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Abstract. Let .M; g/ be a smooth Anosov Riemannian manifold and C] the set of its primitive
closed geodesics. Given a Hermitian vector bundle E equipped with a unitary connection rE , we
define T ].E; rE / as the sequence of traces of holonomies of rE along elements of C]. This
descends to a homomorphism on the additive moduli space A of connections up to gauge T ] W

.A;˚/! `1.C]/, which we call the primitive trace map. It is the restriction of the well-known
Wilson loop operator to primitive closed geodesics.

The main theorem of this paper shows that the primitive trace map T ] is locally injective near
generic points of A when dim.M/ � 3. We obtain global results in some particular cases: flat
bundles, direct sums of line bundles, and general bundles in negative curvature under a spectral
assumption which is satisfied in particular for connections with small curvature. As a consequence
of the main theorem, we also derive a spectral rigidity result for the connection Laplacian.

The proofs are based on two new ingredients: a Livšic-type theorem in hyperbolic dynamical
systems showing that the cohomology class of a unitary cocycle is determined by its trace along
closed primitive orbits, and a theorem relating the local geometry of A to the Pollicott–Ruelle
resonance near zero of a certain natural transport operator.

Keywords. Inverse problem, holonomy, hyperbolic dynamical systems, Pollicott–Ruelle
resonances, microlocal analysis
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1. Introduction

1.1. Primitive trace map, local injectivity

Let .M; g/ be a smooth closed Riemannian Anosov manifold such as a manifold of
negative sectional curvature [2]. Recall that this means that there exists a continuous flow-
invariant splitting of the tangent bundle to the unit tangent bundle M WD SM :

TM D RX ˚Es ˚Eu;

such that
8t � 0;8v 2 Es; jd't .v/j � Ce�t� jvj;
8t � 0;8v 2 Eu; jd't .v/j � Ce�jt j� jvj;

(1.1)

where .'t /t2R is the geodesic flow on M generated by the vector field X , and the con-
stants C; � > 0 are uniform and the metric j � j is arbitrary.

Let E !M be a smooth Hermitian vector bundle. We denote by AE the affine space
of smooth unitary connections on E , and AE the moduli space of connections up to gauge
equivalence: a point a 2 AE is an orbit a WD ¹p�rE j p 2 C1.M;U.E//º of gauge-
equivalent connections, where rE 2 a is arbitrary and p�rE.�/ WD p�1rE.p �/ is the
pullback connection. We let C D ¹c1; c2; : : : º be the set of free homotopy classes of loops
on M , which is known to be in one-to-one correspondence with closed geodesics [57].
More precisely, given c 2 C , there exists a unique closed geodesic 
g.c/ � M in the
class c. It will be important to set apart primitive and non-primitive homotopy classes
(resp. closed geodesics): a free loop is said to be primitive if it cannot be homotoped to
a certain power (� 2) of another free loop. The set of primitive classes defines a subset
C] D ¹c

]
1; c

]
2; : : : º � C .

Given a class a 2AE , a unitary connectionrE 2 a and an arbitrary point xc] 2 
g.c
]/

(for some c] 2 C]), the parallel transport HolrE .c]/ 2 U.Ex
c]
/, starting at xc] , with

respect to rE and along 
g.c]/ depends on the choice of a representative rE 2 a since
two gauge-equivalent connections have conjugate holonomies. However, the trace does
not depend on the choice of rE 2 a, and therefore the primitive trace map

T ]
W AE 3 a 7!

�
Tr.HolrE .c

]
1//;Tr.HolrE .c

]
2//; : : :

�
2 `1.C]/ (1.2)

is well-defined. Observe that the data of the primitive trace map is rather weak informa-
tion: in particular, it is not (a priori) equivalent to the data of the conjugacy class of the
holonomy along each closed geodesic (and the latter is the same as the non-primitive trace
map, where one considers all closed geodesics). One of the main results of this paper is
the following:

Theorem 1.1. Let .M; g/ be a smooth Anosov Riemannian manifold of dimension � 3
and let E ! M be a smooth Hermitian vector bundle. Let a0 2 AE be a generic point.
Then the primitive trace map is locally injective near a0.
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By local injectivity, we mean the following: there exists N 2 N (independent of a0)
such that T ] is locally injective in the CN -quotient topology on AE . In other words,
for any element rE

0 2 a0, there exists " > 0 such that the following holds; if rE
1;2

are two smooth unitary connections such that kp�i r
E
i � r

E
0 kCN < " for some pi 2

C1.M;U.E//, and T ].rE
1 / D T ].rE

2 /, then rE
1 and rE

2 are gauge-equivalent.
We say that a point a is generic if it enjoys the following two features:

(A) a is opaque. By definition (see [15, Section 5]), this means that for all rE 2 a,
the parallel transport map along geodesics does not preserve any non-trivial subbun-
dle F � E (i.e. F is preserved by parallel transport along geodesics if and only if
F D ¹0º or F D E). This was proved to be equivalent to the fact that the Pollicott–
Ruelle resonance at z D 0 of the operator X WD ��rEnd

X has multiplicity equal to 1,
with resonant space C � 1E (here � W SM ! M is the projection and rEnd is the
induced connection on the endomorphism bundle; see Section 2.2 for further details).

(B) a has solenoidally injective generalized X-ray transform …
End.E/
1 on twisted 1-forms

with values in End.E/. This last assumption is less easy to describe in simple geo-
metric terms: roughly speaking, the X-ray transform is an operator of integration of
symmetricm-tensors along closed geodesics. For vector-valued symmetricm-tensors,
this might not be well-defined, and one needs a more general (hence more abstract)
definition involving the residue at z D 0 of the meromorphic extension of the family
C 3 z 7! .�X � z/�1 (see Section 2.4).

It was shown in previous articles [14, 15] that in dimension n � 3, properties (A) and (B)
are satisfied on an open dense subset ! � AE with respect to the CN -quotient topology.1

When the reference connection a only has property (A) (this is the case for the product
connection on the trivial bundle for instance), we are able to show a weak local injectivity
result; see Theorem 5.1.

We note that the gauge class of a connection is uniquely determined by the holonomies
along all closed loops [5,58] and that in mathematical physics our primitive trace map T ]

is known as the Wilson loop operator [6, 34, 68, 101]. In stark contrast, our Theorem 1.1
says that the restriction to closed geodesics of this operator already determines (locally)
the gauge class of the connection.

1More precisely, there exists N 2 N and a subset � � AE of the (affine) Fréchet space of
smooth affine connections on E such that ! D �E .�/ (where �E W AE ! AE is the projection)
and

� � is invariant by the action of the gauge group: p�� D � for all p 2 C1.M;U.E//;

� � is open: for all rE
0 2 �, there exists " > 0 such that if rE 2 AE and krE � r

E
0 kCN < ",

then rE 2 �;

� � is dense: for all rE
0 2 AE and all " > 0, there exists rE 2 � such that krE � r

E
0 kCN < ";

� connections in � satisfy properties (A) and (B).
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1.2. Global injectivity

We now mention some global injectivity results. We let Ar WD
F

Er2Vectr .M/ AEr , where
the disjoint union is taken over all Hermitian vector bundles Er 2 Vectr .M/ of rank r
over M up to isomorphism, and we set

A WD
G
r�0

Ar I

we also let Vect.M/ D
F
r�0 Vectr .M/ be the space of all topological vector bundles up

to isomorphism. A point x 2 A corresponds to a pair .ŒE�;a/, where ŒE� 2 Vect.M/ is an
equivalence class of Hermitian vector bundles and a a class of gauge-equivalent unitary
connections.2

The space A has a natural monoid structure given by the ˚-operator of taking direct
sums (both for the vector bundle part and the connection part). The primitive trace map
can then be seen as a global (monoid) homomorphism

T ]
W A! `1.C]/; (1.3)

where `1.C]/ is endowed with the obvious additive structure. We actually conjecture
that the “generic” assumption of Theorem 1.1 is unnecessary and that the primitive trace
map (1.3) should be globally injective if dim.M/ � 3 and dim.M/ is odd. Let us discuss
a few partial results supporting this conjecture:

(1) In Section 5.2.1, we show that the primitive trace map is injective when restricted to
direct sums of line bundles when dim.M/ � 3; see Theorem 5.8. Note that it was
proved by Paternain [77] that the primitive trace map restricted to line bundles, T

]
1 W

A1 ! `1.C]/, is injective when dim.M/ � 3.

(2) In Section 5.2.2, we show that the primitive trace map T ] restricted to flat connections
is globally injective; see Proposition 5.9.

(3) In Section 5.2.3, we also obtain a global result in negative curvature under an extra
spectral condition; see Proposition 5.14. This condition is generic (see Appendix A)
and is also satisfied by connections with small curvature, i.e. with curvature con-
trolled by a constant depending only on the dimension and an upper bound on the
sectional curvature of .M; g/; see Lemma 5.13.

(4) In Section 5.2.4, as a consequence of Corollary 1.4 below, we show that the primitive
trace map T ].ŒE�;a/ allows one to recover the isomorphism class ��ŒE�. In particular,
if dim.M/ is odd, this suffices to recover ŒE�; see Proposition 5.15.

2Note that if two smooth Hermitian vector bundles E1 and E2 are isomorphic as topologi-
cal vector bundles (i.e. there exists an invertible p 2 C1.M;Hom.E1; E2//), then they are also
isomorphic as Hermitian vector bundles, that is, p can be taken unitary; the choice of Hermitian
structure is therefore irrelevant.
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Theorem 1.1 is inspired by earlier work on the subject; see [45,70,77–79] for instance.
Nevertheless, it goes beyond the aforementioned literature thanks to an exact Livšic co-
cycle theorem (Theorem 1.3), explained in Section 1.4. It also belongs to a more general
family of geometric inverse results which has become a very active field of research in
the past twenty years, both on closed manifolds and on manifolds with boundary; see
[40, 80, 84, 93, 95, 98] among other references.

Theorem 1.1 can also be compared to a similar problem called the marked length
spectrum (MLS) rigidity conjecture, also known as the Burns–Katok [11] conjecture. The
latter asserts that if .M; g/ is Anosov, then the marked length spectrum

Lg W C ! RC; Lg.c/ WD `g.
g.c// (1.4)

(where `g.
/ denotes the Riemannian length of the curve 
 �M computed with respect
to the metric g), namely the length of all closed geodesics marked by the free homotopy
classes of M , should determine the metric up to isometry. Despite some partial answers
[7, 19, 44, 48, 54, 74], this conjecture is still widely open. Recently, Guillarmou and the
second author proved a local version of the Burns–Katok conjecture [44] using techniques
from microlocal analysis and the theory of Pollicott–Ruelle resonances.

1.3. Inverse spectral problem

The length spectrum of the Riemannian manifold .M; g/ is the collection of lengths of
closed geodesics counted with multiplicities. It is said to be simple if all closed geodesics
have distinct lengths, and this is known to be a generic condition (with respect to the
metric, even in the non-Anosov case; see [1, 3]). Given rE 2 a, one can form the con-
nection Laplacian �rE WD .rE/�rE (also known as the Bochner Laplacian), which is
a differential operator of order 2, non-negative, formally self-adjoint and elliptic, acting
on C1.M;E/. While �rE depends on the choice of representative rE in the class a, its
spectrum does not and there is a well-defined spectrum map

� W AE 3 a 7! spec.�a/; (1.5)

where spec.�a/ D ¹0 � �0.a/ � �1.a/ � � � � º is the spectrum counted with multiplic-
ities. Note that more generally, the spectrum map (1.5) can be defined on the whole
moduli space A (just as the primitive trace map (1.2)). The trace formula of Duistermaat–
Guillemin [26, 42] applied to �a reads (when the length spectrum is simple)

lim
t!`.
g.c//

.t � `.
g.c///
X
j�0

e�i
p
�j .a/ t D

`.
g.c
]//Tr.HolrE .c//

2�jdet.1 � P
g.c//j1=2
; (1.6)

where ] W C ! C] is the operator giving the primitive orbit associated to an orbit; P
 is
the Poincaré map associated to the orbit 
 and `.
/ its length. Theorem 1.1 therefore has
the following straightforward consequence:

Corollary 1.2. Let .M; g/ be a smooth Anosov Riemannian manifold of dimension � 3
with simple length spectrum.
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� Let E ! M be a smooth Hermitian vector bundle and a0 2 AE be a generic point.
Then the spectrum map � is locally injective near a0.

� The spectrum map � is also globally injective when restricted to cases (1)–(4) of Sec-
tion 1.2.

This corollary follows easily from Theorem 1.1 by observing that under the simple
length spectrum assumption, the primitive trace map can be recovered from the equal-
ity (1.6). Corollary 1.2 is analogous to the Guillemin–Kazhdan [46, 47] rigidity result
in which a potential q 2 C1.M/ is recovered from the knowledge of the spectrum of
��g C q (see also [20, 82]). As far as the connection Laplacian is concerned, it seems
that Corollary 1.2 is the first positive result in this direction. Counter-examples were con-
structed by Kuwabara [60] using the Sunada method [96] but on coverings of a given
Riemannian manifolds; hence the simple length spectrum condition is clearly violated.
Up to our knowledge, it is also the first positive general result in an inverse spectral prob-
lem on a closed manifold of dimension > 1 with infinite gauge group.

This gives hope that similar methods could be used in the classical problem of recov-
ering the isometry class of a metric from the spectrum of its Laplace–Beltrami operator
locally (similarly to a conjecture of Sarnak for planar domains [89]). Such a result was
already obtained in a neighbourhood of negatively-curved locally symmetric spaces by
Sharafutdinov [91]. See also [20] for the weaker deformational spectral rigidity results or
[24, 51] for recent results in the plane.

1.4. Exact Livšic cocycle theorem

The main ingredient in the proof of Theorem 1.1 is the following Livšic-type result in
hyperbolic dynamical systems, which may be of independent interest. It shows that the
cohomology class of a unitary cocycle over a transitive Anosov flow is determined by its
trace along primitive periodic orbits. We phrase it in a somewhat more general context
where we allow non-trivial vector bundles.

Theorem 1.3. Let M be a smooth manifold endowed with a smooth transitive Anosov
flow .'t /t2R. For i 2 ¹1; 2º, let Ei ! M be a Hermitian vector bundle equipped with
a unitary connection rEi , and denote by Ci .x; t/ W .Ei /x ! .Ei /'t .x/ the parallel trans-
port along the flow lines with respect to rEi . If the connections have trace-equivalent
holonomies in the sense that for all primitive periodic orbits 
 , one has

Tr.C1.x
 ; `.
/// D Tr.C2.x
 ; `.
///; (1.7)

where x
 2 
 is arbitrary and `.
/ is the period of 
 , then there exists p 2

C1.M;U.E2;E1// such that for all x 2M and t 2 R,

C1.x; t/ D p.'tx/C2.x; t/p.x/
�1: (1.8)

In the language of dynamical systems, note that every unitary cocycle is given by par-
allel transport along some unitary connection and (1.8) says that the cocycles induced by
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parallel transport are cohomologous. In particular, in the case of the trivial principal bun-
dle U.r/�M!M our theorem can be restated just in terms of U.r/-cocycles. Note that
the bundles E1 and E2 could be a priori distinct (and have different ranks) but Theorem
1.3 shows that they are actually isomorphic:

Corollary 1.4. Let E1;E2 !M be two Hermitian vector bundles equipped with respec-
tive unitary connections rE1 and rE2 . If the traces of the holonomy maps agree as
in (1.7), then E1 and E2 are isomorphic.

Theorem 1.3 has other geometric consequences which are further detailed in Sec-
tion 3.1. Livšic-type theorems have a long history in hyperbolic dynamical systems going
back to the seminal paper of Livšic [67] and appear in various settings. They were both
developed in the Abelian case, i.e. for functions (see [22, 36, 38, 67, 69] for instance) and
in the cocycle case.

Surprisingly, we could not locate any result such as Theorem 1.3 in the literature. The
closest works (in the discrete-time case) are those of Parry [75] and Schmidt [90] which
mainly inspired the proof of Theorem 1.3. Nevertheless, when considering compact Lie
groups, Parry’s and Schmidt’s results seem to be weaker as they need to assume that
the conjugacy classes of the cocycles agree (and not only the traces) and that a certain
additional cocycle is transitive in order to derive the same conclusion. The literature is
mostly concerned with the discrete-time case, namely hyperbolic diffeomorphisms: in
that case, a lot of articles are devoted to studying cocycles with values in a non-compact
Lie group (and sometimes satisfying a “slow-growth” assumption); see [4, 23, 53, 87, 88].
One can also wonder if Theorem 1.3 could be proved in the non-unitary setting. Other
articles such as [71–73,86,100] seem to have been concerned with regularity assumptions
on the map p, namely bootstrapping its regularity under some weak a priori assumption
(such as measurability only). Let us also point out at this stage that some regularity issues
will appear while proving Theorem 1.3 but they will be bypassed by the use of a recent
regularity statement [39, Theorem 4.1] in hyperbolic dynamics.

1.5. Strategy of proof

We now briefly discuss the strategy of proof for Theorem 1.1. Fix a generic unitary con-
nection rE

0 (satisfying assumptions (A) and (B)) and pick two nearby connections rE
1;2

such that
T ].rE

1 / D T ].rE
2 /: (1.9)

Our aim is to prove that there exists an isometry p 2 C1.M;U.E// such that rE
2 D

p�rE
1 D p

�1r
E
1 .p �/. Equivalently, this is the same as having

r
Hom.rE

2
;rE
1
/p D 0; (1.10)

where rHom.rE
2
;rE
1
/ is the mixed connection (see Section 2.2.1), the natural connection

induced by rE
1;2 on the endomorphism bundle End.E/ over M .
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(1) Non-Abelian Livšic theory: The first step is to lift the connections to the unit tangent
bundle � W SM ! M , namely, to consider the pullback bundle ��E ! SM and
the two pullback connections ��rE

1;2. Taking the parallel transport with respect to
the connection ��rE

i along a geodesic flow line .'s.x; v//s2Œ0;t� (for .x; v/ 2 SM )
yields a natural cocycle map Ci ..x; v/; t/ W Ex ! E�.'t .x;v// as in Section 1.4. It
is then straightforward to verify that the equality of the traces (1.9) translates into
the fact that the cocycles C1 and C2 are trace-equivalent in the sense of (1.7). As a
consequence, Theorem 1.3 implies the existence of p 2 C1.SM;U.��E// such that

C1..x; v/; t/ D p.'t .x; v//C2..x; v/; t/p.x; v/
�1; 8.x; v/ 2 SM;8t 2 R:

Differentiating the previous equality with respect to time t and taking t D 0, one finds
that this is actually equivalent to

.��r/
Hom.��rE

2
;��rE

2
/

X p D 0; (1.11)

where X is the geodesic vector field. This relation is similar to (1.10) but it holds on
the unit tangent bundle SM and not on the base manifold M . The main difficulty is
now to show that (1.11) implies (1.10); equivalently, this is the same as showing that
the isometry p does not depend on the velocity variable v in SM (only on the base
variable x).

