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Abstract. We establish a central limit theorem for the central values of Dirichlet L-functions with
respect to a weighted measure on the set of primitive characters modulo g as ¢ — oco. Under the
Generalized Riemann Hypothesis (GRH), we also prove a weighted central limit theorem for the
joint distribution of the central L-values corresponding to twists of two distinct primitive Hecke
eigenforms. As applications, we obtain (under GRH) positive proportions of twists for which the
central L-values simultaneously grow or shrink with g as well as a positive proportion of twists for
which linear combinations of the central L-values are non-zero.

Keywords: central limit theorem, mollifier, central values, simultaneous non-vanishing.

1. Introduction

Understanding the behavior of central L-values is an important topic of study in num-
ber theory, with profound connections to problems in arithmetic as well as other areas
of mathematics. Since central L-values are often difficult to study individually, a fruitful
approach is to embed the L-values within a wider family and examine their statistical
properties. A fundamental example of a family of L-functions is those attached to prim-
itive Dirichlet characters modulo ¢, and one may ask how the central values of these
L-functions are distributed when varying over such characters as ¢ — oo.
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Selberg’s central limit theorem [39,40] for the Riemann zeta function states that
log [¢(} +i1)|
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as T — oo and is emblematic of what one might expect to be true for a family of
L-functions. Similarly, a folklore conjecture predicts that as y ranges over primitive
Dirichlet characters modulo ¢, the value log |L(%, x)| has a Gaussian limiting distribution
with mean 0 and variance % logloggq as ¢ — oo (see [28,38] for related discussions). Prov-
ing such a result remains completely out of reach, as it would imply 100% of these central
L-values are non-zero, which is a well-known open conjecture. The problem becomes
even more difficult when considering central values of higher degree L-functions such as
L-functions associated to twists of automorphic forms.

In this article we overcome the barrier of the vanishing of the central value by intro-
ducing a weight which accounts for when this value is zero. Our main results establish
central limit theorems with respect to this weighted measure on the set of primitive char-
acters modulo ¢g for the central values of Dirichlet L-functions as g — oo, as well as
for the joint distribution of the central L-values corresponding to twists of two distinct
primitive Hecke eigenforms as ¢ — oco. The latter result is conditional on the assumption
of GRH.

%meas{t € [T,2T]: € (a,b)}

1.1. Main results

Let ¢*(q) denote the number of primitive characters modulo ¢; we always work with
prime ¢ for technical simplicity. Throughout, we write Z;(modq) to indicate that the
summation is restricted to primitive characters, y # xo. Given a complex-valued function
F on the set of primitive characters modulo g, we define

*
vr@ = Y F(p.
x (mod q)
Let 1 be the complex measure on the set of primitive characters modulo g given by

1

S =
nr(S) o @

> F(). S C{x(modg)}.

XES

For example, if F' = 1 then ¢} (q) = ¢*(¢) and pF is the usual counting measure. To
account for the vanishing of the central L-value we will choose our weight F' so that
F(x) = 0 whenever the central value vanishes. Moreover, to capture the typical behavior
of the L-function we would like that F' ~ 1 so as not to bias our measure. Our approach
takes F to be the central L-value multiplied by a mollifier, which dampens the extreme
behavior of the central L-values.
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Let us now introduce our mollifier. The precise definition is technical, but the techni-
calities mainly arise to ensure the mollifier behaves, on average, like an Euler product. Let
A(n) = (=1)%™ be the Liouville function, where Q(n) = Zpa in @ and p® || n means
that p¢ |n and p®*! } n. Define the multiplicative function v(n) by v(p?) = 1/a!. Also,
let n > 0 be a sufficiently small constant. For each 0 < j < J let

e’

=y, =2]67%*
%= Mogloggs” U=

where J is chosen so that n < 8; < en(so J < logloglogg). Let y = g% and x = ¢%7.
Set Iy = (co, y], where ¢ is fixed and sufficiently large, and for 1 < j < J let I; =
(q%-1, ¢%). We then define

J
. M =M.

A(n)v(n) x(n)
M (1) = pennan
' pln;elj ﬁ j=0
Qn)<t;

The Dirichlet polynomial M () will be our mollifier.

We investigate the distribution of log |L(%, x)| as y varies over primitive characters
modulo g with respect to iy, where W(y) = L(%, x)M(x). The weight function W(y)
can be interpreted as a truncated Hadamard product over the low-lying zeros of L(s, x)
with ordinates < 1/log x in magnitude times L(1, y2)'/2, which we will justify later;
so while the weight knows about the central value its knowledge should typically be
restricted to a bounded number of low-lying zeros, such as a possible zero at the cen-
tral point. Additionally, we will see that ¢J,(¢) < ¢, and will also prove the following
proposition, which shows that our weight is typically not very large.

Proposition 1.1. Uniformly for a, B € C with |a|, |B| < (logq)~! we have

Yo LG +a LG+ B DIMOP <q.
x (mod q)

Our first main result establishes a central limit theorem for the logarithm of the central
values of Dirichlet L-functions with respect to .

Theorem 1.2. Leta,b € R witha < b. As ¢ — 00, we have

log|L(3. )|

1 b 2
W ({){ (mod q), x # o : ——=== ¢ (a,b)}) =—— | e 2du+oQ).
v ’ \/ 3 loglogg V2”/‘;

The proof we give yields an upper bound Og((loglog g)~'/4*¢) on the rate of con-
vergence, and it is possible to improve this to Og((loglog g)~'/2%#). There is also some
flexibility in the choice of the weighted measure. For example, the analogue of Theo-
rem 1.2 with 'W(y) replaced by L(%, x)Mo(x) holds (however, the conclusion of the
analogue of Proposition 1.1 no longer holds). Using results on the fourth moment of
Dirichlet L-functions [24,45,46], it would be possible to prove an analogue of this result
with |'W(x)|? in place of W(y).
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Our next result establishes a weighted central limit theorem for the joint distribution
of central L-values of twists of two distinct automorphic forms. Let f and g be fixed,
distinct weight k¥ newforms on 'y (N') and write

o0 -1 -1
L(s,f)=2¥:]_[(1—“f°1§p)) (1—%&”)) . Re(s) > 1.

n=1 )4 p

where Ar(n) denotes the nth Hecke eigenvalue of f and ar;(p), a2(p) are the Satake
parameters of f; that is, they are complex numbers which satisfy a1 (p)oro(p) = 1 and
ag1(p) +ap2(p) = Ar(p). Also define Loo(s, f) = Qm)™I'(s + %) and A(s, f) =
N$/2Loo(s, f)L(s, f). The functional equation is

AGs. f) =e(/H)AA =s. f).

where e( f) € {£1} is the root number.
As before, we choose our weight to be the product of the central L-values and a
mollifier. Define the completely multiplicative functions w; (n) and ay, ; (n) by

1 log p
(p) = 1- , (p) = A (p). 1.1
ws (p) pejsogq( L) a0 =2 ).
Let
2 J
Mpj(n= ), ar.) %V(H)X(n), Mp(0) =[] Mz (0.
pgl;t(=;p7j Jj=0 (1.2)

M(x) = My (x)Mg(X),

where My is defined completely analogously to My. We take our weight to be W(y) =
L(%, fe® )()L(%, g ® Y)M(x). We prove in Section 3 that ¢y, (¢) < g. Additionally, we
can bound the moments of W(y) under GRH.

Proposition 1.3. Assume GRH. Let k > 0 and suppose n[k] is sufficiently small. Then
*
YW <rgk g (1.3)
x (mod g)

Here we assume that GRH holds for L(s, f ® x). L(s, g ® x). L(s,Sym® f ® ),
L(s,Sym? g ® x) and L(s, x) for all characters y modulo g. We now state our second
main result.

Theorem 1.4. Assume GRH. Let ¢ > 0 and suppose that n = n(e) is sufficiently small.
Then for any intervals 1, I, C R we have

log |L(L, f @ ») logIL(%vg@’X)') el xI })
1 2

,/%loglogq ,/%loglogq

e~ 20 1y dy + O, f¢((loglog q)_1/2+8).

MW({X (mod q), x # xo: (

1

21 J1, x1,
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In the proof of Theorem 1.4, the only place GRH is required is to bound the moments
of W(y). If we instead assume that the conclusion of Proposition 1.3 with & = 1 holds,
then we can obtain (with some additional work) the same conclusion as in Theorem 1.4,

+/logloglog g

except with an error term of size Oy, (W)'

1.2. Applications

Since our weight does not bias our measure to a great extent, we can gain insight into the
typical behavior of the central L-values. Building on methods of Rohrlich [36,37], Chinta
[10] has shown that L(%, f ® y) # 0 for 100% of primitive characters y modulo g. Our
first application goes beyond non-vanishing of twists, and shows that a positive proportion
of x gives rise to simultaneous values that either grow or shrink with q.

Corollary 1.5. Assume GRH. Let ¢ > 0 be fixed. There are >4 . q characters x mod-
ulo q such that, for each such y, we simultaneously have

IL(3. f ® y)| > exp(cy/loglogg) and |L(%.g ® x)| > exp(cy/loglogq).

Additionally, there are >y, . q characters y modulo q such that, for each such x, we
simultaneously have

0 <|L(3, f ® 0)| <exp(—cy/loglogq),

0< |L(%,g ® x)| < exp(—c+/loglogq).
Corollary 1.5 follows from combining Proposition 1.3 and Theorem 1.4 and shows
that the twists |L(%, f ® y)| and |L(%, g ® x)| simultaneously obtain somewhat large

values for a positive proportion of twists, and it is best possible. It is possible to obtain
larger central values, but these large values do not appear for a positive proportion of

twists. For instance, there are values of |L(% f ® x)| as large as exp(c lol;ﬁ)g q), which
can be proved via the resonance method (see [4, Theorem 1.11]), and it is even possible
for the angle of the central value to be constrained. Blomer et al. [4, Theorem 1.12] also

used the resonance method to show that there exist non-trivial characters y modulo g such

that
logg
ILG3. f @ L(3.8 ® y)l >GXP(C,/—1 )
oglogg

but again these large values do not appear for a positive proportion of twists.

Famously, a conjecture of Lehmer predicts the Ramanujan t-function never vanishes
and more generally one may wonder how often the Fourier coefficients of automorphic
forms vanish (for non-cocompact spaces). For fundamental Fourier coefficients of half-
integral weight cusp forms this question is directly related to understanding non-vanishing
of linear combinations of central L-values by Waldspurger’s Theorem.! Furthermore,

'Here one expands the cusp form in terms of a Hecke basis and applies Waldspurger’s Theorem
for each Hecke eigenform. It is an open problem, even under GRH, to establish a positive proportion
of non-vanishing for fundamental Fourier coefficients of half-integral weight forms, whereas this is
known under GRH for Hecke eigenforms of level 4 (see [30]).
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fundamental Fourier coefficients of Siegel cusp forms can also be expressed in terms
of linear combinations of central L-values by a classical construction of Eichler and
Zagier in certain cases (see [27, Lemma 5.1]) and more generally by the refined Gan—
Gross—Prasad Conjecture, recently proved by Furusawa and Morimoto [16] (see also [13,
Theorem 1.13]). Motivated by these relationships, it is natural to wonder how often linear
combinations of central L-values vanish.

Since combining Theorem 1.4 and Proposition 1.3 yields a positive proportion of
characters for which one central L-value is large while the other is small, under GRH we
obtain a positive proportion of twists for which aL(%, ey + bL(%, g ® x) # 0 for
a,b € C. Moreover, this argument gives the following result.

Corollary 1.6. Assume GRH. Then there exist >y, q characters y modulo q such that
for any {ay}y modg)s 1Ox}yx modq) C C with |ay|, |by| < 1 and any fixed ri,r2 > 0 we
have

aylLGG. f ® 0| +bylL(3.8 ® pI™ #0.

Our last application shows that there exists a sparse set of characters y modulo ¢ for
which the central L-values are relatively close together in magnitude.

Corollary 1.7. Assume GRH. Let ¢ > 0. Then for (loglogq)® < A < /loglog g we have
LGz f®x)

1 feA}
L(5.2® )

A 1+¢
Presd ((log logq)”z) '

#{x (modq), x # yo: L(3.g® x) #0.e7* < ’

We expect that the above bound should be optimal up to the factor of
A%(loglog ¢)~¢/2. It would be interesting to determine the smallest A for which the set
above is non-empty and by analogy with the conjecture that the set {¢ (% + it)}ser 1S
dense in C one might wonder whether this persists even for A = o(1), thereby balancing
the size of the central L-values and potentially allowing for linear combinations to vanish.

