � �an, then
� � �.

Proof. By scaling, we may assume that L is a line bundle. We first address the
last statement. Let � D ¹¹�!� º�º! and � D ¹¹�!� º�º! . Given that �an � �an, Theo-
rem 3.12 (i) gives that

�!� � �
!
� ; � 2 R; ! 2K;

implying that � � �. This immediately gives that � 7! �an is injective.
To address surjectivity, let � 2 PSH.Lan/. Let ! 2 K such that ¹!º D c1.T /

for a Q-ample line bundle T . Then � 2 PSH..LC T /an/, and by Theorem 3.12 (ii)
there exists ¹�!� º� 2 MTC	.� C !/ such that .�!/an D �. Let !0 2 K such that
¹!0º D c1.T

0/, for some Q-ample line bundle T 0 and ! � !0. Due to injectivity of
MTC	.� C !

0/ 7! PSH..LC T 0/an/, we get that

P�C!0 Œ�
!
� �	 D �

!0

� ; � < �C� :

For a non-rational form !00 2K , let ! 2K such that ¹!º D c1.T / for a Q-ample
line bundle T and ! � !00. Then we define

�!
00

� D P�C!00 Œ�
!
� �	; � < �C� :

It is immediate to see that the above definition is independent of the choice of !.
We see that ¹¹�!� º�º! 2 PSHNA.�/, and �an D �, proving surjectivity.

Remark 3.15. Boucksom–Jonsson’s theory extends to any pseudoeffective .1; 1/-
class ¹�º in the Néron–Severi group ofX with real coefficients, giving a space of non-
Archimedean metrics PSH.¹�ºNA/. In this case we still have a canonical identification

PSHNA.�/
�
�! PSH

�
¹�ºNA�: (33)
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To see this, let K 0 be the directed set of .1; 1/-classes ¹� 0º in the Néron–Severi group
of X with rational coefficients such that ¹� 0º � ¹�º is a Kähler class. Then we have
natural identifications

PSHNA.�/
�
�! lim
 �
� 02K0

PSHNA.� 0/; PSH
�
¹�ºNA� �

�! lim
 �
� 02K0

PSH
�
¹� 0ºNA�:

The former follows immediately from our definition, the latter follows from [15, Sec-
tion 4.1, (PSH2)]. In particular, (33) follows from Theorem 3.14.

Using our analysis we conclude that the envelope conjecture holds in our setting,
as confirmed by Boucksom–Jonsson using non-Archimedean methods [16].

Corollary 3.16. Conjecture 2.13 holds for any pseudoeffective Q-line bundleL onX .

Proof. Take a smooth closed real .1; 1/-form � in c1.L/. Let ¹'iºi2I be a bounded
from increasing net in PSHNA.�/. By Theorem 3.14, 'i D �i;an with �i 2 PSHNA.�/.
By the same theorem, ¹'iºi2I is also an increasing net. Moreover, by (32),

sup
i2I

�C
'i
<1:

By Theorem 3.4, we can find � 2 PSHNA.�/ such that for any ! 2 K , �i;!� % �!�
almost everywhere for any � < �C� .

We claim that �i;an converges to �an. For any fixed ! 2K , the usc property of the
Lelong number [8, Lemma 2.6] gives

.�!� /
an.v/ D lim

i
.�i;!� /an.v/ for v 2 Xdiv, � < �C :

It follows that

�an.v/ D .�!/an.v/ D sup
�2R

�
.�!� /

an.v/C �
�

D sup
�2R

sup
i2I

�
.�i;!� /an.v/C �

�
D sup

i2I

�i;an.v/

for all v 2 Xdiv, finishing the proof.

3.4. The non-Archimedean finite energy space

Let X be a compact Kähler manifold of dimension n and ¹�º be a big cohomology
class on X . Let

V D

Z
X

�nV�

denote the volume of ¹�º.
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Recall that MTC	.�/ naturally embeds into PSHNA.�/ (see (22)). For ¹��º� 2
MTC	.�/ we define the Monge–Ampère energy INA

�
WMTC	.�/! Œ�1;1/ as

INA
� .�/ WD I�¹��º D �

C
� C

1

V

Z �
C
�

�1

�Z
X

�n�� � V

�
d�: (34)

We extend INA
�

to a function on PSHNA.�/ by setting it to be �1 on PSHNA.�/ n

MTC	.�/.
We then define the non-Archimedean finite energy space as

E1;NA.X; �/ WD ¹� 2 PSHNA.�/ W INA
� .�/ > �1º:

Since V �
R
X
�n�� , for (34) to be finite

R
X
�n�� must converge to V as � & �1.

By [23, Theorem 2.3] this implies thatZ
X

�n��1 D V:

Since ��1 is maximal, we obtain that ��1 D V� , i.e., ¹��º� is a test curve relative
to V� , whenever ¹��º� 2 E1;NA.X; �/.

Similarly, the non-Archimedean J functional is introduced as

JNA
� .�/ D �C� � I

NA
� .�/ D

1

V

Z �
C
�

�1

�
V �

Z
X

�n��

�
d�: (35)

When ¹�º D c1.L/ for some ample Q-line bundle L, it has been pointed out in [27,
Theorem 1.1, Theorem 1.2] that our definitions of E1;NA.X;�/ and JNA

�
; INA
�

coincide
with the ones given in [15].

In the literature, the space E1.Lan/ has not yet been defined for a general big Q-
line bundleL. Above we gave an analytic definition, but it is desirable to have a purely
non-Archimedean/algebraic definition as well. When L is ample, the space E1.Lan/

is defined and studied by Boucksom–Jonsson in [15]. More generally, over general
complete valued field, still assume L to be ample, the space E1.Lan/ is studied by
Reboulet in [55].

After defining finite energy non-Archimedean spaces, we can finally relate the 	-
maximal finite energy rays to non-Archimedean potentials, as a direct consequence of
Theorem 2.6.