(2) Convexity of the leading resonance: The idea is to use the well-established theory
of Pollicott–Ruelle resonances – which allows one to define a natural spectrum for
Anosov flows (that is, flows satisfying (1.1)), and more generally for transport oper-
ators over Anosov flows – and to translate (1.11) into the fact that the first order

differential operator X WD .��r/
Hom.��rE

2
;��rE

1
/

X , acting on C1.SM; ��End.E//,
has a Pollicott–Ruelle resonance at z D 0. More precisely, we can write rE

i D r
E
0 C

Ai , where Ai 2 C1.M; T �M ˝ Endsk.E// is small, with values in skew-Hermitian
endomorphisms. Then, under the generic assumptions (A) and (B), the operator X
admits a simple leading resonance �A1;A2 which is real and non-positive. Moreover,
the generic assumption also ensures that for A1 D A2 D 0, the leading resonant space
is spanned by the identity section 1E 2C

1.SM;��End.E//. The key idea is to show
by a convexity argument that j�A1;A2 j controls quantitatively the distance between
the connections rE

1 and rE
2 in the moduli space AE . In particular, (1.11) means that

the two connections satisfy �A1;A2 D 0, and thus the connections must be gauge-
equivalent.

As pointed out by the referee, the idea to use the strict convexity of the dominant
Pollicott–Ruelle resonance is reminiscent of the work of Katsuda–Sunada [56] and Polli-
cott [85]. The main difference here is that our moduli space of unitary connections AE is
infinite-dimensional and the quantitative strict convexity of �A1;A2 is given in the end by
some elliptic theory.
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1.6. Organization of the paper

The paper is divided into three parts:

� First of all, we prove in Section 3 the exact Livšic cocycle Theorem 1.3 for general
Anosov flows showing that the cohomology class of a unitary cocycle is determined
by its trace along closed orbits. The proof is based on the introduction of a new tool
which we call Parry’s free monoid, denoted by G, and is formally generated by orbits
homoclinic to a fixed closed orbit. We show that any unitary connection induces a
unitary representation of the monoid G and that trace-equivalent connections have the
same character; we can then apply tools from representation theory.

� In subsequent sections, we develop a microlocal framework, based on the theory of
Pollicott–Ruelle resonances. We define a notion of generalized X-ray transform with
values in a vector bundle, which is mainly inspired by [36, 38, 44]. In Section 4, we
relate the geometry of the moduli space of gauge-equivalent connections to the leading
Pollicott–Ruelle resonance of a certain natural operator, the mixed connection.

� Eventually, the main results such as Theorem 1.1 are proved in Section 5, where we
also deduce the global properties of T ] involving line bundles, flat bundles, negatively
curved base manifolds, and the topology of bundles.

Some technical preliminaries are provided in Section 2.

1.7. Perspectives

We intend to pursue this work in different directions:

� Since the first release of the present article on arXiv (May 2021), the notion of Parry’s
free monoid introduced in Section 3.3 has proved to be extremely powerful. In particu-
lar, it was used in the companion papers [17,65] in order to show that the frame flow of
nearly 0:25-pinched negatively-curved Riemannian manifolds is ergodic, thus almost
answering a long-standing conjecture of Brin [10, Conjecture 2.6].

� Furthermore, in [13, Theorem 4.5] we were strikingly able to show global injectivity of
the primitive trace map under a suitable low-rank assumption, by exhibiting a relation
with real algebraic geometry.

� Moreover, in [16, Theorem 1.1] we showed a stability estimate version of Theorem 1.1,
namely that the distance between connections up to gauge equivalence is controlled (at
least locally) by the distance between their images under the primitive trace map T ].

� Eventually, the arguments developed in Section 3 mainly rely on the use of homoclinic
orbits; to these orbits, we will associate a notion of length which is well-defined as an
element of R=T?Z, for some real number T? > 0. We believe that, similarly to the set
of periodic orbits where one defines the Ruelle zeta function

�.s/ WD
Y

]2G ]

.1 � e�s`.

]//;
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where the product is taken over all primitive periodic orbits 
] 2 G ] (and `.
]/ denotes
the orbit period) and one shows that this extends meromorphically from ¹Re s � 0º

to C (see [27, 35]), one could also define a complex function for homoclinic orbits
by means of a Poincaré series (rather than a product). It should be a consequence of
[99, Theorem 4.15] that this function extends meromorphically to C. It might then
be interesting to compute its value at 0; the latter might be independent of the choice
of representatives for the length of homoclinic orbits (two representatives differ by
mT? for some m 2 Z) and could be (at least in some particular cases) an interesting
topological invariant, as is the case for the Ruelle zeta function on surfaces (see [28]).

2. Setting up the tools

2.1. Microlocal calculus and functional analysis

Let M be a smooth closed manifold. Given a smooth vector bundle E !M, we denote
by ‰m.M;E/ the space of pseudodifferential operators of order m acting on E . When E

is the trivial line bundle, such an operator P 2 ‰.M/ can be written (up to a smoothing
remainder) in local coordinates as

Pf .x/ D

Z
Rn

Z
Rn
ei��.x�y/p.x; �/f .y/ dy d�; (2.1)

where f is compactly supported in the local patch and p 2 Sm.T �Rn/ is a symbol, i.e. it
satisfies the following estimates in local coordinates:

sup
j˛0j�˛; jˇ 0j�ˇ

sup
.x;�/2T �Rn

h�im�j˛
0j
j@˛
0

� @
ˇ 0

x p.x; �/j <1 (2.2)

for all ˛;ˇ 2Nn, with h�i D
p
1C j�j2. When E is not the trivial line bundle, the symbol

p is an End.E/-valued symbol, which in local coordinates and local trivializations is
identified with a matrix function. Given p 2 Sm.T �M/, one can define a (non-canonical)
quantization procedure Op W Sm.T �M/! ‰m.M/ thanks to (2.1) in coordinate patches.
This also works more generally with a vector bundle E !M and one has a quantization
map Op W Sm.T �M; End.E//! ‰m.M; E/ (note that the symbol is then a section of
the pullback bundle End.E/! T �M satisfying the bounds (2.2) in local coordinates and
local trivializations). There is a well-defined (partial) inverse map

�princ W ‰.M;E/! Sm.T �M;End.E//=Sm�1.T �M;End.E//

called the principal symbol and satisfying �princ.Op.p// D Œp� (the equivalence class as
an element of Sm.T �M;End.E//=Sm�1.T �M;End.E//).

We denote by H s.M; E/ the space of Sobolev sections of order s 2 R and by
C s�.M; E/ the space of Hölder–Zygmund sections of order s 2 R. It is well-known that
for s 2 RC nN, C s� coincides with the space C s of Hölder-continuous section of order s.
Recall that C s� is an algebra as long as s > 0 and H s is an algebra for s > n=2. If
P 2 ‰m.M; E/ is a pseudodifferential operator of order m 2 R, then for X D H , C�,
P W X sCm.M;E/! X s.M;E/, is bounded. We refer to [92, 97] for further details.
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2.2. Connections on vector bundles

We refer the reader to [25, Chapter 2] for the background on connections on vector
bundles.

2.2.1. Mixed connection on the homomorphism bundle. In this subsection, we consider
two Hermitian vector bundles E1;E2 !M equipped with respective unitary connections
r1Dr

E1 andr2DrE2 which can be written in some local patchU �Rn of coordinates
and in local trivializations of the bundles as rEi D d C �i for some �i 2 C1.U;T �U ˝
Endsk.Ei //. Let Hom.E1; E2/ be the vector bundle of homomorphisms from E1 to E2,
endowed with the natural Hermitian structure.

Definition 2.1. We define the (unitary) homomorphism connection, or mixed connection,
rHom.rE1 ;rE2 / on Hom.E1;E2/, induced by rE1 and rE2 , by the Leibniz property:

8u 2 C1.M;Hom.E1;E2//;8s 2 C1.M;E1/;

r
E2.us/ D .rHom.rE1 ;rE2 /u/ � s C u � .rE1s/:

Equivalently, it is straightforward to check that this is the canonical tensor product
connection induced on Hom.E1; E2/ Š E2 ˝ E�1 and that in local coordinates and local
trivializations we have

r
Hom.rE1 ;rE2 /u WD duC �2.�/u � u�1.�/: (2.3)

Note that this definition does not require the bundles to have the same rank; we stress
that the mixed connection rHom.r1;r2/ depends on the choice of connections r1 and r2.
When E1 D E2 D E and rE

1 D r
E
2 D r

E we will write rEnd.rE / D rHom.rE ;rE / for the
induced endomorphism connection on End.E/. When clear from the context, we will also
write rEnd.E/ for the endomorphism connection induced by rE . The homomorphism and
endomorphism connections will play a central role in the upcoming sections.

Given a flow .'t /t2R, we will denote by

P.x; t/ W Hom.E1x ;E2x/! Hom.E1't .x/;E2't .x//

the parallel transport with respect to the mixed connection along the flow lines of .'t /t2R.
This parallel transport has a clear geometric meaning: in fact, for u 2 Hom.E1x ;E2x/, we
have

P.x; t/u D C2.x; t/uC1.x; t/
�1; (2.4)

where Ci .x; t/ W Eix ! Ei't .x/ is the parallel transport with respect to rEi along the flow
lines of .'t /t2R.

Recall that the curvature tensor Fr 2 C1.M; ƒ2.T �M/˝ End.E// of r D rE is
defined, for any vector fields X; Y on M and sections S of E , as

Fr.X; Y /S D rXrY S � rYrXS � rŒX;Y �S:
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Then a quick computation using (2.3) reveals that

F
rHom.r1;r2/u D Fr2 � u � u � Fr1 : (2.5)

Eventually, using the Leibniz property, we observe that if pi 2 C1.M;U.E 0i ;Ei // is an
isomorphism, then

r
Hom.r1;p�2r2/u D .p2/

�1
r

Hom.r1;r2/.p2u/; 8u 2 C
1.M;Hom.E1;E 02//;

r
Hom.p�

1
r1;r2/u D rHom.r1;r2/.up�11 / � p1; 8u 2 C1.M;Hom.E 01;E2//:

(2.6)

2.2.2. Ambrose–Singer formula. Recall that the celebrated Ambrose–Singer formula (see
e.g. [59, Theorem 8.1]) determines the tangent space at the identity of the holonomy
group with respect to an arbitrary connection, in terms of its curvature tensor. Here we
give an integral version of this fact. We start with a Hermitian vector bundle E over the
Riemannian manifold .M; g/. Equip E with a unitary connection r D rE .

Consider a smooth homotopy � W Œ0; 1�2 !M such that �.0; 0/ D p. The “vertical”
map C".s; t/ W Ep ! E�.s;t/ is obtained by parallel transport with respect to r from Ep to
E�.0;1/, then E�.0;1/ to E�.s;1/ and E�.s;1/ to E�.s;t/, along �.0; �/, �.�; 1/ and �.s; �/,
respectively. Next, define the “horizontal” map C!.s; t/ W Ep ! E�.s;t/ by parallel trans-
port with respect to r from Ep to E�.s;0/ and E�.s;0/ to E�.s;t/, along �.�; 0/ and �.s; �/,
respectively. For a better understanding, see Figure 1.

s

t

p �.1;0/

�.0;1/ �.1;1/

�.s; t/

�.s; 0/

�.s; 1/

Fig. 1. The homotopy � in Lemma 2.2 with the corresponding points in M: the parallel transport
maps C" (vertical) and C! (horizontal) are taken, respectively, along blue and red trajectories.

We are ready to prove the formula:

Lemma 2.2. The following formula holds:

C�1
"
.1; 1/C!.1; 1/ � 1Ep D

Z 1

0

Z 1

0

C".s; t/
�1Fr.@t ; @s/C!.s; t/ dt ds: (2.7)
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Proof. Let w1; w2 2 Ep; formally, we will identify the connection r with its pullback
��r on the pullback bundle ��E over Œ0; 1�2, as well as the curvature Fr with ��Fr .
Then we have the following chain of equalities:

hw1; .C".1; 1/
�1C!.1; 1/ � 1Ep /w2i

D hC".1; 1/w1; C!.1; 1/w2i � hC".0; 1/w1; C!.0; 1/w2i

D

Z 1

0

@shC".s; 1/w1; C!.s; 1/w2i ds

D

Z 1

0

hC".s; 1/w1;r@sC!.s; 1/w2i ds

D

Z 1

0

�Z 1

0

�
@t hC".s; t/w1;r@sC!.s; t/w2i C hC".s; 0/w1;r@sC!.s; 0/w2i

�
dt

�
ds

D

Z 1

0

Z 1

0

hC".s; t/w1;r@tr@sC!.s; t/w2i ds dt

D

Z 1

0

Z 1

0

hw1; C".s; t/
�1 .r@tr@s � r@sr@t /„ ƒ‚ …

DFr .@t ;@s/

C!.s; t/w2i ds dt;

as the Lie bracket Œ@s; @t � is 0 and we have used the unitarity of r throughout. This
completes the proof, since w1 and w2 were arbitrary.

We have two applications in mind for this lemma: one if 
 is in a neighbourhood of p
and we use the radial homotopy via geodesics emanating from p, and the second one for
the “thin rectangle” obtained by shadowing a piece of the flow orbit; see Lemma 3.14.

2.3. Fourier analysis in the fibres

In this subsection, we recall some elements of Fourier analysis in the fibres and refer to
[45–47, 81, 83] for further details.

2.3.1. Analysis on the trivial line bundle. Let .M; g/ be a smooth Riemannian manifold
of arbitrary dimension n � 2. The unit tangent bundle is endowed with the natural Sasaki
metric and we let � W SM ! M be the projection on the base. There is a canonical
splitting of the tangent bundle to SM :

T .SM/ D H˚ V ˚RX;

where X is the geodesic vector field, V WD ker d� is the vertical space and H is the
horizontal space; the latter can be defined as the orthogonal to V ˚ RX with respect to
the Sasaki metric (see [76, Chapter 1]). Any vector Z 2 T .SM/ can be decomposed as

Z D ˛.Z/X CZH CZV ;
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where ˛ is the Liouville 1-form, ZH 2 H and ZV 2 V . If f 2 C1.SM/, its gradient
computed with respect to the Sasaki metric can be written as

rSasf D .Xf /X CrHf CrVf;

where rHf 2 H is the horizontal gradient, rVf 2 V is the vertical gradient. We also
let N ! SM be the normal bundle whose fibre over each .x; v/ 2 SM is .R � v/?. The
bundles H and V may be naturally identified with N (see [76, Section 1]).

For every x 2 M , the sphere SxM D ¹v 2 TxM j jvj2x D 1º � SM endowed with
the Sasaki metric is isometric to the canonical sphere .Sn�1; gcan/. We denote by �V the
vertical Laplacian obtained for f 2 C1.SM/ as�Vf .x; v/D�gcan.f jSxM /.v/, where
�gcan is the spherical Laplacian. For m � 0, we denote by �m the (finite-dimensional)
vector space of spherical harmonics of degree m for the spherical Laplacian �gcan ; they
are defined as the elements of ker.�gcan Cm.mC n� 2//. We will use the convention that
�m D ¹0º if m < 0. If f 2 C1.SM/, it can be decomposed as f D

P
m�0 fm, where

fm 2 C
1.M;�m/ is the L2-orthogonal projection of f onto the spherical harmonics of

degree m.
There is a one-to-one correspondence between trace-free symmetric tensors of degree

m and spherical harmonics of degree m. More precisely, the map

��m W C
1.M;

Nm
S T

�M j0-Tr/! C1.M;�m/;

given by ��mf .x; v/ D fx.v; : : : ; v/ is an isomorphism. Here, the index 0-Tr denotes the
space of trace-free symmetric tensors, that is, tensors f such that if .e1; : : : ; en/ denotes
a local orthonormal frame of TM then

Tr.f / WD
nX
iD1

f .ei ; ei ; �; : : : ; �/ D 0:

We will denote by �m� W C1.M;�m/! C1.M;
Nm
S T
�M j0-Tr/ the adjoint of this map.

More generally, the mapping

��m W C
1.M;

Nm
S T

�M/!
L
k�0 C

1.M;�m�2k/ (2.8)

is an isomorphism. We refer to [15, Section 2] for further details.
The geodesic vector field acts as

X W C1.M;�m/! C1.M;�m�1/˚ C
1.M;�mC1/

(see [47, 83]). We define XC as the L2-orthogonal projection of X on the higher modes
�mC1: if u 2 C1.M;�m/, then XCu WD .Xu/mC1, and X� as the L2-orthogonal pro-
jection of X on the lower modes �m�1. For m � 0, the operator XC W C1.M;�m/!
C1.M;�mC1/ is elliptic and thus has a finite-dimensional kernel (see [21]). The operator
X� W C

1.M;�m/! C1.M;�m�1/ is of divergence type. The elements in the kernel
of XC are called conformal Killing tensors (CKTs), associated to the trivial line bundle.
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For m D 0, the kernel of XC on C1.M;�0/ always contains the constant functions. We
define non-trivial CKTs to be those elements in kerXC which are not constant functions
on SM . The kernel of XC is invariant under changing the metric by a conformal factor
(see [45, Section 3.6]). It is known (see [83]) that there are no non-trivial CKTs in nega-
tive curvature and for Anosov surfaces but the question remains open for general Anosov
manifolds. We provide an affirmative answer to this question generically as a byproduct
of our work [14].

2.3.2. Twisted Fourier analysis. We now consider a Hermitian vector bundle with a uni-
tary connection .E;rE/ over .M; g/ and define the operator X WD .��rE/X acting on
C1.SM;��E/, where � W SM !M is the projection. For the sake of simplicity, we will
drop the �� in the following. If f 2 C1.SM;E/, then rEf 2 C1.SM;T �.SM/˝ E/

and we can write
r

Ef D .Xf;rHf;rVf /;

where rHf 2 C
1.SM;H� ˝ E/ and rVf 2 C

1.SM;V � ˝ E/. For future reference,
we introduce a bundle endomorphism map R on N ˝ E , derived from the Riemann cur-
vature tensor via the formula R.x; v/.w ˝ e/ D .Rx.w; v/v/˝ e.

If .e1; : : : ; er / is a local orthonormal frame of E , then we define the vertical Laplacian
as

�E
V

� rX
kD1

ukek

�
WD

rX
kD1

.�Vuk/ek :

Any section f 2 C1.SM; E/ can be decomposed as f D
P
m�0 fm, where fm 2

ker.�E
V Cm.mC n � 2//, and we define

C1.M;�m ˝ E/ WD ker.�E
V Cm.mC n � 2// \ C

1.SM;E/:

Here again, the operator

X W C1.M;�m ˝ E/! C1.M;�m�1 ˝ E/˚ C1.M;�mC1 ˝ E/

can be split into XDX�CX�. For everym� 0, the operator XC is elliptic and has finite-
dimensional kernel, whereas X� is of divergence type. The kernel of XC is invariant under
a conformal change of the metric (see [45, Section 3.6]) and elements in its kernel are
called twisted conformal Killing tensors (twisted CKTs). For simplicity we will often drop
the word twisted and refer to the latter as CKTs. There are examples of vector bundles
with CKTs on manifolds of arbitrary dimension. We proved in a companion paper [15]
that the non-existence of CKTs is a generic condition, regardless of the curvature of the
manifold (generic with respect to the connection, i.e. there is a residual set of the space of
all unitary connections with regularity C k , k � 2, which has no CKTs).