Finally, let us mention that if in addition to GRH we also assume the Ramanujan—
Petersson Conjecture, our arguments carry over with only a few modifications needed to
the case of GL(2) Maass cusp forms. Let ¢, ¢p» be distinct Maass newforms of level N.
Assuming GRH for L(s, ¢; ® ), L(s,$2 ® x), L(s, Sym?> ¢1 ® y), L(s,Sym? ¢, ® x),
L(s, y) for all characters y modulo g and Ay, (p)| < 2 for j = 1,2, we obtain ana-
logues of all of the above corollaries for central values of L-functions attached to twists
of ¢1, ¢. In particular, this shows that under these hypotheses, L(%, ¢1 ® x) # 0 and
L(%, ¢ ® x) # 0 simultaneously for >4, ¢, ¢ characters y modulo g.

1.3. Discussion of past work

Selberg’s [40] work extends in great generality. For instance, he was able to prove a central
limit theorem for the joint distribution of log L(3 4+ it, x1).....log L( + it, ) with
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t € [T,2T] and yi, ..., yn distinct primitive characters modulo g, where the limit is
taken as 7" — oo. Furthermore, Bombieri and Hejhal [5] showed that this method extends
to higher degree L-functions under plausible hypotheses, such as a sufficiently strong zero
density estimate.

Hough [23] adapted Selberg’s method to study the distribution of central values of
families of L-functions (see also [11]). For the family of quadratic Dirichlet characters,
he established a one-sided central limit theorem; that is, he bounded the proportion of
fundamental discriminants, in magnitude < X, for which the logarithm of the normal-
ized central L-value is larger than a given V > 0 by < (1 + 0(1))JL27 f;o e 12 dy
as X — oo. Similar to Selberg’s work, a major ingredient in Hough’s argument is an
analogous zero density estimate. Accounting for the possible vanishing of the central
L-value remains, however, a major obstacle. Hough was able to prove a central limit the-
orem for these central L-values under a certain spacing hypothesis on the distribution of
the low-lying zeros of the L-functions, which follows from GRH and the Density Con-
jecture (see [25]). Further progress towards proving a central limit theorem for central
L-values using Selberg’s approach appears dependent upon improving our knowledge on
the low-lying zeros of the family. For example, even though Chinta’s result [10] shows
that L(%, f ® x) # 0 for 100% of characters y modulo g, it does not provide sufficient
bounds to control the effect of possible extremely low-lying zeros on the distribution of
the central L-values.

In breakthrough work, Radziwitt and Soundararajan [34] found a new method to study
central L-values of families. They constructed a mollifier which has roughly the shape
of an Euler product, yet still controls the extreme values at the central point. Using this
approach, they proved a one-sided central limit theorem for central L-values for the family
of quadratic twists of an elliptic curve. In comparison to Hough’s work, Radziwitt and
Soundararajan required only a first moment, whereas Hough used a second moment. Their
work has sparked many recent innovations such as a new proof of Selberg’s central limit
theorem [35], bounds for moments of L-functions [6, 21, 22] with applications to non-
vanishing at the central point [12,30], and progress towards the Fyodorov—Hiary—Keating
Conjecture [1,2,17, 18,20,32]. Radziwill and Soundararajan [33] have also made further
progress towards establishing a central limit theorem for central L-values. For quadratic
Dirichlet characters, they showed that the proportion of fundamental discriminants < X
in absolute values for which the logarithm of the normalized central L-values lies in
an interval [ is > Z(1 + 0(1))% /i e™*/2 du. A remarkable feature of their work
is that the leading constant in the lower bound matches the best known proportion of
non-vanishing [41]. Recently, Fazzari [14, 15] has proved several weighted central limit
theorems for the Riemann zeta function. Under RH, he proved central limit theorems for
log |§’(% + it)| with respect to the measures on [T, 27] given by |§‘(% +it)]?* dt for
k = 1,2, and for k > 3 under RH and an additional assumption on moments of the zeta
function.

In contrast to the prior work of Soundararajan and Radziwitt [33], the main objective
in this paper is establishing an asymptotic for the weighted distribution of the central
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values whereas they focus on removing the weight and optimizing the constant in the
lower bound by using a more refined mollifier. One additional difference in our work is
that by assuming GRH we only require a first moment, however this is at the cost of
obtaining a rather small constant in the lower bound.

1.4. Outline of the proof

We discuss the proof of Theorem 1.4, since the proof of Theorem 1.2 is easier. In both
cases the main inputs into our argument are estimates for a twisted first moment and
an upper bound for a mollified second moment. The proof of Theorem 1.4 also uses
some well-known analytic properties of Rankin—Selberg L-functions to handle the joint
distribution.

Recall that for intervals /1, I, we wish to prove an asymptotic formula for

Z* WO x1 (logu(%’f@”' 1°g|L(%!g®x)|)

% (mod ) V/ 3 loglogg V3 loglogg

where 15 denotes the indicator function of the set S. The primary complications arise
from the presence of log |L(%, f ® x)| and log |L(%, g ® y)|; these are difficult to control
due to the possible existence of very low-lying zeros, which we cannot rule out. We would
like to replace the logarithms of the L-functions by more tractable expressions. The basic
strategy we follow is due to Radziwitt and Soundararajan [35], who were the first to use
this kind of Euler-product-like mollifier at the central point. Since M (y) = My (x) Mg (x)
is a mollifier we expect

LG f@0Mp(x) ~1 and W() =LG.fQ0)LG.g@ DMy ~ 1
for most characters y. The mollifier is constructed so that
Ar(P)x(p)
My ~ [] (1 - LLRh
p=x P

for most characters y, where x is a small power of ¢g. Taking these two approximations
together implies

A
log|L(X, f ® p)| ~ Re(Z ;fﬁ)x(m),

P=X

and similarly for log |L(%, g ® x)|, so that the logarithms of the L-functions may be
approximated by finite sums over primes. Using the structure of the mollifier in this way,
we reduce the proof of Theorem 1.4 to computing

Re(Y, <, %x(p)) Re(), <, Al;‘i(/’é))((p)))

*
3 W(x)lzlxzz( 1 =
 (mod ) \/ 3 loglogg ,/5 loglogg
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This in turn leads to expressions that are in terms of a twisted first moment of L(%, ey
x L( % ,&® x). Such a twisted first moment has been computed in work of Blomer et al. [4]
and we apply this result.

There are a number of difficulties involved in making the above strategy rigorous and
quantitatively strong. There are two principal issues.

First, after applying the formula for the twisted first moment we are left with an
unwieldy expression for the main term. To evaluate this expression we introduce a random
L-function in which the Dirichlet characters y (1) are modelled by random variables X (),
and then match our expression with the random analogue. Here X(n) = ]_[pg in X(P)4,
and {X(p)}, is a sequence of i.i.d. uniformly distributed random variables on the unit
circle. Comparison with a random model allows us to sidestep a number of technical
points that would otherwise require involved effort to resolve. In particular, using the inde-
pendence of the random variables {X(p)}, reduces many of the computations to “local”
ones evaluated at each prime.

Second, we need to restrict ourselves to “typical” sets § of characters modulo ¢, where
the complement $€ has size O(gq/loglogq), say. One such set, for example, is the set of
characters with |[W ()| < loglogq. In order to control the error involved in restricting to
such sets we require an estimate for

>l

X€eS€

Using Cauchy—Schwarz’s inequality we obtain

Y ool = @92 Y weor)

XESC x (mod q)

The saving comes from the small size of $¢, so it suffices to show that

ST WP < q.

x (mod q)

Establishing this result is roughly on the level of difficulty of proving an upper bound of
the correct order of magnitude for a mollified eighth moment of Dirichlet L-functions.
Such a feat is well beyond the range of unconditional techniques, and it is here that we
require GRH in order to make progress. Our arguments follow along the lines of [30],
which builds on the key works of Soundararajan [42], Radziwitt and Soundararajan [34],
and Harper [20].

It is desirable to prove weighted central limit theorems with non-negative weights
instead of our complex-valued weights W(y). For instance, if W(y) were non-negative,
then the measure iy (S) would be a genuine probability measure. As mentioned above,
it would be possible to carry out such a program in the case of Dirichlet L-functions,
in which case one has access to unconditional results on the twisted fourth moment.
Assuming GRH, it is also possible to achieve this for twists of holomorphic newforms,
where GRH is required to obtain an upper bound for the mollified fourth moment of
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L(%, f ® yx). But we do not know how to do this for the twists L(% f® )()L(%, g® ),
since this seems to require asymptotic evaluation of a second moment, which is well
beyond what is currently possible.

If we were working with a non-negative weight W(y) > 0 we could control py (S€)
in many places using Chebyshev’s inequality and a twisted first moment, and one could
prove a weighted central limit theorem for the approximating Dirichlet polynomial. How-
ever, to pass to the L-function we need to bound the weighted measure of the set of
characters with W(y) > loglog g, and this requires input beyond a first moment of W ().
This is because if the bulk of the contribution to the first moment of W(y) were to come
from the set of characters with W(y) > loglog g (which cannot be ruled out by a first
moment alone) then the weighted measure of this set would be < ¢y, (q).

1.5. The structure of W(x)

As we mentioned earlier, our mollifier is constructed so that it mimics an Euler product
and it is not too hard to prove that for all primitive characters y modulo ¢ outside a set of
size < ge~ /G,

(») —(3n)3/4
M(y) = exp(— X—)(l + 0(e G,

By the explicit formula, we can transform the sum over primes into a sum over zeros
of L(s, y). Using the formula above along with the hybrid Euler-Hadamard product for
L(s, x) [7, Theorem 1] it is not hard to see that outside a set of < ge~!/G™ non-principal
characters y modulo g with x? # xo we have

WOO! = L1 )2 exp(—Re(Y_ UGS = pp)log ).
Px

where the sum is over the non-trivial zeros of L(s, x), U(z) = fooo u(t)E(zlogt) dt,

Ei(z) = fzoo e v ‘%" and u(¢) is an arbitrary non-negative Schwartz function with com-

pact support on [e!~1/* e] with unit mass. Here the term L(1, y2)'/? arises from the

contribution of the squares of primes in [7, Theorem 1]. Following the discussion in [19]
one can interpret the second factor on the right hand side as a truncated Hadamard product
over zeros with ordinates < 1/log x in magnitude. Additionally, since x is a power of ¢, in
view of the Density Conjecture and the rapid decay of U we expect that typically the sum
above will be effectively restricted to a bounded number of zeros none of which is excep-
tionally close to the central point, so that for most y we expect that |['W(y)| =< |L(1, x?)|.

1.6. Organization of the paper

In Section 2 we match the characteristic function of

Ar(p)x(p) Ag(P)x(p)
(w25 ) »(Z57))
P=x pP<x
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with that of a random model, the latter of which is evaluated in Section 3. The proofs
of Theorem 1.4 and Corollary 1.7 are given in Section 4. Proposition 1.3 is proved in
Section 5. We prove Theorem 1.2 in Section 6 and Proposition 1.1 in Section 7.

2. Joint distribution: Reduction to a random model

We first recall the twisted first moment of the product of twists of automorphic L-func-
tions [4, Theorem 5.1]. Write

L) =LG.f®p. L) =Lr()Lg(D.

Lemma 2.1. Suppose 1 <ny,ny < L and (n1n2/(n1,n,)%, N) = 1. Then

! ) g A r(m)Ae(ma) - (mym
G L Lo =5 Y, AR V(q;Nj)

x (mod q) miny=many

+ S(f)S(g) Z Af(’/nl)kg(rnZ) V(mlmZ) + 05(L3/2q_1/144+8),

(p*

o 2N2
2 miny=mony mynt; qN
where
v o L[ Ll b DLt ) s@BN
27i Jo)  Loo(3. f)Lo(3.8) s

Remark 2.2. The function V(§) is approximately 1 for small values of &, and decays
like £73 as £ — oo (see [4, Lemma 2.19]).

2.1. The random model
Let {X(p)}, be i.i.d. uniformly distributed random variables on the unit circle. Define
Xm) =[] X
p?n
Observe that if m,n < g then by orthogonality of characters,

1

— x(m)x(n) = E(X(m)X(n)). (2.1)
v(q) X(gq)
Let
L(X) = L(L78(X) + e(f)e(g) L& (X)),
where

A A v
my,my>1
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Then by Lemma 2.1, (2.1), and bounding the contribution from y = y, trivially, we get

(p*l(q) Z* L) x(n)x(nz) = ]E(L(X)X(nl)X(nz)) + Os(L3/2q_1/144+8). 2.2)
x (mod gq)
Let
Ar(p)wy(p) )
P =R AR A i
(0 e(cogﬂ D)
Ar(p)wy(p) )
Pr(X) =R A .
We also define
MAm)v(n)X(n)
Myx) = Y 4L ’
' pln=pel; ﬁ
Qn)<¢;

J
Mp(X) =[] My (X), M(X) = Mp(X)Mg(X). W(X) = LX)M(X).
j=0

Lemma 2.3. Let j, k be non-negative integers. Suppose y’, y* < g1/1900  Then there
exists § > 0 such that

w*l(q) > WGP (0 Pe(0F = E(WX) Pr(X) Pe(X)F) + 0(g™%).  23)
x (mod q)

Additionally, for y* < ¢'/3 we have

k
oy Pf(x)2k=E<Pf(X)2k)sk!( 3 M) 2.4

QD(Q) x (mod q) CO<p=y p
Proof. Eachof Pr(x), Pg(y) is a Dirichlet polynomial of length y having coefficients < 1
in magnitude (since cg is sufficiently large). Therefore, we derive the bounds | Pr () |
< y/ and | Pg( 0)¥| < y*. Similarly, since n > 0 is sufficiently small, M () is a Dirichlet
polynomial of length ¢'/1%%° with bounded coefficients. Using (2.1) and (2.2) we obtain
(2.3) with an error term of size < ¢~%.
For (2.4), first observe that since y*¥ < ¢!/3 we see by (2.1) that

1
o 2 P =E@ ™.
x (mod q)
Leta(p) = Ar(p)ws(p) and a(n) = Hp’”n a(p)". Using the fact that |Re(z)| < |z] it
follows that
E(Pr(X)*)

a(py) - a(p)atar) - alge)
E
= Z Pr-DPrkq1 4k (

X(p1)-- X(p)X(q1) -+ X(qx)).

