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Abstract. We investigate minimizers and critical points for scale-invariant tangent-point energies
TPP+4 of closed curves. We show that (a) minimizing sequences in ambient isotopy classes converge
to locally critical embeddings at all but finitely many points and (b) locally critical embeddings are
regular.

Technically, the convergence theory (a) is based on a gap estimate for fractional Sobolev spaces
with respect to the tangent-point energy. The regularity theory (b) is based on constructing a new
energy §7°4 and proving that the derivative y’ of a parametrization of a TP?>4-critical curve y
induces a critical map with respect to 74 acting on torus-to-sphere maps.

Keywords: knots, harmonic maps, regularity theory, existence.

1. Introduction and main results

When modeling and simulating topological effects in the sciences, like e.g. protein knot-
ting, one has to make a choice of how to incorporate the avoidance of interpenetration
of matter, i.e. self-intersections. Either one explicitly models partial differential equations
that incorporate effects such as self-repulsion through penalization, or one constructs a
comprehensive variational energy that includes self-repulsive behavior, and hopes that
minimizing the energy (or following the steepest descent) delivers a realistic description.
Several such self-repulsive energy functionals have been proposed and studied exten-
sively over the last forty years (for an overview we refer the interested reader to [11,76];
applications are discussed, e.g., in [1-3,44,61]) — and all have one thing in common:
modeling topological resistance, i.e. self-repulsion, they are necessarily nonlocal func-
tionals. Consequently, questions of most central interest such as existence and regularity
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of minimizing configurations are very challenging. This holds especially true for the geo-
metrically most interesting case of scale-invariant knot energies, i.e. energies for which a
curve y and any scaled version Ay have the same value for any A > 0.

O’Hara and Mobius knot energies

The first knot energies have been introduced by Fukuhara [28] and O’Hara [55-57], and
are known as O’Hara energies. Let y : R/Z — R be a parametrization of a closed regular
Lipschitz curve, i.e., y is both an immersion and an embedding. For any ap > 4 and p > 2,
the O’Hara energy O%?(-) is given by

o@p ! ! 7 ol ) dd
0= [, Lo o=ror - Tomaor) reIrolas

where d,, is the intrinsic distance on the submanifold y(R/Z) C R3.

These energies are scale-invariant functionals if ap = 4. In this scaling invariant
regime, until recently, only the case of the Mdobius energy 92 was understood at all.
This was due to the celebrated work by Freedman, He, and Wang [27]. They discussed
existence of minimizers within prime knot classes and established C !'!-regularity of local
minimizers. One can then bootstrap to smoothness [34] and even analyticity [15].!

The techniques employed in [27] by Freedman et al. crucially rely on the Mobius
invariance of 922, and largely fall apart for @*/P-? when p # 2 since Mobius invariance
does not hold anymore [14]. Indeed, there was no progress on either existence or regularity
of scale-invariant knot energies besides the Mobius energy for a long time, until in the
two recent works [13, 14], three of the present authors established the regularity theory
for all scale-invariant O’Hara energies 0“7 (for critical points and minimizers) via a
new approach. Namely, they showed that critical knots y induce via their derivative y’ a
sort of fractional harmonic map between R/Z = S! and S2. Then, extending the tools
developed for fractional harmonic maps [24, 68], they obtained a regularity theory via
arguments based on compensation effects and harmonic analysis.

Tangent-point energies for curves

In this work we are interested in scale-invariant tangent-point energies. As in the case of
O’Hara energies, the scale-invariant situation is the most interesting and challenging one,
and up to now it was completely out of reach. Due to the lack of Mobius invariance,” the
geometric techniques of Freedman, He, and Wang [27] cannot be applied. Let us stress
that Mobius invariance of an energy does not have any impact for applications and it

'Higher regularity via bootstrapping is possible because p = 2 implies the functional is a
Hilbert-space functional; in particular, such arguments are independent of the presence of scale-
invariance [ 10, 59,60,73,79].

2 As in the case of O’Hara energies [14], one can check this assertion by numerically computing
the energy of a stadium curve before and after applying a Mobius transformation.
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Fig. 1. The tangent-point radius R; is the radius of the smallest sphere tangent to y at y(x) and
traversing y(y). It tends to zero when y(x) — y(y) while y(x) and y(y) belong to two different
strands of y. Its reciprocal converges to the local curvature as y — x.

might be considered a curiosity mostly of geometric-topological interest. Actually, from
the point of view of applications, one can argue that the tangent-point energies might be
preferable to O’Hara energies because they are numerically simpler to compute [1-3,61],
and they have a natural generalization to embedded surfaces [75] which seems to be more
convenient than higher-dimensional analogues of O’Hara-type energies [42, 58].

The “classical” tangent-point energy has been studied first by Buck and Orloff [21].
It amounts to the double integral over the reciprocal of

ly(x) —y(»)I?
2| L A (r(x) — v ()|

which is the smallest radius of a sphere passing through y(x) and y(y) while being tan-
gential at y(x) see Figure 1. Later on, Gonzalez and Maddocks [31] obtained a family of
energies by taking the integrand to suitable powers. Decoupling these powers as proposed
in [12], we arrive at the two-parameter family

Rt(x’y):

LB A (y () =y )|
P4 (1)) -— IV(x)\ / ’ dxd
e = [ I Wldxdy
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/R/Z/M vy T Dldxdy

for any embedded y € C2(R/Z,R?). As a standing assumption, we will always restrict
the parameters to satisfy
q+2<p<2q+1. (1.1)

If p > 2q + 1, the energy is infinite even for some smooth diffeomorphisms. If p < g + 2,
then TP?? is not self-repulsive. The subfamily studied by Gonzalez and Maddocks can be
recovered by letting p = 2¢; the Buck—Orloff functional corresponds to TP*2. While the
O’Hara energies O*? for « — 0 and p = 4/« converge to Gromov’s distortion functional
[14, 32, 56], the tangent-point energies TP?% converge to Federer’s reach as ¢ — oo
[26,31].
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Strzelecki and von der Mosel [74] obtained the first and so far only fundamental result
concerning the scale-invariant case p = g + 2. They showed in particular that the images
of curves with finite TP4*29-energy form a topological 1-manifold. However, this could
be a nonsmooth object, e.g., a nondifferentiable curve (see Example 4.7) — or even worse:
a doubly-traversed line which has zero energy (see Example 4.1)! So there is an issue
with even defining the notion of minimizing embedded curves of the tangent-point ener-
gies. While the energy of the doubly-traversed line is zero and thus the global minimizer,
it is certainly not a smooth manifold and therefore should not count as an acceptable min-
imizer. Let us remark that none of this was an issue for O’Hara energies which would be
infinite on any periodic parametrization of a straight segment — the tangent-point energies
are more extrinsic than the O’Hara energies. Lastly, let us mention that the Lagrangian in
the tangent-point energies is at least formally related to the nonlocal mean curvature intro-
duced by Caffarelli-Roquejoffre—Savin [22] and thus to the nonlocal Willmore energy
recently discussed in [8,29].

Main results

With the example of the doubly-traversed line in mind, in order to discuss minimizers in
the class of knots (i.e. closed embedded curves), we restrict our interest to those curves
which appear as limits of diffeomorphisms.

Let us introduce the localized energy for A C R/Z by

TP (y; A) := |y/|>™4 // ly' () A (y(x) —y(n)|* dx dy
A4 ly(x) =yWI?
where we assume y to be parametrized by arclength, |y’| = const.
Following the spirit of an analogous strategy for Willmore surfaces [63, Defini-
tion I.1], we introduce the following terminology.

Definition 1.1 (Homeomorphisms with locally small tangent-point energy). A Lipschitz
map y : R/Z — R3 is called a homeomorphism (onto its image) with locally e-small
tangent-point energy at x € R/Z if there exists an open interval B,(x) C R/Z and a
sequence of C !-homeomorphisms y; : R/Z — R? with |Y¢] = ¢ > 0 such that

(1) yx converges uniformly to y on R/Z,
(2) sup, TP (yx:R/Z) < oo,
(3) supg TP?4(yy; Br(x)) < ¢ for some r > 0.

Our first main result states that sequences of curves with uniformly bounded tangent-
point energy converge to homeomorphisms with locally e-small tangent-point energy out-
side of at most finitely many points. More precisely, we will prove the following assertion.

Theorem 1.2. Let p =g+ 2, g > 1, A > 0, and ¢ > 0. Then there exists an integer
K = K(q. &, A) such that any sequence (yi)ren C C1(R/Z,R3) of closed embedded
curves with

sup TP?T24 (1) < A
keN
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converges uniformly — after possibly translating, rescaling, and reparametrizing yi and
passing to a subsequence — to a Lipschitz map y : R/Z — R3 with the following proper-
ties:

e embeddedness: y is a bi-Lipschitz homeomorphism,

arclength parametrization: |y’(x)| = 1 for a.e. x € R/Z,
lower semicontinuity: TPY72:9(y) < liminfy _, o, TP?T29 (),
subcritical Sobolev space: y € WIT54(R/Z,R3) forany 0 < s < 1/q.

Moreover — and this is crucial — we locally control the critical Sobolev norm outside of
a singular set X containing at most K points: for any xog € (R/Z) \ X there exists some
Ixo > 0 such that

e sup; TP?T2:49 (yy; By, (x0)) <¢

o vy weakly converges to y in the Sobolev space WH'l/q’q(Brxo (x0),R3),

o SO VTS v a, oy S 9P TP 29k By (30)) < e

Remark 1.3 (Pull-tight). In analogy to harmonic maps and O’Hara energies, we expect
examples for p = g + 2 where the singular set ¥ in Theorem 1.2 is nonempty. The idea is
as follows. Take a (closed) smooth curve containing a piece of a straight line and replace
the latter by a small nontrivially knotted arc. Shrinking this arc to zero (“pull-tight”)
produces a sequence of curves with uniformly bounded energy [56, Theorem 3.1]. In the
limit curve we observe a change of topology along with a loss of energy, ruling out strong
convergence in the Sobolev norm.

For the Mébius energy 92-2, one can use Mobius invariance to rewrite a minimizing
sequence into one that avoids “concentration of topology in a small set”; see [27] for this
notion, and [54] for a survey. Even more is true in this special case: the Mobius energy
can be decomposed into several Mobius invariant energies that control different features
[38—41,43,54].

Remark 1.4. In light of two-dimensional analogues [37, 53], one might conjecture that
the limit curve y from Theorem 1.2 does not necessarily belong to a Sobolev space on
R/Z, but this is certainly not clear to us.

Theorem 1.2 is much simpler to prove if p > g + 2 [6, [2]. In our limiting range
p = q + 2, Theorem 1.2 can be understood as a one-dimensional counterpart to the fun-
damental theorem of Miiller and Sverdk [53], who showed that surfaces with small second
fundamental form with respect to the L2-norm can be conformally parametrized. We also
refer to earlier works by Toro [77, 78] as well as [45, 46, 48, 64, 65, 70]. Indeed, The-
orem 1.2 is strongly inspired by the “weak closure theorem” for the Willmore energy
[64, Theorem 3.55].

As a particular consequence of Theorem 1.2, homeomorphisms with locally small
tangent-point energy as described in Definition 1.1 appear as limits of smooth minimizing
sequences (minimizing, e.g., with respect to isotopy classes, see Section 3). Since the
convergence of minimizing sequences is only weak, in general the limits of minimizing
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sequences may not be minimizers — indeed they may not belong to the same isotopy
class due to bubbling effects (also called pull-tights). This is why we introduce, once
more in analogy to Willmore surfaces [63, Definition 1.2], the notion of locally critical
embeddings.

Definition 1.5 (Locally critical embedding). A homeomorphism y with locally e-small
tangent-point energy at x € R/Z as in Definition 1.1 is a locally TPP*?-critical embedding
in By (x) if

STPP4(y, ) =0 forall p € CX°(B,(x),R?).

The notion of locally critical embedding as in Definition 1.5 can be justified by the
following theorem which states that any minimizing sequence of curves (with respect
to isotopy classes, cf. Section 3) converges away from finitely many points to a locally
critical embedding. This holds for any ¢ > 0, but the number of the points increases as
& — 0. Recall that ¢ > 1 due to (1.1).

Theorem 1.6. Let p = g + 2. Let [yo] be an ambient isotopy class and let (v )ren C [Vo]
be a minimizing sequence for

A = inf TP?4(pn)
n€lyol

in the sense that y; € CY(R/Z,R3) are homeomorphisms and y; (R/Z) belongs to the
ambient isotopy class [yo] for all k € N.

Then, up to reparametrization, translation, rescaling and passing to a subsequence,
Yk uniformly converges to a limit map y : R/Z — R3 which for any & > 0 is a locally
TPP?4-critical embedding in the sense of Definition 1.5 except for a finite exception set
3 C R/Z whose cardinality is bounded in terms of A and e.

Our last main result concerns regularity: the limit of minimizing sequences is regular
outside a finite singular set ¥. Indeed, we have regularity theory for critical points as in
Definition 1.5.

Theorem 1.7. Let g > 2. There exists ¢ > 0 such that the following holds. Let y :
R/Z — R3 be a homeomorphism with finite global and s-small local tangent-point
energy around By(xg) as in Definition 1.1 that is a locally TPP4-critical embedding
in By(xo) as in Definition 1.5. Then y € C'*(B,/2(x0). R?) for some uniform constant
a=ua(g) > 0.

From the previous two results we draw the following conclusion.

Corollary 1.8. Assume p > g + 2 and q > 2. Let [yo] be an ambient isotopy class and
let yr C [yo] be a minimizing sequence for

A = inf TPP(y)
v€lvol

in the sense that (yi)xen C C®(R/Z,R3) is a sequence of homeomorphisms and
v (R/Z) belongs to the knot class [yo] for all k € N.
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Then, up to reparametrization, translation, and rescaling and taking a subsequence,
Yk converges to a limit map y : R/Z — R3 which is a locally TPP*4-critical point in the
sense of Definition 1.5 outside of finitely many points (whose number is bounded in terms
of N). In particular, in view of Theorem 1.7, the limit is C* outside of finitely many
points.

Remark 1.9. In Theorem 1.7 we restrict to the scale-invariant case p = g + 2. For the
non-scaling-invariant case ¢ > 2 and p > g + 2, C"*-regularity is a consequence of
previous work by [74], with o depending on p — g — 2 > 0. Let us remark that a slight
adaptation of our arguments, similar in spirit to adaptations carried out in [50], implies
C *_regularity with o independent of p — g —2 > 0.

Also, in Theorem 1.7 we restrict our attention to ¢ > 2 (which includes the “classical”
tangent-point energy T#2), but we expect that it is only a minor technical difficulty to
obtain the same result for g > 1.

Lastly, we consider the target space R3 throughout this paper to keep the notation
simple, but again we expect our results to carry over to curves of arbitrary codimension
without more than minor technical difficulties.

Outline and comments on the proofs

In Section 2 we introduce the Sobolev spaces that are essential for this article. In Section 3
we review the notion of ambient isotopy and adapt this concept to W 1+5:1/5_curves. While
this is, to the best of our knowledge, a new result, the main ideas are related to the well-
established theory of homotopy groups of Sobolev maps, e.g. in [4,71].

In Section 4 we prove our first main theorem, Theorem 1.2, which states that
sequences of diffeomorphisms with uniformly bounded tangent-point energy converge
outside of a finite singular set. The argument is based on a gap estimate, vaguely reminis-
cent of and substantially inspired by arguments due to Miiller—Sverdk [53] and Hélein [35]
who showed that limits of conformally parametrized two-dimensional maps with a suf-
ficiently small L2-bound on the second fundamental form are either point maps or
bi-Lipschitz. A further crucial ingredient is an adaptation of the “straightness” analysis
developed by Strzelecki and von der Mosel [74] (which in their case leads to the fact that
finite energy curves are topological 1-manifolds).

In Section 5 we prove our second main theorem, Theorem 1.6, which asserts that
minimizing sequences converge to critical points. This is based on Theorem 1.2 combined
with a fractional Luckhaus-type lemma, Lemma 5.3, and the theory of isotopy classes for
Sobolev maps from Section 3.

In Section 6 we prove the regularity theory, Theorem 1.7. We follow the spirit of [14],
building a bridge to harmonic map theory. Namely, we introduce an energy &7 such that
the arclength parametrization y of a TP?*4-critical knot induces via its derivative y’ an £4-
critical map in the class of maps from R /Z to the sphere S2. The energy &7 is structurally
similar to the W 1/9-4-seminorm whose critical points are called W /2-harmonic maps.
For ¢ = 2 techniques for regularity theory of W !/2-2 harmonic maps between manifolds
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were introduced in the pioneering work by Da Lio and Riviere [23,24]; this was extended
to W1/4:4 harmonic maps into spheres in [68]. Here, we extend the techniques of [68] to
obtain the regularity for derivatives y’ of the arclength parametrization of critical knots y.

Notation

When A < CB for some constant C, we write A < B or B = A. We use the notation
A~ Bifboth A < B and B < A. Throughout this work, constants will depend on “unim-
portant” factors like p and g and may change from line to line.

Balls (i.e. intervals) in R will be denoted by B,(x). We will allow ourselves an abuse
of notation to denote geodesic balls in R /Z by the same notation. All our arguments are
local in nature, so that we only need to work with balls which correspond to Euclidean
balls.

2. Preliminaries on Sobolev maps

In this section we recall some basic notation and properties of Sobolev maps.
Fors € (0,1), p € (1,00), 2 C R open, the Sobolev space W*?(R2) is defined as all
maps f € L?(S2) such that

_ b4 1/p
[flws.p) = (/Q . = FDI7 dy) < 0.

|x — y[1*sP

For s € (1, 2) the Sobolev space W*?(Q2) is defined to be the space of f € L?(2) with
f’ e LP(Q2) and

f Tws—1.0 ) < 0.
One important observation [5, Lemma 2.1] is that small Wts:1/S _norm implies a bi-
Lipschitz estimate if |y’| > 0.

Lemma 2.1. Let s € (0, 1). For any Ay > Ay > 0 there exists € = €(A1, A2, 5) > 0 such
that the following holds. For any —oo < a < b < 0o and for any y € Lip([a, b], R3) such
that

inf |}//| > A1 and [)//]Ws.l/s((a b)) <&
[a,b] ’
we have
ly(x) =y = Az|x — yl.
Proof. First we prove that

ly(y) —y(x)|?

1
=y > (Al)z—m/[ ]/[ ]|V/(Zl)—)//(22)|2d21 dz>. (2.1)
X1 ey
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The estimate (2.1) is a consequence of the fundamental theorem of calculus, which says
that for any x # y we have

y
y() —y(x) = / y'() dz.
Then
y y
() -y = / / @) (22)) dz dza
| A 4 1 /Y [y
=5 | [wersyeriadn-5 [ [ e -yeldd
1
_ 4l2 A 2 _ 4 _a 2d dz-.
oot [ e -y eaRdn

A%

This establishes (2.1).
The claim of Lemma 2.1 follows from (2.1) once we show that for any s € (0, 1) there
exists a constant C = C(s) such that

R /[x’y] /[x’y] V) =V P dzdzs < CO I Bsineny 2D
Indeed, once (2.2) is established, we choose & > 0 such that
(A1)? = C(5)e* > (A2)*.
Then — under the assumptions of Lemma 2.1 — we conclude that

() =y
ly(y y2| > ()2,
Ix =yl
which is what we wanted to show.
It remains to establish (2.2), and for this we consider three cases.

For s = 1/2,(2.2) is a consequence of the following observation:

1
L / / Y (2) =y ()P dzy dza
2[x = 1> Jix1 Jixon)

1 ly'(z1) —¥'(z2)? 1
=5 dzidz, = Z
=5 /[x’y] / . 121 — 2,2 z1dzy = [)/ ]Wl/z 2([x,]) 2[J/ ]W1/2 2([a,b])’

For s € (1/2, 1), we additionally observe that by Lemma A.3 there exists a constant
C = C(s) such that

[)/ ]W1/2 2((a,b)) = C(S) [V ]Wv 1/5((a,b))"
This establishes (2.2) for all s € [1/2,1).
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If s € (0,1/2), then 2_ls > 1. Hence, by Jensen’s inequality,

kol [ e -y el dndz
[x,»] J[x,y]
%Qs
=(|x—y|—2 [ | |y/<zl>—y’(Z2)|2dzldzZ)
[x,] J[x,y]
2s
s(lx—y|2/ / |V/(Zl)_V/(22)|1/Sdzld22)
[x.»] J[x,y]

’ a7 1/s 2s
- (/ / ly'(z1) V(222)| iz dzz) .
ERIRIER) |z1 — z2]

This establishes (2.2) for s € (0, 1/2), concluding the proof. |

Let us also remark the following consequence of Lemma 2.1, which states that any
closed curve has at least a certain (computable) amount of W!'*51/5_energy — i.e. if the
W1+s:1/5_energy is below a certain threshold, then the curve cannot be closed.

Corollary 2.2. Let s € (0,1) and —00 < a < b < o0. For any A > 0 there exists ¢ =
e(A,a,b,s) > 0such that the following holds. Whenever y € Lip((a,b),R3) N C°([a, b])
with y(a) = y(b) and inf|y'| > A, then [y'lys.1/s(ap)) = &

Proof. If [y'lsa /s(la,p)) < € for small enough & we know from Lemma 2.1 that y is
bi-Lipschitz, and thus

ly(a) —y()| = lim, lim |y(x) —y(y)| =c|b—al. L]
x—at y—>b

3. Ambient isotopy for Sobolev curves

A homotopy theory for Sobolev maps was introduced and established a long time ago. The
spirit is that for maps in VMO (see e.g. the phenomenal work [19,20]) homotopy classes
exist, and by Sobolev embedding, homotopy groups for W*"/$(Z" N') coincide with
the classical homotopy groups for continuous maps. In particular, this leads to a beautiful
theory of density [4,71]. There are many extensions, e.g. to more general Sobolev spaces
[16-18,33,52,62].

We begin here to introduce the fundamental results on isotopy classes (for curves)
in fractional Sobolev spaces following the spirit of homotopy classes. To the best of our
knowledge, the results in this section are new, in particular our main result, Theorem 3.7,
which says that small Sobolev variations of smooth curves do not change their isotopy
class. However, there is some overlap with [9] where an isotopy theory for closed sets
with controlled bi-Lipschitz constant is developed.

We begin by defining ambient isotopy (by which we mean C ! -ambient isotopy).

Definition 3.1. Two sets X, Y C R3 are called ambient isotopic if there exists an ambient
isotopy, that is, I € C1([0, 1] x R3), such that
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e I(t,-) : R3 — R3 is a diffeomorphism for all # € [0, 1],
e 1(0, p) = pforall p € R3,

e /(1,)): X — Y is a homeomorphism.

When working with parametrized curves, the following result is very useful: smooth
enough isotopy coincides with ambient isotopy [36, Chapter 8, Theorem 1.6, p. 181].

Theorem 3.2. Let vy, y1 € CY(R/Z, R3) be two diffeomorphisms, and assume there
exists a C '-isotopy between them, that is, T’ € C1([0, 1] x R/Z,R3) such that T'(0,-) =
Yo() and T'(1,-) = y1(-) and T'(¢,-) : R/Z — R3 is a diffeomorphism for all t € [0, 1].
Then the images yo(R/Z) and y1(R/Z) are ambient isotopic.

We begin by defining ambient isotopy classes for regular W ' *51/5_homeomorphisms.
Observe that in view of the formal analogy to homotopy classes, having the techniques
by Brezis and Nirenberg [19,20], one might hope for an “s = 0” theory (i.e. Y’ € VMO),
but we will not pursue that question here. Also, we will make no attempt to consider the
higher-dimensional version, but rather focus on curves.

Definition 3.3 (Regular Sobolev homeomorphism). A homeomorphism y in the class
Wlts:1/s(R /7, R3) is called regular if

0 <inf|y’| <suply’| < o0
where inf and sup are the essential infimum and supremum, respectively.

The isotopy class is derived from smooth approximating maps, whose existence is the
content of the following lemma.

Lemma3.4. Lety € W' TSVS(R /7, R3) be a regular homeomorphism. Then there exists
a sequence of smooth diffeomorphisms yy : R/Z — R3 with

2inf|y’| <infly;| < sup|yg| <suply’| forallk € N

such that
’ ’ k—o00
Ve = vlliLe®/z) + [k — ¥Vwi+ss@yzy — 0.
Proof. Set
A :=inf|y’|.

Fix some &9 > 0 to be specified later.
By absolute continuity of the integral there exists 69 = So(y) € (0, 1) such that

Sup [y/]WSvl/s(Blos ) < 80'
Bi0s,CR/Z ¢
Since y is a continuous and injective map, the following infimum is attained and strictly
positive:
= inf [y(x)—y(»)|>0.

[x—y|=580



S. Blatt, Ph. Reiter, A. Schikorra, N. Vorderobermeier 1940

Let n € C(B1(0).[0.1]), [ n = 1, be the usual mollifier kernel, and 75 := §~'n(-/§).

Set
1

vs(x) == ns * y(x) = /—1 niz)y(x +8z)dz.

By periodicity of y, ys is 1-periodic, and thus is well-defined ys : R/Z — R3. Moreover,

, , §—0 . §—0
[vs' — v'Iwi+s1/s@®/z) — 0, and by Sobolev embedding [|ys — y||Loo®/z) — 0.
Let 6, € (0, 8¢) be such that

lys — vllLoemz) < 7561 forall 8 € [0,5]. (3.1)

We need to show (for the right choice of g¢) that for § € (0, 81), s is a diffeomorphism
as requested in the claim.
It is easy to see from the definition of y; that

lys()| <suply’| V> 0.
First we observe that for almost every x € R/Z and almost every z € R/Z we have
lys ) = V' (D] = lys(0) =¥' @] = A = ys(x) =¥ (@)

Since this holds for almost every z € R/Z, we can take the integral mean over Bs(x) and
find

MOEY —][B 30 =y @)l dz,

Now we have y; = 75 * (y'), and thus

][ |yg<x>—y’(z)|dzs][ ][ V(21 — ' ()| dz1 dz
Bs(x) Bs(x) JBs(x)

S Y lwsa/sByxy) < €0
That is, we have shown
lys(x)| = A —Cégo for almost every x € R/Z.
So if we choose ¢¢ < %, we have
inflys] = 1/2 V8 € (0,8).

Now choosing &y possibly even smaller (depending on A), we deduce from Lemma 2.1
that

A
le—yl <lys(x) —ys(¥)| V& €[0,8], [x — y| < do. (3.2)

On the other hand,

lys (x) —ys (V)| = ly(x) =y =2[ly — vsllLoe.
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In view of (3.1), we thus have

lys(x) —vs () = (1— 5)e1 = 0.8e1|x — y|rjz  VIx —y| > 280. 8 €[0,81]. (3.3)

Combining (3.2) and (3.3), we obtain

lys(x) = ys(V)| = 155 min{A, &1} [x — ylr/z  Vx,y €R/Z, § €[0,61].