It is also known [45] that in negative curvature, there are always a finite number
of degrees with CKTs (and their number can be estimated thanks to a lower bound on
the curvature of the manifold and the curvature of the vector bundle). In other words,
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ker XCjC1.SM;E/ is finite-dimensional. The proof relies on an energy identity called the
Pestov identity. This is also known for Anosov surfaces since any Anosov surface is con-
formally equivalent to a negatively-curved surface and CKTs are conformally invariant.
Nevertheless, to the best of our knowledge, it is still an open question whether for Anosov
manifolds of dimension n � 3, there are at most finitely many CKTs.

2.4. Twisted symmetric tensors

Given a section u 2 C1.M;
Nm
S T

�M ˝ E/, the connection rE produces an element
rEu 2 C1.M; T �M ˝ .

Nm
S T

�M/ ˝ E/. In coordinates, if .e1; : : : ; er / is a local
orthonormal frame for E and rE D d C � , for some 1-form � with values in skew-
Hermitian matrices, such that rEek D

Pn
iD1

Pr
lD1 �

l
ik
dxi ˝ el , we have

r
E
� rX
kD1

uk ˝ ek

�
D

rX
kD1

.ruk ˝ ek C uk ˝r
Eek/

D

rX
kD1

�
ruk C

rX
lD1

nX
iD1

�kilul ˝ dxi

�
˝ ek ; (2.9)

where uk 2C1.M;
Nm
S T
�M/ andr is the Levi-Civita connection. The symmetrization

operator �E W C1.M;
Nm

T �M ˝ E/! C1.M;
Nm
S T

�M ˝ E/ is defined by

�E
� rX
kD1

uk ˝ ek

�
D

rX
kD1

�.uk/˝ ek ;

where uk 2C1.M;
Nm
S T
�M/ and in coordinates, writing uk D

Pn
i1;:::;imD1

u
.k/
i1:::im

dxi1
˝ � � � ˝ dxim , we have

�.dxi1 ˝ � � � ˝ dxim/ D
1

mŠ

X
�2Sm

dx�.i1/ ˝ � � � ˝ dx�.im/;

where Sm denotes the group of permutations of order m. For the sake of simplicity,
we will write � instead of �E . We can symmetrize (2.9) to produce an element DE WD

�rEu 2 C1.M;
NmC1
S T �M ˝ E/ given in coordinates by

DE
� rX
kD1

uk ˝ ek

�
D

rX
kD1

�
Duk C

rX
lD1

nX
iD1

�kil�.ul ˝ dxi /
�
˝ ek ; (2.10)

whereD WD �r is the usual symmetric derivative of symmetric tensors.3 Elements of the
form Du 2 C1.M;

NmC1
S T �M/ are called potential tensors. By comparison, we will

call elements of the form DEf 2 C1.M;
NmC1
S T �M ˝ E/ twisted potential tensors.

3Beware of the notation: rE is for the connection, DE for the symmetric derivative of tensors
and rEnd.E/ is the connection induced by rE on the endomorphism bundle.
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The operator DE is a first order differential operator and its expression can be read off
from (2.10):

�princ.D
E/.x; �/ �

� rX
kD1

uk.x/˝ ek.x/
�
D

rX
kD1

.�princ.D/.x; �/ � uk.x//˝ ek.x/

D i

rX
kD1

�.� ˝ uk.x//˝ ek.x/;

where ek.x/ 2 Ex ; uk.x/ 2
Nm
S T
�
xM and the basis .e1.x/; : : : ; er .x// is assumed to be

orthonormal for the metric h on E . One can check that this is an injective map, which
means thatDE is a left-elliptic operator and can be inverted on the left modulo a smooth-
ing remainder. Its kernel is finite-dimensional and consists of smooth elements.

Before, we introduce, for m 2 N, the operator

��m W C
1.M;

Nm
S T

�M ˝ E/! C1.SM;��E/;

defined by

��m

� rX
kD1

uk ˝ ek

�
.x; v/ WD

rX
kD1

.uk/x.v; : : : ; v/ek.x/:

Similarly to (2.8), the following mappings are isomorphisms (see [15, Section 2]):

��m W C
1.M;

Nm
S T

�M ˝ E/!
L
k�0 C

1.M;�m�2k ˝ E/;

��m W C
1.M;

Nm
S T

�M j0-Tr ˝ E/! C1.M;�m ˝ E/:

We recall the notation .��rE/X WD X. The following remarkable commutation property
holds (see [15, Section 2]):

8m 2 Z�0; ��mC1D
E
D X��m: (2.11)

The vector bundle
Nm
S T

�M ˝ E is naturally endowed with a canonical fibrewise
metric induced by the metrics g and h which allows us to define a natural L2 scalar
product. The L2 formal adjoint .DE/� of DE is of divergence type (in the sense that its
principal symbol is surjective for every .x; �/ 2 T �M n ¹0º; see [15, Definition 3.1] for
further details). We call the elements in its kernel twisted solenoidal tensors.

By ellipticity of DE , for any twisted m-tensor f there exist unique p 2 .kerDE/? \

C1.M;
Nm�1
S T �M ˝ E/ and h 2 C1.M;

Nm
S T

�M ˝ E/ such that

f D DEp C h; .DE/�h D 0: (2.12)

This decomposition bears resemblance to the Hodge decomposition of differential forms;
we also note that (2.12) could be extended to other regularities. We define �ker.DE /�f

WD h as theL2-orthogonal projection on twisted solenoidal tensors. This can be expressed
as

�ker.DE /� D 1 �DE Œ.DE/�DE ��1.DE/�; (2.13)
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where Œ.DE/�DE ��1 is the resolvent of the operator .DE/�DE (defined as follows:
Œ.DE/�DE ��1 D 0 on ker .DE/�DE , and on the L2-orthogonal complement of this ker-
nel it is given by the genuine inverse of .DE/�DE , well-defined by Fredholm theory of
elliptic operators).

2.5. Pollicott–Ruelle resonances

We explain the link between the widely studied notion of Pollicott–Ruelle resonances (see
for instance [12, 27, 29–31, 37, 66]) and the notion of (twisted) conformal Killing tensors
introduced in the previous subsection. We also refer to [15] for an extensive discussion of
this.

2.5.1. Definition of resolvents. Let M be a smooth manifold endowed with a vector field
X 2 C1.M; TM/ generating an Anosov flow in the sense of (1.1). Throughout this
subsection, we will always assume that the flow is volume-preserving. It will be important
to consider the dual decomposition to (1.1),

T �.M/ D RE�0 ˚E
�
s ˚E

�
u ;

where E�0 .Es ˚ Eu/ D 0; E
�
s .Es ˚RX/ D 0; E�u.Eu ˚RX/ D 0. As before, we con-

sider a vector bundle E !M equipped with a unitary connection rE and set X WD rE
X .

SinceX preserves a smooth measure d� and rE is unitary, the operator X is skew-adjoint
on L2.M;EI d�/, with dense domain

DL2 WD ¹u 2 L
2.M;EI d�/ j Xu 2 L2.M;EI d�/º: (2.14)

Its L2-spectrum consists of the absolutely continuous spectrum iR and of embedded
eigenvalues. We introduce the resolvents

RC.z/ WD .�X � z/�1 D �
Z 1
0

e�tze�tX dt;

R�.z/ WD .X � z/�1 D �
Z 0

�1

ezte�tX dt;
(2.15)

initially defined for Re z > 0. (Let us stress the conventions used here: �X is associated
to the positive resolvent RC.z/ whereas X is associated to the negative one, R�.z/.) Here
e�tX denotes the propagator of X, that is, the parallel transport by rE along the flow lines
of X . If X D X is simply the vector field acting on functions (i.e. E is the trivial line
bundle), then e�tXf .x/ D f .'�t .x// is simply the composition with the flow.

There exists a family H s
˙

of Hilbert spaces called anisotropic Sobolev spaces, indexed
by s > 0, such that the resolvents can be meromorphically extended to the whole complex
plane by making X act on H s

˙
. The poles of the resolvents are called the Pollicott–Ruelle

resonances and have been widely studied in [12, 27, 29–31, 37, 66]. Note that the res-
onances and the resonant states associated to them are intrinsic to the flow and do not
depend on any choice of construction of the anisotropic Sobolev spaces. More precisely,
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there exists a constant c > 0 such that R˙.z/ 2L.H s
˙
/ are meromorphic in ¹Rez >�csº.

For RC.z/ (resp. R�.z/), the space H s
C (resp. H s

�) consists of distributions which are
microlocally H s in a neighborhood of E�s (resp. microlocally H s in a neighborhood
of E�u ) and microlocally H�s in a neighborhood of E�u (resp. microlocally H�s in a
neighborhood of E�s ; see [27, 30]). These spaces also satisfy .H s

C/
0 D H s

� (where one
identifies the spaces using the L2-pairing).

From now on, we will assume that s is fixed and small enough, and set H˙ WD H s
˙

.
We have

H s
� H˙ � H

�s; (2.16)

and there is a certain strip ¹Re z > �"stripº (for some "strip > 0) on which z 7! R˙.z/ 2
L.H˙/ is meromorphic (and the same holds for small perturbations of X).

These resolvents satisfy the following equalities on H˙, for z not a resonance:

R˙.z/.�X � z/ D .�X � z/R˙.z/ D 1E : (2.17)

Given z 2 C which not a resonance, we have

RC.z/� D R�.z/; (2.18)

which is understood in the following way: given f1; f2 2 C1.M;E/, we have

hRC.z/f1; f2iL2 D hf1;R�.z/f2iL2 :

We will always use this convention for the definition of the adjoint.
Since the connections are unitary and the flow preserves a smooth measure, the propa-

gators e�tX preserve the norm in L2.M;EId�/. As a consequence, the integrals in (2.15)
converge when Re z > 0 and thus we obtain the following statement that we record for
future purposes:

the resonance spectrum of˙X is contained in ¹z 2 C j Re z � 0º: (2.19)

A point z0 2 C is a resonance for �X (resp. X), i.e. is a pole of z 7! RC.z/
(resp. R�.z/) if and only if there exists a non-zero u 2 H s

C (resp. H s
�) for some s > 0

such that �Xu D z0u (resp. Xu D z0u). If 
 is a small counterclockwise oriented circle
around z0, then the spectral projector onto the resonant states is

…˙z0 D �
1

2�i

Z



R˙.z/ dz D
1

2�i

Z



.z ˙ X/�1 dz;

where we abuse notation by writing �.XC z/�1 (resp. .X � z/�1) for the meromorphic
extension of RC.z/ (resp. R�.z/).

2.5.2. Resonances at z D 0. By the above, in a neighborhood of z D 0 we can write the
following Laurent expansion (beware of the conventions):

RC.z/ D �RC0 �
…C0
z
CO.z/
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(or in other words, using our abuse of notation, .XC z/�1 D RC0 C…
C
0 =z CO.z/) and

R�.z/ D �R�0 �
…�0
z
CO.z/

(or in other words, .z �X/�1DR�0 C…
�
0 =zCO.z/). As a consequence, these equalities

define the two operators R˙0 as the holomorphic part (at z D 0) of the resolvents �R˙.z/.
We introduce

… WD RC0 C R�0 : (2.20)

Lemma 2.3. We have .RC0 /
� D R�0 and .…C0 /

� D …�0 D …
C
0 . Thus … is formally self-

adjoint. Moreover, it is non-negative in the sense that for all f 2C1.M;E/, h…f;f iL2 D
hf;…f iL2 � 0. Also, h…f; f i D 0 if and only if …f D 0 if and only if f D XuC v for
some u 2 C1.M;E/ and v 2 ker XjH˙ .

Proof. See [15, Lemma 5.1].

We also record for clarity the following identities:

…˙0 RC0 D RC0 …
˙
0 D 0;…

˙
0 R�0 D R�0…

˙
0 D 0;

X…˙0 D …
˙
0 X D 0;XRC0 D RC0 X D 1 �…C0 ;�XR�0 D �R�0X D 1 �…�0 :

(2.21)

2.5.3. Perturbation theory of resonances. We will need to apply the framework of
Pollicott–Ruelle resonances to connections with finite regularity. Let rE

0 be an arbitrary
unitary connection of regularity C s� (with s > 1) on a smooth Hermitian vector bundle
E ! M and define the first order differential operator X0 WD .r0/EX acting on sections
of E .

Lemma 2.4. There exists a constant C > 0, depending only on the vector field X , and
anisotropic Sobolev spaces H˙, such that the resolvents z 7! R˙.z/ D .�X0 � z/�1 2
L.H˙/ admit a meromorphic extension from ¹Re z � 0º to ¹Re z � �Csº.

For a proof, we refer to the article by Guedes Bonthonneau–de Poyferré–Guillarmou
[41, Theorem 3] (we note however that less precise statements were obtained by microlo-
cal methods also by Dyatlov–Zworski, see for instance [27, Remark (i) on page 4]). It is
also immediate to extend the perturbation theory of Pollicott–Ruelle resonances of Bon-
thonneau [8, Corollary 1.2] to finite regularity (in fact, our case is easier to handle because
the perturbations we consider are by order zero terms):

Lemma 2.5. Let C > 0 and H˙ be as in Lemma 2.4. Let z0 2 C with Re z0 > �Cs be a
Pollicott–Ruelle resonance of�X0 and 
 be a small contour around z0 enclosing no other
resonances of �X0. Then there exist " > 0 and s0 � 1 such that for any s > s0, and any
connection rE D r

E
0 C A for some A 2 C s�.M; T �M˝ End.E// such that kAkC s� < ",

the projector

…A WD
1

2�i

I



.�X � z/�1dz
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is well-defined, and the mapA 7!…A 2L.HC/ isC1-regular with locally constant rank;
here XA WD X0 C VA D rE

X and VA WD A.X/. Moreover, the map A 7! �A associating
to A the sum of the resonances of �XA enclosed by 
 .with multiplicities/ is smooth near
A D 0.

Proof. We sketch the proof for the convenience of the reader. Note that for any s > s1,
the multiplication map

C s�.M;End.E// �H˙ 3 .V; u/ 7! V u 2 H˙ (2.22)

is continuous; this follows from [41, Section 2].
Note that VA D A.X/ 2 C s�.M; End.E//. Then for any z in a small neighbourhood

of 
 ,
X0 C VA C z D .X0 C z/.1C .X0 C z/�1VA/

and so by (2.22), the map k.X0 C z/�1V kHC!HC has norm smaller than 1 if " is small
enough, so the operator 1C .X0 C z/�1VA is invertible on the domain DC D ¹u 2HC j

X0u 2HCº (note that X0VA D ŒX0; VA�C VAX0 where ŒX0; VA� 2 C s�1� .M;End.E//, so
the domain DC is invariant under multiplication with V when s > s1 C 1). This implies
that X0 C VA C z W DC ! HC is invertible for z in a neighbourhood of 
 , with inverse
bounded by some uniform constant.

Therefore…A is well-defined and we may differentiate to get, in the direction of some
B 2 C s�.M; T �M ˝ End.E//,

DB…A D
1

2�i

I



.�XA � z/�1VB.�XA � z/�1dz:

It follows from (2.22) that kDB…AkHC!HC � C1kVBkHC!HC � C2kBkC s� for some
uniform constants C1; C2 > 0. This shows that A 7! …A 2 L.HC/ is C 1, and iterating
this argument shows that in fact this map is smooth.

To show that the rank of …A is locally constant we refer to [8, Section 4] (see also
[18, Section 6]). Finally, consider a basis .ui /riD1 �HC of �X0 of (generalized) resonant
states, where r is the rank of …0. Then the map A 7! .…Aui /

r
iD1 2HC is smooth and so

for small enough ", the sequence .…Aui /riD1 is a basis of the range of…A (of generalized
resonant states of �XA). The map �XA acts on the range of…A by definition and so since
�A equals the trace of �XA in the constructed smooth basis, this gives the smoothness
of �A.

2.6. Generalized X-ray transform

The discussion is carried out here in the closed case, but could also be generalized to the
case of a manifold with boundary. We introduce the operator

… WD RC0 C R�0 ;

where RC0 (resp. R�0 ) denotes the holomorphic part at 0 of �RC.z/ (resp. �R�.z/) and
…C0 is theL2-orthogonal projection on the (smooth) resonant states at 0. Such an operator
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was first introduced in the non-twisted case by Guillarmou [38]. The operator …C…C0
is the derivative of the (total) L2-spectral measure at 0 of the skew-adjoint operator X.

Definition 2.6 (Generalized X-ray transform of twisted symmetric tensors). We define
the generalized X-ray transform of twisted symmetric tensors as the operator

…m WD �m�.…C…
C
0 /�

�
m:

In what follows, we will mostly use this operator with m D 1. In this case, the oper-
ator …1 takes a 1-form with values in some bundle E , pulls it back onto the unit tangent
bundle to a spherical harmonic of degree 1 twisted by some bundle (��1 -operator), then
“averages” this spherical harmonic along the geodesic flow lines (.…C…C0 /-operator)
and then selects the first spherical harmonic of this distribution in order to give a twisted
1-form on the base manifoldM (�1�-operator). We remark that when we want to empha-
size the dependence of …m on a connection rE , we will write …r

E

m (this will appear in
particular in Section 4.3).

Remark 2.7. This also allows us to define a generalized (twisted) X-ray transform …m

for an arbitrary unitary connection rE on E . Indeed, it is not clear a priori whether one
sticks to the usual definition of the X-ray transform that one can find a “natural” candidate
for the X-ray transform on twisted tensors. For instance, one could consider the map

C 3 
 7! Ir
E

m f .
/ WD
1

`.
/

Z `.
/

0

.e�tXf /.x
 ; v
 / dt 2 Ex
 ;

where 
 2 C is a closed geodesic and .x
 ; v
 / 2 
 . However, this definition does
depend on the choice of a base point .x
 ; v
 / 2 
 and it would no longer be true that
Ir

E

m .DEp/.
/ D 0 unless the connection is transparent.

By (2.11) and (2.21), we have the equalities

.DE/�…m D 0 D …mD
E ; (2.23)

showing that …m maps the set of twisted solenoidal tensors to itself. We say that the
generalized X-ray transform is solenoidally injective (s-injective) on m-tensors if for all
u 2 C1.SM;E/ and f 2 C1.M;

Nm
S T

�M ˝ E/,

Xu D ��mf H) 9p 2 C1.M;
Nm�1
S T �M ˝ E/ such that f D DEp: (2.24)

Lemma 2.8. The generalized X-ray transform is s-injective on m-tensors if and only if
…m is injective on solenoidal tensors .if this holds, we say …m is s-injective/.