Theorem 3.17. There is a bijective function ¹ �º� 7! ¹ { tºt , between R1
	
.X; �/ and

E1;NA.X; �/. Moreover, under this correspondence, the radial Monge–Ampère energy
corresponds to the non-Archimedean Monge–Ampère energy defined in (34).
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4. Approximations of 	 -maximal rays by filtrations and flag
configurations

In this section X is a connected projective manifold of dimension n. The purpose of
this section is to show that an 	-maximal finite energy ray can be approximated by
simpler rays induced by flag configurations or filtrations defined below.

4.1. Filtrations of big line bundles

For this subsection let L be a big line bundle on X and h be a smooth Hermitian
metric. Let � WD �ddc log h. We set vol.L/ WD

R
X
�nV�

. Denote the section ring of L
by R.X;L/:

R.X;L/ WD
M
m2N

Rm; Rm WD H
0.X;Lm/:

Definition 4.1. By a (bounded left-continuous multiplicative decreasing) filtration F

of the section ringR.X;L/, we mean a family of linear subspaces ¹F �Rmº�2R ofRm
for each m 2 N such that

(i) F �Rm � F �0Rm whenever � � �0;

(ii) F �Rm D
T
�0<� F �0Rm;

(iii) F �1Rm1 � F
�2Rm2 � F �1C�2Rm1Cm2 for �1; �2 2 R and m1; m2 2 N;

(iv) there exists C > 0 such that F �CmRm D Rm and F CmRm D ¹0º for all
m 2 N.

Given a filtration F of R.X;L/ and m 2 N, set

�m.F / WD max¹� 2 R W F �Rm ¤ ¹0ºº:

Then clearly �m.F /C �k.F / � �mCk.F / for any m; k 2 N, so by Fekete’s lemma
one can put

�L.F / WD lim
m!1

�m.F /

m
D sup
m2N

�m.F /

m
:

Moreover, for any � < �.F /, set

vol.F R.�// WD lim
m!1

dim F �mRm

mn=nŠ

and

SL.F / WD �L.F /C
1

vol.L/

Z �L.F /

�1

�
vol.F R.�// � vol.L/

�
d�:

It is trivial to see that SL.F / � �L.F / in general.
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LetE be any prime divisor overX . It induces a natural filtration FE on the section
ring R.X;L/. More precisely, for � 2 R and m � 1 one puts

F �
ERm WD ¹s 2 Rm D H

0.X;Lm/ W ordE .s/ � �º:

In this case, we set for simplicity

�L.E/ WD �L.FE / and SL.E/ WD SL.FE /:

Lemma 4.2. For any prime divisor E over X , one has SL.E/ < �L.E/.

Proof. Consider f .�/ WD vol.FER.�// D vol.L � �E/ for � 2 Œ0; �L.E/�. This is a
continuous and decreasing function with f .0/ D vol.L/ > 0 and f .�L.E// D 0. So
one must have

SL.E/ D
1

vol.L/

Z �L.E/

0

f .�/ d�

<
1

vol.L/

Z �L.E/

0

f .0/ d� D �L.E/:

Definition 4.3. Given any filtration F of R.X;L/, for � < �L.F / and m 2 Z>0, let

�F
�;m WD usc sup

° 1
m

log jsj2hm W s 2 F �mH 0.X;Lm/; jsj2hm � 1
±
;

�F
� WD usc sup

m
�F
�;m:

Observe that m�F
�;m is super-additive, so by Fekete’s lemma,

�F
� D usc lim

m!1
�F
�;m:

Setting �F
�.F /
WD lim�%�.F / �� and �F

� D�1 if � > �.F /, we get that �F D ¹�F
� º�

is a bounded test curve, called the test curve associated with F .

When working with a divisor E over X we will use the notation

�E�;m WD �
FE
�;m; �E� WD �

FE
� :

But we need to point out that, as opposed to the ample setting studied in [27, 56],
it is not clear if the test curves thus constructed are maximal in the big case. We
conjecture this to be the case, but as we shall see, this uncertainty will not cause any
issue for the discussions below.

Definition 4.4 ([54, 56]). We define the Phong–Sturm ray ¹rF
t ºt associated with a

filtration F of R.X; L/ to be the inverse Legendre transform of the maximization
of ¹�F

� º� , defined in (13).
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Due to boundedness of F , we immediately notice that rF
0 D V� and yrF

� D V� for
� � �C . This implies that the potentials yrF

� , �F
� , � < �.F / have non-zero mass.

According to the next lemma, the Phong–Sturm ray is 	-maximal.

Lemma 4.5. We have that yrF
� D P Œ�

F
� � D P Œ�

F
� �	 for any � < �L.F /.

Proof. By Fekete’s lemma,  m WD �F
�;2m % �F

� � P Œ�
F
� �: This implies that

P Œ m�	 D P Œ m� � P Œ�
F
� �;

by [27, Proposition 2.20]. Let � WD limmP Œ m�	 . Since � < �L.F /, we have that �D
P Œ��	 , by [27, Lemma 2.21 (iii)]. Since �F

� � � � P Œ�
F
� �, and 	-model potentials

are model [27, Proposition 2.18], we obtain that � D P Œ�F
� �, hence

P Œ�F
� � D P Œ�

F
� �	:

Lastly, we note the following formula for the radial Monge–Ampère energy of the
Phong–Sturm ray.

Proposition 4.6. Let F be a filtration of R.X;L/. Then I�¹rF
t º D SL.F /.

Proof. First, by [29, (25)], we have

I�¹r
F
t º D I�¹

{�F
t º D �L.F /C

1

vol.L/

Z �L.F /

�1

�Z
X

�n
�F
�
� vol.L/

�
d�:

So it is enough to argue that Z
X

�n
�F
�
D vol.F R.�//

for any � < �L.F /. This is a consequence of [44, Theorem 1.3]. Indeed, consider the
graded linear series F R.�/ WD ¹F �mRmºm2N . It contains an ample linear series in
the sense of [9, Lemma 1.6]. Then for all m sufficiently divisible the natural map

X Ü P .F �mRm/
�

is birational to its image. So [44, Theorem 1.3] implies that
R
X
�n
�F
�

D vol.F R.�//, as
wished.