Consequently, ys is a one-to-one map with inf [yg| > 0.
Hence, ys is a smooth homeomorphism with nonvanishing derivative (i.e. an immer-
sion), thus y;s is a diffeomorphism. The proof is concluded by choosing yx := ys,/k. ®

Now that we have approximating smooth diffeomorphisms, we argue that they are all
eventually of the same ambient isotopy type.

Proposition 3.5. Ler y € W'tS1/S(R /7. R3) be a regular homeomorphism. Then there
exists ¢ = £(y,s) > 0 such that for any 7y, 7, € CY(R/Z,R3) with

17: = yllLoe + [7] = ¥'lwsass <& (3.4)

and
%inf|)/| <inf|y/| <sup|p{| <2sup|y’|, i=1,2

Y1 is ambient isotopic to Y.

Proof. The strategy of the proof is very similar to the proof of Lemma 3.4.
Set
1 4
A = 5inf[y’].

Throughout the proof we will fix interdependent constants &g, €1, pg, 80, 61, 2 > 0. Then
¢ needs to be small in dependence on all these constants.

Firstly, depending on &g, y, s we can, by absolute continuity of the integral, choose
po > 0 such that

4 1
sup [)/ ]Wx,l/x(BwﬂO) < 5€&p.
B]()QOCR/Z

Since y is continuous and injective, the following infimum is attained and larger than 0:

o1 1= & inf ~|y(x) —y(»|>0.

[x=y|=5p0

Observe that if ¢ < 11W min {gg, &1} in (3.4) then

sup [%]Ws.l/s(BlOpO) <eg, =12,
BIODOCR/Z
and
infl |7i(x) — 7: (¥)| > &1 > 0.

[x=y|=75po
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Letn € C2°(B1(0),[0,1]), [ n = 1, be the usual mollifier kernel, and ng := §~15(-/§).
Set
vsi=mns*xy and Vg =15 * Vi
Let §; be such that
lys — vl < 16561 V8 € [0,81].

Again we observe that if ¢ < ﬁ min {gg, &1} in (3.4) then

||)7i,8 - Pi”LOQ < %081 vV e [0781]7 i = 172

Let 8o := min {83, po}. As in the proof of Lemma 3.4, for the right choice of &g, we find
that for each 6 € [0, §o], y5 and y; s are diffeomorphisms satisfying

17,5 () = Fis O] lys(x) — ys ()] = Alx — y|  ¥x,y € R/Z, § € [0.6]
for A := ﬁmin{)&,sl}.

Since ¥; ﬂ) 7i,» and §; are C'-diffeomorphisms, we see from Theorem 3.2 that
Yi,8, is ambient isotopic to y; fori = 1,2.
Now we show that p; 5, is ambient isotopic to ys, for i = 1,2 if £ in (3.4) is small
enough. Indeed, set
Li(t) =1V, + (1 = 1)ys,-

This is clearly a smooth homotopy; we only need to show that for each fixed ¢ € [0, 1] it
is a diffeomorphism. But observe that

Ti (x, 1) = Ti (v, )] = y80(x) — v = |x = y| lvs, — 715, llLoe
> (A= [lvs, — Pi s loo)x = ¥l
Now
/ ~/ < 1 / ~ < € /
V5, — Vi 80 loe = %Iln et lly = VillLee = glln It
That is,
ITi(x, 1) = Ti (v, )] = A = [1n'llLre/S0)|x —y| Vx,ye R/Z.

. . . it
So if we assume that in (3.4) we have ¢ < Too Min {e1, W&)}, then we have found

that I'(¢, -) is globally bi-Lipschitz, and thus a diffeomorphism for each ¢ € [0, 1]. This
and Theorem 3.2 imply that ys, and y; 5, are ambient isotopic, for eachi = 1, 2.

In particular, y; g, is ambient isotopic to ¥, s,. Since we have already shown that
Yi,8, 1S ambient isotopic to y; for each i = 1,2, we conclude that y; is ambient isotopic
to 2. |

Since by Lemma 3.4 any W!+51/5_regular Sobolev homeomorphism has an approx-
imation by regular diffeomorphisms, and by Proposition 3.5 these approximating diffeo-
morphisms are eventually all of the same ambient isotopy type, the following definition
is justified.
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Definition 3.6. o Lety;,y, € WItS1/S(R/Z,R3) be two regular homeomorphisms. We
say that y; and y, are (Sobolev-)ambient isotopic, written y; ~ y,, if the following
properties are met: There exist approximating diffeomorphisms y; x and y; x converg-
ingin L® N W*s1/5(R/Z,R3) to y; and y,, respectively, and satisfying

5 infly/| <inf|p/,| <sup|p/;| <2suply/], i=1.2.

Moreover, y; x and y, ¢ are ambient isotopic for all but finitely many k and £.

e Equivalently, let [yo] be an ambient isotopy class. We say that a regular W1 +s1/5_
Sobolev homeomorphism y; belongs to [yo] if there exist approximating diffeomor-
phisms J; x as above such that y; x € [yo] for eventually all k € N.

Our main result in this section is that two curves which differ only locally and in a set
where they have small critical Sobolev norm, have the same ambient isotopy type.

Theorem 3.7. There exists a uniform ¢ > 0 such that the following holds. Let y1, y» €
CY(R/Z,R3) be diffeomorphisms with

. % <yl = % inR/Z fori = 1,2

and assume that there is a ball B, C R/Z such that

=yl <lyi) —yi)| < §x = ylforall x, y € Biop,
[Vl‘/]WS‘l/S(Blop) <egi=1,2

dist(yi (R/Z \ Bop), vi(Bsp)) > tosp fori = 1,2,

v1(x) = y2(x) forall x e R/Z \ B3,

lyi — v2llLee®/z) < 165 Toos -

Then y1(R/Z) and y,(R/Z) are ambient isotopic as sets in R3.

Proof. Letn € C2(B1(0), [0, 1]) with [ n = 1. Denote 5 := §~'1(-/§).

Let 6 € C°(Bsp, [0, 1]) be such that & = 1 in Bg,. We can construct € such that
6% z00 < 1/pF forall k € N.

Set

Yis(x) := /B o n(z)yi(x +80(x)z) dz.

In the following we need to choose first some o > 0, and then obtain some ¢ > 0
depending on o.

Vi Is ambient isotopic to Vi qp for some uniform constant o € (0,1/2). y; s would be the
usual convolution if 6 = 1.

First observe that y; s (x) = y;(x) forx € R/Z \ Bs,. Moreover,
’ §—0
Yis(x) = yi(x) = / 1(2)(yi (x +860(x)z) — yi(x)) dz < ||y ||L<8]|0 ] Lo — 0.

B1(0)

Also we have

Vis(x) = /B (O)n(z) Vi(x + 80(x)z)(1 + 80/ (x)z) dz.
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Thus (recall |0'| < 1/p)
v s O < 1yi oo (1 4+ C8/p),
that is, for a certain (essentially uniform) o € (0, 1) we can ensure that
lyisllLee < 11/8 V& < op.
It is the other direction that is more tricky. For any x, z € Bs, we have
1 s = 1] < [lyf s = V[ @] + 1/4 < |y 5(x) = ¥[ (D) + 1/4.

In particular, for any z € B;(0),

YOI = 1] = 1y 5(x) = ¥{ (x +80(x)2)| + 1/4.
Integrating in z, as the left-hand side is a constant, we obtain
||J/i/,8(x)| —1

< ][ / D(z2)7L(x +80(x)z2) (1 + 86/ (x)22)d 22 — ) (x +56(x)2)
B1(0)|J B1(0)

B ][Blw)

< ][ / lyi(x +80(x)z2)(1 4+ 860" (x)z2) — y{ (x + 86(x)z)|dz2 dz + 1/4
B1(0) /B1(0)

dz+1/4

dz+1/4

/B o) TE G+ 88002201 +36()72) =i +86(0)9)) d=
1(0

< ][ / lyi(x +80(x)z2) — y{(x +80(x)z)|dz dza + 1/4+ C§/p.
B1(0) / B1(0)

Now observe that 6(x) is a fixed, nonnegative number. If 6(x) = 0, then the double inte-
gral is zero. If 6(x) > 0, by substitution we have

][ / lyi(x 4+ 860(x)z2) — y{(x + 80(x)z)|dz dz,
B1(0) / B1(0)

57 oo I 10 PN 05
< lvi(¥) —vi(V)dxdy
(60(x))? Bso(x)(x) J Bsg(x) (%) l l

< Wilwiraaseo ) < Wilwiaa(sy,,) <&
That is, we have shown that for each x € Bs, we have
[y s() = 1] <1/4+ C(8/p + ¢).
The constant C is uniform, so if § < op and ¢ < 1 (uniform constant), we get
5/8 <ly/s(x)| <11/8 Vx eR/Z. (3.5)

(Observe that this estimate is trivial for all x where y; 5 = y;.)
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Next we estimate the Sobolev norm [yl’ 8]W 1/4.4(Boy)- Observe that

|Vi/,8(x) - Vi/,s(J’)|
< / ly; (x +860(x)2)(1 + 80"(x)z) — ¥ (y + 80(y)z)(1 + 80" (y)z)| dz
B1(0)

<(1+C8/p) /B o, 80002 = {00 + 880 2

1z / 186 (x) — 86/ (7)| dz.
B1(0)

First we observe

186/(x) — 86" ()| dz < >l — y1.
B1(0) P

and consequently, for any g > 1,

([, 0y 186" (x) — 86/ ()] dz) 5\, (8}
/B%/BQD FESTE xd“(p—z) P —(;)~

We thus arrive at

, 8\?

[yi,z?]z{]/Vl/q.q(Bg ) = C(_)
+(1+C8/p) / / ly{(x +80(x)z) — y{(y +860(y)2)| dx dy dz
B1(0) /By, J By, lx — y? ’

Observe that |1 + 80’(x)z] > 1—C8/p > 1 — Co (for § < op). Moreover,

)
X +6860(x)z — (y +80(»)2)| < |x —y| + ;Ix -yl =2x—yl.

So we can use the change of variables formula to obtain

[ [ lerson s eoman
By, J Boy

lx —y|?

|14+ 80" (x)z| dx
x |1 +80"(y)z|dy

o1 / / lyi(x +80(x)z) — yi(y +86(y)2)|?
T (1=Co0)? Jpy, /By, |x+80(x)z—(y+80(y)2)]?

/ / i) -y
——————>——dxdy.
(1 - CU) B1op Y Biop |'x - y|

In conclusion, for ¢ (and ¢) small enough we have shown

[Vl{,S]Wl/q*q(ng) S o V§ < op. (36)

Here ¢ can be the small constant of Lemma 2.1, and we infer that y; s is uniformly
bi-Lipschitz in Bg,. Global injectivity follows from the assumptions in the theorem.
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Outside Bg, the curve y; s equals y; for all § < op. Since we have control over the
distance of y; (R/Z \ Bo,) to y(Bs,) this gives a global bi-Lipschitz control.
Consequently,
vis 2 [0,0p] x R/Z — R?

is an isotopy with uniformly bounded bi-Lipschitz estimate, and by Theorem 3.2, y; and
Yi,op are ambient isotopic.

V1,00 and Y2 o, are ambient isotopic. Let T : [0, 1] x R/Z — R3 be the convex combi-
nation

I, x):= tyl,ap(x) +(1- I)VZ,(T,O(X)'
From the estimates above, we have
[0xT(t,)||[Lee < 11/8 Vi €0, 1].

We need to get a uniform bi-Lipschitz estimate for I'.
First, since y; = y, inR/Z \ B3, and o € (0,1/2),

Vl,crp(x) = VZ,ap(x) Vx e R/Z\ B7p/2~

Thus,
L(t,x) = yi1,0p(x) Yx €R/Z\ Byp)s.

In view of (3.6) and (3.5) combined with Lemma 2.1, we know that y; 4, is uniformly
bi-Lipschitz in Bg,, namely

I, x)—TI(,
o T -Teyl

0. (3.7)
1€[0,1] x,y€Boy\ B7p/2 |x — vl

Secondly, since 8 = 0in R/Z \ Bs,, we have

Vl,ap(x) = )/Z,Jp(x) =y1(x) =y2(x) VxeR/Z\ BSp'

Thus,
I't,x)=yi1(x) VYxeR/Z\ Bs,.

Since y; is a regular diffeomorphism, this implies that

. . IC(z,x) = T(z, )|
inf inf
1€[0,1] x,y€R/Z\Bs,, |x — vl

> 0. (3.8)

Combining (3.7) and (3.8) we have

T'(t,x)—T(,
o T -Tenl
t€[0,1] x,yeR/Z\B7, /> lx — vl

0. (3.9)

Observe that we have injectivity of the curve.
Since we have control over the distance from y;(R/Z \ By,) to y(Bs,) and over
ll¥1 = y2llLee, it remains to show the bi-Lipschitz estimate for |I" (¢, x) — I'(¢, y)| only for
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X,y € Byp. Forsuch x, y,

T, x) =Tyl = |)’l,op(x) - Vl,ap(y)| —|I'(t, x) — )’l,op(x) — (T, y) - yl,op(y))|
= %|X -y|= ‘(I = Dy1,0p(x) + (1 =1)y2,0p(x) — ((t = Dy1,6p(y) + (1 _I)J/Z,ap(Y))}
= %lx —y[-0- t)h/l,op(y) - Vl,ap(x) - (VZ,crp(y) - )/Z,op(x))|

o y|— / 1Vi00(2) = V. 0p(2)] dz
[x,¥]

A%

A%

(1/2_ ”V{,ap - yé,ap”Loo(lep)) |X - y|
Since x,y € By,, we have 8(x) = 6(y) = 1. Thus,

11,60 = V2.0pllL°(B4p) = IM0p * Y1 — Nop * V2llLoo(Bay)

A

/ i
G—p||)’1 = Vallz1(Be,)

Py ’
< G_,O[yl - Vz]Wl/q,q(B(w) < 28/0’.

In the last step we have used Poincaré’s inequality (and the fact that y; = y) close
to 8B6p).
So if we choose ¢ such that ¢ < o, we obtain

|IT(t,x) =T, y)| > %|x —y| Vx,y € By,

Combining this with (3.9), we find that I" is an isotopy. In view of Theorem 3.2,
Y1,0(R/Z) and y, (R/Z) are ambient isotopic. Since in turn y; » and y; are ambient
isotopic for i = 1, 2, we have proven that y; is ambient isotopic to y». ]

4. Homeomorphisms appear as limits: Proof of Theorem 1.2

It is easy to construct a Lipschitz parametrization of curves y : R/Z — R3 with vanishing

tangent-point energy TP?4(y) = 0, p > ¢g + 2, but with no reasonable regularity, namely
p—q—1

y € CY(R/Z,R¥ andy ¢ W't 4(R/Z,R?).

Example 4.1. For any Lipschitz map y : R/Z — [0, 1/2] with |}’| = 1, if we set y(x) :=
(7(x).0,0) € R3 then
[y () A (y(x) =y ()] = 0.

In particular, if for any x € R/Z there are only finitely many y € R/Z such that
y(x) =70,

[y () A (y(x) —y )

ly(x) —y(MI?

and thus TP?9(y) = 0.

=0 for £2-ae. (x,y) € (R/Z)%,
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For example, take y to be

N t<1/2,
= { 1/2—1t, tell/2,1].

Then y’ has a jump discontinuity at # = 1/2 and at ¢ = 0. Thus y’ ¢ C°(R/Z,R3) and
-4 == “4(R/Z,R3) whenever y ¢ W't == 4(R/Z,R3) forany p > q + 2 and
q € (1,00).

It is easy to extend this example to a map y with countably many points of nondiffer-
entiability but still with TP?>9(y) = 0.

See also the example of a k-covered circle in [74, after Theorem 1.1].

Example 4.1 shows that there is no hope to classify a reasonable energy space of
Lipschitz maps y : R/Z — R3 with finite tangent-point energy. Rather we investigate the
space of diffeomorphisms with finite tangent-point energy, which turns out to be more
manageable — this is the content of the following Theorem 4.2, which is the main theorem
of this section. In particular, Theorem 4.2 implies Theorem 1.2.

Theorem 4.2. For any A > 0 and & > 0 there exists an L = L(g, A) € N such that the
following holds.
Let y; € CY(R/Z,R3) with [Y¢| = 1 be homeomorphisms such that

sup || vk oo + sup TP 4 (yg) < A.
k k

Then there exists a subsequence (Y, )ien andy € Lip(R/Z, R3) such that the following
hold for some finite set ¥ C R/Z with #¥ < L:

(1) yx, converges uniformly to some y € Lip(R/Z, R3).

(2) Forany xg € R/Z \ X there exists a radius p(xo) > 0 such that yi, weakly converges
toy in W1+p_Tq_l’q(Bp(x0)).

B) Iy |=1ae

(4) y is uniformly bi-Lipschitz in B,(xo) with the estimate
(I=ox—yl=lyx)—yWI=I|x—y[ Vx,y e By(xo).
(5) We have lower semicontinuity:
TP?4(y) < liminf TP?*4 ().
k—o0
(6) y is a bi-Lipschitz homeomorphism.
(7) y e WIHS4(R/Z,R3) forany 0 < s < 1/q.

We will prove a more detailed version of Theorem 4.2 in Proposition 4.10.
In order to prove Theorem 4.2, we proceed in several steps.
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o First we prove in Section 4.1 that for the approximating sequence yy the local tangent-
point energy is uniformly small away from a finite set ¥ (we will refer to it as the
“singular set”) of points of energy concentration.

e In Section 4.2 we obtain the Sobolev estimate for smooth curves whenever the tangent-
point energy is locally small (see Theorem 4.5), and as a consequence a bi-Lipschitz
estimate. This estimate is obtained by a gap estimate. In particular, this method charac-
terizes the energy space for the tangent-point energies in the scale-invariant case.

e In Section 4.3 we adapt an argument due to Strzelecki and von der Mosel [74] to obtain
a uniform estimate on global injectivity of the approximating sequence y; away from
the singular points.

o In Section 4.4 we then obtain, in Proposition 4.10, the convergence outside the singular
set, which implies Theorem 4.2.

4.1. Locally uniform smallness

In the first step we ensure that away from a discrete set we have locally uniformly small
energy in the approximating sequence.

Proposition4.3. Let p =q + 2, g > 1. Forany ¢ > 0and A > 0 there exists L = L(g, \)
such that the following holds. For any sequence yy € Lip(R/Z,R3) with Vel = 1 such
that
sup TP? 4 (y;) < A,
k

there exists a subsequence yy, and a set & C R/Z consisting of at most L points such
that for any xo € R/Z \ X there exists a radius p = px, > 0 and an index K € N such

that ,

Ve, ) A (vk; (x) = vi, )14

sup : dydx < e.
i=K J By, (x0) JR/Z vk () — vie; (V)12

Proposition 4.3 follows for any integral energy from a relatively standard covering
argument; see e.g. [67, Proposition 4.3 and Theorem 4.4]. We give the details for the
convenience of the reader.

Proof of Proposition 4.3. Pick § < 5% and let m € N. Then cover R/Z by at most
2[(827™)~1] intervals B(x;, §27™) such that every point x € R/Z is covered at most
two times. Then we have

1V () A (v (x) — v (P))1?
dyd
ZZ/Bu,-,az—m)/R/z e — ez P

[y () A (v (x) = v (V)2 2A
< dyd A= —c¢.
=2 /R/Z /M ) — (a2 A==
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Hence for every yy there exist at most L := L(e, A) := [2A/¢] intervals B(x;,§27™)

such that , ‘
X) A x) —
/ / [7e () A (e (x) = v (0)] dydx > ¢,
B(x;,62—m) JR/Z

Ve (x) — yr(p)|912 -

Now assume that we have already shown fori € {1,...,n} that

Sup/ / 12 () A (i (x) — ye (W) 4 dydx < ¢
k JBGxis2-m) JrR/z Ve (X) — ye(¥)|9F2 ‘

If there exist more than L intervals B(x;,827),i > n, with
(X)) A x) — 4
Sup/ / |V (X) A (v (x) ng))l dydx > e,
k JBGqs2my SRz Ive(x) —ve(0)I?
there must exist at least one B(xy,+1,827™) among them and a subsequence of y; such

that ,

1V () A (vic(x) = ye (D)7

sup > dydx < e.
k JBGai1.827m IRz |vR(X) — v (D)9

By repeating this step, we find a subsequence of y; for which
Ve () A (e () — v )1
sup - dydx < ¢
k JBGgs2-my SRz [v(X) — ye(0)]9

holds for all given intervals apart from L many B(X;j s, 27™).
Applying this method iteratively for m — oo, we can construct a series of subse-
quences such that for each subsequence yi ,, we have

Yk ) A ien (X) = Vi (V)17
sup = dy dx < g,
k JB@;.52-m) JR/Z [Vie,m (X) = Viem (¥)|2

where B(x;,8627") C R/Z\ U; <y B(xi,j.8277).
Now we choose a diagonal subsequence yi; (one element per yx ). Since

U (R/Z\ U BGxim.627") = R/Z\ (| B 827) = R/Z\ (1.0}

m i<L m i<L

for at most yq, ..., yr € R/Z, there indeed exists for any xo € R/Z \ {y1,...,yL} a
Pxo > 0such that B(xo, px,) C B(xy, §27K) fora K € N and x; being the center of one
of the at most 2[(§27%)~17 intervals B(x;, §27X). Therefore

|y]/€z ()C) N ()/k,- (.X) - Vk,- (y))|q
sup - dy dx < e. [
i>K JB(xoupxg) JR/Z Vi (%) = Vi; (V)19

4.2. Small local energy implies local Sobolev space estimates

The main novel ingredient underlying our argument for Theorem 4.2 is a gap estimate for
Sobolev spaces with respect to the tangent-point energy.
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As discussed in Example 4.1, it is impossible to control the Sobolev norm of y in
terms of the tangent-point energy of y, TP?>4(y), without assuming a priori bi-Lipschitz
estimates (as done in [12]; see also [7]). This is however not a viable method for the scale-
invariant case p = g + 2 because the bi-Lipschitz constant is not uniformly controlled as
a sequence Y converges to . We turn this argument around and first a priori assume that
the Sobolev norm is finite, and then conclude that this is an estimate which is uniform for
sequences yj converging to y.

The first step is the following gap estimate.’

Lemmadd4. Let p € [q +2.2¢g + 1) and g > 1. Let y € Lip(R/Z,R3) with |y'| = 1.
Then for any ball B C R/Z of diameter less than 1/2,
= CP. @) TPy B) + CP. )l 1Y ooy (4.1)

[V/]q pP—q—1 q
w a “Y(B)

(B)

whenever the right-hand side is finite.

Proof. The assumption that B has diameter less than 1/2 implies that B is a geodesic
ball and thus convex with respect to the R /Z-metric. To simplify matters even more, we
assume without loss of generality that the ball B is centered at 0 so that |x — y| is actually
the Euclidean distance.

Recall the Lagrange identity for v, w € R3 with |v| = 1:

v Aw]® = |w*—|v-wl
Moreover, observe that |y’| = 1 implies

ly(x) =y < |x =yl

Then
[y (x) A (y(x) =y ()9

ly(x) —y()|?

- [y (x) A (y(x) =y ()|

- |x — y|?

_ (Y@ A0 —y@ =y @0 —0))P)"”

lx — y|?
_ (r®) —y@) = Y@ =0 - V') - (v () — (&) = Y& = X))
|x — y|P '

‘We have

V() - '@ =Y @) =12y V@) -1-1) ==y ) -y @P. @2

3Lemma 4.4 is called a gap estimate, because it implies the following: For ¢ := (m)l/[]

we have either [V/][IIIV‘/M(B) <2C(p,q)TP4+2:4(y, B) or Vwi/a.ap) = &
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SO
V() - (y() —y(x) =¥ () (y — )| = |y — x| ]{ ) Y'(x)- (V' (2) =y (x) dz
X,y
1
=3 f ye-verd:

Consequently,

ly'(x) A (y(x) —y()I4

ly(x) —y(»)|?
(1Y) = () =¥ @)@ =P = Ly = xP [ V') =y ()7 dz|*)*"?

|x —yl?
Observe that from our computations we know that in particular

2

2 ][ V() — Y (D) dz
(x,y)

Y0) — 1) Y @~ 0P = 51y~ x|

Also observe that for any r > 0 there exist ¢, € (0, 1) and C, > 0 such that for any
a>b>0,
(a—b) =cra" —C,b".

From this, and by Jensen’s inequality,

[y () A (y(x) —y )|

ly(x) —y(»)|?
q
_ O =y =y @O =0l =y V@) @) d|
- lx —y|? |x —y[?
. | y(y)—y()a_l;l(x)(y x) |4 f(x ) I)/ (x) — 7//(Z)|2q dz
- |x — y|p—2 |x — y|p—2

Integrating over x and y in B we obtain

’y(y) y(x) V (x)(y x) |4

// Ix—yll’ q dx dy

4 N/ 2q d
SCq(TPp’q(y;B)+//f(x’w'y ¢~y @) dedy). (4.3)
B JB

|x — y|p—2

Recall that p € [q +2,2¢ + 1), so p_;’_l € (0,1). From Lemma A.1,

y(O)— y(x) y"(x)(y—X) q
1, :z// ey dx dy.
w?4"amy  Jpls lx — y|P—e
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From Lemma A.2,

£ =y )P dz
ity * /B /B () dx dy.
1

|x — y|P—4

Also, from the Sobolev inequality and Lemma A.3, we have

/ o < (4 7"_2‘1_2 / o </ o
[V]Wn;; L24 g < (diam B) 24 [V]ng ‘.q(B)_[V]ng La(gy

Thus, (4.3) implies

V1 pger,  STPPAB) + [Ty,
w4 9B w4 9B)
which is (4.1). The proof is complete. ]

The gap estimate leads to the following control of the Sobolev norm. We stress that
we need to assume a priori that y already belongs to the Sobolev space in question, which
rules out the irregular curves of Example 4.1.