Proof. Assume that …mf D 0 and f is a twisted solenoidal m-tensor. Then

h…mf; f iL2 D h…�
�
mf; �

�
mf iL2 C h…

C
0 �
�
mf; �

�
mf iL2 D 0:

Both terms on the right hand side are non-negative by Lemma 2.3, hence both vanish, and
the same lemma implies that …��mf D 0 and …C0 �

�
mf D 0. Thus Xu D ��mf for some
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smooth u, so by the s-injectivity of the generalized X-ray transform, f is potential, which
implies f D 0.

The other direction is obvious by (2.21).

Next, we show …m enjoys good analytical properties:

Lemma 2.9. The operator …m W C
1.M;

Nm
S T

�M ˝ E/! C1.M;
Nm
S T

�M ˝ E/

has the following properties:

(1) …m is a pseudodifferential operator of order �1,

(2) …m is formally self-adjoint and elliptic on twisted solenoidal tensors .its Fredholm
index is thus equal to 0 and its kernel and cokernel are finite-dimensional/,

(3) If …m is s-injective, then the following stability estimates hold:

8s 2 R; 8f 2 H s.M;
Nm
S T

�M ˝ E/; k�ker.DE /�f kH s � Csk…mf kH sC1 ;

for some Cs > 0, and for some C > 0,

8f 2 H�1=2.M;
Nm
S T

�M ˝ E/; h…mf; f iL2 � Ck�ker .DE /�f k
2
H�1=2

:

In particular, these estimates hold if .M; g/ has negative curvature and rE has no
twisted CKTs.

Point (3) is a quantitative improvement of the following statement: …mf D 0; f 2

ker .DE/� ) f D 0, i.e. it provides a stability estimate for the X-ray transform (see
Lemma 2.8 for the relation between …m and the X-ray transform).

Proof of Lemma 2.9. The first two points follow from a rather straightforward adaptation
of the proof of [64, Theorem 2.5.1] (see also [38] for the original arguments); we omit it.
It remains to prove the third point.

The first estimate follows from .2/, the elliptic estimate and the fact that …m is s-
injective. The last estimate in the non-twisted case follows from [43, Lemma 2.1] (or [64,
Theorem 2.5.6]) and subsequent remarks; the twisted case follows by minor adaptations.

If .M; g/ has negative curvature and rE has no twisted CKTs, using Lemma 2.8 and
[45, Sections 4, 5] we find that …m is s-injective, proving the claim.

3. Exact Livšic cocycle theory

We phrase this section in a very general context which is that of a transitive Anosov flow
on a smooth manifold. It is independent of the rest of the article.

3.1. Statement of the results

3.1.1. A weak exact Livšic cocycle theorem. Let M be a smooth closed manifold
endowed with a flow .'t /t2R with infinitesimal generatorX 2 C1.M; TM/. We assume
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that the flow is Anosov in the sense of (1.1) and that it is transitive, that is, it admits a
dense orbit.4 We denote by G the set of all periodic orbits for the flow and by G ] the set of
all primitive orbits, which cannot be written as a shorter orbit to some positive power� 2.

Let .E;rE/ be a smooth Hermitian vector bundle of rank r equipped with a unitary
connection rE . We will denote by

C.x; t/ W Ex ! E't .x/

the parallel transport along the flow lines of .'t /t2R with respect to the connection rE .
In the more general setting, we may consider two Hermitian vector bundles E1;E2!M,
equipped with unitary connections rE1 and rE2 . Recall that if rE2 D p�rE1 for some
unitary map p 2 C1.M; U.E2; E1//,5 i.e. the connections are gauge-equivalent, then
parallel transport along the flow lines of .'t /t2R satisfies the commutation relation

C1.x; t/ D p.'tx/C2.x; t/p.x/
�1:

We say that such cocycles are cohomologous. In particular, given a closed orbit 
 D
.'tx0/t2Œ0;T � of the flow, one has

C1.x0; T / D p.x0/C2.x0; T /p.x0/
�1;

i.e. the parallel transport maps are conjugate.

Definition 3.1. We say that the connections rE1;2 have trace-equivalent holonomies if
for all primitive closed orbits 
 2 G ], we have

Tr.C1.x
 ; `.
/// D Tr.C2.x
 ; `.
///; (3.1)

where x
 2 
 is arbitrary and `.
/ is the period of 
 .

This condition could be a priori obtained with rank.E1/¤ rank.E2/. We shall see that
this cannot be the case. The following result is one of the main theorems of this paper.
It seems to improve known results of Livšic cocycle theory (in particular [75, 90]); see
Section 1.4 for a more extensive discussion.

Theorem 3.2. Assume M is endowed with a smooth transitive Anosov flow. Let E1; E2
! M be two Hermitian vector bundles equipped with respective unitary connections
rE1 and rE2 . If the connections have trace-equivalent holonomies in the sense of Defini-
tion 3.1, then there exists p 2 C1.M;U.E2;E1// such that for all x 2M and t 2 R,

C1.x; t/ D p.'tx/C2.x; t/p.x/
�1; (3.2)

i.e. the cocycles induced by parallel transport are cohomologous. Moreover, E1 and E2
are isomorphic.

In order to prove the injectivity Theorem 1.1, we will apply Theorem 3.2 with
M D SM , the geodesic flow, and the pullback bundle ��E equipped with two pullback

4Note that there are examples of non-transitive Anosov flows [33].
5Here, we denote by U.E2;E1/!M the bundle of unitary maps E2 ! E1. Of course, it may

be empty if the bundles are not isomorphic.
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connections ��r1; ��r2. However, as we shall see in Section 5, Theorem 3.2 will not
directly imply Theorem 1.1: indeed, after differentiating (3.2) at t D 0, it only gives the
existence of a map p 2 C1.SM;U.��E// such that

��r
Hom.r2;r1/
X p D 0:

We will then have to prove that p D ��p0 for some unitary isomorphism p0 2

C1.M;U.E// on the base such that rHom.r2;r1/p0 D 0 (this is equivalent to the con-
nections being gauge-equivalent, as follows directly from Definition 2.1).

Remark 3.3. The simplest example in which the automorphism p does not descend to
the base can be constructed as follows (originally in [77]). If .†; g†/ is a Riemannian
surface of negative curvature, then along any closed geodesic 
 the parallel transport with
respect to the Levi-Civita connection rLC is the identity (as P
 fixes P
 and hence also its
normal P
?). Thus ��rLC on the pullback ��K of the canonical bundle K D .T �C†/

0;1

and the trivial connection on S†�C have trace-equivalent holonomies. By Theorem 3.2,
there is p 2 C1.M;U.��K;C// such that ��rHom.rLC;d/

X p D 0, but clearly p is not of
degree zero as the bundle K is not topologically trivial. In fact, p can be chosen to be of
degree 1 and similar examples exist in higher dimensions (see [13]).

As we shall see in the proof, for any given L > 0, it suffices to assume that the trace-
equivalent holonomy condition (1.2) holds for all primitive periodic orbits of length � L
in order to get the conclusion of the theorem. Surprisingly, the rather weak condition
(1.2) implies in particular that the bundles are isomorphic as stated in Corollary 1.4 and
the trace of the holonomy of unitary connections along closed orbits should allow one
in practice to classify vector bundles over manifolds carrying Anosov flows. Even more
surprisingly, the ranks of E1 and E2 might be a priori different and Theorem 3.2 actually
shows that the ranks have to coincide.

The idea relies on a key notion which we call Parry’s free monoid, whose introduction
goes back to Parry [75]. This free monoid G corresponds (at least formally) to the free
monoid generated by the set of homoclinic orbits to a given periodic orbit of a point x?
(see Section 3.2.1 for a definition) and we shall see that a connection induces a unitary
representation � W G ! U.Ex?/ (it is not canonical but we shall see that its important
properties are). Geometric properties of the connection can be read off from this rep-
resentation; see Theorem 3.6 below. Moreover, tools from representation theory can be
applied and this is how we will eventually prove Theorem 3.2.

3.1.2. Opaque and transparent connections. Theorem 3.2 has an interesting straightfor-
ward corollary. Recall that a unitary connection is said to be transparent if the holonomy
along all closed orbits is trivial.

Corollary 3.4. Assume M is endowed with a smooth transitive Anosov flow. Let E !M

be a Hermitian vector bundle of rank r equipped with a unitary connection rE . If the
connection is transparent, then E is trivial and trivialized by a smooth orthonormal family
e1; : : : ; er 2 C

1.M;E/ such that rE
X ei D 0.
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In order to prove the previous corollary, it suffices to apply Theorem 3.2 with E1 D E

equipped with rE and E2 D Cr �M equipped with the trivial flat connection. Then
C2.x; t/ D 1 and .e1; : : : ; en/ is obtained as the image by p of the canonical basis of
Cn. This corollary seems to be folklore but nowhere written down. It is stated in [78,
Proposition 9.2] under the extra assumption that E ˚ E� is trivial.

The notion “opposite” to transparent connections is that of opaque connections, which
do not preserve any non-trivial subbundle F � E by parallel transport along the flow lines
of .'t /t2R. It was shown in [15, Section 5] that the opacity of a connection is equivalent
to the fact that

kerrEnd
X jC1.M;End.E// D C � 1E :

Also note that when X is volume-preserving, this corresponds to the Pollicott–Ruelle
(co)resonant states at 0 associated to the operator rEnd

X . We shall also connect this notion
with the representation � W G! U.Ex?/ of the free monoid:

Proposition 3.5. The following statements are equivalent:

(1) the connection rE is opaque;

(2) kerrEnd
X jC1.M;End.E// D C � 1E ;

(3) the representation � W G! U.Ex?/ is irreducible.

3.1.3. Kernel of the endomorphism connection. The previous proposition actually
follows from a more general statement which we now describe. The representation
� W G! U.Ex?/ gives rise to an orthogonal splitting

Ex? D
LK
iD1 E

˚ni
i ;

where Ei � Ex? and ni � 1; each factor Ei is G-invariant and the induced representation
on each factor is irreducible; furthermore, for i ¤ j , the induced representations on Ei
and Ej are not isomorphic. Let CŒG� be the formal algebra generated by G over C and let

R WD �.CŒG�/:

By Burnside’s Theorem (see [63, Corollary 3.3] for instance), one has

R D
LK
iD1�niEnd.Ei /;

where
�niu D u˚ � � � ˚ u (ni times)

for u 2 End.Ei /. We introduce the commutant R0 of R by

R0 WD ¹u 2 End.Ex?/ j 8v 2 R; uv D vuº:

We then have

Theorem 3.6. There exists a natural isomorphism

ˆ W R0 ! kerrEnd.E/
X jC1.M;End.E//:
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In particular, these spaces have the same dimension:

dim.kerrEnd.E/
X jC1.M;End.E/// D dim.R0/ D

KX
iD1

n2i :

3.1.4. Invariant sections. To conclude this subsection, we now investigate the existence
of smooth invariant sections of the bundle E !M, that is, elements of kerrE

X jC1.M;E/.
First of all, observe that if u 2 C1.M; E/ is an invariant section, then u? WD u.x?/ is
invariant by the G-action. The converse is also true:

Lemma 3.7. Assume that there exists u? 2 Ex? such that �.g/u? D u? for all g 2 G.
Then there exists .a unique/ u 2 C1.M;E/ such that u.x?/ D u? and rE

Xu D 0.

Such an approach turns out to be useful when trying to understand a sort of weak
version of Livšic theory, such as the following: if E ! M is a vector bundle equipped
with a unitary connection rE and for each periodic orbit 
 2 G , there exists a section
u
 2 C

1.
; Ej
 / such that rE
Xu
 D 0, then one can wonder whether this implies the

existence of a global invariant smooth section u 2 C1.M;E/. It turns out that the answer
depends on the rank of E:

Lemma 3.8. Assume that rank.E/ � 2 and that for all periodic orbits 
 2 G , there
exists u
 2 C1.
; Ej
 / such that rE

Xu
 D 0. Then there exists u 2 C1.M; E/ such
that rE

Xu D 0.

We shall see that the proof of this lemma is purely representation-theoretic and com-
pletely avoids the need to understand dynamics and the distribution of periodic orbits. We
leave as an exercise the fact that Lemma 3.8 does not hold when rank.E/ � 3. A simple
counter-example can be built using the following argument: any matrix in SO.3/ pre-
serves an axis; hence, taking any SO.3/-connection on a real vector bundle of rank 3 and
then complexifying the bundle, one gets a vector bundle and a connection satisfying the
assumptions of Lemma 3.8; it then suffices to produce an SO.3/-connection without any
invariant sections.

We believe that other links between properties of the representation � and the geom-
etry and/or dynamics of the parallel transport along the flow lines could be discovered.
To conclude, let us also mention that all the results are presented here for complex vector
bundles; most of them could be naturally restated for real vector bundles modulo obvious
modifications in the statements.

3.2. Dynamical preliminaries on Anosov flows

3.2.1. Shadowing lemma and homoclinic orbits. Fix an arbitrary Riemannian metric g
on M. As usual, we define the local strong (un)stable manifolds as

W s
ı
.x/ WD ¹y 2M j 8t � 0; d.'ty; 'tx/ < ı; d.'tx; 'ty/!t!C1 0º;

W u
ı
.x/ WD ¹y 2M j 8t � 0; d.'ty; 'tx/ < ı; d.'tx; 'ty/!t!�1 0º;
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where ı > 0 is chosen small enough. For ı D 1, we obtain the sets W s;u.x/ which are
the strong stable/unstable manifolds of x. We also set W s;u

loc .x/ WD W
s;u
ı0
.x/ for some

fixed ı0 > 0 small enough. The local weak (un)stable manifolds W ws;wu
ı

.x/ are the sets
of points y 2 B.x; ı/ such that there exists t 2 R with jt j < ı and 'ty 2 W

s;u
loc .x/. The

following lemma is known as the local product structure (see [32, Theorem 5.1.1] for
more details):

Lemma 3.9. There exist "0; ı0 > 0 small enough such that for all x; y 2 M such that
d.x; y/ < "0, the intersection W wu

ı0
.x/ \ W s

ı0
.y/ is a single point ¹zº. We write z WD

Jx; yK.

The main tool we will use to construct suitable homoclinic orbits is the following
classical shadowing property of Anosov flows for which we refer to [55, Corollary 18.1.8],
[32, Theorem 5.3.2] and [32, Proposition 6.2.4]. For the sake of simplicity, we now write

 D Œxy� if 
 is an orbit segment of the flow with endpoints x and y.

Theorem 3.10. There exist "0; �; C > 0 with the following property. Consider " < "0,
and a finite or infinite sequence of orbit segments 
i D Œxiyi � of length Ti greater than 1
such that for any n, d.yn; xnC1/� ". Then there exists a genuine orbit 
 and times �i such
that 
 restricted to Œ�i ; �i C Ti � shadows 
i up to C". More precisely, for all t 2 Œ0; Ti �,
one has

d.
.�i C t /; 
i .t// � C"e
�� min.t;Ti�t/: (3.3)

Moreover, j�iC1 � .�i C Ti /j � C". Finally, if the sequence of orbit segments 
i is peri-
odic, then the orbit 
 is periodic.

It is instructive for the reader to have Figure 2 (a) in mind, where the upper curve
corresponds to the orbit 
 approximating the segment given by the lower curve. Let us
also make the following important comment. In the theorem, one can also allow the first
orbit segment 
i to be infinite on the left, and the last orbit segment 
j to be infinite on
the right. In this case, (3.3) should be replaced by: assuming that 
i is defined on .�1; 0�
and 
j on Œ0;C1/, we would get for some Q�iC1 within C" of �iC1, and all t � 0,

d.
. Q�iC1 � t /; 
i .�t // � C"e
��t ; d.
.�j C t /; 
j .t// � C"e

��t :

Fix an arbitrary periodic point x? 2 M of period T? and denote by 
? its primitive
orbit.

Definition 3.11 (Homoclinic orbits). A point p 2M is said to be homoclinic to x? if p 2
W ws.x?/ \W

wu.x?/ (in other words, d.'
tCt˙

0

p; 'tx?/!t!˙1 0 for some t˙0 2 R).
We say that an orbit 
 is homoclinic to x? if it contains a point p 2 
 that is homoclinic
to x?, and we denote by H �M the set of orbits homoclinic to x?.

Note that by hyperbolicity, the convergence of the point p to x? is exponentially fast.
More precisely, let 
 be the orbit of p and let R 3 t 7! 
.t/ be the flow parametriza-
tion of 
 . Then there exist uniform constants C; � > 0 (independent of 
 ) and A˙ 2 R
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(depending on 
 ) such that

d.
.A˙ ˙ nT?/; x?/ � Ce
��n: (3.4)

The points 
.A˙/ correspond to an arbitrary choice of points in W s;u
ı0
.x?/ \ 
 (for an

arbitrary ı0 > 0 small enough). Homoclinic orbits have infinite length (except the orbit
of x? itself) but it will be convenient to introduce a notion of length T
 which we define
to be T
 WD AC � A� (note that this is a highly non-canonical definition). We define the
trunk to be the central segment 
.ŒA�; AC�/. In other words, the length of 
 is equal to
the length of its trunk. We also define the points x˙n WD 
.A˙ ˙ nT?/. Note that another
choice of values A0

˙
has to differ from A˙ by mT? for some m 2 Z. Homoclinic orbits

will play a key role, as we shall see in due course.

Lemma 3.12. Assume that the flow is transitive. Then the set W of points belonging to a
homoclinic orbit in H is dense in M.

Proof. This is a straightforward consequence of the shadowing Theorem 3.10: one con-
catenates a long segment S of a transitive orbit with 
?, i.e. one applies Theorem 3.10
with : : : 
?
?S
?
? : : : :

Remark 3.13. In the particular case of an Anosov geodesic flow on the unit tangent
bundle, one can check that H is in one-to-one correspondence with �1.M/=h z
?i, where
z
? 2 �1.M/ is any element such that the conjugacy class of z
? in �1.M/ corresponds6

to the free homotopy class c 2 C whose unique geodesic representative is 
?.

3.2.2. Applications of the Ambrose–Singer formula. Consider a Hermitian vector bundle
E over .M; g/ equipped with a unitary connection r D rE . If x; y 2M are at a distance
less than the injectivity radius of M, denote by Cx!y W Ex ! Ey the parallel transport
with respect to rE along the shortest geodesic from x to y, by C.x; t/ W Ex ! E'tx the
parallel transport along the flow and by C
 the parallel transport along a curve 
 . For
U 2 C1.M;End.E//, we define, for all x 2M,

kU kx WD Tr.U �.x/U.x//1=2;

and kU kL1 WD supx2M kU kx . In particular, ifU 2C1.M;U.E// is unitary, then kU kL1
D
p

rank.E/. We record the following consequences of Lemma 2.2:

Lemma 3.14. The following consequences of the Ambrose–Singer formula hold:

(1) Assume we are in the setting of Theorem 3.10: for some C; "; T > 0, let x; p 2M

satisfy d.'tx; 'tp/ � C"e�� min.t;T�t/ for all t 2 Œ0; T �. Then for any 0 � T1 � T ,

kC.'T1x;�T1/C'T1p!'T1xC.p; T1/Cx!p � 1Exkx �
c0C"

�
kFrkC0 ;

where c0 D c0.X; g/ > 0 depends only on the vector field X and the metric.