4.2. Flag configurations

Definition 4.7. A flag configuration of a big cohomology class � is a (partial) flag of
coherent analytic ideal sheaves

a0 � a1 � � � � � aN D 	.V� /:

By convention, a` D 0 for ` 2 Z<0 and a` WD aN if ` 2 Z�N .
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A flag configuration will be sometimes conveniently denoted as an analytic coher-
ent ideal sheaf on the product X �C:

a WD a0 C a1s C � � � C aN�1s
N�1
C aN .s

N / � O.X �C/:

For r 2 N and � 2 N, we introduce the following coherent sheaves associated
with a flag configuration a:

ar;� WD
X

�1C���C�rD�
�i2N

a�1a�2 : : : a�r D
X

P
j ǰDr;

P
j j ǰD�

ǰ2N for j2N

1Y
jD0

a ǰ

j : (36)

We notice that � 7! ar
�

is increasing and

ar;� � ar 0;�0 � arCr 0;�C�0 : (37)

For � 2 R>0 n Z, we formally set ar;� D ar;b�c. For � < 0, we set ar;� D 0.
Returning to the case when ¹�º D c1.L/, to a flag configuration a, one can asso-

ciate a filtration of R.X;L/ D
L
r2N H

0.X;Lr/, following ideas from [52]:

F �
a H

0.X;Lr/ WD H 0.X;Lr ˝ ar;��/ � H
0.X;Lr/: (38)

Proposition 4.8. For any flag configuration a of L, F �
a defined in (38) is a filtration

on R.X;L/ in the sense of Definition 4.1.

Proof. We need to verify the conditions in Definition 4.1. Conditions (i) and (ii) are
obvious. We verify condition (iii), which says that for any �; �0 2 R, r; r 0 2 N, we
have

F �
a H

0.X;Lar/F �0

a H 0.X;Lar
0

/ � F �C�0

a H 0.X;LrCr
0

/:

By definition, this amounts to

H 0.X;Lr ˝ ar;��/ �H
0.X;Lr

0

˝ ar 0;��0/ � H
0.X;LrCr

0

˝ arCr 0;�.�C�0//:

It suffices to argue
ar;�� � ar 0;��0 � arCr 0;�.�C�0/: (39)

When � > 0 or �0 > 0 (39) is trivial. So we may assume that �; �0 � 0, and (39)
follows from (37).

It remains to argue condition (iv) in Definition 4.1. Namely, the filtration is linearly
bounded. By definition, F �

a H
0.X;Lr/D 0 for � > 0. It suffices to show that there is

C > 0 so that
H 0.X;Lr ˝ ar;Cr/ D H

0.X;Lr/: (40)

We claim that it suffices to take C DN . In this case, ar;Nr D arN D 	.V� /
r � 	.rV� /

by the multiplicativity of multiplier ideal sheaves [32]. As V� has minimal singulari-
ties, H 0.X;Lr ˝ 	.rV� // D H

0.X;Lr/, so (40) follows.
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Definition 4.9. The Phong–Sturm ray ¹rL;at ºt 2R1
�

associated to a flag configuration
aD a0C a1sC � � � C aN�1s

N�1C aN .s
N / is the Phong–Sturm ray of the associated

filtration F �
a (recall Definition 4.4). When there is no risk of confusion, we simply

write ¹ra
t ºt .

Careful readers might notice that in the ample case there is a minor difference in
our definition of filtration associated to a flag ideal and the one in [13], when L is
ample. Though this is the case, we now point out that the associated Phong–Sturm
ray is going to be the same, regardless what filtration one works with, ours or the one
in [13].

Assume that L is ample and a is a flag configuration with aN D OX . We assume
that L˝ aj is globally generated for all j . As described in [13, 52] it is possible to
associate to such a a test configuration: let pWX ! X � C be the normalized blow
up of X � C with respect to flag ideal a WD a0 C a1s C � � � C aN .s

N / and let E be
the exceptional divisor. Set L D p�p�1L ˝ O.�E/, where p1WX � C ! X is the
natural projection. Then with respect to the obvious C�-action, .X;L/ is a normal
semi-ample test configuration of .X; L/ in the traditional sense. Let F.X;L/ denote
the Z-filtration of R.X; L/ induced by .X;L/, see [13, Section 2.5] for the precise
definition. It is well known that

F �
.X;L/H

0.X;Lr/ D H 0.X;Lr ˝ xar
��/; (41)

where xar is the integral closure of ar and the subindex �� denotes the coefficient
of s�� in the expansion in s ([13, Proposition 2.21]). We formally extend F.X;L/ to
an R-filtration by setting

F �
.X;L/H

0.X;Lr/ D F
d�e

.X;L/
H 0.X;Lr/:

From (41), we find immediately that

F �
.X;L/H

0.X;Lr/ � F �
a H

0.X;Lr/; (42)

and strict containment naturally occurs, however we now confirm that the associated
Phong–Sturm rays do coincide.

Indeed, let ¹ .X;L/� º� be the test curve defined by the filtration F.X;L/. Due to
Theorem 3.12 (ii) it is enough to show that  .X;L/an D .yra/an. This is confirmed by
the next lemma.

Lemma 4.10. Under the assumptions above, we have

.yra/an.v/ D  .X;L/an.v/ D ��.v/.a/ D max
j

�
�v.aj / � j

�
for v 2 Xdiv.
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Proof. Due to Fekete’s lemma we have that �F a
� - �

F a

�;2k � �F a
�;1 . Due to global

generatedness of L˝ a�� , we get that

�v.�F
� / � �v

�
F �H 0.X;L/

�
D �v.aj /; v 2 Xdiv:

As a result,
.yra/an

� max
j

�
�v.aj / � j

�
:

We argue the reverse direction. Due to (42), we have that { .X;L/t � ra
t : Hence, it

suffices to show that

max
j

�
�v.aj / � j

�
� { .X;L/;an.v/ (43)

for any v 2 Xdiv. However, we actually have equality here. Indeed, by [56, Theo-
rem 9.2] and [4, Lemma 4.4] we have that

{ .X;L/;an.v/ D 'X;L.v/;

where 'X;L.v/ is the non-Archimedean potential associated with .X;L/. By def-
inition, '.X;L/.v/ D ��.v/.E/. However, the pushforward of O.�E/ is just xa, the
integral closure of a. Hence,

max
j

�
�v.aj / � j

�
D ��.v/.a/ D ��.v/.xa/ D { .X;L/;an.v/:

Putting everything together, we obtain equality in (43), finishing the proof.