Theorem 4.5. Let qo, po > 1, po = q1 + 2, and p1 < o0 be such that p; —2qy < 1.
Furthermore, assume that po < p1 as well as qo < q1. Let ¢ > 0. Then there exists § =
8(q0, Po-91, P1,€) > 0 and a constant C = C(qo, po,q1, p1) > 0 such that the following
holds for any p € [po, p1] and q € [q0, q1]-
Let y € Lip(R/Z,R3), |y'| = 1, and assume that for some ball B C R/7Z with
diam B < 1/2, we have
TPP4(y; B) <§

and
either y € C'(B) or [ ., < 0. 4.4
wa 9(B)
Then
1 e = C(qo, po.q1, p1) TPP(y; B) (4.5)
wa 9(B)
and we have the bi-Lipschitz estimate
(I-g)lx—yl=lyx)—yOWI=I|x—yl Vx.ye€B. (4.6)

Proof. In view of [12, Theorem 1.1, Remark 1.6], y € C'(B) and TP?*Y(y; B) < 00
implies

[V/]q pP—q—1 g < 00,
w4 (B)

so that in (4.4) we can assume the Sobolev space estimate holds (observe that we do not
need to assume a priori injectivity here, because if |y’ (xo)| > 0 and y is C ! around x, then
it is locally injective around xg, meaning we can apply [12, Theorem 1.1, Remark 1.6]
locally) .
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Assume that B = Br(xg) for some xo € R/Z and R € (0, 1/4). Set
A :=TP?4(y; B) <.

For r € (0, R] set B, := B, (xy).
By Lemma 4.4 we have for any r € (0, R],

1 - < CiTPP4(y; B,) + Caly ]2"
w1 (s,) =g,

Set

fr) =1y ]q

"(Br)
Then
f(r) <CiA+ Co(f(r))* Vr e (0,R).

Setting p(t) := Cat?> —t + Cy A, we have
p(f(r)) =0 Vre(0,R). (4.7)

The roots of the polynomial p are

1 1 C] 1 1 Cl

= —— — | = 2 A = — | —— —
BTG TV eeE TG TG T o)y

Let § be small enough that

1 Cy - 1
(2C)? G, (4Cr)?

Then whenever A € (0, §) we have f).; < f);» and moreover
ti; <2C1A VYA €(0,9). (4.8)

The polynomial p is negative only on the interval (¢ 1, ) 2). From (4.7) we deduce that
foreach r € (0, R) either f(r) <t jor f(r)>1,,.Since f(0) =0and f is continuous,
we conclude that necessarily

f(r)y <ty foreachr <R.

That is, in view of (4.8),
y'1? g1 <2CiA.
woa (B
Recalling the definition of A, we infer (4.5).
Choosing § > 0 possibly even smaller, we also obtain (4.6) as a consequence of (4.5)
and Lemma 2.1. n

Let us also remark, for the sake of completeness, that the argument in the proof of
Lemma 4.4 also gives a real classification of the energy space, if one assumes a priori
bi-Lipschitz estimates (cf. [12, Proposition 2.4]).
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Lemma 4.6. Let p € [q +2.,2q + 1) and ¢ > 1. Let y € Lip(R/Z,R3) with |y'| = 1 be
bi-Lipschitz, i.e.
A=Dx =yl =lyx) =y =|x =yl

Then for any ball B C R/Z of diameter less than 1/2,

TP?9(y; B) < C(p,q. VY1 pees  +C(p g WY T gy
w—a 9(B) w4 9(B)

With the help of Lemma 4.6 we obtain the following.

Example 4.7. There exists a homeomorphism y : R/Z — R3 which is bi-Lipschitz,
whose derivative is not everywhere continuous, but has finite tangent-point energy
TP972:4(y) for any ¢ > 1. Moreover, there exists a sequence of C*°-diffeomorphisms
Yk converging uniformly to y with uniformly bounded tangent-point energy, i.e.

sup TP?T2:4 () < oo.
keN

Indeed, denote by N = (0, 0, 1) the north pole of S2.
Letu € W1/449([—1/4,1/4],8%) \ C°([—1/4, 1/4], R?) be such that

(u,N) >1/4

and u is constant for |x| < —1/8 and for |x| > 1/8.
For example, for any n € C°((—1/8,1/8),[0, 1]) with n = 1 in [-1/16, 1/16] we
could set

1 1 1
u(x) = (% sin(n(x) loglog 1/|x]), E cos(n(x)loglog1/|x]), E)

Now for x € [—1/4,1/4], let
X
y(x) = / u(z)dz.
—1/4
Then y is bi-Lipschitz in [—1/4, 1/4] because

70 =y = 00 =y M) = [ N) = -yl

[x,y]
Observe that y’ is constant around x ~ —1/4 and x ~ 1/4, so y can be smoothly extended
to a closed curve on [—1/2, 1/2] which is a smooth 1-D manifold outside of [—1/4, 1/4].
By Lemma 4.6 the curve y has finite tangent-point energy TP?*2:4 but y is not C'! since
y’ is discontinuous.

On the other hand, in view of Section 3 any regular homeomorphism y € witl/aq
can be approximated by smooth homeomorphisms with uniformly controlled bi-Lipschitz
constant, so that in view of Lemma 4.6 the tangent-point energy TP?*2:4 is uniformly
bounded.
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4.3. The Strzelecki—von der Mosel argument: Locally small energy implies global
injectivity
In this section we provide a reformulation of a powerful argument due to Strzelecki and
von der Mosel [74] (see also [12, Appendix]). They used it to show that the image of a
curve with finite tangent-point energy (p > g + 2) is a topological 1-manifold embedded
in R3. Recall that this manifold could be the twice covered straight line, as in Example 4.1.
We rework their argument to provide us with uniform injectivity for intervals with
small energy in Theorem 4.9.
The following is essentially a reformulation (with a slight refinement) of [74,
Lemma 2.1].

Lemma 4.8 (Strzelecki—von der Mosel). Let p > g + 2. For any ¢ > 0 there exists § > 0
such that the following holds.
Lety € Lip(R/Z,R3) with |y'| = 1, and assume that for some xo € R/Z and p > 0

we have , q
/ / [y'(x) A (y(y) — y(x))] dy dx < 8. (4.9)
B,(x0) JR/Z

ly(x) —y(»)|?

Moreover, assume that there is yo € R/Z withd = |y(yo) — y(x0)| < p-
Then

Y(R/Z) N B2a(y(x0)) C Bea(L(y(x0),7(¥0))),
where L(y(x9), y(yo)) is the straight line containing y(x¢) and y(yo) defined by
L(y(x0).¥(y0)) = {(1 =)y (x0) + 1y(yo) : t € R}.
Proof. Forr > 0and p,v € R? we define
A(r,p) :={x eR/Z :|y(x) — p| <r},
X(rv):={xeR/Z:|y(x) Av|>r}.
Fix x9, yo € R/Z and d := |y(x¢) — ¥(y0)| as in the assumption. Set

— Y (xo0) — v(¥o)
' ly(x0) — V()’O)l.

Step 1: We show the following: There exists o € (0, 1) depending only on p and ¢ such
that the following holds. For any o < oy there exists 8o = §p(a) > 0 such that whenever
8 < 8g in (4.9) then

| B, (x0) N A(0%d, y(x0)) N X(0,v)| > %ozd. (4.10)

In order to establish (4.10), we first observe that for any x € A(o%d, y(x¢)) and y €
A(0?d, y(yo)) we have

ly(x) =yl € [(1 = 20%)d, (1 +20%)d].
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Moreover, for x € A(02d, y(x9)) N X(o,v) and y € A(c%d,y(y0)),

) =y |

o) =yl = T 20ma 7 DA @& v

Y'(x) A

2 T oma V'@ A ) =y (o)) = 207d)
_ (| p X0 = 00) | 2)
T 14202 ( y'(x) A o) — 700 20

>
T 14202
Hence, whenever x € A(02d, y(x¢)) N X(o,v) and y € A(c%d,y(yo)),
Y AGE)—yOI? 0?1201 1
ly(x) —y»I? = dr=a\1+202) (1+202)P4¢
From (4.9) we find

- 0l (1-20\1 1
dP=4\1+20%2) (1+202)P14
X |By(x0) N A(0%d, y(x0)) N X(0,v)| [A(0%d, y(yo))|-

Observe that since |y’| = 1, we have |A(02d, y(y9))| > 202d. Then

| B(x0) N A(0?d, y(x0)) N X(0,v)| <

dP=1=1 (1 +202\1 ol
p—q_
prEe) (1_20) (14+207) 28. 4.11)
Since d < p, 0 € (0, 1), and |y’| = 1, we have
|Bp(x0) N A(62d, y(x0))| > 207°d. (4.12)

Taking o small enough, combining (4.11) and (4.12) we obtain, for any o € (0, p) and
any § € (0, o) where 8o = 8o (o) is small enough,

|Bp(0) N A(0>d. y(x0)) N X0, v)°|
> 20%d — | Bo(x0) N A(0%d, y(x0)) N X(o,v)| = %ozd.
This establishes (4.10).
Step 2: We are going to show that if ¢ is small enough and
Y(R/Z) N Baa (y(x0)) & Bag ya(L(y(x0). (o)), 4.13)
then necessarily for a uniform constant C = C(p, q),
1 <2C8c™ 471, (4.14)

Once we have proved that, we can argue by contradiction: Choose o small enough so that
in particular 20,/0 < ¢. Pick 8o = 8¢(0) from Step 1, and § < 8¢ (depending on o and
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thus ¢) such that (4.14) is false. Then (4.13) would lead to a contradiction and thus is
false, meaning

Y(R/Z) N Baa(y(x0)) C Byossa(L(y(x0).¥(¥0))) C Bea(L(y(x0).¥(¥0))).

as claimed in the lemma.
So we have to show that (4.13) implies (4.14), which we will do now.
If (4.13) is true, there must be a point zg € R/Z such that

¥(20) € B2a(y(x0)) \ Byo yza (L(y(x0).¥(¥0)))- (4.15)

Denote the angle between y(zg) — y(xo) and y(y¢) — y(x0) by «; see Figure 2.

7(z0)

dist(y(z0), L(y(x0), ¥(y0)))

I(20) — y(x0)| v(vo)

L(y(x0),y(¥0))

y(x0)

Fig. 2. Definition of «.

Observe that
dist(y(zo), L(y(x0), y(10)))
ly(z0) — y(x0)I

=104/0.

v(z0) —y(xo)  y(yo) —y(xo) | _ |
ly(z0) —v(x0)|  [y(yo) — ¥(xo)|
@15) 20./od
- 2d
Denote by 8 the angle between y’(x) and y(yo) — y(x¢) and by 6 the angle between
y'(x) and y(z¢) — y(xo). Then we have

sin(a)| =

o < |B] +16].
Thus, a short computation leads to

y(20) — y(x0)

Y () A ——————| = [sin(#)| > |sin(ar)| — |sin(B)
ly(z0) — y(xo0)|
y(zo) —y(xo)  y(yo) —y(xo) | |, Y (yo) — ¥ (xo)
Z o) 7@l " oo — vl 7P rho) — yo)
> 1045 — |y/(x) A (o) — y(xo) |
ly(yo) — y(xo0)|
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Consequently, for any x € X (o, v)¢,

¥ (z0) — ¥ (xo) > 10V — 0.

A e =y o

For all o small enough this implies that for any x € X (o, v)°,

y(z0) — y(x0)

1y(z0) — y(xo)| > 9o, (4.16)

Y (x) A

Observe next that for any x € B,(xo) N A(02d, y(xo)) and z € A(c2d, y(zo)) (it is
important that z € R/Z and need not to lie in B,(x¢)) we have

ly(z) — y(x)| = |y(z0) — y(x0)| — 20%d > /o (20 — 26*/%)d

and
ly(2) — y(x)| < |y(z0) — y(x0)| +20%d < (2+ 20%)d.

That is, for all o small enough,
ly(z) —y(x)| € 194/0d, (2 + 20%)d). (4.17)

We combine (4.17) and (4.16), and find that for any x € B,(xo) N A(c2d, y(x0)) N
X(o,v)¢ and z € A(02d, y(z0)),

y(x) —v(@) | _
ly) =y@I1 v =yl

(17" (x) A (y(x0) = ¥(20))| —20%d)

Y'(x) A [y (x) A (y(x) = y(2))]

~_
ly(x) =y (@)l
y(x0) — y(20)

1
S — - ' LT PR 9024
= iy (e — vl JETE - 20%)
d 2 o
2m(1800—20’ )z2+202(]80—20')

Again, for all small enough o this implies for any x € B,(xo) N A(02d, y(x0)) N X(0,v)¢
and z € A(02d, y(z0)),

y(x) —y()
ly(x) —y(2)I
Integrating this inequality in x € B,(xo) N A(c2d, y(x0)) N X(o, v)¢ and z €
A(o2d, y(z9)), we deduce from (4.9), (4.17), and (4.18) that

(30)1
T @+ 202)d)r

> 30. (4.18)

Y'(x) A

|Bp(x0) N A(0?d, y(x0)) N X(0,v)¢||A(0%d, y(20)).

For small enough o we can simplify this to

(30)?

> Gayr=a | Br30) N A(@%d. y(x0) N X(o.v)°| | A(0?d. y (z0))]-
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With (4.10) in mind, we can find §9 = §¢(0) such that if § < §¢ then

30)¢ 3
(33% 50°d1A(0>d, y(20))].

5>
On the other hand, since |y’| = 1, we have |A(02d. y(z¢))| > 202d. That is,
202d < |A(02d,y(z0))| < C8dP~9 167274,

That is,
d=P=270 < 208571,

If p > g + 2 we have (observe that d < 1 since diam(y(R/Z)) < 1),
1 <2C80~*1.

That is, under the assumption (4.13) we have shown (4.14), which, as explained above,
implies the claim of Lemma 4.8. ]

Theorem 4.9. Let2g + 1 > p > g + 2. There exists § > 0 such that the following holds.
Let y € Lip(R/Z,R3) be a homeomorphism with |y'| = 1, and assume that for some
X0 € R/Z and p > 0,

either y € Cl(Bp(xo)) or [)//]Wp—g—l 9By 0) < 00. (4.19)
Also assume , ‘
/ / ly'(x) A (y(y) — y(x))] dy dx < 6. 4.20)
By(x0) JR/Z ly(x) —y()|?

If for any zy € R/Z we have

ly(x0) — ¥(z0)| < 150,
then there exists X € B,(xo) such that y(x) = y(zo). In particular, zo € By(Xp).

Proof. Fix o,& > 0 to be specified later. Take § small enough so that Lemma 2.1 and
Theorem 4.5 are applicable (in view of (4.19)), so that

(I=0)|x =yl =<ly(x)—yWI =Ix—=y| Vx,y € Bp(xo). (4.21)

Moreover, we can assume that § is small enough so that Lemma 4.8 is applicable.
Starting from xo, we are going to construct a sequence (xx)7—, C By(xo) and a
sequence (dx)7~, C (0, 00) such that for all k > 0,

o |xk — xpq1l < 25 dk.
* |y(xk) —y(20)| = di.
o dis1 < 15

® Bioa; (xk) C Bpy(xo).
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Once we have constructed this sequence, we see that xj is convergent to some X :=
limg 00 Xk € Bp(xo) and y(X) = limg_oo ¥(xk) = ¥(20). Since y is injective, this
implies X = z¢ and thus zg € B,(xo).

Let xi be already given; we need to construct xx 1. Set

dic := ly(xk) —y(z0)| and  ne(r) := y(xx + tdy).
Observe that for |t| < 1, by (4.21),

[k (1) — y(xx)| < dk.

On the other hand, whenever |¢t]| > (1 — o)1, by (4.21) we have

[k () — y(xx)| = dp.

The intermediate value theorem yields 7— € [—(1 — o)~ !, —1] and 74 € [1, (1 — 0)7!]
such that
e (1) — y(xi)| = di.

Without loss of generality (otherwise we interchange the role of 7_ and 74 below) we may
assume that

Ik (t-) = y(20)| = 3d. (4.22)
Indeed, if the inequality was false for both 7 and 7_, we would have

Ik (=) — ne(t4)] < d,

which violates the bi-Lipschitz assumption (4.21).
Set
Vi 1= X + t4dg.

Denote the line through y(xx) and y(yk) by Ly, ,y, , more precisely let
Ly (1) == (1 =0)y(xe) +1y(ye), 1 €R.

Since By, (xr) C By(xo), we can apply Lemma 4.8 to find that
| L.y (1) = y (o) = Inf [ L.y (1) — ¥ (20)] = edi (4.23)
for some #; € [—1, 1]. By Pythagoras’ theorem,
(1 =) < |Lyyy (1) =y (a)|? = (7.

That is, if ¢ is chosen small enough, then |t;| > 1 — 2e.
We now argue that #; > 1 — 2¢. Indeed, if we had #; < —1 + 2¢, then from the bi-
Lipschitz estimate,

Ik (t1) — nk ()] = (1 — 0)(2 — 2¢)d.
On the other hand,

[Lxp,yi (1) = me(t0)] = 11 =11l [y (xx) — ve )| = (2 = 28)d.
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Moreover,
Ik (t1) —y (i)l < die and  [Lyy y, (11) =y ()| = [t1|die < di.
So we have

Ly (t1), e (t1) € Bay (v (xi)) \ B(1-0)(2—26)d (Mkc ().
But also
[k (14) — y(xi)| = d.
From elementary geometry this implies that for small enough ¢ and o we have
| L,y (11) = i ()] < Gl

But then from the projection assumption (4.23),

Ik (t=) — v (zo)| = |mi(t=) — mic )| + i (t1) — Ly y ()| + | Ly (1) — ¥(20)]
<|t— —t1]dx + %dk + edy < %dk

for small enough ¢ and o. This contradicts (4.22). That is, we have shown ¢; € [1 — 2¢, 1].
Now we find that

1Y (Vi) = Ly ,y (1) = (1 = 1)y (x) — vy (yic)| = 2edk.

Consequently, by (4.23), for ¢ small enough,
ly (k) — ¥(20)| < 3edi < 155k
So if we set Xg 11 := Yk = Xk + t4+di € Bp(xp), we see from (4.21) that
[Xk1 — xk| < (1 —0) dr.
Also, by the definition, di 11 := |y(xg+1) — v(20)| < W%odk' Lastly,
Biody 4y (Xk+1) € Bty (Y1)
C B%+(1—a)*')dk (xk) C Biog, (xk) C Bp(xo). (4.24)

We have thus constructed x; . with the required properties. ]

4.4. Convergence

Proposition 4.10. Letg +2 < p <2q + 1. Forany A > 0 and ¢ € (0, 1) there exists an
L = L(e, A) € N such that the following holds.
Let yi : R/Z — R3 with Vil = 1be C '-homeomorphisms with

sup ||k llee + sup TPYT24 () < A.
k k

Then there exists a subsequence (Y, )ien andy € Lip(R/Z, R3) such that the following
hold for some finite set ¥ C R/Z with #¥ < L:
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(1) yx; converges uniformly to y.

(2) For any xo e R/Z\ X there exists a radius p = p(xp) > O such that yi; weakly
converges to y in witr=a (By(x0)).

3) |y =1ae.

(4) yx, and y are uniformly bi-Lipschitz in B,(xo) with

(A =8))x =y < |y, xX) = v, M| < |x = y| Vx,y € Bp(xo) Vi (4.25)

and

A=8lx =yl =|lyx)—yWI = |x—y] Vx,y € By(xo). (4.26)
(5) Forany xo € R/Z \ X and any yo € R/Z with |yk; (xo) — vk, (yo)| < ﬁp(xg) or
ly(x0) = ¥(¥o)| < a5~ (x0) we have |xo — yo| < p(xo).
(6) In particular, if y(x) = y(»), then either x = y or {x,y} C X.

(7) We have lower semicontinuity:

TP (y) < l}cm inf TP?9 (). 4.27)
—>00

®) v : R/Z — R3 is a homeomorphism.
(9) y is globally bi-Lipschitz.
(10) y € WItS4(R/Z,R3) forany 0 < s < 1/q.

Proof. (1) By the Arzela—Ascoli theorem, up to taking a subsequence, we may assume
that (1) holds.

(2) Fix § > 0 to be specified later. By Proposition 4.3, up to taking a further subse-
quence there is a discrete singular set ¥ with #% < L such that for any xg € R/Z \ £
there exists px, > 0 such that

/ A _ q
1imsup/ / 1V () A (i (x) — v (¥))] dxdy < 8. 428)
Byy, (x0,10) JR/Z

k—o0 |)/k(x)—Vk(Y)|P
From Theorem 4.5 we find that for each xg € R/Z \ X,

sup [yk]q —g- < C6é. (4.29)

By (¥0))
By reflexivity of W ==tp (Bpx (x0)) and the Banach— Alaoglu theorem combined with
Rellich’s theorem, we find that y; weakly converges to y’ in W L (BpA (x0)) and

the convergence is pointwise a.e. in By, (xo) and strong in L! (Bpr (x0)). Observe that
by uniqueness of the weak limit we need not pass to a further subsequence here. This
establishes (2).
(3) In particular, y; a.e. converges to y" in R/Z \ ¥, and ¥ is an &!-zero set. This
implies
ly'(x)| = klim lyp(x)| =1 ae xeR/Z.
—00

We have established (3).
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pP—q—1
q

(4) Having chosen § in (4.28) small enough, we get a small W~ < °? (Bpy, (x0))-
norm from (4.29), and from Lemma 2.1 we obtain (4.25). From the uniform convergence
Y — ¥ we obtain (4.26). This establishes (4).

(5) The statement in (5) for yy is a consequence of Theorem 4.9. By uniform conver-
gence this carries over to y.

(6) Assume x,y € R/Z with y(x) = y(y). If x € X, we infer from (5) that y €
B, (x)(x). But by (4.26) this implies x = y. Similarly, if y ¢ ¥ we obtain y = x. So if
y(x) = y(y) then either x = y or x and y both belong to X.

(7) In order to prove (4.27) observe that by (6) we have

ly(x) =y =0 = (x,y) e{(x,y) eR/ZXR/Z :x =y} UT x X.
In particular,
{(x,y) e R/Z X R/Z : |y(x) —y(y)| = 0} isan £>-zero set.

Consequently, the pointwise convergence of yx to y and the £!-almost everywhere con-
vergence of y; to y’ imply that

Y O)AG@)—yoN? () A x) —re ()4

= F2ae. inR/ZxR/Z.
=y T ) e ac.inR/ZxR/

From Fatou’s lemma we thus have

TP?9(y) < liminf TP (),
k—o0

and (7) is established.

(8) By now we know that y has finite tangent-point energy. By [74, Theorem 1.1] this
implies that (IR /Z) is a topological 1-manifold. On the other hand, y : R/Z — R3 has
only finitely many self-intersection points, namely y(X). This means that there are no
intersection points at all.

Indeed, assume there are distinct xq, x, € ¥ with y(x1) = y(x2). Then there exists
&> 0 such that [x; —e,x; + 6] N X = {x;},i = 1,2, since X is a discrete set. Now
y 1 [xi — e, x; + €] — R3 is a one-to-one map and it is (even Lipschitz) continuous.

Now denote by C a cross,

C = {Z=(21,22)€[—1,1]2221 =0orz; =0}
and define f : C — R3 by

y(x1 +ez1), z=1(21,0),

1= {y(xz +¢e23), z=1(0,z2).

Then f is injective and continuous. Since C is a compact set, we conclude that
f:C — f(C) C y(R/Z) is a homeomorphism. Since y(R/Z) is a one-dimensional
topological manifold, around any po € y(R/Z) there exists a homeomorphism # :
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y(R/Z) N Bs(po) — R for some small §>0. Taking po := y(x1) we see that h o f :
C N Bs(0) — R is a homeomorphism for a smaller § > 0. But the cross C is not hom-
eomorphic to any subset in R, and we have a contradiction from our assumption that
X1 # X2. In conclusion, y is injective. Since y : R/Z — R3 is continuous and R /Z com-
pact we conclude that y : R/Z — R3 is a homeomorphism. Thus (8) is established.
©)
ye) -yl _
x#yeR/Z  |x — Y|

. k—oo _ k—oo _
Then there exist (convergent) sequences R/Z 3 x —— X and R/Z > y, —— y with

fim YO0 =yl _ (4.30)
k—>oo |xk — Ykl
‘We make several observations:

e X = y. Indeed, if X # y, then the continuity of y combined with (4.30) implies that
0 = y(x) — y(¥). Since y is injective, this implies X = y, a contradiction.

e i € X. Indeed, if X ¢ X, then for all k sufficiently large, X, yx € B, (X), thus by (4.26),

PO POy o e 1,
[xk — yil

This contradicts (4.30).

e For all but finitely many k € N (up to interchanging x; and y) we have xx < X < yi
for all k € N. Indeed, let K > 0 be such that

- 1

Iy (i) =yl <> Vk>K. 4.31)
Xk — il 4

Also, combining Lemma 2.1 and Theorem 4.5, let § = §(¢) > 0 be such that for any ball

B C R/Z of diameter < 1/2,

D () ’
TPP4(y; B) < § and [y ]Wpfgfl () <

implies  |y(x) —y(y)| = 3lx —y| Vx,y € B.  (4.32)

By absolute continuity of the integral, and since TP?4(y) < oo, there exists a p > 0 such
that
TP?4(y; B) <§ forallballs B C R/Z with diam B < p. (4.33)

Now assume by contradiction that xg, yx € Bj/2(¥) and xx < yx < X for some k > K.

Take a sequence (Vk:;)ien such that x; < yi,; < X with J; 7o k. There exists an

openball By ; C By; CR/Z\ ¥ of radius < p/2 such that xi, yx,; C Bg,;. By a covering
—q—1

argument, from (2), we obtain y’ € W S (Br,i) (without any estimate for the norm).

However, since the ball By ; is small enough, we have TP?*4(y; By ;) < § by (4.33), so
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from (4.32) we obtain
ly Ce) — ¥ ks 1)| I

Xk — Vil
This holds for alli € N, so letting i — oo we get

l\)

lyCe) =yl 1

|xk — yil =2

a contradiction to (4.31).

e There exists K € N such that for any k > K,

ly(xk) — ¥ (k)| = 55 max {|xx — X[, |yx — X} (4.34)

Indeed, let § > 0 be from Theorem 4.9, and let R > 0 be such that (4.20) is satisfied
for any xo € R/Z and any p € (0, R) — such an R > 0 exists by absolute continuity of
the integral and since TP?*?(y) < co. We can assume by taking R possibly smaller that
Br(x) N X = {x}.

Let K € N be such that |x; — yi| < 100R forall k > K. Set p:= 2|xk —X| < R.

Observe that B,(xg) N X = @ and thus y’ € W q(B,,(xk)) by a covering argu-
ment and (2). Since X ¢ B,(x) and xx < X < yg, we find that y; & B,(xx). Applying
Theorem 4.9 in B,(xx), we conclude that

ly (o) =y )| = 551k — X
By a similar argument,
ly(xi) =y (i) = 551k — %I
To deduce (9), observe that by the triangular inequality
max {|xx — X[, [yx — X} = 3|xx — yxl-
Combining this with (4.34) implies
ly () =y i)l = 75 1%k — vl

which is a contradiction to (4.30). This establishes (9).

(10) The set X of points where we do not know already that y is Sobolev, is at most
finite. For simplicity of notation assume that 0 € 3. Take r > 0 small enough such that
B, N ¥ = {0}, and that for § from Theorem 4.5,

TP?4(y: B,) < 6.
For small o > 0 let
X5 = ([-r,—0] U o, r]) x ([-r,—0] U [0, r]).