6Recall that the set C of free homotopy classes is in one-to-one correspondence with the conju-
gacy classes of �1.M/ [49, Chapter 1].
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x 'T x

p 'T p

'tp
O.e��t /

't x

(a) Shadowing homotopy.

p




(b) Radial homotopy.

p D 
.0/


.L/

C 0


C�1


(c) Straight-line homotopy.

Fig. 2. Presentation of the geometries considered in Lemma 3.14.

(2) Assume 
 � B.p; {=2/ is a closed piecewise smooth curve at p of length L, where
{ denotes the injectivity radius of .M; g/. Then for some C D C.g/ > 0 depending
on the metric,

kC
 � Idp kp � CL � sup
y2


d.p; y/ � kFrkC0 :

(3) Let 
 W Œ0; L�! M be a unit speed curve based at p, and r 0 be a second unitary
connection on E , whose parallel transport along 
 we denote by C 0
 . Then

kC�1
 C 0
 � Idp kp � Lkr � r 0kC0 :

The geometries appearing in (1)–(3) are depicted in Figure 2 (a)–(c), respectively.

Proof. We first prove (1). For C; " small enough, for all t 2 Œ0; T � we denote by �t the
unit speed shortest geodesic, of length `.t/, from 'tx to 'tp. Define a smooth homotopy
� W Œ0; 1�2 !M by setting

�.s; t/ WD �tT1.s`.t//;

and note that by assumption `.t/ � C"e�� min.t;T�t/. We apply Lemma 2.2 to the homo-
topy � to obtain, after a rescaling of parameters s and t ,

C.'T1x;�T1/C'T1p!'T1xC.p; T1/Cx!p � 1Ex

D

Z T1

0

Z `.t/

0

C�1
"
.s; t/Fr.@t�t .s/; @s�t .s//C!.s; t/ ds dt:

Here we recall that C" and C! are parallel transport maps obtained by parallel transport
along curves as in Figure 1. Since C" and C! are isometries, and since by compactness
j@t�t .s/j � D for some 0 < D D D.X; g/, we have

kC.'T1x;�T1/C'T1p!'T1xC.p; T1/Cx!p � 1Exkx

� CD"kFrkC0

Z T

0

e�� min.t;T�t/ dt �
2DC

�
"kFrkC0 :
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For (2), we may assume by approximation that 
 is smooth. Then taking the homotopy

�.s; t/ D expx.t exp�1x .
.sL///;

and applying Lemma 2.2, we obtain, by a rescaling of s and writing z�.s; t/ D �.s=L; t/,

C
 � Idx D
Z L

0

Z 1

0

C1.s; t/
�1Fr.@s z�; @t z�/C2.s; t/ dt ds:

The estimate now follows by using k@t z�k �Cd.x;
.s//, where we introduce the positive
constant C D supx2M supjyjgx<{=2 kd expx.y/kTxM!Texpx.y/

.
For (3), denote by Ct ; C 0t the parallel transports along 
 jŒ0;t� with the connections

r;r 0, respectively. Then it is straightforward that

@t .C
�1
t C 0t / D C

�1
t .r � r 0/. P
.t//C 0t ;

so

C�1
 C 0
 � Idp D
Z L

0

C�1t .r � r 0/. P
.t//C 0t dt:

The required estimate follows.

We also have the following result to which we will refer to as the spiral lemma:

Lemma 3.15. Let x? 2M be a periodic point of period T? and let x0 2W s
loc.x?/. Define

xn WD 'nT?x0 and write qn WD C.x?; nT?/�1Cxn!x?C.x0; nT?/Cx?!x0 . Then

�.x0/ WD lim
n!1

qn 2 U.Ex?/

exists. Moreover, there exist uniform constants C; � > 0 such that

jqn � �.x0/j � Ce
��n:

x0 x1

x∗

Fig. 3. The spiral lemma: the set�1 corresponds to the area over which the integral in the Ambrose–
Singer formula is computed for n D 1.
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Proof. Apply the Ambrose–Singer formula as in the first item of the previous lemma
(same notations as in the previous proof):

qn � 1Ex?
D

Z nT?

0

Z `.t/

0

C�1
"
.s; t/Fr.@t�t .s/; @s�t .s//C!.s; t/ ds dt;

where �t is the unit speed shortest geodesic of length `.t/ from 'tx0 to 'tx?. Observe
that this integral converges absolutely because (see (3.4))Z nT?

0





Z `.t/

0

C�1
"
.s; t/Fr.@t�t .s/; @s�t .s//C!.s; t/ ds





 dt
�

Z nT?

0

CkFrkC0e
��t dt <1;

and thus the limit exists. Moreover, it is clear that the convergence is exponential.

3.3. Proof of the exact Livšic cocycle theorem

3.3.1. Parry’s free monoid. As we shall see, Parry’s free monoid is the key notion to
understand the holonomy of unitary connections. Whereas flat connections up to gauge
equivalence correspond to representations of the fundamental group up to conjugacy,
in the setting of hyperbolic dynamics, we will show that arbitrary connections up to
cocycle equivalence correspond to representations of Parry’s free monoid. Recall from
Section 3.2.1 that x? 2 M is a periodic point of period T?. Let G be the free monoid
generated by H (homoclinic orbits to x?), that is, the formal set of words

G WD ¹
m11 : : : 

mk
k
j k 2 N; m1; : : : ; mk 2 N0; 
1; : : : ; 
k 2 Hº;

endowed with the obvious monoid structure. The empty word corresponds to the identity
element denoted by 1G. Note the periodic orbit corresponding to x? also belongs to the
set of homoclinic orbits. We call G Parry’s free monoid as the idea (although not written
like this) was first introduced in his work [75] (see also [90] for a related approach). The
main result of this subsection is the following:

Proposition 3.16. Let rE be a unitary connection on the Hermitian vector bundle
E !M. Then rE induces a representation

� W G! U.Ex?/:

Formally, this proposition could have also been stated as a definition.

Proof. Since G is a free monoid, it suffices to define � on the set of generators of G,
namely for all homoclinic orbits 
 2 H . For the neutral element we set �.1G/ D 1Ex?

.
For the periodic orbit 
? of x?, we set �.
?/ WD C.x?; T?/.

Let 
 2 H (and 
 ¤ 
?) and consider a parametrization R 3 t 7! 
.t/. Following
the notations of Section 3.2.1, we let x˙n WD 
.A˙ ˙ nT?/; x

C
n D 'Tn.x

�
n / for some
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Tn D AC � A� C 2nT?, where T
 WD AC � A� (length of the trunk), and the points
.x˙n /n2N converge exponentially fast to x? as n!1. As we shall see, there is a small
technical issue coming from the fact that C.x?; T?/ is not trivial and this can be overcome
by considering a subsequence kn !1 such that7

C.x?; T?/
kn ! 1Ex?

; n!1: (3.5)

For n;m 2 N, we define �m;n.
/ 2 U.Ex?/ as follows:

�m;n.
/ WD CxC
km
!x?

C.xC0 ; kmT?/C.x
�
0 ; T
 /C.x

�
kn
; knT?/Cx?!x�kn

; (3.6)

and we will write �n.
/ WD �n;n.
/.

Lemma 3.17. There exists �.
/ 2 U.Ex?/ such that

�m;n.
/!n;m!1 �.
/;

and �.
/ does not depend on the way the limit in n;m is taken.

Proof. We have by construction:

�m;n.
/ D CxC
km
!x?

C.xC0 ; kmT?/C.x
�
0 ; T
 /C.x

�
kn
; knT?/Cx?!x�kn

D ŒC
x
C

km
!x?

C.xC0 ; kmT?/Cx?!xC0
C.x?; kmT?/

�1�

� C.x?; kmT?/CxC
0
!x?

C.x�0 ; T
 /Cx?!x�0 C.x?; knT?/

� ŒC.x?; knT?/
�1Cx�

0
!x?C.x

�
kn
; knT?/Cx?!x�kn

�; (3.7)

where T
 is independent of n (trunk of 
 ). For the middle term we have, by (3.5),

C.x?; kmT?/CxC
0
!x?

C.x�0 ; T
 /Cx?!x�0 C.x?; knT?/

D C
x
C

0
!x?

C.x�0 ; T
 /Cx?!x�0 C o.1/;

as n; m go to 1. Moreover, the convergence of the terms in brackets follows from the
spiral lemma 3.15 (the convergence is exponentially fast).

This concludes the proof of Proposition 3.16.

Remark 3.18. For 
 2H , (3.7) shows that �.
/ does not depend on the choice of subse-
quence .kn/n2N as long asC.x?;T?/kn!1. However, �.
/ does depend on the choice of
trunk Œx�0 x

C
0 � for 
 and another choice of trunk produces a �0.
/ which differs from �.
/:

�0.
/ D C.x?; T?/
mL.
/�.
/C.x?; T?/

mR.
/; (3.8)

where mL.
/;mR.
/ 2 Z.

7For any compact metric group G, if g 2 G, there exists a sequence kn 2 N such that
gkn !n!1 1G .
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3.3.2. Conjugate representations. We introduce the submonoid G� WD G n ¹
k? j k � 1º,
that is, G minus the powers of 
?. Recall that the character of a representation � is defined
by ��.�/ WD Tr.�.�//. This subsection is devoted to proving the following:

Proposition 3.19. Let rE1;2 be two unitary connections on the Hermitian vector bundles
E1; E2 ! M. Assume that the connections have trace-equivalent holonomies in the
sense of Definition 3.1. Then the induced representations �1;2 W G� ! U.E1;2x?/ have
the same character. In particular, this implies that they are isomorphic, i.e. there exists
p? 2 U.E2x? ;E1x?/ such that

8
 2 G; �1.
/ D p?�2.
/p
�1
? : (3.9)

Proof. Following Lemma 3.17, we consider a subsequence .kn/n2N such that
C1;2.x?; T?/

kn ! 1. Once we know that the representations have the same character,
the conclusion is a straightforward consequence of a general fact of representation theory
[63, Corollary 3.8]. For the sake of simplicity, we take 
 D 
1 � 
2, where 
1;2 2 H (and
both 
1;2 cannot be equal to 
? at the same time since the word 
 is in G�) but the gener-
alization to longer words is straightforward as we shall see and words of length 1 are also
handled similarly (one does not even need to concatenate orbits in this case). The empty
word (corresponding to the identity element in G�/will also be dealt with separately. This
proposition is based on the shadowing theorem 3.10 and the fact that one can concatenate
orbits. But we will have to be careful to produce periodic orbits which are primitive.

By Lemma 3.17 we have

�1.
/ D �1.
1/�1.
2/ D �1In;N .
1/�1In;n.
2/C o.1/; n!1;

where we use �i Im;n to denote the expression in (3.6) with respect to rEi for i D 1; 2.
The term N D N.n/ � n will ensure that a certain orbit is primitive as we shall see
below. Let x˙n .i/ be the points on the orbit 
i that are exponentially close to x?,
given by Section 3.2.1. Consider the concatenation of the orbits S WD Œx�

kN
.1/xC

kn
.1/� [

Œx�
kn
.2/xC

kn
.2/�. Note that the starting points and endpoints of these segments are at dis-

tance at most O.e��kn/. Thus by the shadowing theorem 3.10, there exists a genuine
periodic orbit z
n and a point yn 2 z
n (of period T 0n) which O.e��kn/-shadows the con-
catenation S (here, if we have a longer word of length k, it suffices to apply the shadowing
Theorem 3.10 with k segments).

We claim that z
n is primitive for all N large enough. Indeed, observe that z
n can be
decomposed into the following six subsegments as in Figure 4.

Moreover, the total length of z
n is

T 0n D T
2 C 2knT? C T
1 C .kN C kn/T? CO.e��kn/:

Take x 2 
1 [ 
2 with x 62 
?, and consider a small " > 0 such that d.x; 
?/ > 3". Let
n be large enough so that for all m � n the tail Œx�m.1/x

�
n .1/� is in B.
?; "/, z
n satisfies

d.z
n; x/ < " and finally the shadowing factor of Theorem 3.10 satisfies O.e��kn/ < ".
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knT∗ knT∗

knT∗kNT∗

Tγ1

Tγ2

Fig. 4. The orbit z
n is made up of six segments: in the first segment (of length knT?), it shadows
the first portion Œx�

kn
.2/x�0 .2/� which wraps around 
?; in the second (of length T
2 ), it shadows

the trunk Œx�0 .2/x
C
0 .2/�, in the third (of length knT?), it shadows the last portion ŒxC0 .2/x

C

kn
.2/�

which also wraps around 
?; then this process is repeated but for the second orbit 
1.

Pick N � n such that .kN � kn/T? > T 0n=2. We argue by contradiction and assume that
z
n D 


k
0 for some k � 2 and 
0 2 G ], a primitive orbit.

This implies that there is a copy of 
0 in the central red segment of Figure 4 which
O.e��kn/-shadows the orbit of x�N .1/ and this forces z
n � B.
?; 2"/. Thus d.z
n; x/ > ",
which is a contradiction.

By the first and second items of Lemma 3.14, we have

�1In;N .
1/�1In;n.
2/ D C1;yn!x?C1.yn; T
0
n/C

�1
1;yn!x?

CO.e��kn/:

By assumption, we have Tr.C1.yn; T 0n// D Tr.C2.yn; T 0n//. This yields

Tr.�1.
// D Tr.C1;yn!x?C1.yn; T
0
n/C

�1
1;yn!x?

/C o.1/

D Tr.C1.yn; T 0n//C o.1/

D Tr.C2.yn; T 0n//C o.1/ D Tr.�2.
//C o.1/:

Taking the limit as n! 1, we obtain the claimed result about characters for all non-
empty words 
 2 G�.

It remains to deal with the empty word. For that, take any 
 2 G�, and consider a
subsequence ni 2 N such that �1.
/ni ! 1E1x?

and �2.
/ni ! 1E2x?
. Then

Tr.�1.
/ni / D Tr.�2.
/ni /;

and taking the limit as i !1 gives

Tr.�1.1G�// D rank.E1/ D rank.E2/ D Tr.�2.1G�//:

By [63, Corollary 3.8], there is a p? satisfying (3.9) for 
 2 G�.
It is now straightforward to show (3.9) for all 
 2 G. Applying (3.9) with 
?
 2 G�,

where 
 2 H n ¹
?º is arbitrary, we get

�1.
?
/ D �1.
?/�1.
/ D p?�2.
?
/p
�1
? D p?�2.
?/p

�1
? p?�2.
/p

�1
? :

Since �1.
/D p?�2.
/p�1? (because 
 2 G�), we find that �1.
?/D p?�2.
?/p�1? , that
is, C1.x?; T?/D p?C2.x?; T?/p�1? or equivalently P.x?; T?/p? D p? (where P denotes
the parallel transport along the flow lines of .'t /t2R with respect to the mixed connection
r

Hom.rE2 ;rE1 /
X , as in (2.4)), concluding the proof.
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Remark 3.20. Although the representations �1;2 depend on choices (namely on the
choice of trunk for each homoclinic orbit 
 2H ), the map p? 2 U.Ex?/ does not. Indeed,
taking two other representations �01;2 (for some other choices of trunks), by (3.8) one gets

�01.
/ D C1.x?; T?/
mL.
/�1.
/C1.x?; T?/

mR.
/

D C1.x?; T?/
mL.
/p?�2.
/p

�1
? C1.x?; T?/

mR.
/

D C1.x?; T?/
mL.
/p?C2.x?; T?/

�mL.
/�02.
/C2.x?; T?/
�mR.
/p�1? C1.x?; T?/

mR.
/

D
�
P.x?; mL.
/T?/p?

�
�02.
/

�
P.x?; mR.
/T?/p?

��1
D p?�

0
2.
/p

�1
? ;

since P.x?; T?/p? D p?, that is, p? also conjugates the representations �01;2. Note that
the map p? given by [63, Corollary 3.8] is generally not unique. Nevertheless, if the
representation is irreducible, it is unique modulo the trivial S1-action.

3.3.3. Proof of Theorem 3.2. Let W be the set of all points belonging to homoclinic
orbits in H . By Lemma 3.12, W is dense in M and we are going to define the map p
(which will conjugate the cocycles) on W and then show that p is Lipschitz-continuous
on W so that it extends naturally to M. The map p is defined as the parallel transport of
p? with respect to the mixed connection.

By assumptions, Ci .x?; T?/kn ! 1E� , and thus P.x?; T?/kn ! 1Hom.E2x? ;E1x? /

(where 1Hom.E2x? ;E1x? /.q/D q for q 2Hom.E2x? ;E1x?/). Consider a point x 2 
 , where

 2 H is a homoclinic orbit, and also consider a parametrization of 
 as in Section 3.2.1.
For n 2 N large enough, consider the point x�n 2 
 (which is exponentially close to x?)
and write x D 'T�n .x

�
n / for some T �n > 0. Define

p�n .x/ WD P.x
�
kn
; T �kn/Px?!x

�
kn
p? 2 U.E2x ;E1x/:

Lemma 3.21. Fix 
 2H . Then for all x 2 
 , there exists p�.x/ 2 U.E2x ;E1x/ such that
p�n .x/!n!1 p�.x/. There exists C > 0 such that jp�n .x/� p�.x/j � C=n. Moreover,

r
Hom.rE2 ;rE1 /
X p� D 0 on 
 .

In particular, this shows that p� is smooth when restricted to 
 as rHom.rE2 ;rE1 /
X is

elliptic on 
 .

Proof of Lemma 3.21. By construction, the differential equation is clearly satisfied if the
limit exists. Moreover, for some time T0 (independent of n, T �

kn
D T0 C knT?) we have

p�n .x/ D P.x
�
kn
; T �kn/Px?!x

�
kn
p? D P.x

�
0 ; T0/P.x

�
kn
; knT?/Px?!x�kn

p?

D P.x�0 ; T0/Px?!x�0 P.x?; T?/
kn ŒP.x?; T?/

�knPx�
0
!x?P.x

�
kn
; knT?/Px?!x�kn

p?�:

By assumption, the term outside the brackets converges as n!1 and the term in brackets
converges by the spiral lemma 3.15.