Now we come back to the general situation where L is only assumed to be big. In
this case, we note that when all L˝ aj are globally finitely generated, the first step
in the proof of the above result implies that

.yra/an.v/ � max
j

�
�v.aj / � j

�
D �.v/.a/: (44)

Next we show that the procedure of (26) associates a sequence of flag configura-
tions to any geodesic ray.

Lemma 4.11. Let � 2 PSH.X; �/ be a model potential with positive mass, and let
ˆ 2 PSH.X � �; p�1�/ be the potential corresponding to the geodesic ray ¹utºt in
PSH.X; �/ emanating from � with supu1 � 0. Given any m � 0, let

	.mˆ/ D a0 C a1s C � � � C aN�1s
N�1
C aN .s

N /;

as in (26). Then we have aN D 	.m�/.
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Proof. Recall (24) that 	.mˆ/jX��� D p�1	.m�/. This allows us to regard a0 C

a1s C � � � C aN�1s
N�1 C aN .s

N / as an algebraic coherent ideal sheaf on X �C by
Lemma 3.8, so�

a0 C � � � C aN�1s
N�1
C aN .s

N /
�
jX�C�

D
�
a0 C � � � C aN�1s

N�1
C aN .s

N /
�
˝CŒs� CŒs; s�1�

D p�1aN :

Comparing the fibers at s D 1 we conclude that aN D 	.m�/.

We argue that for the converse of (44), one does not even need global finite gen-
eration.

Lemma 4.12. Let a D a0 C a1s C � � � C aN�1s
N�1 C aN .s

N / be a flag configura-
tion of a big line bundle L. Then

.yra/an.v/ � max
j

�
�v.aj / � j

�
D �.v/.a/: (45)

Proof. We first reduce the general case to the case when L is very ample and L˝ aj
is globally generated for all j .

Suppose that A is a very ample line bundle so that L˝ A is ample and such that
A˝L˝ aj is globally generated for all j . Such A exists by [43, Theorem II.7.6] for
example. Choose any C 2 N>0. Let b be the following flag configuration of L˝ A:

bk D

8̂̂<̂
:̂

ak; k D 1; : : : ; N;

aN ; k D N C 1; : : : ; N C C � 1;

OX ; k D N C C:

So bk � ak for all k 2N. After choosing a smooth positive metric on A, it is obvious
that �

yrL;a
�an
�
�
yrL˝A;b

�an
:

If we managed to prove the result for b and L˝ A, then we would have�
yrL;a

�an
�
�
yrL˝A;b

�an

� max
°

max
jD1;:::;N

�
�v.aj / � j

�
;�N � C

±
:

Letting C!1, we conclude (45). The lemma is therefore reduced to proving (45)
for ample bundles L. But this was proved in Lemma 4.10.

We will also need the following general approximation result for geodesic rays,
reminiscent of [27, Theorem 3.19].
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Lemma 4.13. Let ¹�tºt 2 R1
�

be a ray in a big class ¹�º. There exists an increas-
ing sequence of subgeodesic rays ¹ jt ºt � PSH.X; �/, not necessarily emanating
from V� , such that �

 
j
t
� "j! for some "j & 0, and P Œ y j� �% P Œy�� � D y�� a.e. for

any � 2 R.

Proof. For any ı > 0, due to � -concavity of test curves, the potential y�
�
C
� �ı

has non-
zero mass, so by [28, Proposition 3.6] there exists vı 2 PSH.X; �/ such that

vı � y��C� �ı
and �vı � "ı!

for some "ı > 0.
Let ¹�ıt ºt be the subgeodesic associated with the test curve y�ı� WD .1� ı/y�� C ıvı

for � � �C� � ı and y�ı� WD �1 for � > �C� � ı. Since y�ı� � y�� for all � 2 R, we get
that

�ıt � �t and ��ıt
� ı�vı � ı"ı!

for all t � 0. Also, we have that

y�� D P Œy�� � � P Œy�
ı
� � � .1 � ı/P Œ

y�� �C ıP Œvı � � .1 � ı/y�� C ıP Œvı �:

Since supX P Œvı � D 0, letting ı ! 0 we obtain that P Œy�ı� �! y�� in the L1 topology.
However, ı ! �ıt is not easily seen to be ı-increasing. To address this, we intro-

duce the sequence of subgeodesics  jt WD maxkD1;:::;j �
1=k
t , that satisfies the require-

ments of the lemma and is additionally increasing.

Finally, we arrive at the main result of this section.

Theorem 4.14. Let ¹�tºt 2 R1
	
.X; �/ be an 	-maximal geodesic ray with potential

ˆ 2 PSH.X ��;p�1�/, normalized by supX �1 D 0. For m � 0, let

	.2mˆ/ D am0 C am1 s C � � � C amNm�1s
Nm�1 C amNm.s

Nm/ � OX��;

as in (26). Let ¹�mt ºt WD ¹2
�mr

L2
m
;	.2mˆ/

t ºt � PSH.X;�/ be a rescaled Phong–Sturm
ray. We have that �mt & �t for all t � 0. In particular, d c1 .¹�

m
t ºt ; ¹�tºt /! 0.