Since £2([—r, r)? \ Xs) 225 0, it suffices to show that

q
limsup// |V () = 7'l dx dy < oo.
Xo

o—0t |x — |1+sq
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pr=q—1 r=q—1

Since we already know that y’ € W A([—r,—c]) UW
Theorem 4.5 to obtain

V') =y I
//Xa Ix — y|+sa dx dy

X ! 4q 1
< WO VO gty iles [ [ e avay.
o 2Uf-r—o2  |X —y[P74 (=r,0) J(0,r) |x — y[1Fs4

The second integral is finite for s < 1/q. ]

4 ([o, r]), we can use

Remark 4.11. It is unclear to us whether Proposition 4.10 (10) holds for s = 1/4. If one
were able to prove this, then there is a chance to remove the singular set for the regularity
theory in Corollary 1.8 with the removability argument as in [50].

5. Weak limits of minimizing sequences are critical: Proof of Theorem 1.6

We would like to compare our minimizing sequence y; with the variation y + ¢, where ¢
is a locally supported test function. Computing the Euler-Lagrange equations then proves
Corollary 1.8. For notational convenience, we restrict ourselves to the case p = g + 2
instead of p > g + 2. The case p > g + 2 follows in the same way, but it can also be
obtained by simpler, more direct methods.

Theorem 5.1 (Minimizing sequence converging to a critical point). There exists g9 > 0
such that the following holds.
Letq > 1, yp € CH(R/Z,R?), y € Lip(R/Z,R3), |y;| = Y| = 1 a.e., with

sup TP 124 () < 0.
k

Assume that yy is approximately minimizing, in the sense that
TPY*24 (y) < TPU29(7) + 1/k

for any y ambient isotopic to k.
Assume that Vk uniformly converges to y in R/Z and for a geodesic ball Bioop C

R/Z, e.g. p < 1000,

Sup/ / vk, x,y)dy dx < &g (5.1
Bioop /R/Z

where A o) o
d(x)A(e(x)—0a(y g
o) —ogyrz 1o T el

Then for any ¢ € C2°(B,, R3) there exists to > 0 such that for all t € (—to, to),

// u(y,x,y)dxdy E// w(y +to,x,y)dxdy.
(R/Z)>\(B,°)? (R/Z)>\(B,°)?

For the proof of Theorem 5.1 we need to obtain first a fractional version of the Luck-
haus lemma.

p(o, x,y) =
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5.1. A fractional Luckhaus lemma in one dimension

The Luckhaus lemma [49, Lemma 1] is an important tool for harmonic maps, usually
given in the form below; see [72, Section 2.6, Lemma 1]. It essentially provides a way to
glue together two maps u and v along the boundary 9 B;(0) with explicit dependence on
the size § of the glued region.

Lemma 5.2. Let N be any compact subset of R*, n > 2. Assume u,v € WH2(S*~1, )
and § € (0,1). Then there exists w € W12(S"™1 x [0, 8], R?) with w = u in a neighbor-
hood of S"~! x {0}, w = v in a neighborhood of S"~' x {§},

/ [Vw]|" SCS/ (|Vu|2+|Vv|2)+C8_1/ lu —vl?,
S1-1x[0,5] sn—1 -

and

dis?(w(S"™! x [0, 8]), )

1/2 1/2
< csl—"(/ (|Vul* + |Vv|2)) (/ |u—v|2) +c5—"/ lu —v|*.
Sn—l n—1 Sn—l

We will need a version of this lemma for fractional Sobolev spaces in one dimension.
Working in one dimension has advantages and disadvantages: The advantage is that the
boundary of a ball consists of two points, and the possibility of explicit computations. The
main disadvantage is that there may be no reasonable trace spaces for W*7 ([0, 1]) when
sp < 1. In any case, the following might be interesting on its own.

Lemma 5.3. Assume u,v : R — R3 are locally integrable, have a Lebesgue point at
x = =1, and

dy <oco, x=-1,1.

Ju@) —uI? |U(X)—v(y)|"
R |x_ |1+sp |1+sp
Then for any 8 < 1/2 there exists w : (—2,2) — R3 with the following properties:

e w(x) = u(x) for |x| > 1 and w(x) = v(x/(1 —9)) for |x| < 1 — 8, namely we can
choose

u(x), |x| > 1,

1 =nC)u(=1) + n(x)v(=1), xe€[-1,—1+4],
w(x) =

v(x/(1=296)), |x] <1-34,

(1 =n()u(l) + n(x)v(l), x €[l-4,1],

where n : R — [0, 1] is any smooth map such that n = 0 for |x| > 1 —68/4, n =1 for
x| <1— 18, and |n'| $1/8.
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e Foranyr € (1,2) we have the estimate

[w]fvv P (=rr)

u @) —u()l? -
/<y|<r/r>x>1 |x — y|1tsp dxdy +(1-8)""""[v ]Wsp( 1,1)

[u(x) —v(y)|?
+2(1=9) /y|<1 />|x|>1 lx — (1 —=38)y[ttsp dxdy

lu(1) —u(y)|? [u(=1) —u(y)|?
+cs(/ e ey +/ 2y
relyl>1 |1 —y[i+s? Y =1 |=1—=y[i*sp Y
_ lo(1) —v(y)I? [v(—=1) —v(y)|?
+C8(1 -6 ”’(/ —_— +/ —_— " d
( ) lyl<1 |1 _y|1+sp Y lyl<1 |_1 _y|1+sp Y

+ C87P (lu(1) —v(D)]? + Ju(=1) —v(=1)?)
+ C8(u(1) —u(=DI” + [v(1) = v(=DI?). (5.2)

e [fweset K :=u(—2,2) Uv(-2,2), then
dist(w((=2,2)), K) < [u(=1) —v(=D[ + |u(1) —v(D)].

Proof. We can find n with the properties specified above such that || < 1/8. Then (for
simplicity we assume r = 2 here, the case of general r is the same)

_ p
/ / lw(x) ulJ(y)I dx dy
(—22) J(—22) |x —y|ITsP
_ p
[ o,
ly|>1 J|x|>1 |X— | sp

lv(x) —v(I?
1—sp
* (1 8) /y|<1 /|x|<1 dx dy

|x — y|t+sp

+ 1T + 21V + 2V + 2VI

— p
= _/ / de dy,
yle1-8,1) Jixlea—s,1)  |x — y['FP
— p
:/ / e ul)-f—y)| dxdy,
lyl<1=6 J|x|>1 |X—y| Sp
- p
/ / dedy,
Iyle(1=8,1) JIx|<1—=s  |x — y|1TsP

— p
[
yle(i=8,1) Jix|>1  |x — y[1TsP

where

VI:
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To estimate III we observe that

— V4
I < // fwx) —w)I? ul)iy W 4 dy
x,ye(1=§,1) |x—y[1TsP

_ y4
v Wl — WP
x,y€(—1,—1+8) |x - y| sp

+ (lu(=1) —u(D)|? + (1) = v(=1)|7)8>

In(x) —nOMI”
1) —u(1)|? dx d
< (1) —u(1)| //xye(l I e
n(x) —n(y)|?
—1) —u(=1)|? 2 0 dxd
+ [v(=1) —u(=1)| //x,ye(—l,—l+8) |x — y|1+sP xay

+ (1) = u(D? + [o(1) = v(=1)|")3?
<817 (1) —u(DI? + 81 o(=1) —u(=D)|?
+ 82 (u(=1) —u()I” + (1) = v(=DI”)

u(x) —v(y/(1 =8P
V= dxd
/|Y|<1—8 /|x>1 |x — y|1+517 xday

B u(x) — v(y)|?
=19 /|y<1 /| = (= g)y i A

The tricky terms (that need to vanish as § — 0) are the remaining ones:

_ [v(x/ —8)) — (1 —n()u®) —nGvDI”
V= bk

Also

|x — y[*sP

[(x/(1=8) = A = nG)u=D) —n(v(=DI” ,
S

|x — y|i+sp

|x_y|l+sp

:/ / [v(x/A —8) —v(D) + (1 —n(D —uM)I”
Y,

/(= 8) —v(=D + A —n()@ED —uE=DI”
S o

|x — y|t+sp

:/ / [(x/( —8)) —v(@) + ((x¥) —n() @A) —u)” ,
Y,

b=y

+/ / /A =8) —v(=D + () = nNEED —u=))P dy.
Y>

|x — y|t+sP

where X = (—1+6,1-6),Y1 =(1—-46,1)and Y, = (—1,—1 + §). That is,
1-14))—v(1)|?
Y W R ELETU
Y

|x_ |1+sp

Iv(x/(l — &) —v(=DI”
/n/ — y|itsp dxdy

+8! S”(Iu(l)—v(l)l’”rlu( D —v(=D").
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Now for y € Y7 and x € X we have |[x — y| > |x — (1 — §)|, thus

lv(x/(1—38)) —v(1)|? < Jv(x/(1—38)) —v(1)|?
/Y]/X dx dy /Y]/ dx dy

X =yt ()17
[ G/ (= 8) — v
‘5/ TR

- [v(x) —v(DI?
— — sp
=8(1—98) /x<1 STl

Arguing similarly for the other part, we obtain

- lo(x) —v(=D)?
V<C§1-6"°° _
- ( ) /|x|<1 |_1 _x|1+sp
- lv(x) —v(D)?
Cs(1—6)°? —d
* ( ) /|x|<1 |x - 1|1+Sp !

+ 81—sp(|u(1) —v(D)|? + Ju(=1) — U(_1)|p).

_ V4
VI:/ / ) — W g
lyle=6,1) Jjx>1  [x — y[1 5P

Again we have two parts, of which we only estimate

_ V4
/ / |u(x) ul)(Y)| dx dy
ye(1=8,1) Jjx|>1  |x — y|1 TSP

_ / / lu(x) — (1 —ﬁ(y))u(l)—ﬁ(J/)U(l)lp
ye( 1) J|x|>1

x — y|t*sp

Now for VI,

|x — y|i+sp

_ / / lu(x) —u(1) + n(y)(u) — v(l))|P
ye(1-45,1) J|x|>1

Ju(x) —u()|” -~
dxdy + lu(l) —v(1)|P§ 5P
/yE(l —-5,1) /|x|>1 |1+sp y + u(1) (D]

lx—y
|u(x) —u(D)[” -
dxdy + |u(l) —v(1)|?§ 57
/ye(l 81)./|x|>1 |x — 1[t+sp y+ @) = o)
112
=3 M dx + |u(l) — v(1)|p51—xp.

|x|>1 |x - 1|1+SP

For the last inequality we have used the fact that for any § € (0,1),if y € (1 — 4, 1) and
x > lorx < —1,then |x — y| > c¢|x — 1] for some uniform constant c. |

5.2. Proof of Theorem 5.1

Armed with the Luckhaus lemma, we can now prove Theorem 5.1. The idea is to work
with y; and y’ + t¢’, using the Luckhaus lemma to glue y’ + 1¢’ to y; where the gluing
happens in an annulus Bg \ Br(1—s). The important observation is that even under the
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assumption of only weak convergence the norms on the annulus Bg \ Bg(1—s) vanish in
the limit.

We face an additional technicality that we want to glue derivatives. Up to adding a
corrector term after integration, this leads to a curve oy s which coincides with y, outside
of a ball Bg. The map oy s may not coincide with y + t¢ inside the ball Bg, but its
derivative O';c’ s is essentially y” inside the ball, which is good enough for our purposes.

Proof of Theorem 5.1. We may assume that the ball B, is centered at zero. Since p is
small, we may and do assume for simplicity that the distance |x — y| corresponds to the
Euclidean distance.

For any ¢ > 0 there is &9 > 0 such that (5.1) implies

[ lw1/a.0(B100,) + sup Vilw1/a.a(B1g0,) < & (5.3)

Indeed, this follows, similar to the arguments in Section 4, from the fact that y, is smooth
and (5.1) implies by Theorem 4.5 a uniform bound of y; in w/a-4 (B100p), so that a
subsequence of y; converges to y’ weakly in wl/a-4 (B1oop)-

Let ¢ € CZ°(By). By Fubini’s theorem, there exists R € (p, 2p) such that =R are
Lebesgue points of y; and y’,

/IV(X)—V(y)I"d s /"’k(x) BN v ZRR 54

lx — y? lx — y?

k—
and we can also assume that y; (£ R) converges to y'(£R) for this R, and y;, e e y!
weakly in W1/4-4 (B1oop) and strongly in L (B1gop).
This also implies

Iy +te) (x) = (y +to) (»)|?
R lx —y|?

dy <oo, x=—-R,R,VteR. (5.5

Construction of a comparison map oys. Fix § > 0. Apply the Luckhaus lemma
(Lemma 5.3) to y" + t¢’ (within Bg) and y; (in BR®). Then we obtain

)/I/{(X), x < _R’
gks(X) = (v +19) (x/(1=9)), [x|<(1-¥)R,
Ve (X)), x> R.

For (1 —§)R < |x| < R we have an interpolation between y'(£R) and y; (£R) as in
Lemma 5.3.
Observe that for ty < 1, [(y + t¢)’| is as close to 1 a.e. as we want, so we also get the
estimate
dist(gx,s (x), Sy <e fork > 1,1 < 1.



Scale-invariant tangent-point energies for knots 1973

Pick 8 € C*®°(R, [0, 1]) with & = O0forx < —R/2,6 = 1forx > R/2,and |0'| < 1/R.
We set

x R
e = [ gk,s(z)dzwk(—l)w(x)( / [y@(z)—gk,(s(z)]dz). (5.6)

—-R
Properties of oy s. We need to show that oy s (for all small ¢, small § and large k) is a
comparison function for yi.

First we show
Oks =k onR/Z\[-R, R]. (5.7)

Indeed, observe that for x < —R/2,

Ok,5(x) = /1 gks(2)dz + yr(—1),

and thus
015(X) = gks(x) = y;(x) whenever x < —R.

Since moreover ok s(—1) = yx(—1), we have
Ok,g =Y On [—1,—R).

Moreover, for x > R,

X R
015 (x) = / gra()dz (1) + ( /_ ACE ) dz)

X
~ [ n@dz+ne.
-1
Again, this implies that o} ;(x) = y; (x) for x > R and since f_ll Y+ = 0, we find that
ok,s(1) = ye (=1 = y(1).

Therefore, (5.7) is established.

Next, we show that there exists g > 0, §o > 0 and K¢ € N such that

1/2 <oy 51 <3/2 ¥lt| <10, 8 €(0,80), k > Ko. (5.8)

1

Indeed, there exists o > 0 such that |y’ + 1¢’| € (1 — 1555

From Lemma 5.3 we then have

1+ Tloo) a.e. for all |¢] < tg.

1
l8ks (Ol = 1] = 1555 + (R =V (=R + [y (R) = Y (R)].
k—
Since by assumption y; (+R) it y'(£R), we can find Ky € N such that

2
|Igks ()| —1] < To0o V|t] < to, k > Ko. (5.9)
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On the other hand, the term involving 6 converges in C*°(R) to zero. Namely, we have
(recall that (£ R) = 0)

R
‘ [ ACEr e

< + 28R||gk5 |l

R (1-8)R
/ yi(z)dz - / (v + 10) /(1 - 8)) d:z
— —(1-8)R

(5.9
<

+ 46R

(1-86)R
[ werds= [ o ierera-si

= |y (R) = vi(=R) — (1 = 8)(¥ + @) (R) — (1 = §)(y + t9)(—R))| + 48R
= |y (R) — e (=R) — (1 = 8)y(R) — (1 = 8)y(—R))| + 48R

< max (1) =y ()] + 8ly()]) + 43R (5.10)

Since yx uniformly converges to y, we deduce that for any L € N,
V§>OE|50 >0,Kpe N:

R
9(-)/R[y,’c(z) —grs(2)]dz <& V8€(0,80), k > K. (5.11)

CL(R)

(5.9) and (5.11) readily imply (5.8).

Next we estimate the Sobolev norm of oy 5. From the Luckhaus lemma, (5.2), we
obtain the estimate (observe that we work on the ball so the constants depend on R by
scaling)

q
(85619 1/0.4(B100,)

q q q
~ [y]/c]W]/q,q(Bmop) + [y/]Wl/q’q(Bl()Op) + |[|[('0/]W]/‘1!‘1(Bmop)

[(y +1t9) (R) — (y +tp) ()|
C(R)S
e ( 2 R—yP

dy
l(y +1t9) (—=R) — (y + o) (y)|4 )
d
" —R—y) Y
ka(R) )’k(J’)|q |J/k( R) =y, (»? )
+C(R)8(/ Sk TRT gy +/ g dy
+ C(R)(lyp(R) — v (R)I" + [yr(=R) —¥'(=R)|%)
+ C(R)§ 2|y — )’||qu(31000) + C(R)8%.

Here we have used the fact that

Ve (¥) = (v + o) (D)4
2(1 -6 dxd
( )/ <R /00p>x>R lx — (1 =8)yl? T

to) _ to) q

22(1_8)/ / |(v +19) (X)1 (g+2¢) Wl dx dy
y|<R J100p>|x|>R [x —(1=38)y]

S (1 - 8)[()/’( + [(p)/]([l}[/]/q,q(Bloop) + (1 - 8)8_2”)/]/( - y/”‘]IJ(I(BR)'
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k
In view of the convergence y; (£ R) et y'(£R), the L9-convergence of y; to y’, (5.4),
and (5.5) together with (5.3), we find that there are &, ¢y such that

V8 € (0,80)3IK(S) : [gk,g]ng/M(Bmop) <4e Vk > K(@6), |t| <to.
From (5.11) we thus conclude that taking possibly 8o and ¢y smaller and K(§) larger,

V8 € (0,80) IK(S) : <d4s Vk=K@). |t| <to. (5.12)

14
[Gkss]Wl/q"’(Bloop)

The comparison. In view of uniform convergence, (5.1), and (5.3), we can apply Theo-
rem 4.9 and Lemma 2.1 to conclude that the assumptions of Theorem 3.7 are satisfied for
ok,s and yi for all k > K(8) for some large number K.

Theorem 3.7 implies oy s and y; are ambient isotopic (technically, we can mollify
ok,s around Bs,; then this mollification is ambient isotopic to Yk, so we get the estimate
and remove the mollification again — observe that y is smooth), and thus

TPT24(y,) < TPIY24 0y 5) + 1/k  Vk > K(3).

Since yx = ok s on Bg, this implies

// (e x.y) dx dy < // 1Ok, x.y)dx dy + 1/k.
(R/Z)2\(BR“)? (R/Z)2\(BR“)?

(5.13)
We claim pointwise convergence
wlyx,y) = lim p(yex.y) ae (x.y) € (R/Z)*\ (B2p")™. (5.14)

Observe that by the definition of p this pointwise convergence is immediate for a.e.
(x,y) € (R/Z)? with y(x) # y(y). On the other hand, for any (x, y) € (R/Z)?\ (B2,°)?
= (B2p xR/Z) U (R/Z x Bs,)?, we know that y(x) = y(y) if and only if x = y. Since
x = y is a set of measure zero in R/Z, we conclude that (5.14) must hold.

Applying Fatou’s lemma to (5.13), in view of (5.14) we conclude that

// p(y,x,y)dxdy < liminf// wu(ogs,x,y)dxdy.
(R/Z)2\(BR)? k=00 JJ(R/Z)2\(BR)?

The convergence of oy s as k — oo. We now fix § € (0, §p) and consider the limit as
k — oo. Set

Y (x), x < —R,

V' (=R), x € (=R, —(1=90)R),
gs(x) == (y +19) (x/(1=9)), |x|<(1-9d)R,

V' (R), x€(1-8)R,R),

y'(x). x> R,

and

R
[¥'(z) — g5(2)] dZ)-
R

on) = [ gz +y-n + e(x)( /
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From the Sobolev convergence of y; we observe that (up to a subsequence)

k—o00

8k.s — 85 ae.in (—R, R).

We conclude that
k
Ok,§ Iz os ae. inR/Z.
Indeed, for x € (—R, R) we use dominated convergence and the a.e. convergence of y;
to y’ in B1gop. For x & (—R, R) we use 0k s (x) = yk(x), 05(x) = y(x), and the uniform
convergence of yj to y. Since on the other hand |0y 4| is uniformly bounded, we conclude
that

k—
Ok.§ ——> 05 uniformly in R/Z. (5.15)
We also observe that
§—
05 2% y 419 uniformly in R/Z. (5.16)
This is obvious outside of (—R, R) since both sides are equal. Also, similar to (5.10) we
have
R ’ §—0
() [y'(z) — gs(2)]dz — 0.
Also

gs(2) — (y +19)(2) 3200 aeze R/Z.

By dominated convergence, we conclude that

X X 1
'/ w@dz - [ i@ s [ lo-o e
—1 -1 -1

uniformly in x, so (5.16) holds.
In particular, choosing 8y possibly smaller, we may assume that for any |t| < 1,

o5 :R/Z — R? is injective. (5.17)

Next we claim that

lim sup // ,u(ok,,g,x,y)dxdy—// w(os,x,y)dxdy| <Cs.
k—o0 (R/Z)>\(BR“)? (R/Z)2\(BR€)?
(5.18)
First observe that
k—
|04 5 ()] ——> |o§(x)| V8 < 8. uniformly for x € R/Z. (5.19)

Indeed, by the support of ¢, for [x| > R,

03,5 O] = |y ()] = 1= [y’ ()] = |og(x)]. (5.20)
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Also for x| € (1 —8§)R, R),

lgk.6(x)] = [n(x)y"(£R) + (1 — n(x))y; (£R)|
220 1)y (£R) + (1 = n(x))y' (£R)|
= [Y'(&ER)| = g5 (x)].

and for |x| < (1 — §) R we have
|gk.s (x)| = |gs(X)].

By the definition of o and in view of (5.11) we have established (5.19).
Next we claim that we have injectivity uniformly in k in the following sense: for any
8 > 0 there exists a small ¢(§) > 0 (taking K(§) possibly larger than before)

inf inf Ok.s(X) — Ok s z c(8). (5.21)
kZK(S) (x,y)e(]R/Z)Z\(BRC)2| ( ) (y)| ( )
|x—»|=8/100

We allow the constant ¢(§) to also depend on R and p, but we stress only the dependence
on §. In view of the uniform convergence (5.15), (5.21) follows once we establish

inf los(x) — o5 (y)| Z c(d),
(x,9)€(R/Z)>\(BR°)?
[x—y|=8/100

which is a consequence of injectivity of og (see (5.17)).
Thus, with the help of (5.21), setting Ds := (R/Z)? \ (Bg)?> N |x — y| = § we can
make a brute force estimate

'//Ds M(ok,s,x,y)dxdy—//Dsu(a,g,x,y)dxdy'

< CE. lyelize, ”Vk”LOO)/R/Z“V],c(x) =Y O + lye(x) — y(x)|“] dx.

k—
Since yx it y a.e., by dominated convergence (recall [y, | < 1), we have

lim ‘// u(ak’g,x,y)dxdy—// /L(og,x,y)dxdy‘ = 0.
k—o00 Ds Dg

That is,
lim sup // w(oks,x,y)dxdy — // w(os, x,y)dx dy‘
k—o0 (R/Z)>\(BR“)? R/Z)2\(BR“)?
< limsup // w(oks.x,y) —u(os,x,y)dx dy‘. (5.22)
k—00 (R/Z)>\(BR)?,|x—y|<5/100

Also observe that p(ok 5. x,y) = (os, x, y) forall x, y € By_sygr and k € N.
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In the light of (5.20) we have to consider the following terms (observe that u is not
symmetric in x,y):

lim sup // w(oks, x.y)dxdy — // n(os, x,y)dx dy‘
k—o0 (R/Z)>\(BR“)? (R/Z)>\(BR€)?
538 o 5 () A (k5 (x) =0k, sWNIT |of(x) A (05 (x) — 05 ()|
5 lim sup - > - 2
k00 Ay o5 (x) — o s (¥)|4F los(x) —os(y)|9t
o0l o0l x|
where

Ay = (£R. £R(1 + 8)) x (£R(1 = §), £R),
Az = (£R(1 — §), £R) x (£R, £R(I + §)).
As = (£R(1 — 28), £R(1 — 8)) x (£R(1 —8), =R),
A = (£R(1 — 8), £R) x (£R(1 —25), £R(1 — §)),
As = (£R(1 — 8), £R) x (£R(1 — ), £R).

Observe that in each of these regimes 6 = 1 or 8 = 0, that is,

// w(ok,s,x,y)dxdy —// w(os, x,y)dx dy‘
(R/Z)>\(BR)? (R/Z)2\(BR)?

> // (|gk,,s<x>Af3 grs(2)dz|9  |gs(x) A [T gs(z>dz|q)
A

< 1 -
~ [1msup Z o5 (x) — o 5(y)|9T2 los (x) — o5(y)[912

lim sup
k—o00

k—o00
ob )10} ()] dx dy'
. > lgks () A [7 ges(2)dzl? |gs(x) A [ gs(z)dz|
= lim sup 3 - — 3 >
k—00 Ae |7 gk.s(z)dz|2 |7 gs5(z) dz|e

b )10 ()] dx dy'

< Jim sup // |Igk.s () A [ gis(2)dz|? — |gs(x) A [ gs(z) dz|9|
~ Ay | gks(z)dz|at?

k—>oo(1

Jog ()" o5 (v)] dx dy

// 17 g5(2)dz|9F2 — | [ grs(z) dz|972| |gs(x) A [ gs5(z) dz|?
A |[) gs(z) dz|a+2 |[) gk.s(z)dz|at?

Jog ()10 (v)|dx dy

+ lim sup

k—)ooél
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By the uniform bi-Lipschitz estimate we continue as follows:

< limsup
k—o00 =1

// 188 ) A [7 grs(2)dz|? —|gs(x) A [ g5(2) dz|1] dx dy
Ay

|x —ylat+2

+ lim sup

k—><>oe1

// [1/7 g5(2)dz|92 — | [ grs(2) dz|972| |gs(x) A [ gs(z) dz|?
Ay |x — ylat+2 |[) g5(z) dz|a+2

Jog ()1 oz (y)| dx dy.

The second set of integrals converges to zero by dominated convergence since gg s con-
verges a.e. to gs. To establish (5.18) we argue as in the proof Lemma 5.3 to find that the
first terms satisfy

// |1gk,s(X) A [ grs(z)dz| —|gs(x) A [ gs(z) dz||
A

lim su
P = [+

k—>c>o(1

dxdy < 6.

The convergence of o5 as § — 0. By now we have shown that for any § € (0, &),

// ] M(V,x,y)dxdyi// ~ (os,x,y)dxdy + C8.
(R/Z)>\(BR®)? (R/Z)>\(BR®)?