CO<D1;sPk=Y
C0<q1;--,qk =y



Weighted central limit theorems for central values of L-functions 2489

Observe that for n with Q(n) = k we have ZPI"'Pk —n 1 = k'v(n). Consequently, the sum
on the right hand side above equals

G Y LRy a(n)zv(n)<k!(z Af(p)z)".
< <

pln=co<p=<y pln=co<p=<y " co<p=y P
Qn)=k Qn)=k
Combining the two estimates above completes the proof of (2.4). ]

Before proceeding to the next lemma let us introduce some further notation. Recall
that v(n) denotes the multiplicative function with v(p?) = 1/a!. We write v;(n) =
(v * -+ x v)(n) for the j-fold convolution of v. Observe that v;(p?) = j%/a!, which
follows from a simple induction argument. Also, for a positive integer £ let

vie) = Y w(r)-v(ng). 2.5)

ny-n;=n
Q(ny),...,2(n; )<t
Lemma 2.4. Let k € N be fixed. For each 0 < j < J we have

E(Mz; (X)) =[] (1 + OG)).

pEI Jj
Proof. We have

My (X)F =

ag,y(mMA(m)vge; (n)X(n)
> D ),

Consequently, since vk ¢; (n) < vg(n), using the fact that v (p®) = k/a! we obtain

. 2 )t 2a 2ak2a
E(IMj; (X)|%) = Z |aﬁJ(”)1:lk,l,(7’l)| - I—I(Z r(p)*wy(p) )

a2 pa
pln=pel; pelj ~a=0 ( )p

pln=pel;

(2.6)
and the lemma follows. [

Lemma 2.5. We have

E(IL(X)IY) < (log ).
Remark 2.6. By applying Cauchy—Schwarz’s inequality twice, Lemmas 2.4 and 2.5 give
E(L(X)M(X)]*) < (logq)°™.

Proof of Lemma 2.5. Define Vi(my, ..., mg) = ]_[?:1 V(%). Then, expanding

the power, we have

E(L(X)[*)
T(m; -
< Z 1_[ ( ) X(m1m3msin7)X(m2m4m6mg))VT(ml,...,mg)}
mi,...mg>1i=1
8( ) o)
< > < (logq)°,
n<q4+€

where 7;(n) denotes the £-fold divisor function. |
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Lemma 2.7. Let V > 1. Suppose yvz/9 < q1/3. Then

_yv2
#{x (mod q) : |Pr(x)| = V/3loglogy} < ge VEDs,

Remark 2.8. By a similar argument that we will omit, we find for any V' > 1 that

P(|Pr(X)| = V/Lloglogy) < e V/°.

Proof of Lemma 2.7. For y* < ¢q'/3, using Lemma 2.3 and Chebyshev’s inequality we
have

1
#{x (mod q) : |Pr(x)] = V /5 loglog y} < 3 Togiogy)F > P
2

x (mod q)
8 k! 9% \*
< QW <L q m s
by Stirling’s formula. Now take k = | V2/9]. n
Let C > 0 be fixed and sufficiently large. Given Z > 1 let
§ ={x (mod q) : | Pr(Y)].|Pg ()| = CZloglog y}. 2.7

Lemma 2.9. Assume GRH. Suppose

272
4C()Z loglog y 5611/3-

Foru,v € R with |u|, |v] < Z we have

1
®*(q)

ST LM exp(iuPy (1) + ivPe (1))
XES

=K (L(X)M(X) exp(iqu (X)) +ivPg (X))) + O((logq)™19).
Remark 2.10. We assume GRH so that we may apply Proposition 1.3 with k = 1.

Proof of Lemma 2.9. Fors € C with |s| < S/e? we have

J
=Y T roEd) 2.8)

0<j<S 7"

Take S = 15CZ?loglog y. Then for y € S we get

exp(iuPy(x) + ivPg (1))

= 2.

0<;<S

i J .
lj_J' Z(i)“kvj_kpf(x)kPg(x)"‘k +0ES). 29
T k=0
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Also, fork < j < S, we have
Y LM Pr(0)* Py ()7

XESC * * .
< (X 1eomer) (X 1rr o pe o)

x (mod q) XESC
1/2mwecy1/4 * sk\ /8 * 8(j—k) 18
g 2as) (T IR ) (X 1P GoIFUTR)
x (mod q) X (mod q)

where we have applied Cauchy—Schwarz’s inequality and Proposition 1.3. Therefore, by
Lemma 2.3 and Stirling’s formula,

> T LOOMG)Pr(0F Pe ()7
XESC

< @P1A#S) V4 (41oglog y) /2 ((4k)(4( — K))1)"/®
< @ #S)Y*(161oglog y)2 VK — k).

Hence, for k < j < S we obtain

ST LGOMGP0FPe(0 ™ = ST LM Pr(0F P ()
X€S X (mod q)

+ O * #8594 (161oglog )2 VkI(j — k).  (2.10)
It follows from (2.9) and (2.10) that

3" LM exp(iuPy (1) + ivPe (1)

X€ES j
=y - Z( ) oIk S LM Pr 0k Pe (1)

0<J<S X (mod q)
+ 0(q S+ g24ws)* Y (4Z loglog y) Z ) 2.11)
05i=s \/k'(J —k)!

Using Lemma 2.7 with V = CZ /2 loglog y we have

_2c22z2
#8°¢ < ge 5 loglogy.

Observe that by Cauchy—Schwarz’s inequality, Z/i:o \/ (li) < 2//2 /7 F1. Using this
estimate along with Stirling’s formula we see that the sum in the error term in (2.11) is

47 /loglo
< Z ( glogy )
0<j<S§ \/J—

=N 2 2 )2/ « exp(17Z2loglog y).
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Hence using the above two estimates in (2.11) and applying Lemma 2.3 leads to

Y LM exp(iuPr(x) + ivPe (3))
XES

*()

J
Z Z( )ukvf—kE(L(X)M(X)Pf (X)k Pg(X)77F) + O((log g)™10).
0<]<S
(2.12)
Let §(X) denote the event corresponding to

|Pr(X)]. [ Pg(X)| = CZloglogy

and let $¢(X) denote its complement. By Remark 2.8 with V = CZ./2loglogy we
obtain

IP)(SC(X)) < e_ZCéZZ loglogy'

Also, analogously to (2.10), applying Lemma 2.3 we get

>

0<j<

Z( )“k“j‘kE(L<X>M<X>Pf(X)kPg(X)f"‘)

il
s J!

=) - Z( ) “0 RE (1500 L(X)M(X) Pr (X)* Py (X))

0<]<S

+ 0((logq)0(1)P(S XN+ " (4Z \/loglog )’ Z

0<j<S§

k1(j —k)')

Z( )ukvj_kE(lg(X)L(X)M(X)Pf(X)kPg(X)j_k)

=X

0
0<j<S§ ]
+ O((logq)™").

In all outcomes in § (X), the analogue of (2.9) holds,

exp(lqu(X) +ivPg (X) Z Z ( )ukvj_ka(X)kPg(X)j_k +0(e7%),

0<;<S

and therefore

Z Z( )uku-/—k]E(13(X)L(X)M(X)Pf(X)kPg(X)J'—k)

0<j<S

= E(IS(X)L(X)M(X) exp(iqu(X) + ing(X))) + 0((10gq)_10).
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By Cauchy—-Schwarz’s inequality and Remark 2.6 we have
E(lgc(X)L(X)M(X) exp(iuPs(X) + ivP, (X)))
K E(IL(X)MX)P)*P($°(X)/* < (loggq)™™°.
Combining the estimates above we get

> 5 Z( )”k”jkE(L(X)M(X)Pf<X>kPg(X)fk)

0<_]<S
= E(L(X)M(X) exp(iqu(X) + ing(X))> + O((logq)™19).

Using this in (2.12) completes the proof. ]

3. A random computation
For Re(s) > 1 let

LT85, X) = Z Mx(ml)x(mz)

mymazl (mimy)*
Ar(pk)A. (pk2 -
=11 X _f(§—<k1)+é§f Ly X
P ki,kr>0
_ af,(p)xuv))‘1 (1 Gy <p>m)-1
ST Z

=[]Lr%6. x).
p

Also, define
L(s. X) = L(L78(s. X) + e(f)e(g) L% (5, X)).

Our main results of this section are the following propositions.
Proposition 3.1. The function E(L(s, X)M (X)) can be analytically continued to Re(s)

> 0. Moreover, for |u|, |v] < 1 we have

IE(L(X)M(X) exp(iuPy(X) + ivPg (X)))
2 v2

=E(LG. X)M(X)) exp(— loglog y)(l + O(lu| + |v])) + O((logq)~'°).

Proposition 3.2. We have
E(L(3. X)M(X)) <
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Remark 3.3. As a consequence of Lemma 2.3 with j = k = 0, Proposition 3.1 with
u = v = 0 and Proposition 3.2 we have

* * * 1 —-10
ow@) =Y. W =¢ (@E(LG X)MX)) + 0(qlogg) ™) < q. (3.1
x (mod g)
Before proceeding to the proofs let us define the Rankin—Selberg L-function

L. f B9 = tw ) 0 L2 ge o,

n>1

where ¢y (s) =[] (1= w%@)_l and vy denotes the principal character modulo N. We
write L(s, f ® g) = [, Lp(s. f ® g). Let

C = N2(s+«|+ D>(|s| + 1)?

denote the analytic conductor of f ® g.

3.1. Estimates for primes p > X

The primes p > x do not interact with our mollifier and their contribution is easy
to understand. Estimating these terms precisely allows us to analytically continue
E(L(s, X)M(X)), since M(X) is a Dirichlet polynomial with coefficients supported on
integers with prime factors < x.

Lemma 3.4. For Re(s) > —1/2 and (f1, f2) = ([, g) or (f1, f2) = (g, f) we have

]E(Llj;l,fz(s + %’X)) = (1 — ZET(:Q)LP(ZS + 1,f R g).

Remark 3.5. Using the dominated convergence theorem, for Re(s) > 1/2 and any z > 2
we have

(4476 +40) = T[5(2£%6 + o).

p>z p>z

In particular, for Re(s) > 1/2 Lemma 3.4 gives

E(l_[ L%+ 14, X))

p>z .
_ L2s+1, f®g) B Vo(p) .
 in(4s+2) psz(l p4s+2) Ly2s+1,f®g)". (2

This provides an analytic continuation of the left hand side to Re(s) > —1/2. Clearly,
the same applies to ]_[p>ZIE(L§’f(s + %, X)). Therefore, by choosing z = x we can
analytically continue the function

F(s:u,v) := IE(L(S + 1 X)M(X) exp(iuPy(X) + ing(X)))

to the half-plane Re(s) > —1/2.
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Proof of Lemma 3.4. We will only give the proof in the case ( f1, f2) = (f, g) since the
argument in the other case is similar. For Re(s) > —1/2 we have

Ar(p))Ag (pY) IRV Ar(p))Ag(p?)
fg 1 _ f g J k) — AP ) \PT)
E(LfE6+5.X) = 3 L OTEEXGY X)) = 3 G
jk=0 P Jj=0
The right hand side equals (1 — ;{’g}f;)L,, Qs +1, f®g). n

In the next two lemmas we accomplish the main goal of this subsection and precisely
estimate the contribution of the large primes p > x. The first result is a fairly standard
lemma, which uses the zero-free region of Rankin—Selberg L-functions. We use A rg¢ (1)
to denote the nth coefficient of the Dirichlet series of —LT/(S, f ® g), that is,

Arae(p™) = (ar1(p)™ + af2(p)™) (g1 (p)™ + og2(p)™)logp.  (33)

Lemma 3.6. There exists 0 < ¢ < é such that for Re(s) > 1 — 102—‘(5 andlogz > loglog €
we have

A
IOgL(S, fRg) = Z ﬁg)—g(”l) + O(ch/logG—l logz + Zl—ch/logGZ—Re(s)(log 2)2)'