Proof. Let ¹F �;mº� be the filtrations ofR.X;L2
m
/ induced by the flag configurations

¹am
k
ºk of L2

m
, defined in (38). By the subadditivity of multiplier ideals, we have that

	.2mC1ˆ/ � 	.2mˆ/2:

In particular, amC1
k
�
P
j amj am

k�j
. As a result, amC1

r;�
� am

2r;�
(recall (36)). We obtain

that
F �;mC1H 0

�
X;L2

mC1r
�
� F �;mH 0

�
X;L2

m2r
�
:

This implies that y�mC1� � y�m� , hence ¹�mt ºt is indeed m-decreasing.
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By Lemma 4.12,

y�m;an.v/ � �
1

2m
min
j

�
v.amj /C i

�
D �2�m�.v/

�
	.2mˆ/

�
for any v 2 Xdiv. On the other hand, by [4, Lemma B.4], for any v 2 Xdiv, we have

�2�m�.v/
�
	.2mˆ/

�
� ��.v/.ˆ/C 2�m

�
AX .v/C 1

�
: (46)

The right-hand side of (46) is nothing but y�an.v/C 2�m.AX .v/C 1/, so we obtain
that

y�m;an.v/ � y�an.v/C 2�m
�
AX .v/C 1

�
: (47)

Let ¹ jt ºt � PSH.X; �/ be the sequence of subgeodesics from Lemma 4.13,
approximating ¹�tºt from below. Let‰j 2 PSH.X ��;���/ be the potentials asso-
ciated to the subgeodesics ¹ jt ºt . Then

	
�
2m‰j

�
D a

m;j
0 C a

m;j
1 s C � � � C a

m;j
Nm;"�1

sNm;j�1 C a
m;j
Nm;j

�
sNm;j

�
:

We have that
�
 
j
t
� "j!:

We claim that L2
m
˝ a

m;j

k
is globally generated for m � m0.j /. Indeed. Let .G; h/

be a hermitian ample line bundle on X with curvature equal to � > 0.
For m1.j / big enough, we have that

�
 
j
t
�

1

2m1
�:

As a result, we can apply Lemma 3.9 to the coherent sheaf ��1 .L
2m1 ˝ G�1/ ˝

	.2m1‰j / and conclude existence of k > 0 such that

p�1
�
L2

m

˝Gk�2
m�m1

�
˝ 	

�
2m‰j

�
for all m � m2.j / � m1.j /. Since p�1G

2m�m1�k is globally generated for m big
enough, we get that p�1 .L

2m/˝ 	.2m‰j / is globally generated for all m � m0.j /.
The argument of (26) now yields the claim.

We fix m � m0.j /. Then by (44), for any v 2 Xdiv we find

�2�m�.v/
�
	.2m‰j /

�
� 2�m

�
yrL

2m ;	.2m‰j /
�an
.v/:

Due to ‰j � ˆ, we observe that

2�m
�
yrL

2m ;	.2m‰j /
�an
.v/ � 2�m

�
yrL

2m ;	.2mˆ/
�an
.v/ D

�
y�m
�an
.v/:
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Comparing the last two inequalities and letting m ! 1, by [4, Lemma B.4] and
Proposition 3.1 we find�

y j
�an
.v/ D ��.v/.‰j / D lim

m!1
�
1

2m
�.v/

�
	.2m‰j /

�
� lim
m!1

�
y�m
�an
.v/:

Due to Lemma 3.13 and the last part of Lemma 4.13, we have that y j;an.v/% y�an.
Hence, letting j !1 we find that

y�an.v/ � lim
m!1

y�m;an.v/ � �m;an.v/: (48)

By Theorem 3.14 we obtain that �t � �mt . Let �t WD limt �
m
t 2 PSH.X; �/; t > 0 be

the 	-maximal limit ray. We have �t � �t � �mt .
Lettingm!1 in (47) and (48), we arrive at �an D �an: Using Theorem 3.14 we

conclude that ¹�tºt D ¹ tºt , finishing the proof.

5. Applications to Ding stability

In this section, we fix a connected projective manifold X of dimension n. Take a
smooth closed real .1; 1/-form � on X representing a big cohomology class ¹�º and
V WD

R
X
�nV�

.
We consider a general qpsh function onX . In addition, one can consider another

qpsh function � on X with analytic singularity type. We will apply the results from
previous sections to study the stability notions associated to the KE type equation (2).

In what follows, set � WD e�� !n to be the measure defined as in (1). Let ı� WD
ı�.¹�º/ be the delta invariant defined in (4). And for any u 2 PSH.X; �/, we set

c�Œu� WD sup
²
 � 0 W

Z
X

e�u d� <1
³
:

As in [29], we will investigate the following energy functionals going back to [38].
For any � 2 .0; c�ŒV� �/, set

L�
�.'/ WD �

1

�
log

Z
X

e��'d�; D�
�.'/ D L�

�.'/ � I� .'/ for ' 2 E1.X; �/;

where I� .�/ is the Monge–Ampère energy and D�
� is called the �-Ding functional.

Given any finite energy sublinear subgeodesic ray ¹utºt , it is convenient to intro-
duce radial functionals:

L�
�¹utº WD lim

t!1

L�
�.ut /

t
; I�¹utº WD lim

t!1

I� .ut /

t
;

D�
�¹utº WD L�

�¹utº � I�¹utº:

(49)
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Then one has the following useful radial formulae (see [29, (8) and (25)]):

L�
�¹utº D sup¹� 2 R W c�Œyu� � � �º (50)

and

I�¹utº D �
C

yu
C
1

V

Z �
C

yu

�1

�Z
X

�n
yu�
�

Z
X

�nV�

�
d�: (51)

5.1. Continuity of the singularity exponent and the radial Ding energy

We first prove the continuity of the radial Ding functional. Denote by �� the space of
singularity types of � -psh functions (cf. §2.1).

We start with the following lemma, complementing [33, Theorem 1.2].

Lemma 5.1. Let uj ; u 2 PSH.X; �/ such that uj & u and
R
X
�nuj &

R
X
�nu > 0. Then

c�Œuj �! c�Œu�.