We now claim the following:
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Lemma 3.22. There exists a uniform constant C > 0 such that the following holds.
Assume that x and z belong to two homoclinic orbits in H and z 2 W u

loc.x/. Then

kPx!zp�.x/ � p�.z/k � Cd.x; z/:

Proof. By the previous proofs, the point x is associated to points x�n on the homoclinic
orbit and we will use the same notations for the point z associated to the points z�n . There
is here a slight subtlety coming from the fact that the parametrizations of the homoclinic
orbits 
 were chosen in a non-canonical way (via a choice of A˙). In particular, it is
not true that the flow lines of z�

kn
and x�

kn
shadow each other; in other words, we might

not have T �
kn
.z/ D T �

kn
.x/ but we rather have T �

kn
.z/ D T �

kn
.x/CmT? for some m 2 Z

depending on both x and z.
We have

kPx!zp�.x/ � p�.z/k D kPx!zp
�
n .x/ � p

�
n .z/k C o.1/

D kPx!zP.x
�
kn
; T �kn.x//Px?!x

�
kn
p? � P.z

�
kn
; T �kn.z//Px?!z

�
kn
p?k C o.1/

� CkPz�
kn
!x?P.z

�
kn
; T �kn.z//

�1Px!zP.x
�
kn
; T �kn.x//Px?!x

�
kn
p? � p?k C o.1/

� CkPz�
kn
!x?P.zkn ; mT?/

�1Px?!z�kn�m

� ŒPz�
kn�m

!x?P.z
�
kn�m

; T �kn.z/ �mT?/
�1Px!zP.x

�
kn
; T �kn.x//Px?!x

�
kn
�p? � p?k

C o.1/:

Applying Lemma 3.14 (1), we have

kPz�
kn�m

!x?P.z
�
kn�m

; T �kn.z/ �mT?/
�1Px!zP.x

�
kn
; T �kn.x//Px?!x

�
kn
� 1End.Ex? /k

� Cd.x; z/;

where the constant C > 0 is uniform in n. Moreover, observe that

lim
n!1

Pz�
kn
!x?P.zkn ; mT?/

�1Px?!z�kn�m
D P.x?; mT?/

�1:

Hence

kPx!zp�.x/ � p�.z/k � C
�
kP.x?; mT?/

�1p? � p?k C d.x; z/C o.1/
�
:

Since P.x?; T?/p? D p? the first term on the right hand side vanishes. Letting n!1,
we obtain the announced result.

Note that we could have done the same construction “in the future” by considering
instead

pC.x/ D lim
n!1

P.x; TC
kn
/�1P

x?!x
C

kn

p? 2 U.E2x ;E1x/;

where xCn WD 'TCn .x/ is exponentially closed to x? as in Section 3.2.1. A statement similar
to Lemma 3.22 holds with the unstable manifold replaced by the stable one. We have
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Lemma 3.23. For all x 2 W , p�.x/ D pC.x/.

Proof. This follows from Proposition 3.19. Indeed,

kp�.x/ � pC.x/k D kP.x
�
kn
; T �kn/Px?!x

�
kn
p? � P.x; T

C

kn
/�1P

x?!x
C

kn

p?k C o.1/

� CkP
x
C

kn
!x?

P.x; TC
kn
/P.x�kn ; T

�
kn
/Px?!x�kn

p? � p?k C o.1/

� CkP
x
C

kn
!x?

P.x�kn ; Tkn/Px?!x
�
kn
p? � p?k C o.1/;

where Tn WD T �n C T
C
n . Observe that

P
x
C

kn
!x?

P.x�kn ; Tkn/Px?!x
�
kn
p?

D C
1;x
C

kn
!x?

C1.x
�
kn
; Tkn/C1;x?!x�kn

p?
�
C
2;x
C

kn
!x?

C2.x
�
kn
; Tkn/C2;x?!x�kn

��1
D �1;n.
/p?�2;n.
/

�1
D �1.
/p?�2.
/

�1
C o.1/ D p? C o.1/;

by Proposition 3.19. Hence kp�.x/ � pC.x/k D o.1/, that is, p�.x/ D pC.x/.

We can now prove the following lemma:

Lemma 3.24. The map p� is Lipschitz-continuous.

Proof. Consider x;y 2W close enough. Let z WD Jx;yK 2W wu
loc .x/\W

s
loc.y/ and define

� such that '� .z/ 2 W u
loc.x/. Note that j� j � Cd.x; y/ for some uniform constant C > 0;

also observe that the point z is homoclinic to the periodic orbit x?. We have

kp�.x/ � Py!xp�.y/k

� kp�.x/ � Pz!xp�.z/k C kp�.z/ � pC.z/k C kPz!xpC.z/ � Py!xpC.y/k

C kpC.y/ � p�.y/k

� kp�.x/ � Pz!xp�.z/k C kPx!yPz!xpC.z/ � pC.y/k

� kp�.x/ � P'� .z/!xp�.'� .z//k C kP'� .z/!xp�.'� .z// � Pz!xp�.z/k

C kPx!yPz!xpC.z/ � pC.y/k;

where the terms disappear between the third and fourth line by Lemma 3.23. By Lemma
3.22, the first term is controlled by

kp�.x/ � P'� .z/!xp�.'� .z//k � Cd.x; '� .z// � Cd.x; y/:

As for the second term, using Lemma 3.14 (2), we have

kP'� .z/!xp�.'� .z// � Pz!xp�.z/k D kPx!zP'� .z/!xP.z; �/p�.z/ � p�.z/k

� Cd.x; y/:

Eventually, the last term kPx!yPz!xpC.z/ � pC.y/k is controlled similarly to the first
term by applying Lemma 3.22 (but with the stable manifold instead of unstable).
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As W is dense, p� extends to a Lipschitz-continuous map on M which satisfies the
equationrHom.rE2 ;rE1 /

X p�D 0, and by [39, Theorem 4.1], this implies that p� is smooth.
This concludes the proof of Theorem 3.2.

3.3.4. Proof of the geometric properties.

Proof of Proposition 3.5. The equivalence between (1) and (2) can be found in [15, Sec-
tion 5]. If F � E is a non-trivial subbundle that is invariant by parallel transport along the
flow lines of .'t /t2R, it is clear that � will leave the space Fx? invariant and thus is not
irreducible. Conversely, if � is not irreducible, then there exists a non-trivial Fx? � Ex?
preserved by �. Let �? W Ex? ! Fx? be the orthogonal projection. For x on a homoclinic
orbit, define �.x/ W Ex ! Ex similarly to p� in Lemma 3.21 by parallel transport of the
section �? with respect to the connection rEnd.E/. Following the previous proofs (we only
use ��? D �?�), one shows that � extends to a Lipschitz-continuous section on homo-
clinic orbits which satisfies �2 D � and rEnd

X � D 0. By [39, Theorem 4.1], � extends
to a smooth section, i.e. � 2 C1.M; End.E//. Moreover, �.x?/ D �?, hence � is the
projection onto a non-trivial subbundle F � E .

Proof of Theorem 3.6. The linear map ˆ W R0 ! kerrEnd.E/
X jC1.M;End.E// is defined in

the following way. Consider u? 2 R0 and define, as in Lemma 3.21, for x on a homoclinic
orbit, u�.x/ as the parallel transport of u? from x? to x along the orbit (with respect
to the endomorphism connection rEnd.E/). Similarly, one can define uC.x/ by parallel
transport from the future. The fact that u? 2 R0 is then used in the following observation
(see Lemma 3.23):

ku�.x/ � uC.x/k D k�.
/u?�.
/
�1
� u?k D 0:

(Note that �.
/u?�.
/�1 corresponds formally to the parallel transport of u? with respect
to rEnd.E/ from x? to x? along the homoclinic orbit 
 .) Hence, by Lemma 3.24, u� is
Lipschitz-continuous and satisfies rEnd.E/

X u� D 0. By [39, Theorem 4.1], it is smooth and
we set u� DW ˆ.u?/ 2 kerrEnd.E/

X jC1.M;End.E//.
Also observe that this construction is done by using parallel transport with respect

to the unitary connection rEnd.E/. As a consequence, if u?; u0? 2 R are orthogonal (i.e.
Tr.u�?u

0
?/ D 0), then ˆ.u?/ and ˆ.u0?/ are also pointwise orthogonal. This proves that ˆ

is injective.
It now remains to show the surjectivity of ˆ. Let u 2 kerrEnd.E/

X jC1.M;End.E//. Fol-
lowing [15, Section 5], we can write u D uR C iuI , where u�R D uR; u

�
I D uI and

r
End.E/
X uR D r

End.E/
X uI D 0. By [15, Lemma 5.6], we can then further decompose uR DPp

iD1 �i�Fi (and the same for uI ), where �i 2 R, p 2 N and Fi � E is a maximally
invariant subbundle of E (i.e. it does not contain any non-trivial subbundle that is invariant
under parallel transport along the flow lines of .'t /t2R with respect to rE ), and �Fi is the
orthogonal projection onto Fi . Set .�Fi /? WD �Fi .x?/. Invariance of Fi by parallel trans-
port implies that �.
/.�Fi /? D .�Fi /?�.
/ for all 
 2G, that is, .�Fi /? 2 R0. Moreover,
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ˆ..�Fi /?/ D �Fi . This proves that both uR and uI are in ran.ˆ/. This concludes the
proof.

It remains to prove the results concerning invariant sections:

Proof of Lemma 3.7. Uniqueness is immediate since rE
Xu D 0 implies that

X juj2 D hrE
Xu; ui D hu;r

E
Xui D 0;

that is, juj is constant. Now, given u? which is G-invariant, we can define u�.x/ for x
on a homoclinic orbit 
 by parallel transport of u? from x? to x along 
 with respect
to rE , similarly to Lemma 3.21 and to the proof of Theorem 3.6. We can also define
uC.x/ in the same fashion (by parallel transport in the other direction). Then one gets
ku�.x/� uC.x/k D ku? � �.
/u?k D 0 and the same arguments as before show that u�
extends to a smooth function in the kernel of rE

X .

Proof of Lemma 3.8. This is based on the following:

Lemma 3.25. Assume that for all periodic orbits 
 2 G , there exists u
 2 C1.
; Ej
 /
such that rE

Xu
 D 0. Then for all g 2 G, there exists ug 2 Ex? such that �.g/ug D ug .

Proof. Recall that by the construction of Proposition 3.19, each element �.g/ 2 U.Ex?/
can be approximated by the holonomy Cyn!x?C.yn; T

0
n/Cx?!yn along a sequence of

periodic orbits of points yn converging to x?. Now, each C.yn; T 0n/ has 1 as eigenvalue by
assumption and taking the limit as n!1, we deduce that 1 is an eigenvalue of �.g/.

As a consequence, we can write for all g 2 G, in a fixed orthonormal basis of Ex? ,

�.g/ D ˛g

�
1 0

0 s.g/

�
˛�1g

for some ˛g 2 U.Ex?/, where s.g/ is an .r � 1/ � .r � 1/ matrix. For rank.E/ D 1,
the lemma is then a straightforward consequence of Lemma 3.7 since the conjugacy ˛g
does not appear. For rank.E/ D 2, one has the remarkable property that s.g/ is still a
representation of G since det �.g/ D s.g/ 2 U.1/. As a consequence, � W G! U.Ex?/
has the same character as �0 W G! U.Ex?/ defined by

�0.g/ WD

�
1 0

0 s.g/

�
:

By [63, Corollary 3.8], we then conclude that these representations are isomorphic, that
is, there exists p? 2U.Ex?/ such that �.g/D p?�0.g/p�1? . If u0? 2 Ex? denotes the vector
fixed by �0.G/, then u? WD p?u0? is fixed by �.G/. We then conclude by Lemma 3.7.

4. Pollicott–Ruelle resonances and local geometry on the moduli space of
connections

This section is devoted to the study of the moduli space of connections, from the point
of view of Pollicott–Ruelle resonances. We will first deal with the opaque case and then
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outline the main distinctions with the non-opaque case. We consider a Hermitian vector
bundle .E;rE/ endowed with a unitary connection over the Anosov Riemannian manifold
.M;g/. Recall the notation of Section 2.4: we write XD .��rE/X , R˙.z/D .˙XC z/�1

for its resolvent and R˙0 , …˙0 for the holomorphic parts and the spectral projector at zero,
respectively.

4.1. The Coulomb gauge

We study the geometry of the space of connections (and of the moduli space of gauge-
equivalent connections) in a neighbourhood of a given unitary connectionrE of regularity
C s� (for 1 < s <18) such that ker.rEnd.E//D C � 1E . For the standard differential topol-
ogy of Banach manifolds, we refer the reader to [62]. We denote by

Os.r
E/ WD ¹rE

C p�1rEnd.E/p j p 2 C sC1� .M;U.E//; kp � 1k
C
sC1
�

< ıº

the orbit of gauge-equivalent connections of regularity C s� , where ı > 0 is small enough
so that Os.r

E/ is a smooth Banach submanifold. We also define the slice at rE by

�s.r
E/ WD rE

C ker .rEnd.E//� \ ¹A 2 C s.M; T �M ˝ Endsk.E// j kAkC s� < ıº:

Note that S1 acts by multiplication freely and properly on C s�.M;U.E// and hence we
may form the quotient Banach manifold, denoted by C s�.M;U.E//=S

1, which in particu-
lar satisfies

T1E

�
C s�.M;U.E//=S

1
�
D C s�.M;Endsk.E//=.R � .i1E//; (4.1)

where we use the identification of tangent spaces given by the exponential map. Next,
observe that the map O W p 7! p�rE is injective modulo the multiplication action of
S1 on C sC1� .M;U.E// and that it is an immersion at p D 1 with d1O.�/ D rEnd.E/� .
Therefore by (2.12), Os.r

E/ and �s are smooth transverse Banach manifolds with

TrE O.rEnd.E// D ran.rEnd.E//; TrEnd.E/�s D ker .rEnd.E//�:

We will say that a connection rE
2 is in the Coulomb gauge with respect to rE

1 if
.r

End.E/
1 /�.rE

2 � r
E
1 / D 0. The following lemma shows that, near rE , we may always

put a pair of connections in the Coulomb gauge with respect to each other. It is a slight
generalization of the usual claim (see [25, Proposition 2.3.4]).

Lemma 4.1 (Coulomb gauge). Let s > 1. There exists "D ".s;rE/ > 0 and a neighbour-
hood U � C sC1� .M;U.E//=S1 of 1E such that for any Ai 2 C s.M; T �M ˝ Endsk.E//

with kAikC s� < ", after setting rE
i D r

E C Ai for i D 1; 2, there exists a unique

pA1;A2 2 U such that p�A1;A2r
E
2 � r

E
1 2 ker .rEnd.E/

1 /�. Furthermore, if Ai are smooth,

8It is very likely that the case s D 1 still works. This would require to use the Nash–Moser
Theorem.
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then pA1;A2 is smooth. Moreover, the map�
C s.M; T �M ˝ Endsk.E//

�2
3 .A1; A2/ 7! �.A1; A2/ WD p

�
A1;A2

r
E
2 2 �s.r

E
1 /

is smooth. Setting �.A/ WD �.0; A/, we have

d�jAD0 D �ker .rEnd.E//� :

Os.r
E
1 /Os.r

E
2 /

r
E
2

r
E
1

p�
A1;A2

r
E
2

�s D r
E
1 C ker.rEnd.E/

1 /�

Fig. 5. A schematic representation of Lemma 4.1.

Proof. Note that the exponential map

exp W C sC1� .M;Endsk.E// \ ¹i1Eº
?
L2 ! C sC1� .M;U.E//=S1

is well-defined and a local diffeomorphism at zero, so we reduce the claim to finding
a neighbourhood V � C sC1� .M;Endsk.E// \ ¹i1Eº

?
L2 of 0 and setting p D pA1;A2 D

exp.�A1;A2/ for � D �A1;A2 2 V , that is, U D exp.V/. Define the functional

F W .C s�.M; T
�M ˝ Endsk.E///

2
� C sC1� .M;Endsk.E// \ ¹i1Eº

?
L2

! C s�1� .M;Endsk.E// \ ¹i1Eº
?
L2

by

F.A1; A2; �/ WD .r
End.E/
1 /�

�
exp.��/rEnd.E/ exp.�/C exp.��/A2 exp.�/ � A1

�
:

We see that F is well-defined, i.e. with values in skew-Hermitian endomorphisms, since
rE is unitary, and integrating by parts we get hF.A1; A2; �/;1EiL2 D 0; note that F is
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smooth in its entries. Next, we compute the partial derivative with respect to the � variable
at A1 D A2 D 0 and � D 0:

d�F.0; 0; 0/.�/ D @t jtD0F.0; 0; t�/ D .rEnd.E//�rEnd.E/�:

This derivative is an isomorphism on

.rEnd.E//�rEnd.E/
W C sC1� .M;Endsk.E// \ ¹i1Eº

?
L2

! C s�1� .M;Endsk.E// \ ¹i1Eº
?
L2 ;

by the Fredholm property of .rEnd.E//�rEnd.E/ and since ker rEnd.E/ D C � 1E by
assumption. The first claim then follows by an application of the implicit function the-
orem for Banach spaces.

The fact that p is smooth if .A1; A2/ is, is a consequence of elliptic regularity and the
fact that C s� is an algebra, along with the Coulomb property:

.r
End.E/
1 /�r

End.E/
1 pD .r

End.E/
1 p/p�1 �r

End.E/
1 pCp.r

End.E/
1 /�.p�1.A1 �A2/p/2C

s
�

implies p 2 C sC2� . Bootstrapping we obtain pA1;A2 2 C
1. Here � denotes the opera-

tion of taking the inner product on the differential form side and multiplication on the
endomorphism side.

Eventually, we compute the derivative of �.A/. Write pA WD p0;A and �A WD �0;A,
where �A is orthogonal to i1E with respect to the L2 scalar product, so that by definition

�.A/ D rE
C p�1A r

End.E/pA C p
�1
A ApA: (4.2)

By differentiating the relation F.A; �A/ WD F.0; A; �A/ D 0 at A D 0, we obtain, for
every � 2 C s�.M; T

�M ˝ Endsk.E//,

0 D dAF jAD0;�D0.�/C d�F jAD0;�D0.d�AjAD0.�//

D .rEnd.E//�� C .rEnd.E//�rEnd.E/d�AjAD0.�/;

that is, d�AjAD0.�/ D �Œ.rEnd.E//�rEnd.E/��1.rEnd.E//�� . Observe that dpAjAD0 D
d�AjAD0 via the exponential map and by (4.2), we obtain

d�jAD0.�/ D rEnd.E/d�AjAD0.�/C �

D � � rEnd.E/Œ.rEnd.E//�rEnd.E/��1.rEnd.E//��:

We then conclude by (2.13).

In particular, the proof also shows that the map

C s�.M; T
�M ˝ Endsk.E// 3 A 7! �.A/ 2 �s WD �s.r

E/

is constant along orbits of gauge-equivalent connections (by construction).
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4.2. Resonances at z D 0: finer remarks

We recall that rE is an arbitrary smooth unitary connection on a Hermitian vector bundle
E !M and that the differential operator X WD .��rE/X is defined over SM .