N
=n logn

Proof. By Perron’s formula (see [43, Lemma 3.12]) we have

A 1 o1+iz d
Z j:?g_(n) = —/ logL(s +w, f ® g)z" Dy 0(z61/°e 1 Jog 7),
=, n'logn 28 Joy =iz w

where we define o := ¢ /log € + 1/log z > 0 and using the standard zero free region (see
[4, Proposition 2.11]) we choose c; so that L(s, f ® g) # 0 for Re(s) > 1 — 3¢;/log €.
Shift the contour to Re(w) = 1 —2¢;1 /log € — Re(s) < 0. We have a simple pole at w = 0,
which contributes log L(s, f ® g) so that

ZM(&—g(n) =logL(s, f ® g)

N
ol logn

+ 0(z61/108C 1 o0 7 4 F172¢1/l0g E—Re(s) 156 7 10g 10g €).
In the error term we have used the fact that for Re(s) > 1 — 2¢1/log € we have
llog L(s, f ® g)| < loglog€, (3.4)

which is proved by standard methods following the argument given in [31, Theorem 11.4],
which uses the zero-free region of L(s, f ® g) and the Ramanujan bound, which by (3.3)
gives [Argq(n)| < 4A(n). L]

Lemma 3.7. There exists cp > 0 such that for —cp/log€ < Re(s) < 2 and
z > exp(log € loglog €) and (f1, f2) = (f.8) or (f1. f2) = (8. f) we have

E(l_[ L{l’fZ(s + %,X)> =1+ 0(2_02/10g€(10gz)2).

p>z
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Proof. Using Lemma 3.6, setting ¢, = 2¢1/3, and applying Deligne’s bound in (3.3) we
have

Af®g(n) 1
D logly@s+1.f®g) =) 725+ logn +o(> X PR+

pP=z n<z P=Z j>logz/log p
=logL@2s + 1, f ® g) + O(z~/272Re()) 4 o(z7¢2/1e€ (10g 7)?),

where we have estimated the first error term above by separately considering the contribu-
tion of the primes v/z < p <z (so j > 2)and p < /z. Hence, using (3.2), (3.4) and the

elementary estimate [ ], (1 — Zg—fjg) =14 O(z7'74Re()) we obtain the lemma. m

3.2. Estimates for primes y < p < X

We now analyze the case y < p < x. For primes in this range we need to understand the
interaction between the random L-series L(s, X) and the mollifier M (X). In this section
we bound the contribution of these primes, which is needed when shifting contours in the
proof of Proposition 3.1.

Lemma 3.8. Let ¢y be as in Lemma 3.6. For —cy /log € <Re(s) <2 and |Im(s)| < eVlo2d

we have
J

E( [T tiss+ L0 M (X)) < (loglog ¢)°M. (3.5)
y<p=<x j=1

Proof. Let Br(n) = Ar(n)n™ and yr(n) = A(n)ays.;(n)v(n). Clearly, Br, yr are multi-
plicative functions. Also, a direct calculation shows for each 0 < j < J that

IE(Mj(X) [T L5+ %,X))

pEIj
Y7 (n1)yg(n2) X(n1)X(n2)
=E
pn1n22=:>p61j vtz _
§(n1).Qn2) =ty y Z ﬂf(ml)ﬁg(mz)X(ml)X(mz))
mimyp

plmimy=pel;

_ Z ,Bf(ml)ﬂg(mz))/f(nl)yg(nZ)_ (3.6)

my,ma,ny,n; mini
plmin1=pel;
miny=mony
Q(n1),R2(n2)<t;
Forany r > Oandn,f € N,
1 dz
Loy = LRm—t 42
Qm=t= oni |z|=r z
so that for r # 1,
1 om 1 —z747 1 dz
lom=<t;, = 5— 22— —

27i Jiz1=r l—z71 2z
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Therefore, for 1 < r < 2 the right hand side of (3.6) equals
1 -z 11— t1! dzd
el I Y sew = 6
Q2ri)? Jz=r Jjw)=r 1—271 I—w! Zw

Z ZQ(n1)w9(n2)lgf(ml)ﬂg(I’nz))/f(nl)yg(nZ)
mini ’

where

Y(z,w) =
mi,ma,ny,ny
plmini= pel;
miny=mony

which can be seen to be absolutely convergent from the analysis below.
Write y, s (n) = ZQ(”)yf(n) and m = m1n to see that

Scwy = Y (Br * v2.0) () (Bg * Yw.g) ()
plm= pel; m
_ (Br * v2,1)(P") (Bg * yuw.e)(P*)
Ple_[h g(:) ¥
- - —4Re(s)
- 11 (1 L 0T w2 pwf(p)w)kf(p),\g(p) . O(pr—z)).
pel;

By Lemma 3.6, for —c;/log € < Re(s) < 2 and |[Im(s)| < ev!°¢? we have
Zpe I % = O(1), and arguing similarly, using partial summation, we have

' 2
Yopel, %W = 0(1) and 3,/ M = O(1). Consequently,

|E(z,'w)| < 1 uniformly for |z|, |w| < 2. Applying this bound in (3.7) we find that the
left hand side of (3.6) is O(1), so the result follows upon applying this bound for each
1 < j < J and noting that J < logloglogg. ]

Bounding the contribution of primes y < p < x to E(L&/ (s, X)M (X)) requires a
more subtle argument. Before proceeding to the proof let us recall from the definition of
our mollifier that n > 0 is sufficiently small and n < 6; < en.

Lemma 3.9. Let 0p = max{—Re(s), 1/logq} and cq be as in Lemma 3.6. For —c; /log €
< Re(s) <2 and |Im(s)| < ev'°24 we have

J
1/4
E( JT L5/ 6+ 50 Mi(0) < (loglogg)°Vg . (38)
=1

y<p=x

Proof. We argue as in the previous proof and as before write B (n) = Ar(n)n™", yr(n) =
Am)ayg.y(n)v(n) and y; r(n) = Z8(m) vr (n). Repeating the argument leading up through
(3.7),foreach j = 1,...,J we get

E(M_, @[] Li‘;’f(s +1 X))

pEl;

[ / 1—z76711— ‘f—li( )dzdw 39)
Z,w , .
(2711) izl=2 Jjwj=2 1—2z71 1—w! Zw




H. M. Bui, N. Evans, S. Lester, K. Pratt 2498

where

Z ZQ(nl)wQ(nz)ﬂg(ml)ﬂf(n’Z2))/f(nl)Vg(n2)

S(z,w) =
mini

miy,ma,ny,n2

plmini=pel;
mini=mans

I (Be * V2,1)(PX) (Br * yu.g) (P*)

pEIj k>0 pk
- (1 L P Ae(p) = wi(P)zAs (P (P As (P) — Wi (P)wAs ()
pel; p

1 —4 Re(s)
“o(=5—))

Again, arguing as in the proof of Lemma 3.8, using Lemma 3.6 we can write

$(zow) = exp(_z )3 Ar(p)?ws(p) )3 /\g(p)zwj(p))H(Z’ ).

p1+s 1+s

pel; pel;

where H(z,w) is an analytic function for |z]|, |w| < 2 with | H(z, w)| < 1 uniformly for
s satisfying the hypotheses of the lemma.

We now split the proof into two cases. First consider the case 6; < m. Then by
Deligne’s bound,

Ar(p)? !
)3 M <etrina 3 Ly (3.10)

pel; pel;
so that f)(z, w) <K 1 1in this case and the left hand side of (3.9) is < 1.
It remains to consider the case §; > %o llog 7 Using the fact that ¥(z, w) is analytic in
each variable, expanding (1 —z~% 1) /(1 — z) and (1 — w™%~1)/(1 — w) as geometric
series and using Cauchy’s integral formula shows that the left hand side of (3.9) equals

ak1 +ko

1
2 vl Rk
0<ky.ka<t; 1ol 9251 0w

fl(z, w)

(z,w)=(0,0)
gk1+k2

8zk10wk2
k1o 127%¥17%2 hence we can bound the above expression by

< 22U (Z Ag(I;)lz_Lzof(p))Z" (Z Ay (Z)lz_tgof (p))ef’

pEl; pel;

Using Cauchy’s integral formula once again we see that H(z, w)|zw)=(0,0) K

where the term 22% comes from applying the product rule. Using Deligne’s bound and
T 29]-_3/ * we conclude that the left hand side of (3.9) is

LN aey 46400
< (8 > m) < 34407 o0loed, (3.11)
pEIj
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Write J; for the smallest j = 1,..., J such that §; < m. Using (3.10), (3.11) and
the fact that in this case £; < 2(o0¢ log q)3/*, we see that the left hand side of (3.8) is

(loglog)°® ] 3447 040, o0 logq

Ji=zj=sJ
)0 Oo0102a)**) ;200" Hoglogq

< (logloggqg |

3.3. The contribution of the small primes

It remains to understand the contribution of the primes with p < y. This involves under-
standing the interaction between L8 (s, X), Mo(X) and ¢"#Fr X)+ivPs(X) - A key point
is that since My(X) consists of relatively small primes we can express it in terms of
an Euler product with negligible loss since £, is large. This allows us to simplify our
later analysis by reducing the problem to understanding the contribution from each prime
p € I individually. Let

~ ,'{(n) _ ~

Mo(X)= Y ~ Xapv x Xag jv)(n) = [T M),

pln=pely pelp

where

(=Dazs(p)*

X(p)k.
k! pk/2

MP(X) = Mp,f(X)Mp,g(f) Mp,f(X) = Z
k>0

Lemma 3.10. For Re(s) > —%, uniformly for u,v € R we have, for (f1, f2) =
(frg)or(fi, f2) = (g f)

E(MO(X)exp(iqu(X) +ivPy(X)) [T LI (s + %,X))
pely
= E(MO(X) exp(iuPy (X) + ivPg (X)) [] LG + %,X)) + O((logq)™1).
peElp
Proof. We will only give the proof in the case (f1, f2) = (f, g) since the arguments

in both cases are similar. Recall that B7(n) = Ay (n)n™*, yr(n) = A(n)ay,y(n)v(n) and
define

RO = 000 - M) = Y O X,

plmn=pely
max {Q(m),Q2(n)}>~Ly

Also, write L(j;’g (s, X) = Hpelo L;:’g (s, X). Since L{;’g (s, X) is a finite product, this
function is analytic for Re(s) > 0. Applying Cauchy—Schwarz’s inequality we have

E(ILJ* (s + 3. )R] < E(LTE (s + 5, HP)E(RX)P).
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Let us first analyze E(|L{;’g(s + 1. X)|?). Write (B7 X)(n) := By (n)X(n). We have

Ar(p) re(0) oo’
HE(ZWX@) Zpaiﬂ/z)x(p) )

2

E(IL{E (s + 1, X))

pely a>0 a>0
_ HE(Z (ﬁfX*ﬂgX*/ZZX*ﬁgX)(pﬂ) a1
)4
pelp a>0

Let o(X; p®) = (Br X * Bg X % Br X * B X)(p®) and observe that
E(o(X:p)) =0 and E(o(X;p?) = O(p~2RW),

We conclude that the left hand side of (3.12) equals

1
]_[ (1 + O(W)) (3.13)

pelo

Using Re(s) > _ lloglog)” (o pave Im < % for p € Iy, so that the right hand side

logg
is <« (logq)°W.
We next estimate (| R(X)|?), which equals

Z )’f(ml))’f(mz))’g('ll))’g(nz)]E

N o (X(min1) X (mans))

plmymaniny=pely
max {$2(m1),2(n1)}>£o
max {Q(m2),R2(n2)}>Lo

Therefore, max {Q(m1), Q(ny)} > £y implies 282(min)—~to > writing r = mn; =
man,, we find upon applying Deligne’s bound |ay, j ()| < 28 that there exists C > 0
such that

)

29022 5 29 (r)2 1 C) (logq)OM
Z ( )(r) < Z <<( gq)

r — 2% r 2o
plr=pely plr=pely

E(RX)P) < 75

(3.14)

where we have used the fact that cq is sufficiently large so that the sum converges. Com-
bining the two estimates above completes the proof. |

Now that we have replaced My(X) with the Euler product MO(X ) our analysis
reduces to estimates for each prime p € [y. Before continuing let us introduce some
notation. Let

§/4(s) = E(LL% (s + 1. X) M, (X)),
78 (s) = E(LL%(s + 1. X)Mp(X)Re(X(p))).
Lemma 3.11. Let a € Z. Suppose that p~RS) < 2. Then

(P~ —ws(p)?Ar (P)Ag(p) Lo (iz)
p P

(D) /%) =1+
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@) 557 ) = 14 UM DD s ) (L)

p p?
Additionally, for (f1, f2) = (f, g) or (f1, f2) = (g, ) we have
fitre — P —wi(p)(Ar(p) + Ag (p)) (1)
(3) ?p (S) = Zﬁ + 0 ;