Proof. We apply [25, Lemma 4.3] with u and uj in place of u and v there, we find
that for

bj D min
²
1

2
C
1

2

� R
X
�nujR

X
�nuj �

R
X
�nu

�
; j

³
;

we have vj WD P.bjuC .1 � bj /uj / 2 PSH.X; �/. Note that bj !1 as j !1.
Next we take j̨ D b

�1
j . Then j̨ & 0 and vj 2 PSH.X; �/ such that

.1 � j̨ /uj C j̨ vj � u:

In view of [29, (34)], we can choose c > 0 and p >1 such that c< cp< limj c�Œuj �.
Moreover, after subtracting a constant, we can assume without loss of generality that
uj � 0 for all j . Let q > 1 be such that 1=p C 1=q D 1. By Hölder’s inequality, we
have that Z

X

e�cu d� �
Z
X

e�c..1� j̨ /ujC j̨ vj / d�

� ke�c..1� j̨ /uj kLp.d�/ke�c j̨ vj kLq.d�/
� ke�cuj kLp.d�/ke�c j̨ vj kLq.d�/:

As a result, to argue that c < c�Œu�, it is enough to argue that
R
X

e�cq j̨ vj d� is
finite for j high enough. By [4, Theorem B.5], there exists r > 1 such thatZ

X

e��r !n <1:
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Let t > 1 such that 1=t C 1=r D 1. Another application of Hölder’s inequality givesZ
X

e�cq j̨ vj d� D
Z
X

e��cq j̨ vj� !n

� C

�Z
X

e��cqt j̨ vj!n
�1=t�Z

X

e��r !n
�1=r

:

As j !1 we have that c j̨ qt ! 0. As a result, the Lelong numbers of c j̨ qtvj

approach zero uniformly as j !1. Therefore, by Skoda’s integrability theorem [41,
Theorem 8.11] we obtain that

R
X

e��cqt j̨ vj!n is finite for high enough j , implying
that c < c�Œu�. Letting c % limj c�Œuj �, we arrive at limj c�Œuj � � c�Œu�. As the
reverse inequality is trivial, the result follows.

Recall that �� admits a pseudometric d� , introduced and studied in [25]. As a
corollary of the above result, we note the following theorem, another complement
to [33, Theorem 1.2], as well as [25, Theorem 1.3].

Theorem 5.2. Let Œuj �; Œu� 2 �� such that d� .Œuj �; Œu�/! 0. Then

lim
j
c�Œuj � D c�Œu�:

Proof. Notice that uj ; u 2 PSH.X; � C !/. By [65, Corollary 4.3] d �
�
.Œuj �; Œu�/! 0

implies that d �C!
�

.Œuj �; Œu�/! 0. In particular, after replacing � with � C !, we can
assume that

R
X
�nu > 0.

By [29, Proposition 2.5], we have that

c�Œuj � D c�ŒP Œuj �� and c�Œu� D c�ŒP Œu��:

By [25, Theorem 3.3], we can replace uj , u and assume that ujDP Œuj � and uDP Œu�,
i.e., uj , u are model potentials.

Suppose that the conclusion is false, and we can find a subsequence of uj , again
denoted by uj , such that limj c�Œuj � exists but limj c�Œuj � ¤ c�Œu�. By [25, Theo-
rem 5.6], after perhaps taking another subsequence, there exists wj ; vj 2 PSH.X; �/
increasing/decreasing sequences such that vj � uj � wj such that d� .Œwj �; Œu�/! 0,
d� .Œvj �; Œu�/! 0, vj % u and wj & u. We clearly have that

c�Œvj � � c�Œuj � � c�Œwj �:

By Theorem 2.2 and (1), for any c 2 .0; c�Œu�/, one has e�� �cvj 2L1.X/ for j � 1,
implying that c�Œvj � � c for j � 1, and hence c�Œvj �! c�Œu�. That c�Œwj �! c�Œu�

follows from the previous lemma, concluding the proof.
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The following auxiliary result is also needed.

Proposition 5.3. Let ¹ukt ºt ; ¹utºt 2R1.X; �/ such that d c1 .¹u
k
t ºt ; ¹utºt /! 0. Then

(i) �C
{uk
! �C

{u
and I�¹ukt º ! I�¹utº;

(ii) if ¹ukt ºt is k-increasing/k-decreasing then yuk� is increasing a.e./decreasing
to yu� , and

R
X
�n
yuk�
!
R
X
�n
yu�
> 0, for any � < �C

{u
.

Proof. Since d c1 .¹u
k
t ºt ; ¹utºt /! 0, we have that d1.uk1 ; u1/! 0. This implies that

I.uk1/! I.u1/, giving I ¹ukt º ! I ¹utº. We also obtain thatZ
X

juk1 � u1j!
n
! 0;

which implies that supX u
k
1 ! supX u1, by Hartogs’ lemma. Since

sup
X

uk1 D sup
X

.uk1 � V� / D �
C

{uk
and sup

X

u1 D sup
X

.u1 � V� / D �
C

{u
;

we get that �C
{uk
! �C

{uk
, proving (i).

Now we address (ii) in case ¹ukt ºt is k-decreasing. The increasing case, is handled
similarly. Since �C

{uk
! �C

{uk
, by [29, Theorem 3.9] we have that

0 � I�¹u
k
t º � I�¹utº D

1

V

Z �
C

yu

�1

�Z
X

�n
yuk�
�

Z
X

�n
yu�

�
d� C o.k/:

As yuk� � yu� , by [64, Theorem 1.2] we have thatZ
X

�n
yuk�
�

Z
X

�n
yu�

for � < �C
yu

. Since I�¹ukt º ! I�¹utº, by [29, Lemma 3.11] we obtain thatZ
X

�n
yuk�
!

Z
X

�n
yu�
> 0

for all for � < �C
yu

. Finally, [23, Theorem 3.12] gives yuk� & yu� for all for � < �C
yu

.

Theorem 5.4. For any � 2 .0; c�ŒV� �/, the functional D�
�WR

1.X; �/! R is d1c -con-
tinuous.

Proof. Suppose that ¹ukt ºt ; ¹utºt 2 R1.X; �/ for k 2 N>0 such that

d c1
�
¹ukt ºt ; ¹utºt

�
! 0:

Then we need to show that D�
�¹u

k
t º ! D�

�¹utº.
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Since I�¹ukt º ! I�¹utº, in light of (50), it is enough to argue that

lim
k!1

�
sup¹� 2 R W c�Œyu

k
� � � �º

�
D sup¹� 2 R W c�Œyu� � � �º: (52)

We first assume that ¹ukt ºt is k-increasing. By Proposition 5.3 (ii), we get that yuk�%yu�
a.e. for any � < �C

{u
. Clearly,

lim
k!1

�
sup¹� 2 R W c�Œyu

k
� � � �º

�
� sup¹� 2 R W c�Œyu� � � �º:

Then the equality follows from Theorem 2.2, finishing the argument when ¹ukt ºt is
k-increasing.