§—0 .. . . .
Observe that oy == y + to, in view of (5.11) — indeed, essentially repeating the Luck-
haus lemma argument above, we see that

// (05, %, y) dx dy ~=> / puly +tg,x,y)dxdy. m
R/Z)2\(BR©)? (R/Z)?\(BR©)?

6. The regularity theory for critical points: Proof of Theorem 1.7

This section is dedicated to proving C *-regularity of locally critical points for scale-
invariant tangent-point energies TP?*2:¢ with ¢ > 2. Our main goal is the following.

Proposition 6.1 (Local decay estimate). Let g > 2 and y be a locally critical embedding
in the sense of Definition 1.5 with small tangent-point energy TP4724 around a geodesic
ball By (xo) C R/Z, and assume |y'| = const > 0 almost everywhere. Let u := y'/|y’|,
that is, u : R/Z — S? is such that fR/Z u=0 andletii :R — R3 bean L® N W'24-
extension of u| g, (xo) from Br(xo) to R. Then there exist ¢, 7,0 € (0,1) and Ng € N such
that the following holds.

If N > No, p> 0, and y € By/2(xo) are such that Byn , := B,yn ,(y) C By (xo), and
(] w1/a. 4(Byy ) = < g, then

O(N+1
[ ]Wl/q “4(Bp) — t[u]Wl/q,q(BzN )+ 22 ( )[M]Wl/q 4 (B AN+, )+P
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Proposition 6.1 implies Theorem 1.7 by the usual Dirichlet growth-type iteration tech-
niques.

Proof of Theorem 1.7. First note that by definition, ¥ and % coincide locally around
B, (x0), so for any ball B C B,(xo) we have

[vlw1/a.agy = [Ulw1/a.a(p)-

By iterating the decay estimate on small balls [13, Lemma A.8], we obtain a 0 > 0 such
that

sup o[l < Cu).
O<per /2B () W1/4:4(B,(y))
By Jensen’s inequality, we conclude that
swp o ) - 7 dz 5 Cl
0<p<r/2,y€B,/>(x) By(y)

where () g, (y) denotes the mean value of u in B,(y), and hence u belongs to the Cam-
panato space £9°1+9 (B, (x¢)). The characterization of Campanato spaces with the use of
g

Holder spaces [30, Theorem 1.2] implies that u € Cloc/q (By/2(x0)), which concludes the
proof of Theorem 1.7. n

In order to obtain Proposition 6.1 — inspired by the investigations of critical O’Hara
energies in [14] by comparison to the theory of fractional harmonic maps, cf. [24, 68] —
we proceed as follows:

e In Section 6.1 we relate critical knots of the tangent-point energies TP?¢ with p €
[g +2,2g + 1) and g > 1 to fractional harmonic maps: We first define a suitable energy
&74 such that the unit tangents u := y’/|y’| of locally TP?-?-critical embeddings y
with constant-speed parametrization are locally critical maps of the energy &7-7 in the
class of maps v : R/ % — S2. We then establish that the new energy &7+ is locally com-

pP—q—
q

parable to a W *4_seminorm; see Section 4. Consequently, the equations that the

critical maps u satisfy are indeed structurally similar to the Euler—Lagrange equations
of fractional harmonic maps into the sphere S? as treated in [68].

e In Section 6.2 we derive the Euler-Lagrange equations of the new energies &#-4 for
pElg+2,2qg+1),q > 1, and study the highest order and remainder terms of the
Lagrangian.

e In Section 6.3 we finally treat the actual decay estimate of Proposition 6.1.

Before continuing, we need to introduce some notation for integration on R/Z [14,
Remark 2.2]:

(1) We denote by p(x, y) the distance of x, y € R/Z on R/Z, in particular

p(x.y) = |x — y|mod 3.
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(2) If x and y are not antipodal, which means |x — y| # %, we denote by x > y the
shortest geodesic from x to y. Hence, for any Z-periodic f we define

ébyf - /j 1) dz.

where y € y 4+ Z such that |[x — y| < 1/2.

o(x>y)= sgnyg 1.
x>y

Hence if x > y is positively oriented, we have o (x > y) = 1, and if x > y is negatively
oriented, we get o (x > y) = —1.

(3) Furthermore, we write

(4) Now given a Z-periodic function f, we define

a(x > y)
£ =S
m p(xy)
We also have to deal with the fact that the critical embeddings of interest are only
locally known to be of class W' *1/4:4(R /7, R3), which motivates the use of the exten-

sion u as described below. This is a mere technical inconvenience, and we recommend
the first-time reader to mentally identify u and # in the arguments to come.

Remark 6.2. Let p€[g +2,2g +1),g > 1,and y : R/Z — R3 be a homeomorphism
with locally small tangent-point energy according to Definition 1.1 that is a locally TP?+4-
critical embedding in B, (xo) as in Definition 1.5. Then Theorem 1.2 implies that y is
globally bi-Lipschitz and of class W!*$4(R/Z,R3) for any 0 < s < 1/q. However, y is
not known to globally belong to the class W1 *1/9:4 or even WHp_Tq_l’q; we only have
—a (Br(x0),R?) due to Theorem 4.5.

Although we aim to mostly work with the local W ha -Gagliardo seminorm of y’,
we also have to take into account the global behavior of )’ outside of B, (x() on account
of the nonlocality of the proposed problem. For this reason, when necessary, we may
interpret B, (xo) as an interval in [—1, 2] and extend y’|g, (x,) from B,(xp) to a func-

P—q
the local statement y € wit

tion i € W" q(R R3) that is uniformly bounded. Such an extension exists since
II¥'llLee < 1 and by standard construction of extensions (see e.g. [25, Theorem 5.4]).
Note that in this setting for any ball B C B, (xo) we have

~ ot
[M]Wp_g_l 4By r ]Wp_f/’_

l.‘l(B).

6.1. A new energy &P4

Our first objective is to construct a new energy &#¢, which coincides with TP?¢ for
sufficiently regular curves y, but only depends on the first derivative y’. We then show
that any locally critical embedding of the tangent-point energies TP?*¢ parametrized by
arclength produces a locally critical S?-valued map of the new energy &7+4.
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We recall that the tangent-point energies are for any y € C%!(R/Z, R?) given by

P () — Y ) A (X)) =yODI g v d
T = [ @Iy ) dy

Now we transform the wedge product in the numerator by Lagrange’s identity and the

fundamental theorem of calculus to

1Y (x) A (y(y) — y(x))|?
= [Y'@) A (yx) = y») =V @ - 0)|?

2
= VORI 0) = 7() =Y 00 = 0P = (Y@ - (r0) = 7(6) =Y () = 1) )

)
)

2

— 1y —x|2(|y’<x>|2

][ y'(2)dz — ' (x)
x>y

P - ][ Y(x) -y (2) dz
x>y

2

! ][ W -y Erd:

S CAClE ;

][ V(@) — ¥ ()] dz
x>y

P - ][ Y () dz

x>y

Additionally, observe that

_ 2
x>y Jxp>y

1
—f woeri-3f f yo-yorasda 6o
x>y x>y J x>y

Therefore, we can rewrite TP?>2(y) in terms of the first derivative y’ as

(1Y )P frny IV (2) = ¥/ (0)] dz?
/ / oy V@) =V @Pdz + Y 0 = frpy IV @2 dz )7
R/Z JR/Z

ly —x[P—4

"2 d 1 , VP ds d —P/Z/ e o
'(]{»y'”z)' Z‘z]{wﬁw'y@)—y(f)l s t) Y 11y ()| dy dx.

This motivates introducing the following real-valued energy &7+ for any maps u :
R/Z — R3:

Py — 2 _ 2
£79(u) - /M /R/Z(wun |]£>y[u<z) u(x)] dz|
1 2\ q/2
3£, mw—vera s wwp - f wepa) )

1 —p/2 _ dy dx
(][ |u(z>|2dz—§]{wy ][ () —u () ds dr) ]
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For n € C*°(R, [0, 00)), we set moreover

P (y)) — _ 2
£P4(u) - /]R ; /R /Z(w(x) 1) ()2
1
(e = ue dz + ) = n ez
x>y 2 /2
-f |M(Z)—77(Z)(M)R/Z|2d2) )
x>y

—p/2
' (]{»y lu(z) = n(z)wr/z|* dz - % ]{M ]{M lu(s) —u(®)|* ds dt) ’

dyd
() = 1) 6ORy2 ) = n )@z S

2

][ [u(z) —u(x)]dz
x>y

We define the localized version &/}, (u) for any D C R/Z x R/Z by the same formula
with the integration domain R/Z x R/Z replaced by D.

We observe that the energies TP?*? and &7-¢ coincide for our embeddings of interest,
recalling that (y")r/z = 0.

Lemma 6.3. Let p € [ +2,2q + 1) and q > 1. For any embedding y : R/Z — R3
with finite tangent-point energies TPPY and constant speed parametrization as well as
n e C*®(R,[0,00)), we have

TPPA(y) = 629(/) = E74(y),
and, in particular, for any subset D C R/Z x R/Z,

/ ly'(x) A (y(x) —y(y)|?
D ly(x) —y)I?

It remains to show that locally TP?>?-critical embeddings for the tangent-point ener-
gies (see Definition 1.5) indeed induce locally &?+9-critical maps into the sphere S2.

The main result of this section is the analogue of [14, Theorem 2.1]: (locally) critical
knots y : R/Z — R3 induce (locally) &}?-critical maps u : R/Z — S? by setting u :=
Y/l

' Iy ) dy dx = &5 ().

Theorem 6.4. Let p € [q +2,2¢g + 1), ¢ > 1, and y : R/Z — R3 be a homeomorphism
with locally small tangent-point energy TPP4 around the open interval By(xy), in the
sense of Definition 1.1, and assume |y'| = const. Denote the unit tangent field of y by
u:=y"/ly'|:R/Z — S2.

If vy is a locally TPP-?-critical embedding in B,(xy), in the sense of Definition 1.5,
then there exists some 1 € C2°(By(x), [0, 00)) such that the map u : R/Z — S? is an
&x-critical map in By(xo) in the class of maps v : R/Z — S2.

Namely, for any ¢ € C2°(B,(xo), R3), if we set

_u+tegp
T

Ug
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we have
d
— &PH4 =0.
d8 eeo n (ué‘)

Proof. We argue similarly to the proof of [14, Theorem 2.1], but additional problems
appear since we only have the criticality in a ball, not globally (which is what forces us to
introduce n € C°(B;(xo)), while in [14, Theorem 2.1] we can choose 1 = 1).

For simplicity we assume that x¢ € (0, 1) and r < min {xg, 1 — x¢} (We can always
assume that xo = 1/2 by the periodicity of the problem).

Pick 8 € C*®°(R) with § = 0 for x < xg —r/2 and 6 = 1 for x > x¢ + r/2, and with
|6] < 1/r. We can also assume that 6§’ > 0. Below we will choose 7 := 6’.

Similar to (5.6), for ¢ and u, as in the statement, set

xo+r

o) = y(0) + /0 us(z)dzw(x)(/ [y/(z)—w)]dz).

o—r
We observe that y.(x) = y(x) for x < xg —r and x > x¢ + r. Indeed, for x < xo —r we
have

ye(x) = 7(0) + /0 y'(2)dz = y(x).

and for x > xo + r we have

xXo+r X

ug(z)dz +/ Y (z)dz

o+tr

ve(x) = y(0) + /0 et / .

xo+r
+0(x) ( [ e - dz)

o—r

xXo—r xo+r X
-0 + /0 y(2)dz + / uo(z) dz + / y'(2)dz

o—r o+r

xo+r
.y ( [ e - dz)

xo—r X xXo+r
— 0 + /0 Y(2)dz + / y(2)dz + / y(2)dz

o+r xXo—r
X
—y O+ [ YEdz =y,
0
Moreover, we find that for almost every x,

us(x) = y'(x) + e(p(x) — (p(x),y'(x))y'(x)) + O(e).

and, using again the support of ¢,
ve(x) = y(x)

+ 8(/0x(</’(2) —(p(2).Y'(2))y'(2)) dz — 6(x) (/0
+ 0(&?)

1

(0(2) - (9(2). Y (7' (2) dz))
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as well as
Ye(x) = y'(x)
+ e(«a(x) 0, 9N (1) — 0 (x) ( / (00— {0V (Y 2) dz))
+ 0(&?).
By Lemma 6.3, for small ¢ > 0 we have
TBP4(y) = £24(y).

Since by assumption y is critical in B, (xg) and y, is a permissible variation, we obtain

0=L| grag) =seraayl,

e=0

where the function
1
¥ (x) == o(x) = (¥ (%), 0(x))y'(x) = 0'(x) (/0 (9(2) — (@(2). ¥ (2))y'(2)) dZ)

has support in B, (xo). Setting 1 := 6’, we conclude the proof. |

Remark 6.5. The function n appearing in the previous theorem might resemble a
Lagrange multiplier. However, in our setting 1 can be chosen more freely. The construc-
tion of 1 in the proof above is only one out of many possibilities to define permissible
functions 7.

6.2. Euler—-Lagrange equations of &4
In this section, we derive the Euler-Lagrange equations of €% for p € [¢ +2,2g + 1),
g > 1, and suitable n € C®(R, [0, 00)). We realize that the new energies €77 have
a nonlinear and nonlocal Lagrangian. Furthermore, we obtain a decomposition of the
Lagrangian into a term of highest order, denoted by @, and terms of lower order, denoted
by R.

The leading order operator Q on a subset D C R/Z x R/Z foru : R/Z — R3 and
¢ : R/Z — R3 is given by

q—2 1 ) -p/2
(1 -3 ]{M ]{wy lu(s) —u()|”ds dt)

09D (u, )
dy dx

:=q//D ]{be[u(z)—u(x)] dz
o L e —u- e gz az O

—p/2
4 ] aafy L\, dydx
_2//Da (1 26) “(@ p(x, y)P=a’ ©2

(For the definition of a, d’, ¢, etc., see below.)
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The remainders, which are, as we shall see, “of lower order”, are given as follows:

RE7 .0 =2 ] ((a- iw)‘%’z —a ) (1= 30 )

p(x. y)?
_ , dy dx
R%(P,Q)(u’(p) = __// _ 1b2 1— %C) p/zbb ((p)p(xyym»
_j dy dx
REPD(y gy = L // —1p?) a/2y 1e) 242 (g )p(xyW’
_pk2 dy dx
By =% [ (=)o) ) -0
B , dy dx
R (u, ) = // (a— 12" (1= Le) " (a — Lb)e (w)p(xyyﬁﬁ
_ dy dx
REGD () 1= // 1) T (1- L) p/zbd'(w)#,
dy dx
RIED (w, ) z// 1) (1= L)1 - ge (¢)+f(¢))#-
Here
2
azz][ [u(z) —u(x)ldz| ,
x>y
b ;:][ |u(z)—u(x)|2dz,
x>y
c::][ ][ lu(s) —u(t)* ds dt,
x>y Jxp>y
and

i) =2 ][ ][ (1) = u(x)) - (9(22) — 9(x)) dz1 ds,
x>y Jxp>y

bip) =2 ][ () — u(x)) - (p(2) — p(x)) dz.
x>y

(g) = 2][ (u(s) — u(t)) - (p(s) — @(1)) ds dt.
x>y Jxpy

d'(p) = -2 ][ 1) - (9)r/z dz.
x>y

e'(p) := —n()u(x) - (p)r/z.

f(@) == =n(Mu(y) - (@)r/z.

Note that when conmdenng the entire domain D = R/Z x R/Z, we drop the label D
in the definition of O Dp ‘D (4, ¢) and in the remainders Rk PD () and R (P, q)(u, Q).

Lemma 6.6 (Euler—Lagrange equations). Let p € [¢ +2,2¢ + 1), ¢ > 1, and u :
R/Z — S? with f]R/Z u = 0 be a locally 8,1,”q-critical map around the interval By(xg)
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in the class of maps v : R/Z — S? and let n € C2(By(xo), [0, 00)). Then for any test
rp—q—1
function ¢ € W, ¢ 4 (B, (x0), R?), which is also tangential, i.e. ¢ € T,S?, if we set

Uy = U + €@, then

d 3 7
- 8,17)’[](”8) — Q(p’q)(u,(p) + Z Rk,(p,q)(%(p) + Z Rl,;’(’”q)(u,(p) =0.
=0 k=1 k=4

Proof. Recalling the definition of €77, we set
F(a.b.c.d.e):= (¢%a — L(b + 2 — d)?)"*(d — Le) ™",

which implies
dy dx

P4 — 1—q T
ety = [ Fa0).50).¢0),d0). e)e®)' 10T
where

2

a(e) :=

)

][ e (2) — we ()] dz

x>y

b(e) :=][ [ug(z) — ug(x)|? dz,
x>y

c(e) :=][ ][ lug(s) — ug(t)|* ds dt,
x>y Jxp>y

d(e) = ][ ue(2) — 1) o)zl dz.
x>y

e(e) := |ue(x) —n(x)(ue)r/zls
f(&) = ue(y) —n(y)(ue)r/zl-

First we note that d(0) = e(0) = f(0) = I since |u| = 1 and (v)r;z = 0. Furthermore,
observe that

a'(0) = d'(0)(u.¢) = 2][ (u(z1) —ux)) - (p(22) — ¢(x)) dz1 dz3,

x>y Jxpy

b(0) = b'(0)(u. g) =2 ][ () — u(x)) - (9(2) — 9(x)) dz.
x>y

¢'(0) = ¢'(0)(u, p) =2 ][ (u(s) —u(@)) - (p(s) — (1)) ds dt,
x>y

x>y

anddue tou - ¢ = 0 and (u)r;z =0,

d'(0) = d'(O)u. . ) = —2 ][ () - (9)z)z dz.

x>y
€'(0) = €' (0)(u, ¢, n) = —n(x)u(x) - (¢)r/z.
f10) = /0, 0.n) = —n(uy) - (@)r/z-
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Hence, by the product rule we obtain

dy dx

d -
Ze|,_, /R/Z /R/Z F(a(e),b(e). c(e).d(e), e(e))d () ~Te(e) o )P

de

_4q qz;z /2 dy dx
) /]R/Z /]R/Za(()) -3¢ (O)) « @ ),O(X y)ra

q _ p/2 , dy dx
/]R/Z /]R/Z (a(O) b(O) ) a(O) )( C(O)) ( ) p(x’y)P—q
q 1 1 —-p/2 / dy dx
Z/IR/Z /R/Z a(0)— 1b(02) > ( —5¢(0)) ""b(0)b (O)W
P 1 2\4/2 1 -z$2 dy dx
+2/R/Z /R/Z a(0) — +6(0)*)" (1= 3¢(0)) ¢'(0) )P
I4 1 2\4/2 1 -2f2 dy dx
E/]R/Z /R/Z a(0) — 6(0)*)" (1 = 3¢(0)) d’(0) eI
1 NG 1 -p/2 1 p dy dx
+q/]R/Z /R/Z a(0) = 35(0)%) 2 (1=5¢(0) 77 (a(0) = 36(9)e'(0) o(x, )P4
CZ] / / (a(0)— lb(o)z)q5 (1= 1e()"*b0)a’ (0)%
_1pm2\9/2(_ 1 -p/2 dy dx
oy o, @@= 2R L) )0+ o)

Remark 6.7. For a given homeomorphism y : R/Z — R3 with locally small tangent-
point energy TP?+¢ and its unit tangent field u : R/Z — S2, we set

1
k(x,y):=1-— 3 ]{cw ]{M [u(s) —u(t))?>dsdt =1— %C(O).

Note that in all terms of the Euler—Lagrange equation, either k (x, y)~?/2 or k(x, y)_%
appears as a factor. The motivation behind this definition is the observation that k(x, y) ™"
for any r > 0 is bounded: On the one hand, it is easy to see that

1
1——][ ][ lu(s) —u(t)|*dsdt < 1;
2 x>y Jxpy

on the other hand, there exists a constant ¢ > 0 such that

1
0<c§1——][ ][ lu(s) —u(t)|? ds dt.
2 x>y Jxpy

This can be shown by recalling that u denotes the unit tangent field of y and by apply-
ing the fundamental theorem of calculus as in (6.1) as well as the global bi-Lipschitz
continuity of y due to Theorem 1.2, from which we conclude that

! ’ L v =y 5
1_5]{;>y£>y|)/(5)—)/(1)| det_wz(l—E) >0

for any ¢ > 0 small and x # y.
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As next steps we are going to show that Q is indeed the leading order operator and
the remainder terms R are of “lower order”. Namely, in Proposition 6.8 we essentially

show that Q(u, ¢) controls the Sobolev norm [u];—;_q_l . for a good choice of ¢ €
Lo

0
CX(B(p)), in particular, whenever B(p) is a ball compactly contained in B,(xo) and
lp]  p—g—1, ®) < 1. Then Proposition 6.9 shows that each of the remainder terms R
a1

essentially satisfies the following estimate:
|REPD (u, (ou )iy

< Wiy, )+Z2 g, +Crwp”  (63)
(Byi+1,)

for some g > g — 1 and some o > 0. Such terms on the right-hand side can be absorbed
by an iteration argument, as discussed in the proof of Theorem 1.7.
Next we show that the leading order term Q74 controls the Sobolev norm.

Proposition 6.8. Let pcqg+2.2qg + 1), g > 1, and y : R/Z — R3 be a homeomorphism
with locally small tangent-point energy TPP4 around the interval B, (xg), in the sense of
Definition 1.1. Furthermore, denote the unit tangent field of y by u : R/Z — S? such that
fR/Z u =0, let yo € By/2(x0), and choose p > 0 such that B, := B, (yo) C By (xo). Then

we have
| femplu(2) —u(x)] dz|?
q k p/2_Ixby dyd
[u] ~tacg,) //Bp (e.0)” p(x, y)P—4 yax

~ Q) 0, (u.u)

with constants only depending on p and q.
Proof. We begin by recalling the definition of the main term Qg; ’Z)Bp in (6.2) and test it

with u, so that the expression simplifies to

05, . u)

q—2

=gq [u(z) —u(x)]dz ][ (u(zy) —u(x)) - (u(z2) —u(x))dzy dz,
x>y Jxpy

dy dx

p(x,y)P—1

k(x,y)7P?

| frnylu(z) —u(x)]dz|?
p(x, y)P—4

=q /32 k(x,y)~?/? dy dx.
0

Note that the factor k(x, y)~?/2 is strictly positive and bounded by Remark 6.7. Further-
more, we have

lu(y) —u(x)| =

u(y)—][ u(z)dz| +
y>X

f u(z)dz —u(x)|,
x>y
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which implies, by the previous arguments,

g [u(y) —u(x)|?
[u] —9(p,) /]I;p pl,y)Pa dy dx

| Fony () — ()] 2] | Fon () — u(y)] ]
5//30 dde-i-//sz dy dx

plx, y)pP=1 p(x, y)P—a
o fey u(2) —u(x)] dz |4 o
< //szk(x,y) p/2 x>y TR dydx ~ Qi"lp (u.u). -

It remains to obtain the “lower order” property for the remainder terms R. We recall
that for any v € R? the linear map v A : R® — R? is represented by the R3*3-matrix

0 —U3 1%
VA = U3 0 —Vq
—Vy U1 0

Proposition 6.9. Let p € [ +2.2¢ + 1), ¢ > 2, and y : R/Z — R3 be a homeomor-
phism with locally small tangent-point energy TPP4 around the interval B,(x¢), in the
sense of Definition 1.1. Denote the unit tangent field of y by u : R/Z — S? such that
fR/Z u = 0and take n € C°(B,/2(x0), [0, 00)). Furthermore, let yo € By5(xo), choose
p > 0 such that Bsp(yo) C Br(xo), and define B, := B,(yo). Let ¢ € C°(B,,R) be

such that [§0] p=g=1 agy = < 1. Then the following holds for any j = 1,2,3:
For theﬁrst remamder k=1and?2 < q < 4, we have
o0
RO, (o )| 5 WP 2y, 4 3 L,
“(B2p) 14 W Byt )

+p r_(P_lI‘i‘l)'

For g = 2 we have RV@PD =0 Fork =1 and q > 4, and for k = 2,3 and any q > 2,
we have

] D q
|Rk (pq)(u ((pu/\)l])| < [u]q p=g=1 +Zz ¢+1)
4 (Bap) =1 q(321+1 )

—(p—q+1)7

+pr

and fork = 4,5,6,7 and q > 2, we have
7
D IRE PG (g )| S p(671) + 070 4 T
k=4

L)
(B (x0))
—q—1
where ii denotes a W a “-extension of U|B,(xo) Jrom By(xo) to R as discussed in
Remark 6.2. The constants in these inequalities depend on p and q and may also depend

lobal 1 h oo, d [u
on global properties of u such as ||u||L [u] S ) an [u]Wp g—1

A very similar statement holds for g € (1,2), only the tail’s exponents change, but one
still obtains an estimate as in (6.3). We leave the details to the reader.

4R
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Proof of Proposition 6.9. We begin with some general observations on factors appearing
in the integrands of the remainder terms. First, the remainders contain a factor of the form
k(x,y)™" for some r > 0, which is strictly positive and bounded by Remark 6.7. Next we
consider the factors (@ — A—Itbz)qz;2 and (a — 15?)4/2 appearing for k = 2, ..., 7. Recall
that

a =

2
and b =][ lu(z) —u(x)*dz.
x>y

][ [(z) — u(x)) dz
x>y
As by (4.2) we have

<

1 w(oPdz =
2]{6>y|u(2) u(x)|“dz

][ u(x) - (u(z) — u(x)) dz
x>y

][ (z) — ()] dz|.
x>y
6.4)

it follows that 0 < a — %bz and thus the factors can be simplified, when necessary, to

q—2
(@=37) 7 =a'™ =

’

][ [u(z) —u(x)]dz
x>y

(a _ %b2)4/2 < a?/? — !