@ E(L]2(s + L. X) My (X)X (p)?) <

|a|

plalz

Proof. Let hy, h; be level N newforms (not necessarily distinct). For Re(s) > 0 and k an
integer let

Z Any (PKV)an,, 1 (p)F2 (=12 '

hi,h2 —
I’lp (S, k) pk15+k2/2k2!

ki1+kr=k
k1,k2>0

Observe that nzl’hz (s,k) =0ifk < 0, and

(Z Any (PR X (p)¥

XY 1,000 = S DX

k>0 k>0

For any integer a we have
E(LJ% (s + 3. X)Mp(X)X(p)°)
= Y np s+ 3 knSE(s + L k)E(X(p)F X (p)k2)

k1,k2>0

=Y nfl(s+ 3. 0n85 (s + 3.k +a). (3.15)
k>0

Additionally,
E(L& (s + 1. X)Mp(X)X(p)*)

= > ¥ s+ L konfE (s + 1 k)E(X(p) X (p)k2)
k] ,k220

=Y n¥I (s + L. onfE (s + 5.k +a). (3.16)
k>0

Clearly, n1"2 (s + 1,0) =l and

P Ay (p) —wy(p)An,(p)
Nz
Additionally, for each £ > 1 using Deligne’s bound we get

(k + 1)22F
pk/z

nhvhas +11) =
nf,"h2(s + %,k) < ax {1, p~Re@ky,

Using the above two estimates in (3.15) and (3.16) all the claims follow (here we have
also used the fact that for a complex number w with ww = 1 we have w* = w™%). ]
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Lemma 3.12. Let u.v € R with [ul. [v] < 1. For Re(s) > —L8290° 4ng p e I we
have, for (f1, f2) = (f, &) or (f1, f2) = (g, f),

IE(LI{“f2(s + 1. X)M,(X)
X exp (WM Re(X(p)) + ivM Re(X(p))))

VP VP
_ gpf],f2(s)(l _ is(p)+ v/\g(p))sz(p)z)
4p
3 3
+i3«‘,,f"f2(s)(ukf(p)+fjﬁg(p))w’(p) + 0(—|”|p;2|”| ) (3.17)

Remark 3.13. Combining Lemmas 3.11 and 3.12 we find for Re(s) > (k’%(l)ﬂ and

p € I for |u|, |v| < 1 that the left hand side of (3.17)is 1 + O(1/ p), for (fl,fz) =(fg)
or (f1, f2) = (g, f). Hence, combining this with Lemma 3.10 we see for ( f1, f2) = (f, &)

or (f1. f2) = (g, f) that

]E(MO(X)exp(iqu(X) +ivPe(X)) [] LI + %,X)) < (logq)°W
pelo

2 2 . . . .
for Re(s) > —%. Hence, for —% < Re(s) < 2 using this estimate with Lem-

mas 3.7-3.9 gives
E(L(s + 1 X)M(X) exp(iuPy(X) + ing(X)))

& (10gg)°® + (log q)OMe?1n'Hlogloz)? - (3 1g)

Proof of Lemma 3.12. Taylor expanding shows that the exponential on the left hand side
of (3.17) equals

3 i*uAs(p) + vig (p) ws(p)k

P Re(X(p))~.

k>0
The terms with k = 0, 1, 2 account for the main terms upon noting that Lemma 3.11

implies

S1,/2
E(L{2 G+ 5 X0M, () Re(x(p)?) = 20 0(%)

for p € Iy. To complete the proof, use Lemma 3.11 to bound the contribution to the left
hand side of (3.17) from the terms with k > 3 in the Taylor expansion above, since ¢y is
sufficiently large. ]

3.4. Proof of Proposition 3.1
For u,v € R and Re(s) > % define

F(s;u,v) = E(L(s + 1 X)M(X) exp(iuPy(X) + ing(X))>.
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Recall that in Remark 3.5 we saw that F(s;u, v) admits an analytic continuation to
Re(s) > —1/2. Moreover, by (3.18) we have

|F(siu,v)| < e22n"/*(ogloga)” (3.19)

uniformly for |u|, |v| <K 1, —% <Re(s) <2, |Im(s)| < Blogg for any fixed B > 0.
Additionally, in (3.13) we showed that E(|Llj,f’g (5. X)?) = 14+ O(p~2Re()) hence it is
not hard to see that for Re(s) > 1/2 + ¢ we have E(|L/2(s, X)|?) = Os(1) and by
repeating this argument we also have E(|L&/ (s, X)|?) = O,(1) in the same range. Also,
by Lemma 2.4 we have E(|M(X)|?) < (logq)?®. Applying these estimates along with
Cauchy—Schwarz’s inequality we find that

|F(s;u,v)| < (logq)°® (3.20)

in the region Re(s) > % + e.
Applying Mellin inversion we see that

IE(L(X)M(X) expl(iuPy(X) + ing(X)))

_ 1 [ Le(s+3. f)Leo(s +3.8) (N F(s:u.v) (cos(F)~*

=5 : : ds.  (321)
211 J2) Loo(3, f)Loo(5,8) s

Since for fixed o > 0 Stirling’s formula implies |T'(o + i1)| < (|t + 1)°~1/2e= 7l
by (3.20) we may truncate the integral in (3.21) to |Im(s)| < Bloggq at the cost of an
error term of size O(g~') where B is a sufficiently large absolute constant. We now shift
(loglog g)?
B gloggq
and left contours using the bound (3.19) to get

contours to Re(s) = , pick up a simple pole at s = 0, estimate the horizontal

IE(L(X)M(X) exp(iuPs(X) + ivP, (X)))
= E(LG. \)M(X) exp(iuPy (X) + ivPg (X)) + O((logg) ™),
since n > 0 is sufficiently small.

For (fi, f2) = (/.@) or (fi, f2) = (g. f), by Lemma 3.11, |7/"/2(0)] « %2
+ i and ﬁpfl’fz(O) =1+ O(1/p). Hence, using Lemmas 3.7, 3.10, and 3.12 we get

E(Lfl,fZ(%’ X)M(X)exp(iuPr(X) + ing(X)))

_ fiofa _ (uds(p) + vlg(p))zwz(p)z)
- p];[o (gp (0) (1 Y

lo 1
+0(<|u|+|v|)( EP 3/2)))
7 plogx p

< [TE(M;0 [T £+2G.0) TT B3 00) + 0(togg) ™)

j=1 pEl; P=co
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]E(Lfl fz(l X)M(X) eXp( Z (ukf(p) + U/X (p))sz(p)z)

pelo 4p

x (14 O(lu| + [v])) + O((log9)™'°),

where we have also used Lemmas 3.8 and 3.9 to estimate the error terms. By the Prime
Number Theorem for Rankin—Selberg L-functions (see [4, Corollary 2.15])

A A 2 2 2 2
pelp

which completes the proof. ]

3.5. Proof of Proposition 3.2

Using (3.6) with s = 0 and recalling yr(n) = A(n)aysj(n)v(n), foreach0 < j < J we
have

E(M,-(X)HLI{’S’(%,X)): DR A e UV A

mini
pEl; my,ma,ny,n2
plmin= pel;

minyi=mjpny
Q(n1),Q((n2)<t;
We now wish to remove the condition ©2(n1), 2(n,) < {; so that we can express the sum
as an Euler product. Arguing as in (3.14) we see that there exists C > 0 such that the sum
on the right hand side is

(Ar xyr)(m)(Ag * yg)(m) 1 C2m)
Z | S *Yr - g *Ve i 0(271 | )
plm=pel; plm=>pel;
_ 2 o)
| (1 e wJ(p))pkf(p)/\g(p) L 0(#)) N 0( j 0(1og2c§) + 1)
pel;

(3.23)

Since the product on the right hand side above is < 1, the productover 1 < j < J is

J

(1 Lo+ O(Z )) l—[ H( wJ(P))ZAf(P)/\g(P)). (3.24)

Jj=1pel; p

Using 274 <« 1/¢ i = 9/.3 / 4 and summing the geometric sum, we see that the error term

is < 93/4 « n?/* Hence, combining (3.23), (3.24), and Lemmas 3.4, 3.7 we get
E(L"¢ (L, X)M(X)) = (1 + 0( ) + 0(n3/4)) I1 (1 - w‘;(f))L,,(l, f®g)
P=co
o l—[ (1 n (1- wJ(P));Af(P)Ag(P)).

CO<p=<x
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Since wy(p) = 1 + O(log p/log x), using Mertens’ theorem and the bound
[Ar(p)Ag(p)| < 4 we see that the product over cp < p < x is < 1, hence the right hand
side above is < 1. To get a lower bound, note that by using Deligne’s bound we have
IL,(1, f ® g)| = |1+ 1/ p|~*, so the product over p < cg is > (log co)~*, by Mertens’
theorem, which shows that the right hand side above is > 1 by choosing 7 to be suffi-
ciently small in terms of cy.

Using Lemma 3.7 to estimate the contribution of the primes p > x and Lemmas 3.10
and 3.11 to estimate that of the primes ¢y < p < y gives

E(LES (L, X)M(X))

J
= (1 +o() [T BLE G x)) x [T B(Lg7 ¢ [T M)
j=1

DP=co y<p=<x
(11 (1+ Ay (p) = wr(P)Ae (P))Ae(P) = ws (P)As(P) | (L
co<p<y p p?

+ 0((logq>—‘°)).

The product over p < c¢o on the right hand side above is <« 1 by Lemma 3.4. Using
Lemma 3.9 the product over y < p < x is < (loglogq)?™. To estimate the product over
cop < p <y we again use the Prime Number Theorem for Rankin—Selberg L-functions,
which implies

Ar(p)A Ar(p)?
Y MPD o0y g Y Mgy 4 000),
co<p=y P co=p=y
to see that this product is < (log y)~2. Hence,
E(L8 (L, X)M(X)) = Oc((logq)>**)

for any £>0. Combining the above result with our previous estimate E (L8 (%, X)M(X))
= 1 completes the proof. ]

4. Proof of Theorem 1.4 and Corollary 1.7

We will first prove Theorem 1.4. Let

> Wipe( Ly L)

—iv
X (mod q) \/ 3 loglogg \/ 3 loglogg

Using the main results from the previous sections, Lemma 2.9 and Proposition 3.1, by

i —27u —2mv
rescaling (u, v) — ( T S
\/2 loglog g \/2 loglog g

2242 (Ju| + |v|)(logloglog g)'/? _
D, (u,v) = 727 WY )(1 + O( Jul |(l(|)glo§q)g1/2g + O((logq)™1%)
(4.1)

CIDq(u, U) = W

) we get
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foru,v € R with |u|, |v]| < 4/ m{g"lg;%. The expression above for the characteristic func-
tion is the key input to the proof of Theorem 1.4. Before proceeding to the proof we
require some additional results.

Lemma 4.1. Assume GRH. Let A > 1. Also, let B > 0 be sufficiently large. Then for all
primitive characters y modulo q outside an exceptional set of size < 5 + m the
following statements hold:

M (LM (0| = A;

J
@ [] 1My (0! < (loglogg)®;
j=1

1 Ar(p)ws(p)x(p)

,/%loglogq co<p=<y VP

Remark 4.2. In the proof we use GRH when applying Proposition 5.1 to bound

S L 0My (I

x (modq)

3)

< loglogloggq.

Using work of Blomer et al. [4] such an estimate can be proved unconditionally so the
assumption of GRH can be removed at the cost of a longer argument.

Proof of Lemma 4.1. By Chebyshev’s inequality and Proposition 5.1,

* 1 * q
Yo 1= 2 oM < 45

x (mod q) X (mod q)
ILrOOMyz(x)|>A

Similarly,

* 1 * J
Z ISW Z Hle,j(X)|2

X (mod g) X (modq) j=1

[T/=) 1My, (0> (oglogg)
q 1 q
L ———x 1+0(—)) L —
(loglog¢)*# yqllx( p (loglogg)*°

where the second step follows by using (2.1) and Lemma 2.4 since B is sufficiently large.
Finally, we note that the argument given in the proofs of Lemmas 2.3 and 2.7 shows

that the conclusion of Lemma 2.7 holds with Pr () replaced by > . 0<p<y %ﬂw

(this follows immediately since in the proof of Lemma 2.3 we used |Re(z)| < |z]), so that

using this result with V' = logloglog g (E’:}—gg)l/z gives
A /1
#{){ (mod ¢q): Z s (P)ws (P)x(p) >logloglogg —loglogq} < Lm'
coSrey NIz 2 (loglogq)
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For f € L'(R) we denote by f the Fourier transform of f,

7@ = /R F(x)e(—Ex) dox.

Let us quote the following result due independently to Beurling and Selberg (see [29,
Section 7] and Vaaler [44]).

Lemma 4.3. Let A > 0 and I = [a,b] C R be an interval. Then there exists an entire
Sfunction Fy a(z) such that

. _ 2 . _ 2
(1) 0 <1 (x) ~ Fra() < (S‘“:iifx_ a;‘))) + (S“ﬁ?f’_ x;‘))) Vx e R;
L) +0(L) iflEl <A EeR,

(2) Fra6) = {O if 5] > A, £ €R.