In the subsequent lemma, we will use the following characterization: z0 2 C is a
Pollicott–Ruelle resonance of �X if and only if there exists a non-zero distribution u 2
D 0
E�u
.M; E/ such that �Xu D z0u. Here for a closed conic set � � T �M, we denote

by D 0�.M; E/ the set of distributional sections u such that the wavefront set satisfies
WF.u/ � � (see [52, Chapter 8] for the background on wavefront sets). This characteri-
zation follows by the flexibility in the choice of anisotropic spaces (see e.g. [30, Theorem
13] for details).

Lemma 4.2. The Pollicott–Ruelle resonance spectrum of X is symmetric with respect to
the real axis.

Proof. If z0 is a resonance associated to�X, i.e. a pole of z 7!RC.z/, then by (2.18), z0 is
a resonance associated to CX, i.e. a pole of z 7! R�.z/. Let u 2 D 0

E�u
.M;E/ be a non-

zero resonant state such that �Xu D z0u. Let R W .x; v/ 7! .x;�v/ be the antipodal map
on SM ; note that the pullback R� acts on sections of ��E and that R���rE D ��rE

since � ı R D � . Observe that R� W D 0
E�u
.M; E/ ! D 0

E�s
.M; E/ is an isomorphism,

since R�X D �X , so R� will swap the stable and the unstable bundles. Then z0R�u D
�R�XuD XR�u and R�u 2D 0

E�s
.M;E/. Thus R�u is a resonant state associated to the

resonance z0. So both z0 and z0 are resonances forCX, which completes the proof.9

We remark that the preceding lemma also holds in sufficiently high finite regularity
by a density argument and the continuity of resonances established in Lemma 2.5.

Consider a contour 
 � C such that �X has no resonances other than zero inside or
on 
 . By continuity of resonances (see Lemma 2.5), there is an " > 0 such that for all
skew-Hermitian 1-forms A with kAkC s� < " the operator �XA WD �.��.rE C A//X has
no resonances on 
 . Here we need to take s large enough (depending on the dimension),
so that the framework of microlocal analysis applies.

In the specific case where dim ker XjHC D 1, we denote by �A the unique resonance
of �XA enclosed by 
 . Note that the map A 7! �A is C 3-regular for " > 0 small enough
(see Lemma 2.5).

Lemma 4.3. Assume that dim ker XjHC D 1. Then �A 2 R and for � 2 C1.M;T �M ˝
Endsk.E//,

d�AjAD0 D 0; d2�AjAD0.�; �/ D �h…��1�u0; �
�
1�u0iL2 ;

where u0 is a resonant state associated to A D 0 and ku0kL2 D 1.

9Alternatively, by inspecting the construction of the anisotropic Sobolev space in [30], we see
that we may assume R� W H s

˙
! H s

�
is an isomorphism, simply by replacing the degree function

m in the construction by m�R�m
2 , which then implies that R�m D �m.
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Proof. By the symmetry property of Lemma 4.2 and continuity of resonances we know
�A 2 R. Also, observe that u0 is either pure odd or pure even with respect to v (i.e.
R�u0 D u0 or R�u0 D �u0) because R� keeps ker X fixed and ker X is assumed to be
one-dimensional.

For the second claim, it is sufficient to start with the equality �X��u�� D ���u�� ,
where � 2 C1.M; T �M ˝ Endsk.E//, � 2 .�ı; ı/ is small enough so that � 7! ���
and � 7! u�� 2 HC are C 3, and to compute the derivatives at � D 0. Observe that
PX0 D ��1� and RX0 D 0. We obtain � PX0u0 � X0 Pu0 D P�0u0 and taking the L2 scalar
product with u0, we find P�0 D 0, using the fact that u0 is either pure odd or pure even.
Thus Pu0 �…C0 Pu0 D �RC0 �

�
1�u0. Then, taking the second derivative at � D 0, we get

�2��1� Pu0 � X0 Ru0 D R�0u0, and taking once again the scalar product with u0, we find
R�0 D �2hRC0 �

�
1�u0; �

�
1�u0iL2 . It is then sufficient to observe that by symmetry (using

.RC0 /
� D R�0 and R�0 2 R)

hRC0 �
�
1�u0; �

�
1�u0iL2 D hR

�
0 �
�
1�u0; �

�
1�u0iL2 :

This proves the result.

4.3. P-R resonance at 0 of the mixed connection: Opaque case

We now further assume that X WD .��rEnd.E//X has the resonant space at 0 spanned by
1E . This condition is known as the opacity of the connection ��rE . When .M; g/ is
Anosov, this is known to be a generic condition [15, Theorem 1.6].

As in Section 2.2.1, we assume that s � 1 (so that standard microlocal analysis and
the perturbation lemma 2.5 apply) and we introduce the mixed connection induced by
r

E
1 D r

E C A1 and rE
2 D r

E C A2, namely

r
Hom.rE

1
;rE
2
/u D rEnd.E/uC A2u � uA1;

and we set XA1;A2 WD .��rHom.rE
1
;rE
2
//X and z 7! R˙.z; Ai / for the resolvents. The

operator X WD X0;0 has the resonant space at z D 0 spanned by 1E . For kA1kC s� ; kA2kC s�
small enough by Lemma 2.5 the map .A1; A2/ 7! �A1;A2 is C 3-regular, where we denote
by �A1;A2 the unique resonance close to 0, namely the unique pole of R˙.z;Ai / inside the
small contour 
 around zero (see Section 4.2). Since rHom.rE

1
;rE
2
/ is unitary, by (2.19) we

have Re�A1;A2 � 0, and by Lemmas 4.3 and 2.5 we get �A1;A2 2R (as otherwise the rank
of the projector in Lemma 2.5 would be at least 2, contradicting the fact that it is locally
constant). In fact, �A1;A2 descends to the moduli space: if p�i .r

E C A0i / D r
E C Ai for

kA0ikC s� small enough, then using (2.6) we get

XA0
1
;A0
2
u D .p2/

�1
� XA1;A2.p2u.p1/

�1/ � p1; u 2 HC: (4.3)

Here we use the fact that HC is stable under multiplication by C s� for s large enough;
hence XA1;A2 and XA0

1
;A0
2

have equal P-R spectra and so �A1;A2 D �A01;A02 .
Next, we need a uniform estimate for the generalized X-ray transform operator

…
End.E/
1 , introduced in Definition 2.6 with m D 1 and with respect to the endomorphism

connection End.rE/ (see Definition 2.1), in a neighbourhood of rE :
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Lemma 4.4. Assume…End.E/
1 is s-injective. There are constants ";C > 0 depending only

on rE such that for all skew-Hermitian 1-forms with kAkC s� < ",

8f 2 H�1=2.M; T �M ˝ End.E//;

h…
End.rECA/
1 f; f iL2 � Ck�ker .rEnd.rECA//�

f k2
H�1=2

:

Proof. Observe first that the left hand side of the inequality vanishes on potential tensors
by (2.23) and hence it suffices to consider f 2 ker .rEnd.rECA//�. Then

h…
End.rECA/
1 f; f iL2 D h…

End.rE /
1 f; f iL2 C h.…

End.rECA/
1 �…

End.rE /
1 /f; f iL2

� C0k�ker .rEnd.E//�f k
2
H�1=2

� k…
End.rECA/
1 �…

End.rE /
1 kH�1=2!H1=2kf k

2
H�1=2

�
1
4
C0kf k

2
H�1=2

�
1
2
C0k�ker .rEnd.rE //�

� �ker .rEnd.rECA//�
kH�1=2!H�1=2kf k

2
H�1=2

�
1
8
C0kf k

2
H�1=2

:

In the second line, we have used Lemma 2.9 (3) with a constant C0. In the next line we
have used the fact that the map A 7! …

End.rECA/
1 2 ‰�1 is continuous; the proof of this

fact is analogous to the proof of [43, Proposition 4.1] and we omit it. Thus for " > 0

small enough, k…End.rECA/
1 �…

End.rE /
1 kH�1=2!H1=2 � C0=4. Similarly in the last line

we have used the continuity of A 7! �ker .rEnd.rECA//�
2 L.H�1=2/, which follows by

standard microlocal analysis from (2.13): more precisely, this is a consequence of the fact
that .rEnd.rE //�rEnd.rE / is an isomorphism on C1.M;End.E//\ .C1E/

? by the opac-
ity assumption (where the orthogonal is taken with respect to the L2 scalar product) and
by continuity, this holds for all operators .rEnd.rECA//�rEnd.rECA/ as long as kAkC s� is
small enough (for s large enough); hence the operator Œ.rEnd.rECA//�rEnd.rECA/��1 in
(2.13) is locally uniformly bounded and so by the resolvent formula, it varies continuously
with respect to the connection. So again we choose " > 0 small enough so that

k�ker .rEnd.rE //�
� �ker .rEnd.rECA//�

kH�1=2!H�1=2 � C0=4:

The claim follows by setting C D C0=8.

Recall that �A1;A2 � 0 in the following:

Lemma 4.5. Assume that the generalized X-ray transform …
End.E/
1 defined with respect

to the connection rEnd.E/ is s-injective. For s � 1 large enough, there exist constants
"; C > 0 such that for all Ai 2 C s.M; T �M ˝ Endsk.E// with kAikC s� < " for i D 1; 2,
we have

0 � k�.A1; A2/ � r
E
1 k

2
H�1=2.M;T �M˝Endsk.E//

� C j�A1;A2 j:

Proof. We introduce two functionals in the vicinity of rE , for small enough " > 0:

F1; F2 W .C
s0
� .M;Endsk.E// \ ¹kAkC s0�

< "º/2 ! R;

F1.A1; A2/ WD �A1;A2 ; F2.A1; A2/ WD �k�.A1; A2/ � r
E
1 k

2
H�1=2

:



The holonomy inverse problem 2233

They are well-defined and restrict to C 3-regular maps on �s0 for some s0 � 1 large
enough by Lemma 4.1 and the discussion above. Moreover, using Lemma 4.3 we have,
for all A,

F1.A;A/ D F2.A;A/ D 0 and dF1j.A;A/ D dF2j.A;A/ D 0:

We will compare the second partial derivatives in A2 at a point .A;A/. Given � 2 TrE �s0
' ker .rEnd.E//�, by Lemma 4.1 we have

d2A2F2j.A;A/.�; �/ D �2k�ker .rEnd.rECA//�
�k2

H�1=2
: (4.4)

By Lemma 4.3,

d2A2F1j.A;A/.�; �/ D �c
2
h…End.rECA/��1�1E ; �

�
1�1EiL2 D �c

2
h…

End.rECA/
1 �; �iL2

for some constant c > 0, where …End.rECA/ denotes the … operator with respect to the
endomorphism connection induced by rE C A. We use here the fact that the orthogonal
projection to the resonant space C1E of XA;A at zero vanishes, because h��1�;1EiL2 D 0

as ��1� is odd. For " > 0 small enough, by Lemma 4.4 we know…End.rECA/
1 is s-injective

and there is a constant C 0 D C 0.rE/ > 0 such that

d2A2F1j.A;A/.�; �/ � �C
0
k�ker .rEnd.rECA//�

�k2
H�1=2

D
1
2
C 0d2A2F2j.A;A/.�; �/: (4.5)

As a consequence, writing G.A2/ WD F1.A; A2/ � 1
4
C 0F2.A; A2/, we have G.A/ D 0,

dGjA2DA D 0 and by (4.5), (4.4),

d2GjA2DA.�; �/ �
1
4
C 0d2A2F2j.A;A/.�; �/ D �

1
2
C 0k�ker .rEnd.rECA//�

�k2
H�1=2

:

If we now Taylor expand the C 3-map �s0 3 A2 7! G.A2/ at A2 D A, we obtain

G.AC �/ D 1
2

d2GjA2DA.�; �/CO.k�k3
C
s0
�

/

� �
1
4
C 0k�k2

H�1=2
C

1
4
C 0k.�ker .rEnd.E//� � �ker .rEnd.rECA//�

/�k2
H�1=2

C C 00k�k3
C
s0
�

� �
1
8
C 0k�k2

H�1=2
C C 00k�k3

C
s0
�

:

In the second line we have introduced a uniform constant C 00 D C 00.rE/ > 0 using the
C 3-regular property and �ker .rEnd.E//�� D � . For the last line, we observe that A 7!
�ker .rEnd.rECA//�

2 L.H�1=2/ is a continuous map by (2.13) (see the last subsection of

Lemma 4.4) and hence the H�1=2 ! H�1=2 estimate is arbitrarily small for " small
enough. This estimate holds for all kAk

C
s0
�
; k�k

C
s0
�
< "=2.

Choosing s� s0 and assuming that A 2 C s�.M;T
�M ˝ Endsk.E// with kAkC s� < ",

there is a C 000.rE/ > 0 such that for " > 0 with C 000" � 1
16
C 0, by interpolation we obtain

G.AC �/ � �1
8
C 0k�k2

H�1=2
C C 000k�kC s�„ ƒ‚ …

�C 0=16

k�k2
H�1=2

� �
1
16
C 0k�k2

H�1=2
� 0:

After taking " > 0 small enough, the statement holds with C D 1
2
C 0.
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We note that the preceding lemma shows that �A1;A2 controls the distance in the mod-
uli space between rE C A1 and rE C A2.

Remark 4.6. It was proved in [43] that there exists a metric G on the moduli space of
isometry classes (of metrics with negative sectional curvature) which generalizes the usual
Weil–Petersson metric on Teichmüller space in the sense that, in the case of a surface, the
restriction of G to Teichmüller space is equal to the Weil–Petersson metric. We point
out that the operator …1 also allows us to define a metric G at a generic point a0 2 AE ,
similarly to [43]. Indeed, if a0 2 AE , taking a representative rE 2 a0, one has Ta0AE '

ker .rEnd/� and thus, given � 2 ker .rEnd/�, one can consider

Ga0.�; �/ WD h…1�; �iL2.M;T �M˝End.E// � ck�k
2
H�1=2

for some constant c > 0. Lemma 4.4 shows that the constant c is locally uniform with
respect to a0.

4.4. P-R resonance at 0 of the mixed connection: Non-opaque case

The aim of this subsection is to deal with neighbourhoods of connections that are not
necessarily opaque, and only assume …End.E/

1 is injective. In other words, we do not want
to assume the resonant space of �.��rEnd.E//X at zero is spanned by 1E necessarily.

Next, as in Section 4.3, we introduce the mixed connection with respect to rE C A

and rE , denoted by rHom.rECA;rE /, and set XA WD .��rHom.rECA;rE //X . We assume
s � 1. As before, consider a contour 
 � C around zero such that X WD X0 has only the
resonance zero enclosed by 
 and " > 0 such that �XA has no resonances on 
 for all
kAkC s� < ". We introduce

…CA WD
1

2�i

Z



.z C XA/�1 dz; �A WD Tr.�XA…CA /:

This generalizes the quantity studied in Section 4.2, where it was assumed that the mul-
tiplicity of X at zero is 1. By Lemma 2.5, A 7! …CA and A 7! �A are C 3-regular. As in
(4.3), the operators �XA and �XA0 are unitarily equivalent on HC whenever rE CA and
rE C A0 are gauge-equivalent; hence �A D �A0 and so �A descends to the local moduli
space.

Note also that Re�A � 0, since by (2.19) all resonances of �XA lie in the half-plane
¹Rez� 0º and this gives us hope that Re�A controls the distance between the connections.
Assume that the resonant space of �X at zero is spanned by smooth L2-orthonormal
resonant states ¹uiº

p
iD1. We have the following generalization of Lemma 4.3:

Lemma 4.7. For A 2 C1.M;T �M ˝ Endsk.E// with kAkC s� < ", we have �A 2 R and
the following perturbation formulas hold:

d�AjAD0 D 0; d2�AjAD0.�; �/ D �
pX
iD1

h…ui�
�
1�; ui�

�
1�iL2 :
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Proof. The fact that �A is real follows from the symmetry of the spectrum of �XA shown
in Lemma 4.2. The first derivative formula is obvious as �A � 0; the second one follows
from minor adaptations of [15, Lemma 5.9], where the analogous case of endomorphisms
was considered.

Next, by a straightforward adaptation of Lemma 4.1, we obtain the existence of " > 0
such that for all A with kAkC s� < ", there is a smooth map A 7! �.A/ 2 �s that sends
rE C A to Coulomb gauge with respect to rE , that is, �.A/ � rE 2 ker .rEnd.E//�.

Remark 4.8. We cannot get the statement analogous to Lemma 4.1 for parameters
.A1; A2/, because the range of F.A1; A2; �/ equals ker .rEnd.E/

1 /? and this is not uni-
form in A1 (i.e. ker rEnd.E/

1 changes as we move A1); the space AE is not a smooth
manifold at reducible connections.

In the following lemma, we will need to assume that �1�…C0 D 0. Equivalently, this
means that the resonant states ui 2 ker XjHC satisfy �1�ui D 0 for i D 1; : : : ; p, i.e. the
degree 1 Fourier modes of all the ui vanish.

Lemma 4.9. Assume that the generalized X-ray transform …
End.E/
1 defined with respect

to the connectionrEnd.E/ is s-injective and additionally that �1�…C0 D 0. For s� 1 large
enough, there exist constants "; C > 0 such that for all A 2 C s.M; T �M ˝ Endsk.E//

with kAkC s� < ",

0 � k�.A/ � rE
k
2
H�1=2.M;T �M˝Endsk.E//

� C j�Aj:

Proof. This is straightforward from the proof of Lemma 4.5. With the same functionals
F1.A/ D �A and F2.A/ D �k�.A/ � rEk2

H�1=2
, the only slight difference is the com-

putation of d2F1. Pick an L2-orthonormal basis u1; : : : ; up of the resonant space of �X
at zero such that u1 D c1E , where c is a fixed constant. By Lemmas 4.7 and 2.3, we have

d2F1jAD0.�; �/ D �
pX
iD1

h…ui�
�
1�; ui�

�
1�iL2 � �c

2
h…

End.E/
1 �; �iL2 :

Note that we have used …C0 �
�
1� D 0. This follows from the expression for the projector

…C0 D
Pp
iD1h�; ui iL2ui and �1�ui D 0 for all i . This suffices to run the proof in the

same manner.

5. Injectivity of the primitive trace map

We can now prove the main results stated in the introduction.

5.1. The local injectivity result

We now prove the injectivity result of Theorem 1.1.



M. Cekić, T. Lefeuvre 2236

Proof of Theorem 1.1. We fix a regularity exponent N � 1 large enough so that the
results of Section 4 apply. We fix a smooth unitary connection rE on E and assume that
it is generic. By mere continuity, the same properties hold for every connection rE C A

such that kAkCN� < ", where " > 0 is small enough depending on rE .
Consider two smooth unitary connections rE

i D r
E C Ai such that kAikCN� < "

for i D 1; 2. Assume that T ].rE
1 /D T ].rE

2 /. By differentiating with respect to time and
taking t D 0 in (3.2), the exact Livšic cocycle theorem 3.2 yields the existence of a smooth
map p 2 C1.SM;U.E// such that

��r
Hom.rE

1
;rE
2
/

X p D 0;

that is, p is a resonant state for the operator XA1;A2 associated to the eigenvalue 0.
Assumptions (A) and (B) allow us to apply Lemma 4.5. We then obtain

�A1;A2 D 0 � �Ck�.A1; A2/ � r
E
1 k

2
H�1=2.M;T �M˝End.E// � 0;

where C D C.rE/ > 0 only depends on rE . Hence �.A1; A2/ D p�A1;A2r
E
2 D r

E
1 . In

other words, the connections are gauge-equivalent.