Now we assume that ¹ukt ºt is k-decreasing. By Proposition 5.3 (ii), yuk� & yu� andR
X
�n
yuk�
&
R
X
�n
yu�

for any � < �C
{u

. As a result, c�Œuk� �! c�Œu� � for any � < �C
{u

, by
Lemma 5.1. This implies that

lim
k!1

�
sup¹� 2 R W c�Œyu

k
� � � �º

�
� sup¹� 2 R W c�Œyu� � � �º;

with the other direction being trivial. Hence, the result follows when ¹ukt ºt is k-
decreasing.

For general ¹ukt ºt , by Proposition 2.3, after perhaps taking a subsequence, there
exists ¹vkt ºt ; ¹w

k
t ºt k-increasing and k-decreasing rays respectively, such that

d c1
�
¹vkt ºt ; ¹utºt

�
! 0; d c1

�
¹wkt ºt ; ¹utºt

�
! 0

and wkt � u
k
t � v

k
t .

The latter condition implies that

lim
t!1

�1

�t
log

Z
X

e��w
k
t d� � lim

t!1

�1

�t
log

Z
X

e��u
k
t d�

� lim
t!1

�1

�t
log

Z
X

e��v
k
t d�:

As a result, by the first part of the argument we have that (52) follows.

5.2. Ding stability in terms of filtrations and flag configurations

The radial formulae (50) and (51) lead us to the following lemma.

Lemma 5.5. Given a finite energy sublinear subgeodesic ray ¹utºt , let ¹vtºt be its
maximization and ¹wtºt its 	-maximization. Then one has

I�¹wtº � I�¹vtº D I�¹utº; L�
�¹wtº D L�

�¹vtº D L�
�¹utº;

D�
�¹wtº � D�

�¹vtº D D�
�¹utº:
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Proof. The first assertion follows from wt � vt � ut and [29, (25)]. To show the
second, it is enough to notice that c�Œyv� � D c�Œyu� � (by [29, Proposition 2.5]) and
c�Œ yw� � D c�Œyu� � (by [29, Theorem 2.3], as yw� and yu� have the same Lelong number
along any prime divisors over X [12]). The third follows from the previous two.

This lemma implies the following characterization of ı�, refining the result in [29,
Theorem 1.4].

Theorem 5.6. When ¹�º D c1.L/ for some big line bundle L, the following identities
hold:

ı� D sup¹� > 0 W D�
�¹utº � 0 for all sublinear subgeodesic ray ut 2 E1.X; �/º

D sup¹� > 0 W D�
�¹utº � 0; ¹utºt 2 R1.X; �/º

D sup¹� > 0 W D�
�¹utº � 0; ¹utºt 2 R1

	.X; �/º

D sup¹� > 0 W D�
�¹utº � 0; ¹utºt 2 R1

	.X; �/ induced by filtrationsº

D sup¹� > 0 W D�
�¹utº � 0;

¹utºt 2 R1
	.X; �/ induced by flag configurationsº: (53)

Proof. The first identity of (53) is just [29, Theorem 1.4]. The next two identities
follow from Lemma 5.5. Since flag configurations induce a filtration, the equality of
the last three lines follows from Theorem 5.4

5.3. Ding stability in terms of non-Archimedean data

Let � 2 .0; c�ŒV� �/. Assume that ¹�º D c1.L/ for some big line bundle L on X .
We define two non-Archimedean functionals: let ¹��º� 2 E1;NA.X; �/, we set

L�;NA
� ¹��º WD inf

v2Xdiv
sup
�2R

�
� C A�; .v/ � �v.�� /

�
: (54)

In terms of the associated non-Archimedean potential �an, recalling (17), we can
express L

�;NA
� as follows:

L�;NA
� .�an/ WD L�;NA

� ¹��º D inf
v2Xdiv

�
A�; .v/C �

an.�v/
�
: (55)

The non-Archimedean �-Ding functional can be introduced as follows (recall (34)):

D�;NA
� ¹��º WD L�;NA

� ¹��º � I
NA
� ¹��º: (56)

When � D 1 and ¹�º is the first Chern class of an ample line bundle, these
functionals correspond to the non-Archimedean functionals L and D defined in [4,
Definition 3.4].
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We show that L
�;NA
� and D

�;NA
� agree with the corresponding radial function-

als (49).

Theorem 5.7. For any ¹utº 2 R1
	
.X; �/, we have

L�
�¹utº D L�;NA

� ¹yu�º; D�
�¹utº D D�;NA

� ¹yu�º: (57)

Proof. We first observe that the second equality in (57) follows from the first and
Theorem 2.6 (iii).

Observe that in order to prove the first equation in (57), it suffices to prove it
withXdiv

R in place ofXdiv in (54), whereXdiv
R denotes the set of t ordE for all t 2R>0

and E is an arbitrary prime divisor over X . In other words, it suffices to show that

L�
�¹utº D inf

v2Xdiv
R

sup
�2R

�
� C A�; .v/ � �v.�� /

�
:

In fact, by (55), we have

L�;NA
� .�/ D inf

v2Xdiv

�
A�; .v/C �.�v/

�
:

Here � denotes uan, which lies in PSH.Lan/ by Corollary 3.11. But then, as � is usc,
it follows that

inf
t2Q>0

�
A�; .t ordE /C �.�t ordE /

�
D inf

t2R>0

�
A�; .t ordE /C �.�t ordE /

�
for all prime divisors over X . It follows that replacing Xdiv by Xdiv

R on the right-hand
side of (54), we end up with the same quantity.