We also need to establish an unweighted analogue of (4.1), which is much easier to
prove.

. [ logl
Lemma 4.4. Foru,v € Rwith |ul, |v| < \/icocioes 922984 _ 10 hye
oglogloggq

Pr(x) i Pg(x) )

1
W, (u,v) = T) Z* exp(—2m’u— —2miv———
¢ ) o) V/ 3 loglogg V3 loglogg

(W42 (lu] + |v])(logloglog g)'/? _
— pm2m (Pt )(1 + 0( (oglog )12 + O((logq) 10).

Proof. A straightforward line-by-line modification of the proof of Lemma 2.9 gives
1
¢*(q)

Z* exp(iuPr(x) +ivPy(x)) = E(exp(iqu(X) + ing(X)))
x (mod g)

+ O((logq)™"%)

for |u|, |v| « 1. Taylor expanding and using (3.22), the main term equals

HE(exp(' Ar(p)wy(p)Re(X(p)) +l.vxg(p)w,(p)Re(X(p»))

iu
Py VP JP
— 1_[(1 B (Mkf(p) + ng(p))zwj(p)z N 0(|M|3 + |U|3))
p<y 4p e
-
= (log )~ (1 + O(lu| + Jv])).
and the lemma follows upon rescaling as in (4.1). -

Proof of Theorem 1.4. Let Sy denote the set of primitive characters y modulo g satisfying
the properties in Lemma 4.1 as well as

1 .
[Lr(OMr(x)| = x with A = loglogg.
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Then for y € Sy we have

log[Ls(x)| = —log|My(x)| + O(logA) = —log|Myo(x)| + O(logloglogq).

Also, for any complex number |s| < S/e? we see from (2.8) that
S

Z;—j' = (1+ 0(e™57)),

j=07"
which implies for y € Sy that

A
Mf,o()()=exp(— ) wx(m)(l—i—O((loglogq)_lo)).
CO<p=y

We conclude that for y € S,

Pr(x) =log|Lys(x)| 4+ O(logloglogg). (4.2)
In particular, this implies that for y € Sy,

|log |Ls(x)l|
,léloglogq

log [Ls (1)l Pr(x)

\/ 3 loglogg \/ 3 loglogg

and let /1, I, C R be intervals. Let us first consider the case where /1, I, are closed. By
(4.3), for x € 5y we find that £ (x) € I if and only if £7(x) € 41 where J; = I1 N
[-Aloglogloggq, Alogloglogq], where A > 0 is sufficiently large. Write d; = [ay, b1].
Using (4.2) we deduce that for all y € Sy there exists C > 0 sufficiently large such that

_ logloglog g
for§ = C—loglogq s

[Lg, (L7 (X)) — Lg, (Pr O] < gy =8,a1+81(Pr (X)) + L, 8.6, +81(Pr (X))-

For y € §g we arrive at a similar inequality and can replace I, with 5, which is defined
analogously to 41, with d, = [a2, by] and |by — a2| K logloglog g. Write

< loglogloggq. 4.3)

Let

Lr(x) = Pr(x) =

Is; =la; —6,a; + 81U [b; —8,bj +48] forj =1,2.

Consequently, using the above inequality for f and g, Holder’s inequality with exponents
1/e1 + 1/es = 1 where e; = 1 + ¢, 50 ez < 1/¢, and Proposition 1.3 we get

1 *
W17, (£ 1, (£
%@Xes,znsg GO (L7 GOV, (L (X))
= wf(q) S W) 10, (P 0V, (P (1)
w

XESrNSg

0,7 (X (U (0 + 102 o) ). )

x (mod q)
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where we have also used the inequalities

(L1, (Pr(0) + L1, 5 (P O0)) " < 2°(Ly , (Pr () + 115, (P (1)),
g, —8,a1+81(Pr (X)) + 1p—5,6,+81(Pr () = 2155 (Pr(x)).
Using Cauchy—Schwarz’s inequality, the sum on the left hand side in (4.4) as well as the
sum in the main term on the right hand side can be extended to all primitive characters
modulo ¢ at the cost of an error term of size O(1/loglogq).
Let K(x) = (%)2 and note that K(u) = max {0, 1 — |u|}. By Lemma 4.3, for
I =[a,b]and A > 0 we have |17 (x) — F7 a(x)| <2, s0

117 (x) = Fra()[" = 2°(K(A(x — a)) + K(A(b - x))).

We now take A = ,/ k)lg(’]gol%. By Holder’s inequality and Proposition 1.3 we get

ST WO 14, (27 (1) — Fa,.a (27 ()
x (modgq)

* /el
< g (X (K@ —an) + Kb - 2,000)) . @)

x (mod q)

By Fourier inversion and Lemma 4.4 we find that, uniformly for any o € R,

" A
(,)*l(q) > KAPr () —w) = %/_A(l - '%')e(—au)wq(u,m du <« %. (4.6)
x (modq)

Hence, using (3.1), (4.5), and (4.6) we can replace 1y, (Pr(x)) by Fyg, A(Pr(x)) in the
main term in (4.4) at the cost of an error term of size O, ((loglogg)~'/2%¢). Similarly,
we can replace 14, (P (x)) with Fy, A(P¢(x)) at the cost of an error term of the same
size. Using Fourier inversion, (4.1) and Lemma 4.3 we find that up to an error term of size
0¢((loglog ¢)~'/2%#) the main term on the right hand side of (4.4) equals

1 *
W(x)F P F P
Wv(q)x(%q) (0 F3,,a(Pr(0)) Fapa (Pe (X))
= /RZ m(u)l@(v)%(u,v)dudv

=/ Fy, A(u) Fgy a(0)e 2700 gy gy
R2

+ 05("11' |42|((loglog g)~"/2*+¢ + Az(logq)_lo)).

Applying Plancherel and then using Lemma 4.3 the main term above equals

1 C(x24y2
/ Fy a(x)Fyy a(y)e @HrD2 gx dy
2w R2
1

= e~ HY2 gy dy + 0,((loglogq)~V/2T%),  (4.7)
2” I] X12
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where we have also used the rapid decay of the Gaussian to bound the portion of the
integral over (I; x 1) \ (41 x d2) by < (loglogq)~'°.
To estimate the error term in (4.4), we see that by arguing as above we have

1 * 1 2
1 P = — e ¥ 12 dx + 0,((loglog g)~1/2+¢
w*@x(%;q) 151 (Pr (1)) 7 . ¢((loglog ) )

< (loglogg)~'/?*¢.

Applying this with (4.7) in (4.4) completes the proof in the case where I, I, are closed.
The other cases follow in the exact same way since the conclusions of Lemma 4.3 hold
for any finite interval, since Fj A is continuous. [

_ A
ProofofCorol.lary .1 7. Letw = W . . :
than the one given in the proof of Theorem 1.4, which we will omit, we have

. By an argument similar to yet slightly easier

1 3 log|L(z. f®@ 0| log|L(3.8 ® x)
ow(9) W(X)l[_“”“’]( /1 2 T : )
W7y (mod q) 5 loglogg 5 loglogg

1 @ _u2/4 —
[ d 0 1 1 1/2+8
= [ e+ Outogtogg) )

with the main difference in the proof being that after applying Fourier inversion in place
of @y (u, v) = e~ 27 @) 4 (1) we will have @y (1, —u) = e~ %" + o(1) and the
—4nu? s S(y) = ﬁe‘"z/“. Hence, by
Holder’s inequality with exponents 1/e; + 1/e; = 1 the formula above yields

qo < ( 3y IW()()Ie‘)l/e1

X (mod q)

X(#{)(#)(o:L(%,g@Jx)#O, e_AS‘

Fourier transform of the Gaussian g(u) = e

LG.f®0|_ eA})”ez
Liz.g®0 |~ ’

where for brevity we wrote y # yo to mean that y is a non-principal character modulo g.
Applying Proposition 1.3 shows that the inequality

L(%’f®X) < oA
LG.g®p0|~

with e; = 1 4 ¢ gives the claim. |

#{X?EXOIL(%,g@X)#O, B_AS' }>> w®?q

5. Upper bounds for mollified moments

In this section we prove Proposition 1.3, which follows immediately from the following
proposition and an application of Cauchy—Schwarz’s inequality.
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Proposition 5.1. Assume GRH. Let k > 0 and suppose that n[k] is sufficiently small.
Then
* 1 2k
Yo ILG. f @ DM <k g
x (modg)

We assume GRH for L(s, f ® y), L(s,Sym? f ® y?) and L(s, x?) for all characters
x modulo g.

5.1. Preliminaries

Note that by using the inequality 2k <14+ [2Fk1’ which holds for # > 0 and k > 0, it
suffices to prove the result for k € N. For an interval / and a completely multiplicative
function a(n) we define

a(p)x(p)
Pr(y:a) =) ———.
L=

Recalling that 1 = £v(n) we have

p1-pe=n

Prat= Y a(pr---p)x(pr---po) _ 3 a(m)x(n) R

Plse-sPe€l pi---pe pln=pel ﬁ P1pe=n
Qn)=¢L
Ly Y A 51
pln=pel ﬁ
Qn)=t

For £ a positive even integer and ¢ € R, let
t/
Eq(t) =Y i
=t
By [34, Lemma 1] we see that E;(¢) > 0 for any ¢ € R if £ is even, and for t < £/e? we
have

el < (1+ e HE). (5.2)

For any real number k # 0 we have

kJ .
E(QkRe(P(1:)) = Y —(Pr(x:a) + P1(f:a))’

it

o a(m)v(m)y(m) a(n)v(n)y(n)
Sy Y A s aontz)

j=<t r=0 plm=pel pln=pel
Q(m)=r Q(n)=j—-r

kSZ(n)
. TZ(”)(VX “ ) (). (53)

pln=pel
Qn)<t
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Additionally, foreach 0 < j < J let

J
D;(x:k) = [](1 + e ) Ey, 2k Re(Pr, (x: az;))) (5.4)
r=0

and note that D; (y; k) > 0.

5.2. The random model

As in Section 2.1, let {X(p)}, be i.i.d. random variables that are uniformly distributed on

the unit circle and let X(n) = [],a), X(p)®. Define

a(p)
Pr(X;a) = —X(p).
PG

Then just as in (5.3) we have

Q(n)
Z w(l)X xvX)(n). (5.5)

E¢(2k Re(P;(X;a))) = =

pln=pel
Qn)<t

We also let _
J
Dj(X:k) = [ [+ e ) Eq, (2k Re(Py, (X:ay))).
r=0
5.3. Preliminary lemmas
We use the conventions that D_; = land Py, = 1,041 = 1.

Lemma 5.2. Let 0 < j < J + 1 and let b(n) be a completely multiplicative function. For
teZwith) <t <

2
we have
50 +1

1 * .
2@ > Djma k) (Re(Pr, (o b)) 1My (o)1
vl X (mod q)
= E(Dj—l(X;k)(Re(PIj (X, b)))2’|Mf(X)|2k) + O(q_l/lo).