][ [u(z) —u(x)]dz
x>y

For k = 1 we have to study the factor ((a — }sz)% — aL?) instead. For ¢ = 2 this
factor equals 0, whereas for 2 < g < 4 it can be estimated by

2

1,2\ 52 == 2—q1,q—2 2—q 2 -
(a— 1027 4T <22ap2 = @) —uPdz)
x>y

since x” —y" < (x —y) foranyx >y >0and 0 < r < 1, and for ¢ > 4 by

I
|
[S]
I
[S]

(a—1b*) 72 —a 2z

2
<0 = (f e -ueor az)
x>y

since |x” — y"| < c¢(r)|x — y| |x"~! 4+ y"~!| forany x > y > 0 and r > 0. Last but not
least, we note that the test functions (¢u A);; are tangential, i.e. (pu A);; € T,,S? for any
j = 1,2, 3 due to the fact that u Au = 0.
After these first considerations, we proceed with studying the full remainder terms.
We begin with the first remaining term Rll)’(p D for some general D C R/Z x R/Z
and 2 < g < 4. By the introductory comments on occurring factors, for any j = 1,2,3
we get

q—4

][ e(z) — u(x)] dz
x>y

IREPD (u, (ou n)yj)|

N //D]{c» [u(z) —u(x)|®dz
’ dx dy

- ‘ ( f | lute) (o) dzl) - ( f Ty ) = (g )y )] de) ‘ e

q—2
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If we consider the exemplary case j = 1, the dot product reads

( ][ e(z1) — ()] dzl) - ( f [(pu A (22) — (g A)ir (0] dZ2)
x>y x>y

- (][ 221 — 12 (2] dzl)(][ lo(z2ua(z2) — (s ()] dZ2)
x>y x>y
+ ( f 3 (z1) — 13 ()] dzl)( ][ [0(z2) (—2)(22) — () (—2) ()] dz2).
x>y x>y

By adding 0 = ¢(x)us(z2) — ¢(x)us(zz2) to the second factor in the first summand,
respectively, 0 = ¢(x)(—u32)(z2) — @(x)(—uz)(z2) to the second factor in the second
summand, the dot product turns to

( £ e —uo dzl) - ( f twuninte — u e dZZ)
x>y x>y

=(][ [u(m)—u(x)]dzl)-(][ [(«)(ZZ)—go(x))(uA)“(m]dzZ)
x>y x>y
+<o(x)(][ [u(zl)—u(x)]dzl)-(][ [(uA)n(m—(uA)n(x)]dzZ).
x>y x>y

But since (u A);; € T,,S?, the last summand in the previous equation vanishes. Now by
the same arguments for j = 2, 3, we deduce

IR5PD (u, (pu A)ij)|

q—2
snunm//D(][ |u(z>—u(x>|2dz) (][ |u<zl>—u(x>|dzl)
XDy x>y

dyd
: ( ][ o) = o) dzZ) FER (6.5)

Using ||u]|pe> < 1 simplifies this inequality. Now to take advantage of the local behavior

of u and ¢, we split the integration domain into

1,(p,q)
|RR/ZXR/Z|

1,(p,q) L(p,q) 1L,(p,q) 1L,(p,q)
= |RBy 5B, | T |1RE, @2\ By | T 1R®)Z\Bop)x By, | T 1R®R)Z\Bo ) xR/ Z\Boy) |

The first term can be estimated by (6.5), Holder’s inequality for 1 = qq;2 + é + é,

Jensen’s inequality, and the identification of Lemma A.2, so that forany j = 1,2, 3,

1,(p,
IREZD. (. (pu M)

< //B (.. |u(z)_u(x)|2dz)q_2(]{m ) ~uol d1 )

dy dx
: ( ][ lpte) — g dz2) e
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—2

Feny [U(z0) —u(x)[*? dzo 7
< (//32 dy dx

p(x,y)P—

)
_ (//B Froy Iu[(;;) ;)Zfz)lqdzl o dx)n/q
)

(// Feoy |¢(Zz)—<pEX)I" dz; dx dy 1/a
B2, p(x,y)P—4

2qg—4 < 2qg-3
~ U u —g—1 —g—1 = v —g—
Wy s l’24(32,;)[ by 227 0,y P 2= 0, S 1T g

“(Bap)
where we have applied the Sobolev embedding (Lemma A.3) and the assumption on ¢,

ie. [(p]W p—g—1 @ < 1, in the last inequality. For the second term of the splitting, we

subdivide the integration domain B,, x (R/Z \ Bs,) into B, % (Br(x¢) \ Bzp), to use
the local fractional Sobolev regularity of u in B, (x¢), and the rest B>, x (R/Z \ B, (xy)).

—g—1

At this point recall that # denotes a W #=0~ 9 extension of u| B, (xo) from B, (xo) to R
(Remark 6.2). By inequality (6.5) and the disjoint support estimate of Lemma C.1 we then
get

1,(p,q)
Ry x(By (x)\Bay) (> (92 A)i)]

q—2
s /sz /Br(x())\B2p (]{wy () — () dz) (]{»y i (z1) —u(x)] le)

dy dx
: ( f gt =gt dz2) e

o0

< o= (U+1) E5 12123 B oy
1; W s, Py =i,

o0

< i -2 =+ PG g-1 a1
[ ]W" q 1~"(1R<)12; g ]Wp a 1~"(Bzzp)[QJ]W%“’(R)
o0

1 17 q
Zz a+1) ]q p=get (6.6)
=1 w (B, )
where the constant depends on [u] ==l g < oo as well as [‘/)] =l gy =

Since p(x,y) > r/4 for x € Bs, and y € R/Z \ Br(xp), we estimate the remalnder term
by (6.5) so that

1L,(p,q)
IR, % (®/2\ B, (xo) (U (9U A)ij)]

q—2
j— 2 j—
& /sz /]R/Z\Br(xo) (f);by |u(2) u(X)l dz) (f;Wy |u(21) u(X)l le)

dy dx
' (][y lp(22) = ¢(x) dzz) p(x, y)Pa
< (/9P 17973 gl 1. (6.7)
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r—q—1

Note thatp € W™« *(R) with supp ¢ C B, together with the Sobolev inequalities of
Theorems A.4 and A.5 leads to

lellizr < ple] | p=g=r agy 5P (6.8)

: 1,(p,9) L,(p,9)
The estimates on R Boyx(R/Z\Bsy) also work for R (R/Z\B2p)xB2p by symmetry. In the case

1,(p,q) :
of R(R/Z\sz)x(R/Z\sz)’ we have to consider

(R/Z\ Bap) x (R/Z\ Bzp) = (R/Z\ Br(x0)) x (R/Z \ Br(xo))
U(R/Z\ Br(xo)) x (Br(x0) \ B2p)
U (Br(x0) \ B2p) X (R/Z \ Br(x0))
U (Br(x0) \ B2p) X (Br(x0) \ Bzp).

RlD’(p 9 can be estimated for the first three domains as in (6.7), due to supp ¢ C B, which
implies that either fxl>y [@(z2) — ¢(x)]dz2 = 0 or p(x, y) > r. For the fourth domain we
proceed with the help of the tail estimate of Lemma C.1 similar to (6.6). Therefore, the
statement follows for the first remaining term in the case of 2 < g < 4.

For ¢ > 4 in R"(P9 the same methods work as well, in particular, for D C
R/Z xR/Z,

IREPD (., (ou A)yj)|

2 q—3
< ||u||Loo//D(f |u<z)—u<x)|2dz) (][ |u(zl)—u<x>|dzl)
x>y x>y

dy dx
: (]{Wy lp(22) — @(x)] de) W'

We only need to change the exponents in Holder’s inequality to 1 = % + ‘1[];3 + L since

q
we deal with the factor

2
(][ lu(z) — u()c)|2 dz)
x>y

instead of ( fxl>y lu(z) — u(x)|?> dz)?72, and slightly adapt the disjoint support estimate
of Lemma C.1 as well as (6.7), to achieve the desired result.

For the second and third remainders we have to deal for j = 1,2, 3 with the scalar
products

q—4

][ [u(z) —u(x)]dz
x>y

(u(z) —u(x)) - ((pu N)ij(z) — (pu N)ij(x)) dz,

x>y
][ ][ () — u(t)) - ((9u A)ij () — (g Ay (1)) dis dt,
x>y Jxpy

in place of

][ (u(z1) —u(x)) - ((pu N)ij(22) — (pu A)ij(x)) dz1 dzs.
x>y Jxp>y
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However, the techniques presented for the first remainder, in particular adding zeros and
using (u A);; € T,,S? for j = 1,2,3, work out similarly and lead forany D C R/Z \R/Z
to

IREPD (u, (pu A)yj)|

q—1
§||M||L°°//D(][ |u(z>—u(x>|2dz)(f |u(zl>—u(x)|dzl)
x>y x>y

dy dx
- ( ][ otz =40 dz2) e

as well as

3,(p,
IREPD u, (pu n);j)|

q+1 dvd
st [ (£ men—uwiaz) (£ o —owldz) 20

Hence, by proceeding as for the first remainder, the statement follows for k = 2,3 from
adjusting the exponents in Holder’s inequality and the tail estimate in Lemma C.1.

Let us now turn to the cases k = 4, ..., 7. The remainder terms fork = 4andk =7
are easier to handle since

2
S lnllzee lullzee lellLr

]l 1) - (pu Nz dz
x>y

6.9
) - (@ Aiprsz] < Illzee el ol (6.9)

In(uy) - (pu Niprszl < Inllzse ulzeollel -

Note that |u| oo, [|7]|lLee < 1, and by (6.8), ||¢|l1 < p. Thus the remaining factors
emerge in the energy &7-4(u), in particular

| Ry P9 (. (u A)ig)| S 0 €7 (1),

since in case k = 4 we can extend the integrand with an extra factor 1 — %c due to its
boundedness (see Remark 6.7), and in case k = 7 the necessary factors of the energy are
already given. It remains to study the cases k = 5 and k = 6, whose factors in the integrand
are not necessarily comparable with the energy. We begin with k = 5 and observe by
suppn C B;2(xo) that

a—2
R,S”(p’q)(u, (pu A)ij) = —q/ / (a—1p%) 2 k(x, y)_p/z(a —1b)
By /2(x0) /R/Z

dy dx

- (n()ux) - ((pu A)ij)ryz) o)

We split the integration domain into

By2(x0) X R/Z = (By/2(x0) X Br(x0)) U (By/2(x0) x (R/Z\ Br(x0))).
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For the first domain, by the previous comments on the factors appearing in the integrand,
inequalities (6.9) and (6.8), Jensen’s inequality, Lemma A.2, and Sobolev embedding
(Lemma A.3), we have

5.(p.9)
|R77,1;;/qz(xo)><3r(x0) (. (pu 7)ij)|

Fony () —u(x)? dz 1/2
< InllzeellulZeollell Lt (/ / - - dy dx)
- r(x0) J Br(x0) px, y)P—4

s P[u]q P—q—1 2q
W' 2a (B, (x0)
Spr
w

(6.10)

p—

9B, (xo))

For the second domain we notice that p(x, y) > r/2 for x € B,/»(xo) and y €
R/Z \ B;(xg), which leads by (6.9), estimates like (6.7), and (6.8) to

5,(p, —(p— +2
R oy /2By oy (s @ AN S (/2™ PO | F 2 Il zos e

< pr (79, 6.11)
For k = 6 we distinguish the following parts of the integration domain:

R/Z xR/Z = B,(x¢) X Br(xg)
U By (xo) x (R/Z\ Br(x0))
U (R/Z\ Br(xo)) x Br(xo)
U(R/Z\ Br(x0)) x (R/Z \ Br(xo)).

For the first integration domain we get the same estimate as in (6.10), and for the others
we find by supp n C B,/2(xo) that either p(x, y) > r/2 or

f D) - (ou A )ryz dz = 0.
x>y

Therefore, we deduce the same estimate as in (6.11). All the remainder cases have thus
been estimated. ]

6.3. Regularity theory for &1-critical points: Proof of Proposition 6.1

In this section we finally apply the grand machinery of showing Holder regularity for
(essentially) fractional harmonic maps, which correspond to the first derivatives of our
critical knots of interest. We establish a proof for the scale-invariant tangent-point ener-
gies, i.e. for TP?? with p = g + 2 and ¢ > 2, along the lines of [14, 68], but face
some major obstacles due to the local definition of critical points for scale-invariant
tangent-point energies (Definition 1.5). Our main goal is to show the decay estimate of
Proposition 6.1.
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We begin by estimating the Gagliardo seminorm of u by an operator I'g pu resem-
bling the Riesz potential, which is introduced below.

First we recall that the term containing the highest order in the Euler—Lagrange equa-
tion of £4, ¢ > 2, for maps u, ¢ : R/Z — R3 and some small interval B C R/Z is given
by

2,
QBxB(u»(/)) = 1(;1:—3 q)(MJP)

//
B JB

: ][ ][ (1) = u(x)) - (9(22) — 9(x)) dz1 dzy -2
x>y Jxpy P( s

2

- g42
][ M) —u())dz| k(e F
x>y

x, )%

Note that for our functions of interest the factor k(x, y)’q%r2 is strictly positive and
bounded (see Remark 6.7).
As in [14,68], we now define a vector-valued potential for 0 < § < 1 by

q—2 >
A /B /B ][ Wi(zo) — u()dzo|  k(x.y)~E
x>y
f ][ W) —u (@) (|2 — 2P — |z — x Py dzydz 292 612)
xoy Jxoy p(x,y)?

following the definition of the Riesz potential Jg of order 8, which is defined by

dp f(x) = /R |z = x5 f(2) dz.

The inverse of the Riesz potential d g is called the fractional Laplacian of order 8, which
for B € (0, 2) has the form

J) - fx)

(8PP f(x) = ¢ e

for some ¢ > 0 (see [25]). In our situation, we observe that

Opx5U, ) =q/Rrﬁ,Bxgu(z)-(—A)ﬂ/2<p(z)dz. (6.13)

Note that
doTg,BxBU = Toyp.Bxpu foranya,p > 0. (6.14)

Our first intermediate result is the following.

Proposition 6.10 (Left-hand side estimates). Let ¢ > 2 with 1/q — 1/ > 0 small, and
lety : R/Z — R3 be a homeomorphism with locally small tangent-point energy TPI12:4
around an interval Br(xg) in R/Z, in the sense of Definition 1.1. Moreover, denote the
unit tangent field of y by u : R/Z — S? such that fR/Z u = 0 and for any yo € B;/2(xo),
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choose p > 0 such that By1., := B, ,(y0) C By (xo) for large L € N. Then for any § > 0,

q q
[M]Wl/q~q(Bp) s [u]Wl/q‘q(Bsz)||XBZKpF1/M’B2LpXB2L0u||L% + S[u]Wl/(].q(B2Lﬂ)

+ CS([M]%Vl/q.q(Bsz) - [u]ng/‘”’(Bp))

forany L, K € N large enough with L >> K. The constant in this inequality only depends
ongqg.

Proof. Letn € CX°(Byp) with n = 1 on B, and |V¥n| < C(k)p~*. Recall that (u)4 =
ry S  and set

¥ (x) = n(x)(u(x) = (u)B,,\B,)-

Then for any x, y € B, we have

2 2

][ [ (2) — ¥ ()] dz ][ [0(z) — u(w)] d=
x>y x>y

and therefore by Proposition 6.8, for any L > 2,

4 <
[u]Wl/q.q(Bp)r\,/I;L /];L
2L p 2Lp

-2 a+2
k(x,y)” 2

][ e(z) — u(x)] dz
x>y

2 dy dx
p(x, y)?

: ][ V(2 - v(x) dz
x>y

Now we decompose

Y(2) =y (x) = (u(z) —u(x) = (1 = n(2)(u(2) —u(x))
+ (1(2) = n(x0)) (u(x) — (U)B,,\B,)-

which leads to

q
[u]Wl/q-q(Bp) <I-1II+III,
where

q—2 g2
I:= //132L X ]{be[u(z)—u(x)] dz k(x,y)
F e w0 e - pwydzdn
x>y Jxp p(x,y)
q—2 g2
II:= //Bszz ][ [u(z) —u(x)]dz k(x,y)
f.,

y
x>y
y

dxd
][ (1= ) w(z) —u(x) - (¥ (z2) — Y (@) dz1 dzy 2
x> p(x,y)
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III := //
32L02

- ][ (1(21) = 1N ) — (W gans,)) - (¥ (22) — ¥ () dz dz
x>y Jxpy

dx dy
p(x, y)?

q—2

][ @) —uldz| ko)~ F
x>y

We start with the terms involving the cutoff function. By the boundedness of
k(x, y)_qT+2 (Remark 6.7), Holder’s inequality for 1 = qq;Z + % + %1, Jensen’s inequality
and Lemma A.2 we have

||

< //(B . (][y u() —u(x)|dz)q_2

dxd
f (1—n<zl>)|u(zl)—u<x)|dzl][ V(22) — ¥ (0)] dzp 2
x>y x>y p(x,y)

J[xl>y lu(z) —u(x)|9dz 2
dxd
s (//(Bsz)2 p(X, y)2 * y)
(// fx»y(l—U(Zl))q|u(212)—u(x)|qd21 dxdy)l/q
(B, ,)? p(x,y)

_ (// Feoy [V (22) — WZ(X)V] dz; i dy)l/q
(B,z,)? p(x.y)

< [u]tal_lz/q!q(Bsz)[W]Wl/q.q(Bsz) (//(B ) )2(1 — (@) u(z) —u(x)|?

dzdx \"1
p(z,x)? .

Then [1/f]W1/q,q(BzL y < [M]W]/q,q(BzL y by Proposition A.7, and the assumption 7 = 1
o o
on B, and Young’s inequality lead to

-1

< 8[ul

dzdx \4
[ e - 2)
B,1.,\By p(z, x)

ZVl/q.q(Bsz) + CS([”]zyl/q.q(Bsz) - [u]le/"”(Bp))'

2Lp

Regarding III, we estimate along the lines of II, first of all

-2
|III| 5 [u]gyl/qu(Bsz) [w]Wl/‘lvq(Bsz)

dzd 1/q
' (/BZLp /Bsz |n(X) a 77(2)|q|u(x) - (u)sz\Bn|q /O(Z, X))Cz) s
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and next with the help of Proposition A.6 for L > 2 as well as Young’s inequality,

3 dzdx \'
< q—1 _ q _ q__~ "
I < [M]Wl/q,q(Bsz) (/BZLD /BZLD In(x) —n(z)|?u(x) (u)sz\Bp| p(Z,X)z)
q-1 q q 1/q
< [M]Wl/q.q(Bsz)([u]Wl/q,fl(Bsz) —[u Wl/q.q(Bp))
S 8[“]?4/1/q,q(Bsz) + C&([u]‘l]yl/q,q(Bsz) - [u]‘[I/Vl/q,q(Bp)).

Hence

|+ M S 8051 /0.0g,, ) + Co(y1/00a,, )~ Mi1/0aca,):
For the remaining term I, by definition of Qpxp in (6.2) and Proposition A.7 for L > 1
we see that

|I| s [W]Wl/‘lsq(R) sup |QBsz><Bsz(u1 (P)|
(peCC°°(sz,R3),[w]wl/q.q(R)Sl

< [U]Wl/q,q(Bsz) sup |0B,, ,xB,., 1. 9)l.
(pGCCOO(sz,]R?’), [W]Wl/q,q(R)Sl

By using the identity (6.13) for u > g with 1/g — 1/ > 0 small and introducing cutoff
functions np, € C°(B2r) with ng, = 1 on Bg and ”Vk’?BR Loe < R7% for R > 0, we
get, for any K > 1 and some ¢ € C2°(Bz,, R?) with [@]p1/6.0g) < 1.

1
|08, ,xB,.,W. )| = Q‘/IR Ui/u.B,p xBy 4(2) - (=A)2@(z) dz

1
< ‘ /]R M8yt (D1 /ys xy, U(2) - (~A) % p(2) dz
o0
+ 2
k=K

We estimate the first term by Holder’s inequality, Sobolev’s inequality (Theorem A.5) and
[Plwi/a.a@) < 1 as

1
[ O, =181 YOy ey 1) ()4

1
‘/R B, k-1, 1/u.B, xB,, 4(2) - (=A)2@(z)dz

1
S 3y, Cusiyr ey i I(=2)

S ”XBzKprl//’“’BzLoXBzLou“Lﬁ [‘P]Wl/qvq(R)

5 ”XBzKprl/M’BZLpXBZLpu”L% .

Using integration by parts and the property J, F,g,Bszxgsz U= Fa+6,BszszLp u (see
(6.14)), the second part can be rewritten as
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1
/R (M, =My YOy ey u(E) - (—8) () dz

00
2.
k=K

o0
> /R S R CYPRPYI SV S ) [ €
k=K L

(B, = Ny ) (=D) 2 ¢)(2) dz

(o]

= Z /RFZ/q—l/[L,BszXBZLpu(Z)

k=K 1
(=) (g = By, ) (—A) 2 9)(2) dz

Then we estimate by Holder’s inequality, Proposition A.8 for 1/¢ — 1/u > 0 small

enough, the localization argument of Proposition B.1, and Sobolev’s inequality (Theo-
rem A.5):

K

- L
/RFZ/q—l/;L,BszxBZLpM(Z)'(_A)l/q U”((Uszp —ﬂsz_lp)(_A)z“‘/’)(Z) dz

k=K

<

~

Nk

IT2/g-1/1.B,1,%B,1 Ml =271/

. (—A)l/qflm(('?szD - Tlek_lp)(—A)ﬁ‘P) “L(Z/q—l/mfl

k=K

A
ok

o0
q—1 —ok =L —ok q—1
[”]Wl/q,q(BZL )2 [(=A)2ellpn < Z 2 [M]W‘/WI(BZL )
k=K i k=K i

for some o > 0. The statement of the proposition follows by choosing K large enough. =

In the next step we need estimates involving the operator I'y/,, px pu, Which appears
in the left-hand side of estimates of Proposition 6.10, to obtain the decay estimate of
Proposition 6.1. We start by splitting the operator I'y;, pxpu by projecting it into the
linear space spanned by u and the linear space orthogonal to u. More precisely, since
|u| =1 a.e., we have

x5,k , T1/mByn xByn Ul
< :
S Wx,u v Trimbyr By Il ey WX U AT 1B, <8y 1l e

(6.15)

Here we recall that vA for any v € R3 is given by the R3*3-matrix
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We then treat each part of the splitting separately. However, both estimates are based
on effects of integration by compensation using nonlinear commutators as well as infor-
mation from the Euler—Lagrange equations.

Lemma 6.11 (Right-hand side estimates I). Let g > 2 with 1/q — 1/ > 0 small, and let
Y : R/Z — R3 be a homeomorphism with small tangent-point energy TP4124 around
the interval B, (x¢) in R/Z, in the sense of Definition 1.1. Denote the unit tangent field
of y byu : R/Z — S? such that f]R/Z u = 0 and let it be a W'/94-extension of u| B, (x)
from B (xg) to R as discussed in Remark 6.2. Moreover, for yo € By»(xo), choose p > 0
such that B>, := Byar ,(yo) C Br(xo) for large L € N. Then

”XBzKpu : FI/M,BZL'OXBZL'O“”L%

[e.]

q —O(L+k) =14
< [M]Wl/q,fJ(Bzsz) + Z 2 [u]Wl/‘“‘(BzzL-q—kp)
k=1

forany K, L € N large enough with L > K. The constant in this inequality only depends
ongq.

Proof. First observe that, since |u| = 1 a.e. in B, (xp),

u(z) '/y /y(u(Zl) —u(x))(|z _22|1/M—1 — |z _x|1/,u,—l)dz1 dz, =
y oy
_%/x /x ((z1)—u(x))-(u(z0) +u(x)=2u(2)) (|2—22 |V = |z—x|V#7) dzy dz,

for almost all x, y, z € B,(xg). Therefore, by the definition of I" in (6.12) and the bound-
edness of k(x, y)_# (Remark 6.7),

|X32Kp”(z) : Iﬁl/M,BzLﬂszLou(z)|

q—2
< XB,, (z)/ / (][ |u(zo)—u(x)|d20)
o BZLp BZLp x>y
A ) = e + 1) = 20() d
x>y
][ ||z _22|1/u—1 —z _x|1/u—1| dz, a’y—a’xz
x>y p(xs y)

Observe that u is evaluated only in By (xo) here as Bk, C By, C Br(xo) (L > K).
Since u and # coincide on B,(x¢) by construction (see Remark 6.2), we can con-

tinue with # from now on as it is globally W1/49-regular, unlike u, which is only in
W94 (B, (x0). R?).
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For the next step, we need the notion of the uncentered Hardy-Littlewood maximal
function, which is given by

Mf(x)= sup —— |f(z)]dz.
Br(x)3y | BrOW| JB,(»)
By Proposition D.3, for small § > 0,

1/u—8

-2
(f |a(20)—ﬁ<x)|dzO)q < Jx =y | WBDE@2 (M (—A) T di(x)) !
x>y

Now we decompose the integral J[x>y |ti(z1) —u(x)||t(z1) + ti(x) — 2t (z)| dz; into four
terms:

][ i(z1) — )] fi(z1) + x) — 200(2)] =y
x>y
< ][ i(z1) — 7(y)|? dzy 6.16)
x>y
+][ li(z1) — ()| dzy 30 + () — 20()] (6.17)
x>y

() — 70| ][ li(z1) — 7] dz 6.18)
x>y
() — (0] [7() + () — 20 ()], 6.19)

For the first term (6.16), by duality we obtain, for some ¢ € C2°(R) with ||¢| L« <1,

” /B /B x — y| /=@y p(—A) L= ﬁ(x))q_z
2L,0

2Lp

dy dx
p(x, )?