For any �0 < L�
�¹utº, we have by (50) and [29, Theorem 2.2] that

A�; .v/ � �v.yu�0/

for any v 2 Xdiv
R . Thus,

inf
v2Xdiv

R

sup
�2R
¹� C A�; .v/ � �v.yu� /º � inf

v2Xdiv
R

¹�0 C A�; .v/ � �v.yu�0/º � �0;

so that
L�
�¹utº � inf

v2Xdiv
R

sup
�2R
¹� C A�; .v/ � �v.yu� /º:

To see the reverse direction, we first consider the case when L�
�¹utº D �

C

yu
, which

we will always assume to be 0 after adding a linear term to ut . In this scenario, it is
clear that

sup
�2R
¹� C A�; .v/ � �v.yu� /º � A�; .v/:
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Note thatA�; .v/ is always positive, which however can be made as small as we want
simply by rescaling v. So we obtain that

inf
v2Xdiv

R

sup
�2R
¹� C A�; .v/ � �v.yu� /º � 0 D L�

�¹utº:

In what follows we assume that L�
�¹utº < �

C

yu
D 0: Take any �0 2 .L�

�¹utº; 0/.
Using [29, Theorem 2.2] and (3) we deduce that c�Œyu�0 � < �. So by [4, Theorem B.5],
there exists a prime divisor E over X such that A�; .E/ � ��.yu�0 ; E/ � 0. Now for
any a 2 R>0 consider the functions

fa.�/ WD � C aA�; .E/ � a��.yu� ; E/; ga.�/ WD aA�; .E/ � a��.yu� ; E/

for � 2 .�1; 0�. Both are concave when � 2 .�1; 0/ and fa.0/ � lim�!0� fa.�/.
Moreover, for sufficiently largeA>0, we have c�Œyu�A� > � (since c�Œyu� �%c�ŒV� � >
� as � ! �1 by Theorem 2.2), so that ga.�A/ D aAX .E/ � a��.yu�A; E/ > 0

by [4, Theorem B.5]. This implies that

g0a.�
�
0 / D lim

h!0C

ga.�0/ � ga.�0 � h/

h
�
a�.�.yu�A; E/ � �.yu�0 ; E//

�0 C A
< 0:

Now choose suitable a0 2 R>0 such that g0a0.�
�
0 / D �1: Then we have f 0a0.�

�
0 / D

1 � 1 D 0, from which we deduce that

sup
��0

fa0.�/ D fa0.�0/ D �0 C a0
�
A�; .E/ � ��.yu�0 ; E/

�
� �0:

Thus, we arrive at

inf
v2Xdiv

R

sup
��0

¹� C A�; .v/ � �v.yu� /º � �0;

which then completes the proof.

As a consequence of the proceeding theorem and Theorem 5.6, we can add one
more equality to Theorem 5.6, finishing the proof of Theorem 1.5.

Corollary 5.8. Assume that ¹�º D c1.L/ for some big line bundle L on X . We have

ı� D sup¹� > 0 W D�;NA
� .u/ � 0 for all u 2 E1;NA.X; �/º:

5.4. A Yau–Tian–Donaldson type existence theorem

In this subsection we focus on the case L D �KX . Also, for simplicity, we assume
that there is no twisting, so  D 0 and � D f , where � WD f 2 C1.X/ is a Ricci
potential, satisfying � C ddcf D Ric!.
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We recall the definition of uniform Ding stability. We say that .X;�KX / is uni-
formly Ding stable with respect to flag configurations, if there exists " > 0 such that

D1;NA
� .u/ � "JNA.u/; (58)

for any uD ¹yu�º� 2 E1;NA.X; �/ induced by flag configurations. By Theorem 5.7, we
have that L1;NA

� ¹yu�º D L
1
�¹utº D infv2Xdiv.AX .v/C u

an.v//.
Bringing together (56) and (35), the condition (58) can be reformulated in a non-

Archimedean/algebraic language in the following manner:

inf
v2Xdiv

�
AX .v/C u

an.v/
�
� "�Cu C .1 � "/I

NA
� .u/; (59)

for all uD¹yu�º� 2E1;NA.X;�/ induced by flag configurations. Using Proposition 4.6,
the quantities on the right-hand side of this inequality can be computed in terms of the
filtration Fu of the flag configuration. Indeed, �Cu D �L.Fu/ and INA

�
.u/ D SL.Fu/,

allowing for an algebraic/valuative interpretation of uniform Ding stability.
Finally, we prove our last main result, a YTD type existence theorem for KE met-

rics.

Theorem 5.9 (Theorem 1.7). Suppose thatLD�KX is big. If .X;�KX / is uniformly
Ding stable with respect to flag configurations then there exists a Kähler–Einstein
metric, i.e., there exists a solution to the following equation, having minimal singu-
larity type:

�nu D ef �u!n; u 2 PSH.X; �/; (60)

with f 2 C1.X/ satisfying � C ddcf D Ric!.

Proof. The argument is by contradiction. Put � WD ef !n. Suppose that (60) does not
have a solution with minimal singularity type. Then by [29, Theorem 5.3], there exists
¹utºt 2 R1.X; �/ such that

D1
�¹utº � 0; sup

X

ut D 0 and I ¹utº D �1:

Let ¹wtº 2 R1
	
.X; �/ be the 	-maximization of ¹utºt . By Lemma 5.5, we get that

L1
�¹wtº D L1

�¹utº and I ¹wtº � I ¹utº:

Hence, either ut D wt and D1
�¹wtº � 0. Or, wt ¤ ut and D1

�¹wtº < 0. Hence, in
both cases ¹wtºt must be a non-trivial 	-maximal geodesic ray.

After reparametrizing ¹wtºt so that I ¹wtº D �1, we still have that D1
�¹wtº � 0.

Theorem 4.14 gives wk D ¹wkt ºt 2 R1
	
.X; �/ D E1;NA.X; �/, a sequence of rays
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induced by flag configurations such that d c1 .¹w
k
t º;¹wtº/! 0. Due to d c1 -convergence,

we have that

�C
ywk
D sup

X

wk1 ! �C
yw
D sup

X

w1 D 0 and I ¹wkt º ! I ¹wtº D �1:

In particular, JNA.wk/! 1 (recall (35)). By Theorem 5.4,

D1
�¹w

k
t º ! D1

�¹wtº � 0;

contradicting uniform Ding stability.
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