Remark 5.3. Since {X(p)}, are independent random variables and the intervals /; are
disjoint, we have

E(Dy(X:k)|Ms(X)P)= [ (14e 9)E(Ee, 2kRe(Pr; (X;a7.0)))| My ; (X)[¥).
0<j=<J

Proof. The error term arises from pointwise bounding the principal character contribution
(this is why the formula is not an identity). By (2.1) the two expressions are equal when
the sum is over all y modulo g. The contribution from the term with y = y¢ is bounded
by < g~ 1q1/10(g% )4/ 9 « g=1/10, -
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Lemma 5.4. Let 0 < j < J and let b(n) be a completely multiplicative function with
b(p) K 1. Then

E(Eq; (2k Re(Pr, (X:b)))| My,; (X)|*)

_ (1 n 0(lj=o(10gzc§)0(l) + 1)) I (1 . k*(ays(p) — b(p))? n 0(l))

2
pel, P j4

(5.6)

and for t € Z witht > 4k{; we have

21)! b(p)*\
E((Re(Pr; (X:0))* [My,; (X)) < (17=0(logq) ™ + 1)22(th§)tJ'(Z (ﬁ) ) '
4717 Ypel;

Proof. Using (5.5) we have

E(Eq, (2k Re(Pr, (X:b))|My,; (X)[**)

_ 3 KX b(m)A(n)ay, s (n)

NCT E((vX * v)?)(m)(vk;ng * Vst X)(n))

plmn=pel;
Q(m)<t;,Q(n)<2kt;

Q(m) A
=y EReAMan ) s e, (e vi, (@),

vmn
plmn=pel; cidi=m
Q(m)<t;,Q(n)<2kt; cadr=n
cicr=dd>

(5.7

Since max {Q(m), Q(n)} > £; implies 280mn) /2t > 1, there exists a fixed C > 0 suffi-
ciently large such that

E(Eq, (2k Re(Pr, (X:b))|My,; (X)[**)

KX ™ b(m)A(n)ays. s (n)
= 2 DY

Tin v(e)v(d)vi(c2)vi(d2)

plmn=pel; cidy=m
crdr=n
cica=ddy

1 CQ("I"Z)
+0(% Z —) (5.8)

plriro=pel; 2
Here we have also used v (n) = vg(n) if Q(n) < £. The error term in (5.8) is
1j—o(logq)°® + 1
<l o gz} +
WA

where we have used the assumption that ¢y is sufficiently large. Define the multiplicative
functions /1, h, and & by

, (5.9)

hi(n) = k¥Pbnyv(n),  ha(n) = A(n)ags(n)ve(n), h(n) = (hy * ha)(n),
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and note that

h(p) = b(p)k —ays(p)vk(p) = k(b(p) —az,s(p)).
(Ck)*
h(pY)] <
a!
for some constant C > 0. Therefore, writing mn = r, ci¢cp = ry, did, = rp, grouping

terms appropriately and using the fact that ay, y (n), k2 b(n), A(n) are completely mul-
tiplicative, the main term in (5.8) is

2
> S X hevhe = Y

plr=pel; rrllrifzr pln=pel;
k2(b(p) — 2 1
- ]‘[(1+ (bp) ~ 471 (7)) +0(—2)). (5.10)
pel, P P

Hence, using (5.9) and (5.10) in (5.8) completes the proof of (5.6).
For the second statement, we note that by using (5.1) we have

2t
(Re(Pr, (X: b)) =272 3" ( 2; ) Pp,(X:b)* Pp, (X:b)*
s=0

2t
oy X My, 3 b,

s=0 plm=pel; m pln=pel; f
Q(m)=s Qn)=2t—s
b(n —
=272 Y Q(vx * vX)(n).
Jn
pln=pel;
Q(n)=2t

Therefore, similarly to (5.7) we have

2t
Gy E(Re(P, (X)) My (X))
b(m)A
= > M Y ve)v(d)vis, (c2)vis, (da).
plmn=pel; mn c1di=m
Q(m)=2t,Q2(n)<2kt; . cczdzjnd
1€2=ajaz

Taking absolute values inside the sum and recalling that vg.¢(n) < v (n), we have the
bound

Z |b(cidy)ay,j(cad>)]

<
Veieadids

v(c)v(dr) vk (c2)vi (d2).
plcicadidr= pel;
Q(c1d1)=2t, Q(Czdz)kaﬁj
C]Cz=d1 dz
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We now write ¢; = g;c; and d; = g;d] with g; := (¢;,d;) and (c/,d]) = 1 fori = 1,2.
Then, since cic2 = did,, we have cjc, = djd; and therefore ¢; = dj} and d| = c5.

Relabelling c; as ¢; and writing yx () := ay,j(n)vi (n), the above is bounded by

b(g1)?vk(g2)?|b(c1c2) vk (c1)yic(c2)]
Z v
8182C1C2

(g1)*  (5.11)

plg1g2c1c2=pEl;
Q(c1c287)=21,Q(c1c2) <2kl

where we have used v(n) < 1 and vg(mn) < vy (m)vg(n).
We now bound the sum over g,. Using |[Af(p)| < 2, we have

y ne’ (1+ Af(p)zvk(pf) @ = it Ao

pleamper; 52 pel; p (log ¢) %M if j = 0.

Hence we may bound (5.11) by

& (Lj=o(log )M + 1)
y Z |b(cre2)yi(c1)yi(c2)] Z b(g)*v(g)?

C1C2 g

plerca=pel; plg=pel;
Q(c1c2)<2kt; Q(g)=t—Q(c1c2)/2
2|Q2(c1c2)

< (1j=0(log q)°® + 1)

Ib(c1e2)vi () (ca)] 1 b(p)? ' Hered/2
X Z c1¢ ((f—Q(CICZ)/z)! (Z ) )

plcico=pel; PEl; P
Q(c1c2)<2kt;
2|Q(c1¢2)

Since by assumption ¢ > 4k{; and Q2(ci1c2) < 2k{;, we have %t <t —Q(c1cz)/2. Thus
the final bracketed term above is bounded by

L%ltJ! (Z b(p)z)t'

pEIj p

For the remaining sum over cy, ¢z, there exists some C > 0 such that this sum is

bounded by Zp|n=>p€1j C®M™ /n <« 1;-9(logq)°®Y + 1. Therefore,

21)! b(p)*\'
E((Re(Pr, (X: b)) [My,; (X)P*) < (1j=o(logq)*® + ”zz(t Lg)t [ (Z (ﬁ) ) ’
471" Ypel;

as claimed. [

Lemma 5.5. Assume GRH. Suppose Y > (logq)3. Then

Ar(p*)x(p)?
2,

(1) log L(1,Sym? f ® x?) = + 0(1);

p<Y



H. M. Bui, N. Evans, S. Lester, K. Pratt 2516

2
@ tog L0112 = 3 X2 4 001) for 2 # o

p<Y
1 « |L(1,Sym? f ® y2)|**
O 5 2 ( Z(l fz) O <.
¢ qx(modq) A
1>#x0

Proof. Applying [3, Lemma 5] gives (1) and (2). The last claim can be shown to follow
unconditionally, but it is easy to prove using GRH, and we give a sketch below. Using (1)

and (2) we have
2k
< exp(2k Re( 3 (s (p?) — l)x(p)z)).

p=<(logq)3 P

L(1,Sym® f ® x?)
L1, x?)

(n2)— 2
Since Zps(logq)3 M < logloglog g, we can apply (5.2) to the right hand

side above with £ = 2| (logloglog ¢)?]. Using the non-negativity of E;(-) we extend the
sum to all y modulo ¢ to bound the left hand side of (3) by

4 i j
X (e ¥ (Af<p2>—1>x<p>2))f_
j=0

-
J' e (q)x(modq) < (loed)? P

Arguing as in the proof of (2.4) the sum over y (mod g) can be seen to be < ¢(Cj)’ for
each 1 < j <{and C > 0 sufficiently large. This shows that the right hand side above is

L roNI?
< Z(—) <1,
j=1:7
where C = C(k) > 0 is sufficiently large. |

Lemma 5.6. Assume GRH. Suppose x> # yo. Then either

Lo
Re(Pr,(x;az;)) = ke

forsome 0 < j < J, or
IL(3. f ® NP*L(1,Sym* £ ® 1*) L1, 1)

6k e2kRe(Pr,. (xiaru)) )Y+
L Dy(p:k) + Z CXP(Q_)Dj(XZk)( (P, (X:ay, )))

0<j<J—1 7 tj+1
j+l<u<J

for any sequence (;) of non-negative integers.
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Proof. By [9, Theorem 2.1] we have, for ¥ > 8§,

ILE, f o pl*

n n n l Y n l
Sexp(2kRe(Z (@ ()" + ero(p))2(p") Tog (Y /p ))+6k 0z +0(1)).
gt npn(§+k,Ty) logY logY

(5.12)

In the sum over prime powers, the contribution of the powers n > 3 is O(1). For the prime
squares, we note that o7, (p)? + aﬂz(p)z =Ar (p?) — 1 and therefore the contribution is

(lf(pz) —Dx(p)? log(Y/p?*) (Ar(p*) —Dx(p)?
k Z p2loeY log Y =k Z p +0(),
p<JY p<JY

(5.13)

where in the error term we have used the estimate Zp <JT I}?fgp v < 1. Applying Lemma

5.5(1,2) we see that (5.13) equals
klog L(1,Sym? f ® x*) —klog L(1, y*) + O(1) (5.14)
provided Y > (logq)®.

For 0 < j < J let §; be the set of characters y modulo ¢ such that x> # yo and

E
max Re(Pr; (xsarr) <
j<r<J
For each such y we must have either (i) y ¢ So; (ii) y € S; forall0 < j < J; or (iii) there
exists0 < j < J —1suchthat y € §, for0 <r < j and y ¢ S;j+1. In particular, for each
x% # xo we have either

0max Re(Pr, (x;ar:)) = e 2, (5.15)
{;
max Re(Pr; (xsarr)) < —12 foreach0 < j < J, (5.16)
j<r<J ke
orforsome0<j <J—1,
L .
max_ Re(Py, (x:afu)) < —5 foreach0 <r < j,
r<u < k 2
' (5.17)
. j+1
S max Re(Pr; (xiafu)) = e

with (5.15) corresponding to (i), (5.16) to (ii) and (5.17) to (iii).
If we have (5.15), then we can conclude. If (5.16) holds, then we set Y = qef in (5.12)
so that k’gq <« 1. Also applying (5.14) to handle the contribution of the squares of primes,
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we have
LG £ @ 0PALO. Sy £ @ L0 < oxp(2k 3 LDAD)
p<q®7
J
< [T+ e “)Eq, 2kRe(Pr; (x:a7.0)) = Dy (x:k).

j=0

by the definition (5.4). Lastly, if we are in the case (5.17), then we take ¥ = qe/ in
(5.12) so that llgff, = eij. For 0 < r < j we argue as in the previous case to bound the
contribution of the primes by D, (x; k) and use (5.14) to estimate the contribution from

the prime squares. Therefore we have

IL(L, f ® PFL,Sym? £ @ ) 7FLA, y*)F

6k
< exp(?) Dj(x: k)
i

e’k Re(Pr; ., (x: aﬁu)))’/ﬂ
v ’

<<exp(%)Dj()(;k) max (

0 ' JjtH1<su<J
where in the last step we have trivially applied

(ezk Re(Py; ()(§af,u)))thrl -1
b+ B

max
j+l<u<J

Lemma 5.7. For 0 < j < J let tj € Z be such that 4k{; < t; < 5%0/,. Let b(n) be a

completely multiplicative function with b(p) < 1. Then
* . . 2t 41 2k
Y Di(rk)Re(Pr L, (1)) My ()]
x (modq) :
« e __2l+1)! ( 3 b(p)z)’”‘
2204 341 ]! :
PEljt1

foreach0 < j <J —1and

* | b(p)2\ 0
> Re(Pry () 1y (0P < qtlog)©® 2O (5 22 )

2t0| 34 |1
x (mod g) 2oLt pely P
Proof. First, by Lemma 5.2 and arguing as in Remark 5.3, we have
L * Di(yv:k P b 2t 41 M 2k
D Y Dilrk)Re(Pr, (1:6))*7+ My ()]
v x (modgq)
= [] (+e"/»E(E,, kRe(Pr,, (X:az,;) My, (X))

0<ri<j

<[] E(Re(Pr (X, 0)*7+ My, (X)) + 0(g71). (5.18)
Jt1=r=<J
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For the product over 0 < r; < j, we apply Lemma 5.4 to get the bound

1, —o(l om 4 q
< 1 (1+0( H O(OE;) * ))
r

0=<r1=j
k2 — . 2 1
< T (1 L Rlans(p) —ani()? | 0(_2)).
6; P P
co<p=q’’
We have 5
a —ar; lo

)3 (arg(p) —ay;(p) < ¥ _O8P . (5.19)

N p ,. tiplogg

co<p=q"/ co<p=q"J

hence the product above is bounded by < 1.
In the case r, = j + 1, we apply Lemma 5.4 to obtain the bound

(2tj+1)! ( b(P)Z)t”‘
2641134, :
2241 | 21544 ]! velgn P

It remains to bound the product over j + 1 < r, < J in (5.18). Using (2.6) we have

2 2
[] EMe,0 < ] (1+H¥) < V=D (5.00)

Jtl<ra<J qgj <p§q91

where we have used |A7(p)| < 2. Combining these estimates, we obtain the first state-
ment.
For the second statement, by Lemma 5.2 we need to bound

[T E(Re(Pry(X:b))>0 My, (X))
0<j<J
For the j = 0 term, by Lemma 5.4 we have the bound

< (logq)°® (210)! (Z b(p)z)’o.