][ |ﬁ(zl)—ﬁ(y)|2dzl][ ||+ —zo ATt — | — x| VEN dzy
x>y X

>y
< /R /B L /B M8 a0 o)

][ ji(z0) — G () dz
x>y

M
Lnr=l (BzKp)

: ][ Iz = 2o YA — |z = x|YE dzy |x — p| VD@D 2 gy dx dz.
x>y
Hence, for an admissible ¢ € (0, 1) and

1 1 1
(——8)(q—1)+——1<g<—,
2 2q 2
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we can apply Lemma D.6 to the previous inequality and achieve

.,

dyd
L R IR L e
x>y x>y p(x,y)

1/mu—8

/B Ix — y|(1/u—8)(q—2) (MM(—A) 2 ﬁ(x))q—z
2L,0

n
Lu—I (BZK,D)

1/u—8

~ q—2
5/1;J(I/M—5)(Q—l)+ﬁ+s—l(XBsz‘MM(_A) 7 i(2))

1/u=38 1/Q2q)

CM(M(=8) 2 GM(=A) 2 i) (2) el 0] (2) dz

1/u—8 q—2

+/(szL MM(=A) "2 1i(z))
R 14

1/u—=68 _ 1/Q2q)
'J(lm—s)(q—mﬁﬂ_lM(M(—A) TAM(=A) 2 ) () u—elel(z) dz

1/u—=8 _ -2
+/RJ(I/M—S)(q—l)+2171+s—l(XBszMM(_A) ()
1/u=8 _ 1/Q2q)
CMM(=A) 2 U MM(=A) 2 i (2) el 0l(2) dz
1/u—=8 _ 2
+/R()(32L0<M¢M(—A) i()*

1/u—8 1/(2

~ ) .
181y et (MMD) T2 AMM (=) 27 0) (2)d1 el ] (2) dz2.(6.20)

The integrals appearing on the right-hand side do make sense as they can be traced back to
il € WY44(R) by applying Holder’s inequality and the following estimates: First, by the
Hardy-Littlewood maximal inequality and Sobolev’s inequality (Theorem A.5) we have

1/u—8

1, MM (1) 5

~\g—2
u)? ||L((1/u—8><q—2>)*1

1/u—8

= (/ |xB L (Z)MM(—A) 2 g(z)|(1/u—8)*1 dz
R 250

< (L1 a s a:
R

and with the additional help of Theorem A .4,

)(I/M—S)(q—Z)

(1/u—=8)(g—-2) )
~19—
) s [M]Wl/q,q(R) < 00,

1/u—8

M1 /—8yig-1)+ 2 +e—1 (X3, MM(=B) 2

1/u—8

< 1(xp,,, MM(=0) "%

~ q_2
u) ”L(l—ﬁ—(l/u—&—s)_l

Na—2 192
D paru—sa-2=1 < Wly170.0@) < -

In a similar fashion with a slightly adapted Holder’s inequality we observe

1/u—s _ 1/2q)
[ M(M=2)" T M(=2) )| |
Lﬁ%—(l/u—é)
< =) 5| (=AY it 20 < []7 <
~ M s tlieze = il @y < 00
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and hence also

| MM=0) 5 aMM(—a) ] <)
L 2gH/u=5

/=8 1/(2q)

(MM(=A) T aM=n) "2 )|

2
wl/a.4(R)’

J 1 1
” (1/pn=8)(g—1)+55 +e—1 LT=7u=8(q—2—¢

~12
5 [M]Wl/q,q(R)v

/u—s _ 1/Qq) .
”J(l/u—é)(q—1)+ﬁ+s—1('M‘M(_A) 2 UMM(=A) 2 ”)HLW
5 [ﬁ]%vl/q.q(]g)’
as well as
”Jl/u—8|‘p|HLl/s < ||§0||L“~

By combining these observations and recalling ||¢|| L« < 1, we conclude that

_ 4|(/u=8)(g-2) A L N2
14 14
- s _ _ dy dx
f |u<zl)—u<y>|2dzl][ Iz =22l VB 2 x|V dzy 2
x>y x>y P(X»Y) Lﬂ(szp)
S [ﬁ]‘{/{/l/q,q(R)'

With a view to the desired decay estimate of Proposition 6.1, we need to take advantage
of the local Sobolev regularity of u, i.e. u € W1/94(B,(x¢)). Recall that u and i coincide
on B, (x¢) by construction (see Remark 6.2), and hence so do their Gagliardo seminorms
on subsets of B (xg). For this reason, we localize the previous estimates with the help of
the factor y By, to get for some o = o(g) > 0 the upper bound

o0
q —o(L+k) 14
[u]W”‘1~‘1(B22Lp) * kZ 2 [u]Wl/q'q(BzzLJrkp).
=1

In particular, here we have applied Proposition B.3 to (6.20), the localized maximal
inequality of Proposition B.4 and the localized Sobolev inequality of Lemma B.5.
We proceed with the remaining terms (6.17)—(6.19),

U(x, y.z) := (6.17) + (6.18) + (6.19)

= ][ ii(z1) —u(y)| dzy lu(y) + u(x) — 2u(z)|
x>y

+ [ (y) —u(x)| |u(z1) —(y)dz

x>y
+ [a(y) —u (o) [u(y) + #(x) — 2u(z)|,
in the following similar manner. We begin by estimating J[xw |ti(z1) —u(y)| dz;, respec-
tively, |1 (y) — 1 (x)|, by Proposition D.3 and Lebesgue’s differentiation theorem by

1/pu=38 1/pu=38

|x — y|VHS (MM(—A) T d(x) + MM(—A) 2 di(y)).
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Together with Lemma D.4 we get the upper bound

_ _ —1
/ / v — | /r=B)a=1)( )?
BZLp BZLp

i = |V (MM(=A) T 6 (x) + MM(—A)T7ii(y) + MM(—A) 7 ii(2))

dy dx
‘kl/u—ﬁ—a,l/u(x’y’z) W

For some ¢ € CX°(R) with |||z« < 1 we arrive at

H / / Ix — | D@D (M (—A Hh
BZLp BZL,D

-U(x,y,-)][ ||,_22|1/M—1_|Z_x|1/M—1|d22 N
x>y Lu=1(Byk ,)

< I (e, 2y ()

(MMD)FTT(x) + MM(—A)T () + MM(=A) ) Kyt 17,050 9.2)

dxdydz
: |(p(Z)| _ 5 a—1)—1/a—
|x — y|2~(1/u=8)g-1D)-1/q—¢

B

dy dx
p(x, y)?

1) () + (1 oL,

1 ~
ERT A [N C T PR T P v KA

where we have applied Proposition D.5 and then estimated analogously to the case (6.16).
When considering u € W1/24 (B, (x,)), we make use of the factor y B,L again and local-
0

ize the estimate as described in the case above. [

It remains to treat the second term appearing on the right-hand side of the projection
estimate (6.15).

Lemma 6.12 (Right-hand side estimates II). Let ¢ > 2 with 1/q — 1/ > 0 small, and
¥ : R/Z — R3 be a locally TP?2:4 critical embedding in the interval B, (xo) C R/Z, in
the sense of Definition 1.5. Denote the unit tangent field of y by u : R/Z — S? such that
f]R/Z u = 0 and let ii be a W'/949 -extension of u | B, (xo) from By (xo) to R as discussed in
Remark 6.2. Moreover, for yo € By/2(xo), choose p > 0 such that By21 , := By21 (o) C
B (xo) for large L € N. Then

||X32Kpu A Fl/u,BszszLpu ||Lﬁ

q 2g-3 —o(K+I1)
< [M]W‘/‘1~‘1(322LP) + [M]W1/4~‘1(322L ) + ZZ [ ]W‘/‘I “4(By2r41,)

—oK
+27° [u]Wl/q “4(By2r,) + p(@q(u) +r73 + [M]W‘/q’q(Br(xo)))
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for any large enough K €N and L e N with L > K. The constant, besides depending on q,
may also depend on global properties of u such as ||u||Loo, [[il|lLoe, [U]y1/a.a(B, (xy)) @nd

[lw1ra.aw)-

Proof. We prove the statement along the lines of [14, Lemma 3.8]. First, by duality we
have

i, 0 A T i 1 ey S [0 AT iy ey 1) 0

for some map ¢ € C°(B,x, R3) with || ||Lx < 1. Hence, it is sufficient to show that
for € C2°(B,k ) scalar,

’/R u(z) ATvuB,, B, u(2) - ¥(2) dz

o0
q 2¢-3 —o(K+1)1~19—1
S [M]Wl/"'q(Bzsz) + [u]W”""’(Bzsz) + 22 [u]Wl/q'q(Bz2L+1p)
=1
—oKr,,191 q -3 q
+ 2 Wl a0,y TPEO) T A 10 5, ()

Note that u on the left-hand side is only considered on B (x¢) due to supp ¥ C B,k ,, the
local definition of T" for B,z , in (6.12), and Byk, C By, C By(xo) (L > K). There-
fore, as u coincides with 7 on B,(x¢) by construction (Remark 6.2), we can continue
with & from now on as it is globally W'/9-4-regular in contrast to u, which is only in
W1/4:4 (B, (xo), R?). However, if we later obtain W '/9-9-seminorms of # restricted to
subsets of B;(xp), we may switch back to the original function u.

With the help of usual cutoff functions, i.e. ng, € C°(B,r) with ng, = 1 on Bg
and || V¥np rllLe S R™¥ for R > 0, we decompose the integral on the left-hand side as

/Rﬁ(z) A F]/,u,,BszszLpﬁ(Z) -Y(z2)dz =1+ ZH[,

=1

where
N 3 N
b= /R(—Am (18,2, 21/ V) E)A(E) AT/ B,y B, (2) d2,

_ 1 3
II; .= ‘/]R(_A)l/q I/M((—A) o (773221(+1_Hp\BzZK_HoJl/Mlﬂ)u)(z)
A2jg—2/uT1/, By x B, 1(2) d2.

We first focus on the terms II;. For that, we define

(D(Z) = (_A)l/q_l/u((_A)ﬁ(77322](+1+1p\322K+10‘11/Mw)ﬁ)(2)'
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By (6.13) and (6.14), and the boundedness of k(x, y)_% (Remark 6.7), we get

' IR I OV

= '/R@(Z) A FZ/q—l/M,BszXBszﬁ(Z) dz

12 a2
k(x,y)” 2

][ [i(z0) — i(x)] d=o
x>y

. ( ][ (i N)ij (1) — (i A)ij (x))
xp>y J x>y

* dxdy
i=1 P(x,¥)?

~(J2yg—1/u9(22) = d2/g—1/u0(x)) dzy de)

q—2
< //Bin(]{wy [ti(z0) — 1 (x)] dZO) ]{»y |ii(z1) — i (x)| dzy
dxdy

. 7[ |J — (p(Zz)—e] — <p(x)|dz —_—
oy 2/q—1/n 2/q—1/u 2 ( ,Y)Z
5 [u~]q

1 q—1
Wl/q,q(Bsz) [JZ/q—l/u(p]Wl/q’q(Bsz) 5 [u]Wl/q,q(Bsz) ”(p”LZ/qil/u P (621)

where we have applied Lemma A.2 and Sobolev’s inequality of Theorem A.5 at the end.

It remains to estimate ||¢|| st For this purpose we introduce for any o > 0 the
L2/q—=1/n

three-term commutator

Ho(f.8) = (—N)2(fg) — f(=A)*2g — g(—A)*/? f. (6.22)

Taking advantage of the estimate in Appendix B.l, the uniform boundedness of
(Remark 6.2), Holder’s inequality, Sobolev inequalities of Theorems A.4 and A.5 for
1/g — 1/ > 0 very small, and Proposition B.1, we estimate

llell, ot

- Lol ol 1
S lillzoe (=82 5200 gy Bk, 1w o

— ~ 1
MG A 08k 41,\ By, S /) s

2/q=2/1n

~ 1
+ ” H2/q—2/M (u7 (=A)2 (77322K+/+10\322K+1D‘]1/M1//)) H

LW
~ L _ 1 u—=1
< (liiflpoo + [[(=A) 24| 1) 27 EHFDT |y || e
+ =)V gy

L2/q=2/n
1c1 1_1
. ||(_A)2(u+2(q ”))(71322K+z+1p\3221<+lpJl/“‘ﬁ)”

< 27 KD (| oo + [ y1/a.0 Ry

1
L2/a—1/n

for some small 0 = o(q) > 0.
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Now we switch to the term 1. We again start by introducing
¢(Z) = nBzzkaI/ul/f(Z)’
and observe that, by Proposition B.1 and our assumption ||/ ||z« < 1,
e
[(=A)2ig|pn < 1. (6.23)

Next we split I into three terms with respect to the three-term commutator (6.22) as

U .
I := /R(_A) 21 (pu)(z) A FI/N!BzLoXB#ou(Z) az,
1 ~
I, = —/Rgo(z)(—A)Zuu(Z) AT1u.B,1 xB,, #(2) dz.
3= /R Hyu(p.u)(2) A Fl/ﬂ’BszXBszﬁ(Z) dz.

For the term I;, by (6.13) we have

Il = ql(Q5, <5, (i MD)_]

- //

k)%
3
- ( ][ . ][ G ) (9 AV 22) — i ] ) d azzZ)i=1 p‘g dy);z

[ii(z0) — u(x)] dzo

Note that # is considered only on B,z, C B;(xo) here. Hence, we can change u back
to u, as they coincide on B, (xo) by construction (cf. Remark 6.2). Then we simplify the
expression by the skew-symmetry of puA and split I; by the triangle inequality into

4 q—2

[u(z0) —u(x)]dzo k(x, y)_qT+2
y

3 dyd
(][ f <u(zl)—u<x))~((qu),;,-(m—(qu),-,-(x>)dzldzZ) ydx
x>y Jxpy

j=1 p(x, y)?
ZDQ@’ (. (pu A)ij)-

m=1j=1

where
D, =R/ZxR/Z,

D, = (R/Z \ B2Lp) X Bsz,
Dy = By, x (R/Z\ Byz,),
Dy = (R/Z\ Byr,) x (R/Z\ Bye,).

For the term with integration domain D, we employ the assumption that y is a locally
TP4*+24 critical embedding in B, (xo). Hence Section 6.1 implies that u is an &7 -critical
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map in B, (xg) for some n € CX(B,/2(xp), [0, 00)). As u fulfills the Euler-Lagrange
equations (Lemma 6.6) we observe that for any (¢u A);j € T,S%, j =1,2,3,

3 7
109, (pu M) S Y IRED (. (pu A)ip) + D IRED (u, (pu )i
k=1 k=4

where we set R¥@ = R¥(@+2.0) for ¢ > 2. Therefore, Proposition 6.9 leads to

2q—3 g+1
|Q(Q)(uv ((pu /\)l])| 5 [u]Wl/q,q(BZ3Kp) + [u]Wl/q'q(Bz3Kp)

o0
—0(3K+1)~19—1 q -3 q
+ 122 [u]Wl/q.q(Bz3K_Hp) + P(E; w)+r—+ [u]Wl/q.q(Br(xO)))
=1
for 0 < 0 :=2/q < 1. We estimate the terms with domains D,, for m = 2,3,4 up to
positive constants by methods similar to (6.5) by

-1 dx dy
oo //Dm (]{M|u(zO)—u<x>|dzO) (]{wa(zl)—w(x)mzl) =

Since u is not known to be in W1/9:4 outside of B, (x¢), we need to distinguish, for the
domain D5, the cases (R/Z \ B;(xo)) X Byr, and (By(xo) \ B,.,) X B,L,. The first
case is handled along the lines of (6.7) since p(x, y) > r/4, and to the second case we
can apply due to supp ¢ C B,2x , an adapted version of Lemma C.1, which gives in total
with & € W1/44(R) the upper bound (up to a positive constant)

[e )
3 —o(L+D)[;19—1
or +IE 2 [M]Wl/qiq(BzL+2K+zp)'
=1

We treat the term with domain D3 similarly by symmetry. For D4 we can deduce the same
bound in the following manner. First we also distinguish several subdomains according
to the only locally known fractional Sobolev regularity of u in B, (xg). In particular, we
have to study the cases

(R/Z\ Byr,) x (R/Z\ Byr,) = (R/Z\ Br(x0)) x (R/Z\ By(x0))
U (R/Z\ Br(x0)) x (Br(xo0) \ By,)
U (Br(x0) \ By,) X (R/Z\ Br(x0))
U (Br(x0) \ By,) X (Br(xo) \ Byr,).
In the first three cases the double integral either equals 0 due to supp¢ C B2k, or can

be estimated with the help of p(x, y) > r similarly to (6.7). For the last case we use an
adapted version of Lemma C.1.
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For the term I,, we first observe that by the definition of I'g gx g in (6.12),

12 ~ —/ /
B2Lp BZLp

- ][ (@i(z1) — ()T dzy
x>y

7-2 a+2
k(x,y)" 2

][ [f(z0) — ()] dzo
x>y

dy dx
p(x, )%

f o8 E) g A) Hi A) ) d

Now since fiA is orthogonal to #, we rewrite
f () i) d, f 8 F A )~ Do) i ) 0) d
_ ]{M(a(zl) —i(e)T dz ]{M B(z2, %) dza,

where

®(22, %) 1= d1 ) (@(=D) 201 A)(z2) — 1y (@(—A) 22 1 A) (x)
— 2@ A (22) — 1 A (X)) (9(x) + ().

Therefore, by Remark 6.7 we have

-1 dy dx
ns/ | (][ m(zO)—a(xndzO) fleelin 2 62
Byr, /By, \Jxoy xvy p(x, )

where | .
D(z2,x) 1= Jy/u(p(—A) 22 u)(z2) — 1/ (0(—A) 22 U)(x)
— 1((z2) — () (9(x) + (¥)).

Now we are in a position to apply an adapted version of [68, Lemma 6.6]. For that, we
define 1
U:=(—A)zeu,

and find
B(22. %) = d1ulp U)(z2) — 1700 U)x) — L(ii(z2) — () (@) + 0 (1)
< / (22 — 2|51~ |x — 2V U () (z) dz
R

=3 [z = = = 2 ORI + o) dz
R

S =3 [z =2l = e =2 U0 + 93) 2006 d.
R
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Together with Lemma D.4 we obtain, fore < 1/u — ﬁ < 1 small enough,

][ (22, x) dz2
x>y

5/(][ ||22—Z|1/‘H—|X—Z|1/“_l|de)IU(Z)IIw(X)+<p(y)—2<p(Z)|dz
R x>y

< /R I — p| VI (MM(—A) 37 o(x) + MM(—A) 7 9(y) + MM(—A) 3 o(2))

-k (x,y,2)|U(2)|dz.

1 p—oe—e1/p

Furthermore, by Proposition D.3 for small § > 0 we have

1/pnu—8

g—1
(][ |a(zO>—a(x)|dzO) < Jx — y| D@D MM (-A) T d(x)T
x>y

We conclude that
—8)(g—1)— 1/u=8 _ —
s [ [ [ ey e, oo -a) 4 i

(MM(=D)T70(x) + MM(=A) 3 o(y) + MM(—A)3 g(2))
-k (x,v,2)|U(z)|dy dz dx.

1/pu—sr—e1/u

Arguing along the lines of the proof of Lemma 6.11, we therefore get, under assumption
(6.23),

V=8 _ o1 1
L < 1(=8) "2l s 1(=2)3 @l 20 [UllLu

~1g—1 €1 ~ ~
S [y | =) 2 @l e [0y S 5100y

where we have applied Sobolev’s inequality in the last step. To take u € W1/99(B,(x))
into consideration, we localize this estimate by introducing the factor y B,. in (6.24)
0

and using Proposition B.3, the localized maximal inequality of Proposition B.4, and the
localized Sobolev inequality of Lemma B.5.

Using integration by parts, equality (6.14), and Holder’s inequality, the last term I3
can be bounded by

13 = —\/]R HI/M((p,ﬁ)(Z) AN Fl/u,BszXBszﬁ(Z) dz

s /R (=) VYR Hy (0, 8) ) 2 g2/ D1 /10,8, By T(2)] d2

1/g—1 ~ ~
< (=4) /4 /MHI/;L(%“)”L(z/q—l/url ||Fz/q—l/u,BszszLp“||L(1—2/q+1/ur1-

Then applying the three-term commutator estimate of Appendix B.l, Proposition A.8,
Sobolev’s inequality of Theorem A.5 and assumption (6.23), we obtain

1 1 ~d—1
R R P [N P A

~ ~1q—1
< [M]Wl/q~q(R)[M]ZVl/q.q(Bsz)'
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Also this estimate can get localized, in particular by the localized Sobolev inequal-
ity of Lemma B.5 and the localized version of the three-term-commutator estimate of
Appendix B.1.

In total, using again the fact that ¥ and # coincide on B,(x() by construction (see
Remark 6.2), we obtain an estimate of the form

1, A Fl/u By, xB, Ul

< 2—0K [u]

M
Lu—T

2q-3
+ [u]Wl/q’q(BZSKp)

g+1

+ [M]Wl/q.q(323kp)

Wl/" 4(By2r )

+ Z 2—0(3K+l) [M]
=1

I —3+22—U(L+l)[u]
I=1

—o (L+1)
+ [“]Wl/q (B ,) + ZZ [ ]W”‘f “4(By2r+1,)

+p(6%(u) + > + [u]?

Wl/q -4 (B 23K+, ) Wl/q'q(Br(xo)))

Wl/a.4(B, 4ok +1,)

—o(L+k) 5
+ [u]Wl/q 4 (Byy )<[M]W1/q’q(Bz3Kp) + ZQ’ ot )[u]Wl/q’q(Bz3K+lp))’
=1
which can be simplified by choosing L > 3K and factoring out the constant
[u]p /4.4 (By (x0))> wherever it makes sense, to

||X32KDM AT1/p.B,p xB,. U ||Lﬁ

q 2q-3 —0(K+l)
S [u]W”q’q(Bzsz) + [u]W”q’q(BzzL ) + ZZ ]W”""(B 22L+1,)

+ 27K > +p(87) + 7> + [u] =

Wl/”"(B 2L ,) Wl/"’q(Br(xo)))'

It only remains to prove the decay estimate based on the elaborated left-hand side and
right-hand side estimates.

Proof of Proposition 6.1. This proof is in the spirit of [14, proof of Proposition 3.9].

First let Ky be a large number, which will be specified later, and for K > K set
L := 10K and N := 20K. Moreover, let &,§ > 0 be small numbers, to be chosen later,
and assume

[ﬁ]Wl/q.q(Bsz) < E&. (625)

We then combine the left-hand side and right-hand side estimates to obtain a recursive
estimate. First recall from the left-hand side estimate of Proposition 6.10 that there exists
a large constant Cs > 0 such that

q q
[u]Wl/q'q(Bp) S [U]Wl/q.q(Bsz)”XBzKpFl//,L,BzLDXBzLOu||Lﬁ + S[u]Wl/q’q(Bsz)

q q
+ Cs ([M]Wl/q,q(Bsz) - [M]Wl/q,q(Bp))
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for K large and 1/q — 1/ > 0 small enough. In the next step we split the operator
Fl/M,szprsz by (6.15) into

x5k, T1/nByn xByn Ul

SL VT IPSUER RV Y N BT o VO NS AR R VIR N ]
The first term on the right-hand side may be estimated by Lemma 6.11:

X3,k ¥ TrjuByr <8y | ey

—o(L+1)
N [”]Wl/q “4(Byar ) + 22 [M]Wl/‘“’(B 22L+1,)
=1

whereas the second term on the right-hand side is by Lemma 6.12 bounded by

”XBzKpu A FI/M’BZLpXBZLpu”Lﬁ

q 2g-3 —a(K+I1)
< [M]Wl/q,q(Bzsz) + [M]Wl/q~‘1(BzzL ) + ZZ [u ]Wl/q “4(Byrti,)

+ 270K u) 7 +p(6%(u) +r > + [u]

v, (Bl ) W/ (B, o)

By setting 6 := 55 > 0 we conclude that there exists a large constant C = C(q,r, 8% (u),
”u”L‘X’s ”ﬁ”L‘X’y [M]Wl/‘/~q(Br(x0))’ [ﬁ]Wl/q,q(R)) > ( such that

—ON
[ ]Wl/q q(B ) — C[M]Wl/q‘q(Bsz)([u]Wl/q!fI(Bsz) + 8 + 2 )

+ CCs ([u]z{)[/l/q.q(B Ny [u]%Vl/q"’(Bp)) +Cp

+C Zz 9(N+l)[u]Wl/q (8

AN+ ,)"
I=1

Now we employ the hole-filling technique: We add C Cs [u]Wl /.4(8, ) to both sides of

the inequality and then divide by 2CCys + 1, so that under the 1n1t1al bound (6.25) on

[u ]Wl/q'q(BzNo) we obtain

‘ p e+8+27 +2CC;
[u]Wl/qq < [y 1/0.q
“4(Bp) Wl/4-4(Byn ) 2CCs + 1

+ Z 7—0(N+1) [u]
=1

W/9.4(B,yn 41 )"

If we then choose § and & small enough, and K large enough, such that

e+8+27%0 <1/,
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by defining

1

5 +2CCs -

2CCs + 1

we get the desired estimate for any N > Ny with Ny = 20Kj:

O0<rt:=

oo

—O(N+D) [~
[u]?,yl/qq(gp) = T[u]zvl/q-q(BzNﬂ) + 22 ( )[u]zyl/q.q(B2N+lp) + p. u
=1

Appendix A. Gagliardo-Sobolev space

Recall that the seminorm for the fractional Sobolev space W*?(B) for s € (0,1), p €
(1,00), and B C R is given by

_ 1/p
[f]WS,,,(B)z(/B Bdedy) _

|x_y|1+sp

In this section we gather a few useful facts that we need throughout the paper. Most likely
all of them are known to experts and we do not claim any originality here, but we could
not find them in the literature.

We begin with two identifications for the fractional Sobolev space.

Lemma A.1 (Identification 1). Let s € (0, 1) and p € (1, 00). Then for any ball B C R
or B=R, andany f € CZ(R),

L) = f'O)IP
[f]Ws .2(B) - /B s ﬁdxdy

fO)= f(X) ST (y=x) |P

[x—yI
N

The constant depends on s and p, but not on the set B or the function f.

Proof. The <-estimate. We have

p

1f'() = f'DIP <

- [ e

V4 1 X
n ‘f’(y) e AL
x=yJ,
By the fundamental theorem of calculus,

p

!/ 1 7 / ’ 1 * /
‘f(x)—yfx/x f(2)dz x_y/y f(2)dz
_ VW= S0 = SO =D | 1@~ 10) = S0 =0l

ly —x|? ly —x|?

Thus,
SO =)= ()(=x) | P

/ / |f|§cX)—_y|{+(s?|pd dy < / / |x'_x‘yy|‘l+sp dx dy.
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The > -estimate. For the opposite inequality, by the fundamental theorem of calculus and
Jensen’s inequality,

'f(y) —f)— ')y —x)|°
lx — yl

‘@—x)(y 5 7 @) - f(x)dz) P
lx =yl

/ @) = )P dz.
(x,y)

=
|y — x|
We integrate both sides over B in x and y:

SO = f)=f () =x) | P

/B/B |X|j_yy|‘l+sp dy dx < ///(xy) |f|§c2)_ |JZ’+(:;)|1’ 4z dydx
<L R e

/ / />Z>x |f|§¢2)_y|£+(sp)|p dz dy dx.

By the Fubini theorem, for any x € B,

|f'(z) = f'(0)|P
//>Z>x Ix — y[2tsp dz dy

o0
1
< "(z) = f(x p/ — dvdz
/Bn{m}v() F@IF [ g dy
1
@) = F1 )P i
/Bﬂ{z>x} 1+Sp Ix Z|1+Sp

Lo -rer, "

T l+sp/p x—z|tte

/'@~ /I ,
/B/B/y>z>x W dz dy dx 5 [f ]€VS~‘1(B)’

1@ = @I ,
/ / [c>z>y |x —y|2+sp dz dy dx < [f ]{”VS"[(B)' ™

Lemma A.2 (Identification 2). Lets € (0,1) and p € (1, 00). For any g € C°(R) and
any ball B C R or B = R we have

x l ( )—g@)|Pd
[&ls.0(B) z/ Fap 18 z Zd

— y|itsp

Thus,

and likewise

xdy.

The constant depends on s and p but not on the set B or the function g.
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Proof. The <-estimate. By Jensen’s inequality, we have

V4
lg(x) —gI? <

g(x) — ]{ RICTE
X,y

V4
+ — d
‘g(y) ]{x’y) g(z)dz

_ P B »
< ]{x,y)|g(x) g(2)] dz—ir]{x,y)lg()’) g(2)|? dz.

Thus,

[2]” < /B [ Feyy 18(x) — g(2)1P dz e

WSJ’(B) ~ |X _ y|1+Sp X y

The Z-estimate. The opposite direction is a consequence of Fubini’s theorem and the fact
that B is convex. Indeed,

e, >Ig(x) g(z>l"dz lg(x) —g(2)|”
// y e dx<///x>z>y Ix — y[2+op dzdy dx

lg(x) — g(2)|?
dzdydx.
///>z>x |X—YI2+”’ Y

Now we argue as in (A.1) to obtain the claim. [ ]

Lemma A.3 (Sobolev embedding). Let B C R be a ball. For s,t € (0,1) witht < s, and
p.q € (1,00) with
s—1/p=t-1/q,

we have
[flweaes) < C(s.t, p.q)(diam BY ™ ~/PHV4 [ £y ). (A2)
IfB=Rands—1/p=1t—1/q, then
[f]W”"(B) = C(S’t’ pvg)[f]WS'”(B) (A3)

The constant C(s,t, p, q) does not depend on f or B.

Proof. We first treat (A.3),for B=Rands—1/p=t—1/q.
In R we can use the abstract Sobolev embedding theorem for Triebel spaces,

[glwram) < [glws.r®)-
Indeed, by [66, Proposition, p. 14], for s € (0, 1),

[elwram) ~ [8lp,w)-
By [66, Section 2.2.3, p. 31] we have

[lrr,@®) < [8]Fs,®@)-
So (A.3) is established.



S. Blatt, Ph. Reiter, A. Schikorra, N. Vorderobermeier 2018

Next we treat (A.2) for a ball B. Observe that for any xo € R and r > 0 we have

[f (xo + r)lwras, o) = 1 lwra, (o))
and
[f (o+r Nws.r@ioy =P lwea s, (xon-

So (A.2) follows by scaling and translation from the case B = B1(0).

Moreover, we can assume that (f)p := f5 f = 0. Indeed, once we have shown (A.2)
under the assumption (f)p = 0 we can apply it to f — (f)p to get the full result.

So from now on we assume (f)p = 0 and B = B;(0).

Set
o) im {f(x>, el < 1.
SG/1xP). x> 1.

We claim that

Elwraw) = [flwras). [glwsr@®) = [flws.r()- (A4)
Indeed, we have
[glwraw) = [glwra) = [flwra(B)

which establishes the = -case for (A.4). For the <-case, observe that

lg(x) — g
(o) = [8wracaion + Blraes, (°))+2/Bl<0)v/31(0) e X

First we observe that by the substitution ¥ := x/|x|2,

@ = DNy
€, . =/ / 5P 1512 5 d5.
W4 (B, (0)°) 50 /5o [7/15P _y/|)7|2|1+zq

For X,y € B1(0) we have |x — y| < |)E/|)E|2 —)7/|)7|2| and thus

[ ] |f(x)_f(y)|q did?v [f]
Elwrami09 = Jp 0 a0 17—t T4 T Vlweasio)

Similarly,

lg(x) —g)|? lfx) = fOD)I? - »
/ / 1+sq dx d = / / 1+tq| |dx dy'
B /B0 Xl B1(0) /B1(0) |x — /|7 ?]

For x, y € B1(0) we have |[x — y| < |x —)7/|)7|2| and thus

lg(x) — g p
<
/31(0) /31(0) |x — y[t+sq dxdy 5 U lwracs, o)

This establishes (A.4).
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From (A.4) and (A.3) we obtain (A.2) fors — 1/p =t —1/q.
For (A.2) inthe case s — 1/p >t — 1/q we define

h(x) := n(x)g(x),

where n € C2°(B5(0), [0, 1]) with n = 1 in B;(0) is the typical cutoff function. We apply
the inhomogeneous Sobolev inequality ([66, Proposition, p. 14], [66, Section 2.2.3, p. 31])
to h:

[hlwramy S [Rlws.r@®y + 1BllLr@®) < [Rlws.r®) + 1€llL7 (B> (0))-
Now it is not too difficult to obtain
[Mlws.»®) < llgllLr(Ba0)) + [glws.r(R)-

Moreover,

lgllLr B0y < IIf ey = IS — (f)BillLrii0) < [flws2B;0)-

where in the last step we have used the fact that (f)p, (o) = 0 and Jensen’s inequality.
This establishes (A.2). [ ]

Theorem A.4 (Classical Sobolev inequality, [68, Theorem 1.5]). Lets >t > 0and p €
(1, = t) and define pg, = ﬁ. Then for any f € C°(R),

I(=a)"2 1| S22 fllrm).

L”A t(R) ™~
or in other words

5= £l

Theorem A.5 (Sobolev inequality, [68, Theorem 1.6]). Let s >t > 0 and p € (1
and define p;, = Then for any f € C°(R),

e Sl

’st

1—(s—t)p'

. |f(x) — f()IP 1r
”( A) /Zf“vat(]R) (/R RWdZdy) .

lx—y

Also, s € (0,1), 8 € (s, 1) and p < L5, then for Pis = ﬁ,

B PE, /5,
(//umx) Js ) dzdy) " S 1 -

1+Sps.3

Proposition A.6 ([68, Proposition D.2]). Let s € (0,1), g € (1,00), and n € C°(B2p)
withn = 1 on B,. Then forany L € N, L > 1,

/ / In(x) = nI?|u(y) — ()p,,\8,|

4 q
|.X _ y|l+sp dx dy < [M]W.v.p(Bsz) — [M]W‘V-”(Bp)'
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Proposition A.7 ([68, Proposition D.3]). Lets € (0,1), g € (1,00), n € CX(B2p) with
n = 1on B, and
¥ (x) := n(x)(u(x) — (U)B,,\B,)-
Then forany L € N, L > 1,
[Wlwsr@) < lwsrs,, )
We also find use of an adapted version of [68, Proposition D.4]:

Proposition A.8. For § > 0 small enough, we have
-1
Ty /g 48,8, Lra=1/a-5 < Wl 1ea g,

Proof. Forsome ¢ € CX(R) with ||¢||1/1/4+8 <1, by Remark 6.7, Holder’s inequality,
the identification for fractional Sobolev spaces (Lemma A.2), and the Sobolev inequality
(Theorem A.5) we have

IT1/q+8.B,ullL1/a-1/a-8 < /er/quS,Bpu(Z)(p(Z) dz

_ dy dx
< u(zy) —u(x)|9tdz ][ d1/0—s0(22) = d1/9—s0(x)| dzp ———
L f e —ueoraz f iesotea) —dugsetoldz @

a—1
S (/ / fxl>y Iu(zl)—uix)|‘1 le dy dx) q
B, JB, p(x,y)
' (/ / J[x>y | d1/g—s9(22) — d1/q—s9(x)|? dz Ix dy)l/q
RJR

lx — y?

-1
< [u]%‘/l/q,q(Bp)||90||L1/(1/51+5)- u

Appendix B. Localization arguments

For the convenience of the reader, we recall some results related to localization. For an
overview of these statements we refer to [68], but they can also be found elsewhere in the
literature.

Proposition B.1 ([68, Proposition B.2]). Let p > 1, ¢ € (0,1), and § > 0 small. Then for
any ¢ € CX(B,k) and L > 2 we have

([ NRE(CE N PR (G )] 7S e ) [CYN I

1+8 _ _
”(_A) 2 ((773 K+L — nB K+L—1 )th))” np S 2 Ln(p 1)/p||§0||L17.
2 2 L n+ép

Proposition B.2 ([68, Proposition B.3]). Let s € (0,n) and p € (1,n/s). Then for some
o0>0andany L € N,

o0
—o(L+1
S fllers,, ) + Y oot )||f||LP(BZL+]p)~
=1

s £l

np
L7=S7 (B,)
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Proposition B.3 ([68, Proposition B.4]). Let s1, 52,53 € [0,n) and py, p2, p3 € (1,00)

be such that N
p= L (1, 00).
n—Spi

If moreover
3

G-

i=1
then we have the following pseudo-local behavior for any L € N and some o > 0:

/R Gty 1) I o s £

S Wllervs,, pllf2ller2,, pllf3llLrss,, )

e}
—(L+1
+ )2 Ao,y ) Lollera @, )l fallrasyy, ). BD)
I=1

Proposition B.4. Let p > 1. Then for some 0 > 0 and any L € N,

o0
M fllr@y S ey )+ D2 " S N fllers,, ).
=1

Proof. We first split by Fatou’s lemma and the Minkowski inequality:

o0
I MO Lrw,) < 1M sy, ey + ) 1M, 5y, Dlrs,).
=1

For the first term, by the Hardy-Littlewood maximal inequality we get
||M(X32Lpf)||Lﬂ(Bp) < ||eM(X132Lpf)||Lﬁ(Rn)
=< lxs,,, fllrr@n =1 fllLra,. )

For the remaining terms, we observe that, for any x € B, by the definition of the Hardy—
Littlewood maximal function and Holder’s inequality,

1
MUbyp a1\, D) =90 T [ A8 \Byp, O O Y

r

< @LH ) /

X WIf )l dy
Byiis, Byry1,\Byr4i1-1,

< (2L+lp)—n (2L+lp)n—n/P I f ||L1’(BzL+lp)-

Therefore,

1/p
||QM(XB2L+/,O\32L+[7]pf)”Lp(BO) = (./Bﬂ |‘M(X32L+zp\BzL+14pf)(x)lp dx)

< @EH p)y T EH oy P g1 P | Lo (8

2L+l ,)

~ 2 +)||f||Lp(32L+[p). n
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We also need a localized version of the Sobolev inequality of Theorem A.5:

Lemma B.5 ([68, Lemma C.1]). Given 0 <t < s < 1, define p; = n/s and p; = n/t.
Then for any L € Z and K € N, we have

00
”XBzL (_A)t/zf”Lpl s [f]WS”’S (ByL+kK) + Z 2_0(K+k) [f]WSv"S (ByL+K+k)*
k=1

B.1. Three-term-commutator estimates

For o > 0 the three-term commutator is defined by

Ho(f.8) = (—M)Y2(fg) — f(=A)*2g — g(—A)*/? f.

This operator measures the deviation from the Leibniz rule for | D|*. For fractional har-
monic maps it was discovered in [23,24] how Hy (-, -) takes the role of the div-curl term,
and in particular it was shown that in R!, (=A)/* H, 2(f, g) belongs to the Hardy space
if (—A)Y4f, (=A)V*g € L2(R) (see also [47]). There have been multiple extensions
since; the following estimate and its localized version on the three-term commutator will
be helpful.

Theorem B.6 ([68, Theorem A.1]). For any ¢ > 0 small and p € (1, 00), we have

I(=8)"2 Ha(f.g)llLr < I(=A)2 fllLov | (=A)*2g |12
where p1, pa € (1,n/a] are such that
I 1 1 o—¢
P P om
If supp f C Bk, thenforany L € N,

I8 Ha (£ @)ller < 182 f o (=228 lLr205,x 41

o0
+ Z 2770 I (_A)a/zg”L” (Byk+L+k ))'
k=1

Appendix C. Tail estimates

Lemma C.1. Letp € C°(B;), p>q+2,q>2 and L,k € N. Then

/Dl /Dz(]{wy|u(z)—u(x)|2dz)q_2(]{m|u(zl>—u(x)|dzl)

dy dx
- ( f ot o) dz2) e

< 2—(L+k)% y zq—i B o
| ]Wp ¢ 1“’(BzLJrkr) [‘P]W%,q(&)

in each of the following cases:
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Case 1: Dy x Dy = Byr, X (Byr+i, \ Byr+k—1,),

Case2: Dy x Dy = (Byr+i, \ Byrtr—1,) X Byr,.,

Case 3: Dy X Dy = (Byr+k, \ Byr+i—1,) X (Byr+i, \ Byr+r—1,).
Proof. Since J[xl>y lo(z2) — p(x)| dzz = O for either x, y < —r or x, y > r due to the
support of ¢ in B,, we only need to consider the cases

2L+k—1r <y< 2L+k}’,

Case I: —2Lr <x< r,
Case2: 2L+k=lp o x <2ltkp 2Ly <y <,

Case3: —2Ltkp < x < pltk=1, pltk=l,  ~ol+k,

The cases
—r<x< 2Lr, oLk, < y < —2L+k—1r,
oLtk — x < —2L+k—1r, —r<y< 2Lr,
QLAk=1, oy oLtk gLk, oy o _oLtk—1,

follow analogously.
We first examine Case 1. By using Holder’s inequality, Jensen’s inequality and the
Sobolev embedding (Lemma A.3), with constants depending on the domain, we get

y q—2
/ / p(x.y)~ =0 (p(x,yr‘ / u(z) - u(x)|2dz)
B Byr+ik, \ByL+k—1, X

y y
-(p(x,y)—l / |u(zl>—u(x)|dzl)(p<x,y)—1 / |<p(22)—¢(x)|dzZ)dydx

q—2
L+k \—(p—q)—q (nL+k _ 2
< (@+*Fy) @t | +( / LGET! dz)
( / |u(zl)—u(x>|dzl)( / |¢<zZ>—¢(x)|d22) dx
ByL+k, Byr 4k,

< (2L+kr)—(p—q7)—q+1(2L+kr)(qr—1)"q;2 (//
(B

2Ly

lu(z) —u(x)*?dz dx) ’

SL+k,)?

1/q
. 2Ltk p)@=D1/q (// lu(z1) —u(x)|?dz, dx)
(Byr+k,)?

1/q
. (2L+kr)(q—1)l/q (//(B . lp(z2) — @(x)|? dz, dx)
2L+k

—(p— —g)4=2 2g—4 -
< (2L+kr) (p q)(2L+kr)(17 97 [u] 4p7q (2L+kr)(11 9/q

—1
2q ’zq(BzLJrkl_)
(r—9)/q
- u —q— r —g—
el =4 B k,) el et )
—(L+k)2=4 2q—3
S A 1) [¢]  pegei

a Wi (p,)’
g (ByL+k,) r
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Case 2 differs from Case 1 by symmetry only in the integration over y, where we use

/ dy < 2L+ky,
B

2Ly

In Case 3 the estimates also hold since the distance between x and y is even greater than
in the previous cases. ]

Appendix D. Mean value arguments

In the following we introduce mean value arguments and compensation effects, which
turn out to be crucial for elaborating the right-hand side estimates.
The first statement is a typical mean value argument (see [51, Lemma 3.3]).

LemmaD.1. Leta € R and a,b € R with
la — b| < min{|al. [b]}.
Then for any ¢ € [0, 1],
|la|* = 16|%| < la — b|* min {|a|*~*, [b]*~*}.

In our situation we will have to deal with the expression

1
lx =y Jix,y)

|Iz - 2|* ! — |z — x[*7! |dz,.

The following lemma tells us that it behaves very similarly to
lz = y[*7! =z —x|*71.

Lemma D.2. Let x, y,z € R be three distinct points inside a geodesic ball B C R and
a € (0,1). Set

F(x,y,z):= Iz — 22 el _ |z —x|“_1|dzz.
|x—y| (x,»)
. If
|x — y| S min{|x —z|. [y — z|} (D.1)
then for any ¢ € [0, 1],
F(x.y.2) S Jx = y|* min{lx —z|*7*71 [y —z[*7*71} (D.2)
. If
|x —z| < min{|x — y[. |y — z[} (D.3)

then for any ¢ € [0, 1],

F(x,y,2) S|lx—z|* ! < |x — yf|x — z|* 7L (D.4)
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o If
|y — 2| < min{lx — y|. |x — 2} (D.5)

then for any ¢ € [0, 1],
F(x,y.2) Sy =z P S lx = ylfly — 2177 (D.6)
Proof of (D.2). Observe that (D.1) implies
|x —z| =~ |y — z|.
Case 1: |z — x| < 10|x — y|. In this case |x — y| & |z — x|, and for any z, € (x, y) we

have |z — z5| < |x — y| < |z — x|. We then simply integrate

Foryo) syl | 2 = 22" dz,
|z—z2|<|x—y|
~ |x -y
A [x — y[* min {|lx —z[*7*71 |y —z[*7*7)
Case 2: |z — x| > 10|x — y|. In this case, for any z, € (x, y) we have |z — z5| = |x — y|
and |z — x| < |x — y| < |z2 — z|. In particular, for any z, € (x, y),

|z2 — x| Smin{|z, —z|, |z — x|}
By the typical mean value theorem argument (see Lemma D. 1),
Iz = 22[*7 =z = x[*7Y S|z — x| 1z = x[*72 S |x =yl |z — x[* 72

Integrating this, we obtain

F(x,y.z) S|x—yllz —x|*?

< lx = ylflz — X!

~ |x — y|® min {|x —z|*7*71, |y — 24771
This settles (D.2). [ ]

Proof of (D.4). Observe that (D.3) implies that |[x — y| & |y — z]|.
Since for @ > 0 the function z; > |z — z5]|*"! is integrable with antiderivative
~ |z — z,|%, we have

|x—y|—1/ 2 2 < =y (= x| — 1)

X,y _ _
T T I M [

<z xf

<lz—x*t 4|z —x* L

In the last step we have used the fact that « € (0,1) (i.e. ¢ — 1 < 0).
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Also observe that
oo™ [ el 2 Xl
(x,y)

This settles (D.4). ]

Proof of (D.6). In this case observe that (D.5) implies |x — y| ~ |z — x| so (@ < 1)

1

— lz—x[*"x x =y Sy —z|*7h
|X_Y| (x,y)

For the remainder we argue as for (D.4) to obtain

|x—y|*1/ 2= 2" < e = [ (= x| — 1)
X,y _ _
—r— [zl 4 =y Yz =y
T N PR
This settles (D.6). u

For the upcoming statement, we need the notion of the uncentered Hardy-Littlewood
maximal function, which is given by

1
Mf(x)= sup ——— |f(z)]dz.
B (x)>y | BrOW| JB.(»)

Let us recall the following proposition first.

Proposition D.3 ([69, Proposition 6.6]). For any a € [0, 1],
ux) —u)| < 1x = y[* (M=2)?u(x) + M=8)u(y)).
This implies
f o) —uldz < 1x - 1M A P,
x>y

][ u(z1) — ()] dzy < Jx — y[*MM—D)u(y).
x>y

We now develop an adapted version of [68, Proposition 6.3].

Lemma D.4. Let
G(x,y,2) := u(y) + u(x) —2u(z)|][ Iz = za|V#7t — |z — x|V17 dz,
x>y

H(x,y,z):= ][

x>y

lu(z1) —u(x)|dz; ][ Iz = 2Pt — |z — x|V d gy,

x>y
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forsome 1/ € (0,1). Then forany o € (0,1) and e € (0,1 — ) suchthate <1/ —a/2,
G(x,y,z)and H(x, y, z) are, up to a constant, bounded from above by

X — p 4T (MM (=AY u(x) + MM(=A)"*u(y) + MM(—A)**u(z))
: kl/u,—ot/Z—s,l/;L(x’ Y, Z)»

where
ks,y(x,y,2) := min{|x — 27!, [y —z[°7"} (D.7)
ly =2\’ s—1
+ (|x —1) AT Xyt gyl x-zp (D-8)
lx —z[\"™* —1
+ (|x =) A Hesismin stz (D.9)

Proof. In the case of |x — y| < min{|x — z|, |y — z|}, we estimate by Proposition D.3:
() + u(x) = 2u(z)| < |u(x) —uy)| + 2u(y) — u(z)|
< Jx =y (M(=D)*u(x) + M(=A)**u(y))
+ 1y = 22 (M (=AD" *u(y) + M(=A)*u(z)).
and
][ u(z) —u ()| dz1 < Jx =y MM A ().
x>y

Therefore, by (D.2) we get, for y; = a/2+cand y, = a + € € [0, 1],

G(x,y,2)

< x = [42 (M= A u(x) + M(—=A)**u(y)) ][ ||z —zo|VH — |z —x|/E71 dz,

x>y

+|y—z|°‘/2(M(—A)“/4u(y)+M(—A)°‘/4u(2))][ ||z =zt — |z — x| dzy

x>y
< (M(=D)**u(x) + M(=A)"*u(y))|x — y|*/> 1]y — z|/r=ni—t
+ (M=) *u(y) + M(=D)4u(z))|y — z|*/> Tyt — y 72,

and
H(x,y,2) S |x — y|“/2MM(—A)“/4u<x)][ Iz = za|'#7t — |z = x|V1 dzy
x>y
< MM(=D)* u ()l — |+ — z|relzmen

In the case of |y — z| < min {|x — z|, |x — y|}, we start with the same estimates as in
the previous case, but apply (D.6) for y; = «/2 + eand y, = a + ¢ € [0, 1] to get
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G(x,y,2)

Sl =y (M= D) *u(x) + M(—8)**u(y)) ][ |lz— 2o =z —x|H dzy

x>y

+1y =22 (M2) () + M=) u(2) ][ |z =22 /47 |z = x|V dzy

x>y
< (M(=D)**u(x) + M(=A)*"*u(y))|x — y|*/?|y — z|/#!
+ (M=2)*u(y) + M(=D)*u(2))|y — z|*/?|y — z|/1!

o —z Y1
S (HE80T00) + M8 u) = 512727y =2 (L2

’

+ (M2 u(y) + M(= D) *u(z)) | x—y |72 | y—z|*/ 2T /Hmra (_|y—z|

y1+(2-v1)
Ix—yl)

and
H(x,y,2) S |x — y|“/2M<M(—A)a/4u(x)f |lz = z2M/#7 — |z — x|VE7 dzy
x>y
< MM(=D)4u(x)|x — y|*/?|y — z|/1!

|y _ Z| a/2+4¢
= MM(_A)aMu(x)lx _ y|o¢+€|y _ Z|1/M—a/2—a—1( ) ‘
|x =yl
Observe that L’::;ll < 1.
For the last case of |[x — z| < min{|y — z|, |x — y[}, by Proposition D.3 we get

lu(y) + u(x) —2u(z)| < Ju(x) —u(y)| + 2Ju(x) —u()|
< Jx = Y2 (M(=D)*u(x) + M(=A)**u(y))
+ x — 2|2 (M=) *u(x) + M(=D)*u(2)),

and hence, by (D.4) for y; = a/2+eand y, = a + ¢ € [0, 1],

G(x,y.2)

< Jx =y (M= A u(x) + M(—=A)u(y)) ][ ||z =z )z — x| Vi dzy
x>y

+x = 2|2 (M=) Hu(x) + M(—A)4u(z)) ][ |lz—za|V/# 7 =z —x|VHY dzy
x>y

< (M=) *u(x) + M(=D)*u(y))|x — y|*/?|x — z|/1#!
+ (M(=D)**u(x) + M(=A)*"*u(z))|x — z|*/?|x — z|/17!

_ Y1
S 80 u() + M) )l = y 2 — oo (=20
xX=y
|x—z| ri+(2—v1)
)0+ M- D) ey P2zl (K2

)

[x—yl
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and
H(x,y.z) < |x — y[*2MM(—2)**u(x) ][ Iz =zt — |z — x|V#71 dz,
x>y

< MM (D) *u(x)|x — y|*/?|x — z|/m!

| _ | (¥/2+8
= MM(—A)4u(x)|x — y|2He|x — z|/u-e/2me (—x d ) .
|x =yl
Eventually, by Lebesgue’s differentiation theorem, for a.e. x € R,
M(=A)**u(x) S MM(—=A)**u(x). "

Furthermore, we need a result inspired by [68, Proposition 6.4].

Proposition D.5. Let F,G,H : R" - R4, « € (0,n), 5,6 € (0,1), s + a < B, and
consider

Pi= [ ][ P+ FONG@ + 60) + 6@l -y HE)
ks pg(x,y,z)dxdydz,
where ks g(x,y, z) is of the form (D.7), (D.8), or (D.9). Then
I< GHJS+aF+/ FGJS+O¢H+/ Fd,G-Jd;H
R” R R7
+/ GdoF -J,H.
LemmaD.6. Let G, H : R — Ry, o, 8 € (0,1) such that B < o < 1/, and
r= [ [ [ewf e -umPdnte)
RJR JR x>y

. f “Z — 22|1/“_l — |z — x|1/“_1 | dzy|x — y|_2+°‘(q_2) dxdyd:z.
x>y

Then

1% /R Satg1y+pse1G M(MDY UMDY 2u) g,y H
+ [ Gty et MOMDIPuM 0V )1y H
+/RJ,1(Q_1)+ﬂ+6_IG MM(—A)2u MM(~D)VPPu gy )y o H
+/RGJa(q_1)+ﬁ+€_1(MM(—A)“/Zu MM—DN)P2u) g, H

for any admissible ¢ € (0, 1) witha(¢g — 1)+ —1<e < 1/pu.
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Proof. We begin by treating the term fx1>y |u(z1) — u(y)|? dz, by Proposition D.3:

][ u(z1) —u() dzy
x>y

< ][ |21 — Y |H(M(=D)*"2u(z1) + M(—=D)u(y))|z1 — y|P
x>y
A(M=2)PPu(zy) + M(=D)PPu(y)) dzy

< lx — y[*+8 (f M=) 2u () M=) 2u(z) dzy
x>y
+ ][ M0 2u(z1) dzr M=) 2u(y)
x>y

+ M(=A)*u(y) ][ M(=L8)PPu(zy)dzy + M(—A)‘””u(y)M(—A)ﬁ/zu(y))
S |x—yl*th -
(MM=D)PuM=DYP2u) (y) + MM(=D)*2u(y) MM(—2)P2u(y)).
We first consider the cases
lx —y| Smin{|x —z|,[y —z[} and |y —z| S min{x —z| |x — y[}

and observe by (D.2) and (D.6) that
][ Iz =zt — |z = x|V dzy < |x — [y — 2| MRE
x>y
for an admissible ¢ > 0. Therefore, we get
/// G(x) M(M(—A)“/zuM(—A)ﬂ/2u)(y) H(z)|x _ y|—2+a(q—l)+/3+s
]R3
Ay —z|Vr e dx dy dz
+ ] 600 M85 () MM P () HEx = y| 21t 0
R3
y —z|VEF e dx dy dz
~ /R Jataoy 8451 GV MM (=AY 2uM(~ DY Pu) ()01 e H() dy
+ /R Ja(g-1)+8+e-1G(¥) MM (=D >u(y) MM(=DN)P?u(y)dy /- H(y) dy.

For the case
|x —z| S min{|y — z|, |x — y[},

by (D.4) we have

][ |z = 2|7 =z = x[VET N dzy S x — plflx — 2R
x>y
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for an admissible ¢ > 0, which implies

JI]. GOMM2) a2 ) ) H @ = y |2
R3
dx —z|VE e dx dy dz

" /// G ) MM (=D)*2u(y) MM(=28)P2u(y) H () |x — y|72Fe@ i
R3
x = z|VE e dx dy dz

> [ M atumt et MMM =8P ) (6) 1 H )
+ /R G () a(g—1)+p-+e—1 (MM(=A)*"u(x) MM (=AY 2u(x))d 1y H(x) dy. m
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