3
20 zto]'\yege P

For the remaining terms 1 < j < J, by (5.20) we have the bound e « (loglog q)°™
<« (logq)°M, completing the proof. ]

5.4. The proof of Proposition 5.1
First, note that
*
> LGS @Ml
x(modd) * 2k 2k
= Y LG SR OMOP* + LG, f @ x0) My ().

% (mod q)
x2#x0
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where y is the non-principal character modulo ¢ satisfying )(% = xo. The y; termis neg-
ligible using bounds on GRH for the L-functions and a pointwise bound for the mollifier.
Defining

L(1, x?)
A() = 3 o
L(1,Sym” f ® x?)
it suffices to show that
! 1 2k k
> ILG. f @ MO AIF < g, (5.21)
x (mod q)

where Y’ denotes a sum over primitive characters y2 # xo. Applying Cauchy—Schwarz’s
inequality followed by (5.21) and Lemma 5.5 establishes Proposition 5.1.
We now prove (5.21). We split the sum over y modulo g according to whether or not

14
Re(Pry(1:ar) = 15 (5.22)
for some 0 < j < J. If (5.22) holds, we apply Chebyshev’s inequality and Cauchy—
Schwarz’s inequality to see that

> LG f ® oM OPK A

x (mod q) .
Re(Pry (x;ar. ;)= ﬁ

LN 20
< ¥ |L(%~f®X)Mf(X)|2k|A(X)|k(keZRe(PIO(X"’f,J)))

x (mod q) to
, 1/2
s( ) IL(%,f®x)I4"|A(X)I”‘)
X (mod q)
(k€2)4t0 , 1/2
X(W > Re(Pry(ag * M (01 ) . (5.23)

0 X(modg)
The argument given by Soundararajan [42] carries over to give

STILG. f @ 0P < qlogg)* e
x (mod q)

for any k > 0. Using Cauchy—Schwarz’s inequality, this estimate and Lemma 5.5 we see
that the first sum on the right hand side of (5.23) is < ¢ (logq)°™". Applying Lemma 5.7
with 7y = Lﬁj followed by Stirling’s formula, shows that the second sum on the right
hand side of (5.23) is bounded by

k2e*\?"0  (410)!
< q(lo 0(1)( ) 51og log ¢)2%
q(logq) a 24’0L§toj!( glogq)

< q(log q)°W exp(—(loglog ¢)*).
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noting we can extend the summation to all primitive y modulo ¢ using non-negativity.
Combining these estimates, the contribution to (5.21) of the y modulo g satisfying (5.22)
is < gJ(logq)™10.

For the remaining characters y modulo g, we apply Lemma 5.6 to see that these
characters contribute

< Y DsGekIMp (P

X (mod q)
6k * 2k Re(Pr, ., (x;ar,))\ 2+
+ > eXp(y) > Dj(x:k)( T ) | My ().
0<j=J-1 7/ (modq) 7+l
jHl=sr=J (5.24)

Again we have extended the sum to all primitive characters using non-negativity. By Lem-
mas 5.2 and 5.4 we have

1 *
— Dy (k) My(0)** < E(Dy(X;k)|Mp(X)[%)
w(q)x(modq)

: M -
< T] (HO(IFO(IOiZ‘)OI +1)) I1 (1+k2(“ﬁ1(l’) af,J(P))Z_i_O(%))

0<j<J pel; p

< 1,

where the last bound follows by (5.19). It remains to show that the second term of (5.24)
is < g. By Lemma 5.7 with ¢; = LS%O/_J, the second term is bounded by

6k\ sizr—p( ke U Qi) ag,(p)?\7+
<q Y. exp(?)e SEIE TR Yoo )

0<j=<J-1 7 bita Peljt P
JjH+lsr=<J '

We estimate the inner sum over primes trivially as < 5log(6;+1/6;) = 5. The sum over
r then trivially contributes J — j, so that the above is bounded by

6k S 3ke2\2Ut (2t:41)!
<q ) (J—j)exp(g)e“kzu_”(—e ) @1;+1)
J

. 2t; 3 !
0<j<J—1 £]+1 2 .1+1|_Z[j+1J!

We now apply Stirling’s formula and use ¢ ;J/rsl [i+1 < 9; J/rsl to get the bound
. 4k2(J—j) C 1 1
<q Z J —J))e exp —alog§+0 7
0<j<J-1 7 7 4

for some ¢ > 0. Noting that 6; = /=70 and relabelling, this is

. cjel
<Lq Z je4k2’ exp| — J < q,
- 20y

1=j=<J

as claimed. As both terms of (5.24) are < ¢, this completes the proof. ]
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6. Weighted central limit theorem for Dirichlet L-functions

In this section we sketch a proof of Theorem 1.2. Recall that

PRSI S OO0

pln=pel; \/ﬁ
Q(n)ﬁ[j
and
J
M) =[] M- 6.1)
j=0

We can write

Mo = 3 K

n=<q?

with ¢ = 1/1000, y(1) = 1 and |y(n)| < 1 otherwise. It is not difficult to check that

ow@= Y W =e@1+04¢™)
X (mod q)

for some absolute constant § > 0. Additionally, let

x(p)
P(x) = —.

The proof is similar in many respects to the proof of Theorem 1.4. As in that proof,
we consider a set S of characters y such that
() AT = LG 0OMGD] = A
J

@ [] 1M (0] < (loglogq)”;
j=1

PO

\/ 3 loglogg

where A = loglogg. Like (4.2) we obtain

3) <loglogloggq,

Re(P(y)) = log|L(%. x)| + O(logloglog )

for y € S.
Write .
_ log|L(3. 0

\/ 3 loglogg

Re(P(x))

\/ 3 loglogg

L(x) and P (y) =
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Taking § = Ck’%\/%ogq for C sufficiently large it follows for y € § and I = [a, b] that

17 (L) =11 (PO < Va—s,av81(P () + Lp—s.6+51(P(X))-

Setting Is = [a — §,a + §] U [b — 8, b + §], an application of Cauchy—Schwarz’s inequal-
ity and Proposition 1.1 gives

ST WOLED) = —— Y WL ()

w(q) e ( Nt
1 Z* 1/2
+o(—( 115(3’()())) ) 62)
ﬂ X (mod q)

By another application of Cauchy—Schwarz’s inequality and Proposition 1.1 the sums
can be extended to all primitive characters modulo ¢ at the cost of an error term of size
O((loglogq)™"). Following the proof of Theorem 1.4, an analogous argument shows that
the error term is < {0zlogloza) /2

(loglogg) /4~

It remains to estimate

3T WL (P ()

2% ( )x (mod )

Following the argument from the proof of Theorem 1.4, using Proposition 1.1 in place of
Proposition 1.3, we see that Theorem 1.2 follows once we have shown that

Z (X)eiuRe(P(x)) — E_Z

X (mod q)

%)) + O((logq)~'%), (6.3)
sow(q)

which is analogous to (4.1). Now we want to relate everything to a random setup. It is
helpful to normalize by ¢J,(¢). Recalling that ‘P;v (q) = ¢*(9)(1 + 0(g~?%)), we see that

Z 'W(X)eluRe(P(X)) Z (X)eiuRe(P(X))
x (mod q) 4 (Q)x(modq)

+0(q7 3 1wnl).

x (mod q)

(/)w(CI)

We bound the error term using Cauchy—Schwarz’s inequality and Proposition 1.1, and see
that it is acceptably small.
We argue as in Lemma 2.9 to get

Z* W(y)e!¥Re(P(0)
x (modgq)

J J / * .
- (l”/z) Z( ) 1 W) POk P + O((logg)19),
k=0

0<j=<J ¢ (Q)x(modq)

1
®*(q)
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where we have used the binomial theorem and the fact that Re(z) = %(z + Z). We open
everything up to see that the sum over y is equal to

Z V(”) Z 1
n<q19 co<prompesy VPV PRAL ik
C0<q1;--qj—k =Y

1
X
*(q)

£ 3 _—
L(z. 0x(p1--- p)x(qr---q;—k)-
x (modgq)

Since np - -+ pk, 41 -+ - qj—k are small we may show that

1
®*(q)

 yuprepi—aiear
ST LG 0x0pr - pA(qr gy g) = P

+0(q7%)
X (mod q) ﬁ

for some absolute § > 0. Since ¢; < y we note that m, n can only be composed of primes
< y,i.e. only My(y) contributes anything here in the mollifier. It follows that, by rewind-
ing everything as in the proof of Lemma 2.9, we have

R(POO) = B (L(X)Mo(X) exp(iuRe(P(X)))) + O((logqg)~'?),
@ (q)x(modq)
where
1
LX)= ) —=X(m),
plm=p=<y Vm
Am)v(n)
Mo(X) = Y =X,
pln=co<p=<y ﬁ
Q(n)<to
1
P(X) = —X(p).
We can replace Mo(X) by

~ A
Ao = ¥ k)

via Cauchy—Schwarz’s inequality and trivial estimations as in Lemma 3.10. We then wish
to compute

pln=co<p=<y

E(L(X)Mo(X)exp(iuRe(P(X)))),
and by independence this is equal to

X(»)? bX b X
1 A5 (5 o)
>0

co<p=y a>0 p
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We work with each local factor individually. We write

Re(X(p)) = 3(X(p) + X(p))

and then use Taylor expansion and the binomial theorem to see that

X(p)® D2 X(p)b . Re(X
(£ ) ole)

a>0 p
_ (=1 (iu/2) atb+d y(pye—d
o Z blelplatb+a/2\ d X(p) X(p)~
a,b,c>0
0<d<c

Taking expectations, we see we have no contribution unless ¢ + b + d = ¢ — d. We add
¢ +dtobothsidestogeta + b + ¢ +2d =2c. Write 2k =a + b +csothatc =k + d,
and then ¢ = k — b — d. After some simplification we see that

X(P)\ (s~ CVPX (PPN (- Re(X(p)
(S5 (S S )l 5))

a>0 p b>0
<zu/z>k (=DPGu/2? (k+d
=X Y S ()

k>0 b,d>0
b+d<k

The contribution from k = 0 is obviously 1. The contribution from k = 1 is, after some
work, seen to be

(iu/2?*  u?
p 4p’

The contribution from k > 2 is O(u?/ p?). Therefore (6.4) is equal to

1 (-5o()- IL-5)0+())

co<p=<y co<p<y
u? )
= exp —Tloglogy 1+ ow?)),

where in the last step we have used Taylor series expansions and Mertens’ theorem. Col-
lecting everything together establishes (6.3). Hence, following the argument of Theorem
1.4 we get

P )1’(1g|L(2’X)|) N AR +O(M),

1/4
Y (mod ) V/ 3 loglogg (loglog )

which finishes the proof. ]

P (q
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7. Upper bound for the mollified second moment

In this section we prove Proposition 1.1 for the family of even characters. The estimate
for the odd characters follows from a similar argument. We quote the following twisted
second moment of Dirichlet L-functions (see [26] and [8, Theorem 1.1]).

Lemma 7.1. Let (x,) be a sequence of real numbers supported on 1 < n < L such that
Xp K né. Then

XmXn + | _ S

L(z +a, Y)L(z + B. X)x(m) x(n)
+ / Z 2 2

¢ (q)mn<L mnx(modq)
XhmXhn
=¢(l+a+p) Z W
hm,hn<L
(mn) 1
(+8) 2 —o 2
q ( )F( ) XhmXh
+(;) L o L SmeP) 2 minia
L) (45— £y hm, hn<L

(m,n)=1
+ Og(q_1/2+8L)

uniformly for |a|, |B| < (logq)™', where ¢t (q) is the number of even primitive charac-
ters modulo q and Z+ denotes a sum over such characters.

Proof of Proposition 1.1. Since the expression in Proposition 1.1 is holomorphic in «
and B, it suffices by the maximum modulus principle to prove the proposition uniformly
over any fixed annuli such that ||, |8] < (logq)~!, |& + B| > (log ¢)~!. Applying
Lemma 7.1 we get

¢+(q) ST LG + @ LG + B DIMOPR = £(1 +a + HM(@. B)

X (mod q)
(@+8) 5«
+ (%) w;(l —a—BM(-B,—a) + Oa(q—l/2+z9+8)7 (7.1)

rEErEL)

where

_ y(hm)y(hn) wu(d)y(hdm)y(hdn)
M(a, B) = Z hmltepl+8 — Z hd2+e+Byltay1+8°
hzn,hn)Sq29 hdm,hdnsqz9
m,n)=1

By multiplicativity and the definition of the mollifier in (6.1) we have

u(d)Amn)v(hdm)v(hdn)
Z hd2tetByltay,y1+8 '

M@ p)= []
0<j<J plhdmn= pel;
Q(hdm),Q(hdn)<t;

(7.2)
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We now estimate the inner sum on the right hand side of (7.2). This is

Z u(d)A(mn)v(hdm)v(hdn) +0( 1 Z v(hdm)v(hdn))

hd2tetBmltapl+p 20 hd2?mn
plhdmn= pel;

plhdmn= pel;
The error term is

1 1 1—o(logq)°™ + 1
<o H(1+0(—)) « bmollog) T+ 1 13)

l;
pEIj p 2%

As for the main term, we write it as an Euler product

1_[ i M(pd))t(pm+n)v(ph+d+m)v(ph+d+n)

ph+(2+a+ﬂ)d+(1+a)m+(1+ﬁ)n
p€l; h,d,m,n=0

pel;
1 1 1
- H (1 ——+ 0(—?” ) + 0(—2)).
pel, P plogg P
As .
1 1 1\\~
I1 (1 -—+ O(E) + 0(—2)) < 1j—o(logq)°M + 1,
p plogg p

pel;
combining with (7.3) we obtain

- s (oeea) 7o)
M(a, B) = -~ 40 ol —
@h) H (1 p+ (plogq * p?

CO<p=x

. )
< ] (1 + 0(11=0(10g2%301 + 1))

o=<j=J

Note that the first product is =< (log¢)~! and the second product is < 1, and hence

M(a, ) < (logg)™".
In view of (7.1) we obtain the proposition. ]
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