Next, we discuss a version of local injectivity in a neighbourhood of a connection
which is non-opaque. We will say a map f W X ! Y of topological spaces is weakly
locally injective at x0 2X if there exists a neighbourhoodU 3 x0 such that f .x/D f .x0/
for x 2 U implies x D x0. This notion appears in non-linear inverse problems where the
linearization is not continuous [94, Section 2]. We have:

Theorem 5.1. If N � 1 and ŒrE � 2 AE is such that the generalized X-ray transform
…

End.E/
1 is s-injective, as well as �1� ker ��rEnd.E/

X jC1 D 0, then the primitive trace
map T ] is weakly locally injective at ŒrE � in the CN -quotient topology.

Proof. The proof is analogous to the proof of Theorem 1.1, by using the results of Sec-
tion 4.4. We omit the details.

We shall see below (see Lemma 5.10) that flat connections have an injective general-
ized X-ray transform …

End.E/
1 and satisfy the additional condition that ker .��rE/X jC1

consists of elements of degree zero (but might not be opaque). The previous theorem
therefore shows that the primitive trace map is weakly locally injective near such connec-
tions. Let us state this as a corollary for the trivial connection, as it partially answers an
open question of Paternain [79, p. 33, Question (3)].

Corollary 5.2. Let E D M � Cr be the trivial Hermitian vector bundle equipped with
the trivial flat connection d . Then there exists a neighbourhood U 3 Œd � in AE with CN -
quotient topology such that Œd � is the unique gauge class of transparent connections in U.

5.2. Global injectivity results

We now detail some cases in which Theorem 1.1 can be upgraded.
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5.2.1. Line bundles. We let T
]
1 be the restriction of the total primitive trace map (1.3)

to line bundles. The moduli space of all connections on line bundles A1 carries a nat-
ural Abelian group structure using the tensor product. When restricted to line bundles,
the primitive trace map T

]
1 takes values in `.C];U.1//, the set of sequences indexed by

primitive free homotopy classes. We have

Lemma 5.3. The map T
]
1 WA1! `1.C];U.1// is a multiplicative group homomorphism.

Proof. Left as an exercise to the reader.

Remark 5.4. There also exists a group homomorphism for higher rank vector bundles
by taking the determinant instead of the trace. More precisely, writing Ar for the set of
all unitary connections on all possible Hermitian vector bundles of rank r (up to isomor-
phism), one can set

det ] W A! `1.C];U.1//; (5.1)

by taking the determinant of the holonomy along each closed primitive geodesic. This map
is also a group homomorphism (where the group structure on

F
r�0Ar is also obtained by

tensor product). Nevertheless, the determinant map (5.1) cannot be injective as all trivial
bundles (of different ranks) have the same image.

We have the following result, mainly due to Paternain [77]:

Proposition 5.5 (Paternain). Let .M; g/ be a smooth Anosov n-manifold. If n � 3, then
the restriction of the primitive trace map to line bundles,

T
]
1 W A1 ! `1.C]/; (5.2)

is globally injective. Moreover, if n D 2 then

ker T
]
1 D ¹.Œ�

˝n�; ŒrLC˝n�/ j n 2 Zº;

where � !M denotes the canonical line bundle and rLC is the connection induced on �
by the Levi-Civita connection.

Observe that on surfaces, the trivial line bundle C �M ! M (with the trivial con-
nection) and the canonical line bundle � ! M (with the Levi-Civita connection) both
have trivial holonomy but are not isomorphic. This explains the existence of a non-trivial
kernel for n D 2. We will need this preliminary lemma:

Lemma 5.6. Let .M; g/ be a smooth closed Riemannian manifold of dimension � 3 and
let � W SM ! M be the projection. Let L1 ! M and L2 ! M be two Hermitian line
bundles. If ��L1 ' �

�L2, then L1 ' L2.

Proof. The topology of line bundles is determined by their first Chern class. As a conse-
quence, it suffices to show that c1.L1/ D c1.L2/. By assumption, we have c1.��L1/ D

��c1.L1/D c1.�
�L2/D �

�c1.L2/ and thus it suffices to show that �� WH 2.M;Z/!
H 2.SM;Z/ is injective when dim.M/ � 3. But this is a mere consequence of the Gysin
exact sequence [9, Proposition 14.33].
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Proof of Proposition 5.5. Assume that T
]
1 .a1/D T

]
1 .a2/, where a1 2AL1 and a2 2AL2

are two classes of connections defined on two (classes of) line bundles. By Theorem 3.2,
the pullback bundles ��L1 and ��L2 are isomorphic, hence L1 ' L2 by Lemma 5.6.
Up to composing with a first bundle (unitary) isomorphism, we can therefore assume
that L1 D L2 DW L. Let rL

1 2 a1 and rL
2 2 a2 be two representatives of these classes.

They satisfy T ].rL
1 / D T ].rL

2 /. Combining Theorem 3.2 with [77, Theorem 3.2], the
primitive trace map T

]

L
is known to be globally injective for connections on the same fixed

bundle. Hence rL
1 and rL

2 are gauge-equivalent.
For the second claim, let x D .ŒL�; a/. If T

]
1 .x/ D .1; 1; : : : / (i.e. the connection is

transparent), then by Theorem 3.2, ��L ! SM is trivial. By the Gysin sequence [9,
Proposition 14.33], this implies that c1.L/ is divisible by 2g � 2, where g is the genus
of M (see [77, Theorem 3.1]), hence ŒL� D Œ�˝n� for some n 2 Z. Moreover, the Levi-
Civita connection on �˝n is transparent and by uniqueness (see [77, Theorem 3.2]), this
implies that a D ŒrLC˝n�.

Remark 5.7. The target space in (5.2) is actually `1.C]; U.1// (sequences indexed
by C] and taking values in U.1/), which can be seen as a subset of U.`1.C]//, the group
of unitary operators of the Banach space `1.C]/ (equipped with the sup norm). Then T

]
1

is a group homomorphism and Proposition 5.5 asserts that

T
]
1 W A1 ! U.`1.C]//

is a faithful unitary representation of the Abelian group A1.

We end this subsection with a generalization of Proposition 5.5. There is a natural
submonoid A0 � A which is obtained by considering sums of line bundles equipped with
unitary connections, that is,

A0 WD ¹x1 ˚ � � � ˚ xk j k 2 N; xi 2 A1º:

We then have the following:

Theorem 5.8. Let .M; g/ be a smooth Anosov Riemannian manifold of dimension � 3.
Then the restriction of the primitive trace map to A0,

T ]
W A0 ! `1.C]/;

is globally injective.

Proof. Let L WDL1˚ � � � ˚Lk and JDJ1˚ � � � ˚Jk0 be two Hermitian vector bundles
over M , equipped with the respective connections rL1 ˚ � � � ˚ rLk and rJ1 ˚ : : :

˚ rJk0 , and assume that they have the same image by the primitive trace map. Fixing
a periodic point .x?; v?/ and applying Proposition 3.19, we see that k D k0 and there
exist isomorphic representations �L WG! U.��L.x?;v?// and �J WG! U.��J.x?;v?//,
where G denotes Parry’s free monoid at .x?; v?/. Since these representations are sums
of one-dimensional representations, there is a unitary isomorphism p? W �

�L.x?;v?/ !
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��J.x?;v?/ such that for each i 2 ¹1; : : : ; kº, there exists �.i/ 2 ¹1; : : : ; kº such that
p
.i/
? WD p?j��Li;.x?;v?/

is a representation isomorphism

p
.i/
? W �

�Li;.x?;v?/ ! ��J�.i/;.x?;v?/:

Now, following the arguments of Lemma 3.21, we parallel-transport p.i/? along the

homoclinic orbits with respect to the pullback ��rHom.rLi ;r
J�.i/ /

X of the mixed connec-
tion (induced by rLi on Li and rJ�.i/ on J�.i/); the Lipschitz-regularity of the resulting
section follows, as in Lemma 3.24, from the fact that p.i/? �Li .g/ D �J�.i/.g/p

.i/
? for all

g 2 G. Using the regularity result of [39], we thus obtain a unitary section

p.i/ 2 C1.SM;��Hom.Li ;J�.i///

conjugating the parallel transports along geodesic flow lines with respect to the con-
nections ��rLi and ��rJ�.i/ . In particular, the existence of such a p.i/ ensures that
T
]
1 .Li ;r

Li / D T
]
1 .J�.i/;r

J�.i//. We then conclude by Proposition 5.5, showing that
each pair .Li ;r

Li / is isomorphic to .J�.i/;rJ�.i// for i D 1; : : : ; k.

5.2.2. Flat bundles. We discuss the particular case of flat vector bundles. It is well-known
that the data of a vector bundle equipped with a unitary connection (modulo isomorphism)
is equivalent to a unitary representation of the fundamental group (modulo inner auto-
morphisms of the unitary group). More precisely, given � 2 Hom.�1.M/;U.r//, one can
associate a Hermitian bundle E !M equipped with a flat unitary connection rE by the
following process: Let zM be the universal cover ofM ; consider the trivial bundle Cr � zM

equipped with the flat connection d and define the relation .x; v/ � .x0; v0/ if and only
if x0 D 
.x/; v0 D �.
/v, for some 
 2 �1.M/; then .E;rE/ is obtained by taking the
quotient Cr � zM=�. Changing � to an isomorphic representation �0 D p � � � p�1 (for
p 2U.r/) changes the connection to a gauge-equivalent connection and this process gives
a one-to-one correspondence between the moduli spaces.

For r � 0, we let
Mr WD Hom.�1.M/;U.r//=�

be the moduli space of unitary representations of the fundamental group, where two rep-
resentations are �-equivalent whenever they are isomorphic. The space Mr is called the
character variety; see [61] for instance. For r D 0, it is reduced to a point; for r D 1, it
is given by M1 D U.1/b1.M/, where b1.M/ denotes the first Betti number of M . Given
x 2 Mr , we let ‰.x/ D .Ex; r

Ex/ be the data of a Hermitian vector bundle equipped
with a unitary connection (up to gauge equivalence) described by the above process. The
primitive trace map T ] can then be seen as a map

T ]
W

G
r�0

Mr ! `1.C]/; T ].x/ WD T ].rEx/;

where the right hand side is understood by (1.2). We then have the following:
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Proposition 5.9. Let .M;g/ be an Anosov manifold of dimension � 2. Then the primitive
trace map

T ]
W

G
r�0

Mr ! `1.C]/

is globally injective. Moreover, given x0 D .ŒE0�; ŒrE
0 �/ 2Mr , the primitive trace map is

weakly locally injective .in the sense of Theorem 5.1/ near x0 in the space AŒE0� of all
unitary connections on ŒE0�.

Proposition 5.9 will be strengthened below when further assuming that .M; g/ has
negative curvature (see Lemma 5.13): we will show that the primitive trace map is globally
injective on connections with small curvature. The first part of Proposition 5.9 could be
proved by purely algebraic arguments; nevertheless, we provide a proof with dynamical
flavour, more in the spirit of the present article. We need a preliminary result:

Lemma 5.10. Assume .M; g/ is Anosov and rE is a flat and unitary connection on the
Hermitian vector bundle E !M . Let X WD .��rE/X .

� If Xu D f with f D f0 C f1 2 C1.M; .�0 ˚�1/˝ E/ and u 2 C1.SM; ��E/,
then f0 D 0 and u is of degree 0.

� In particular, smooth invariant sections u 2 ker XjC1.SM;��E/ are of degree 0.

� The operator …E
1 is s-injective.

Proof. The proof is based on the twisted Pestov identity for flat connections.

Lemma 5.11 (Twisted Pestov identity). Let u 2 H 2.SM;��E/. Then

kr
E
V Xuk2

L2
D kXrE

Vuk
2
L2
� hRrE

Vu;r
E
VuiL2 C .n � 1/kXuk

2
L2
:

For the notation, see Section 2.3.2; for a proof, we refer to [45, Proposition 3.3]. An
important point is that the following inequality holds for Anosov manifolds:

kXrE
Vuk

2
L2
� hRrE

Vu;r
E
VuiL2 � Ckr

E
Vuk

2
L2
;

where C > 0 is independent of u; see [83, Theorem 7.2] for the case of the trivial line
bundle (the generalization to the twisted case is straightforward). We thus obtain

kr
E
V Xuk2

L2
� CkrE

Vuk
2
L2
C .n � 1/kXuk2

L2
: (5.3)

By assumption, XuD f0C f1 2C1.M;.�0˚�1/˝E/. Observe that this equation
can be split into odd/even parts: Xueven D f1;Xuodd D f0, and ueven;odd 2 C

1.SM;��E/

have respective even/odd Fourier components. Applying (5.3) with uodd, we obtain f0D0,
Xuodd D 0 and rE

Vuodd D 0, that is, uodd is of degree 0 but 0 is even so uodd D 0. As far
as ueven is concerned, observe that rE

V Xueven D r
E
Vf1 and

kr
E
Vf1k

2
L2
D h��E

Vf1; f1iL2 D .n � 1/kf1k
2
L2
:

Hence, applying the twisted Pestov identity with ueven, we obtain

0 D kXrE
Vuevenk

2
L2
� hRrE

Vueven;r
E
VueveniL2 � Ckr

E
Vuevenk

2
L2
;
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that is, ueven is of degree 0. This proves the first point, and the second point is a direct
consequence of the first point.

For the last point, consider the equation Xu D ��1 f . By the first point, u is of degree
zero, so u D ��0u

0 for some u0 2 C1.M;E/. Hence by (2.11) we get f D rEu0 and the
conclusion follows by Lemma 2.8.

Proof of Proposition 5.9. We prove the first part of Proposition 5.9. We assume that
T ].x1/D T ].x2/, or equivalently T ].rEx1 /D T ].rEx2 /. The exact Livšic cocycle theo-
rem 3.2 implies that the bundles ��Ex1 and ��Ex2 are isomorphic and yields the existence
of a section p 2 C1.SM;U.��Ex2 ; �

�Ex1// such that

Cx1.x; t/ D p.'tx/Cx2.x; t/p.x/
�1

for all x 2M and t 2 R, which is equivalent to

��r
Hom.rEx2 ;r

Ex1 /
X p D 0;

where rHom.rEx2 ;r
Ex1 / is the mixed connection induced by rEx2 and rEx1 on

Hom.Ex2 ;Ex1/. Observe that by (2.5), the curvature of rHom.rEx2 ;r
Ex1 / vanishes as both

curvatures F
r

Ex1;2 vanish. Applying Lemma 5.10 with X WD ��rHom.rEx2 ;r
Ex1 /

X acting
on the pullback bundle ��Hom.Ex2 ;Ex1/, we find that p is of degree 0, which is equiva-
lent to the fact that the connections are gauge-equivalent.

As for the second part of Proposition 5.9, by Theorem 5.1 it is a straight-
forward consequence of the s-injectivity of …End.E0/

1 and the fact that elements of
ker .��rEnd.E0//X jC1/ are of degree zero, which follows from Lemma 5.10 (2, 3).

5.2.3. Negative sectional curvature. We now assume further that the Riemannian mani-
fold .M; g/ has negative sectional curvature. We introduce the following condition:

Definition 5.12. We say that the pair of connections .rE1 ; rE2/ satisfies the spectral
condition if the mixed connection rHom.rE1 ;rE2 / has no non-trivial twisted CKTs.

This condition is symmetric in the pair .rE1 ;rE2/. Observe that by (2.6), the previous
condition is invariant under changing one of the two connections to p�rEi for some
vector bundle isomorphism p, and thus this condition descends to the moduli space. We
then define

S � A �A; (5.4)

the subspace of all pairs of equivalence classes of connections satisfying the spectral
condition. The set S is open and dense (for the CN� -topology, N � 1), as shown in
Appendix A. Moreover, it also contains all pairs of connections with small curvature,
that is, if

�" WD ¹x D .ŒE�; ŒrE �/ 2 A j kFrEkL1.M;ƒ2T �M˝End.E// < "º � A;

then we have the following:
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Lemma 5.13. Let .M; g/ be a negatively-curved Riemannian manifold of dimension � 2
and let �� < 0 be an upper bound for the sectional curvature. There exists ".n; �/ > 0
such that

�".n;�/ ��".n;�/ � S:

One can take ".n; �/ D �
p
n � 1=4.

Proof. We start by a preliminary discussion. Given a Hermitian vector bundle E ! M

with metric h�; �i, and a unitary connection rE , we introduce, following [45, Section 3],
an operator F E 2 C1.SM;N ˝ Endsk.E// (recall that N is the normal bundle, see
Section 2.3.1) defined by the equality

hF E.x; v/e; w ˝ e0i WD hFrE .v; w/e; e0i; (5.5)

where FrE is the connection of rE , and .x; v/ 2 SM; e; e0 2 Ex ; w 2 N .x; v/, and the
metric on the left hand side is the natural extension of the metric h�; �i on E to N ˝ E by
tensoring with the metric g. A straightforward computation shows that

kF E
kL1.SM;N˝Endsk.E// � kFrEkL1.M;ƒ2T �M˝End.E//: (5.6)

Now, let rE1 and rE2 be two unitary connections, rHom.rE1 ;rE2 / be the mixed connec-
tion and F Hom.E1;E2/ be the operator induced by the mixed connection as in (5.5). Observe
that by (2.5) and (5.6), we get

kF Hom.E1;E2/kL1 � kF
rHom.rE1 ;rE2 /

kL1 � kFrE1 kL1 C kFrE2 kL1 < 2".n; �/:

(5.7)
By [45, Theorem 4.5], if m � 1 satisfies

m.mC n � 2/ � 4
kF Hom.E1;E2/k2L1

�2
; (5.8)

then there are no twisted CKTs of degree m (for the connection rHom.rE1 ;rE2 /). Now,
the choice of ".n; �/ > 0 combined with (5.7) guarantees that (5.8) is satisfied for any
m � 1.

We then have the following statement:

Proposition 5.14. Let .M; g/ be a negatively-curved Riemannian manifold of dimension
� 2. Let .a; a0/ 2 S be such that T ].a/ D T ].a0/. Then a D a0.

In other words, two connections satisfying the spectral condition and whose images
by the primitive trace map are equal, are actually gauge-equivalent.

Proof. Consider two representatives rE1 2 a and rE2 2 a0. The exact Livšic cocycle
theorem 3.2 provides a section p 2 C1.SM;U.��E2; ��E1// such that

��r
Hom.rE2 ;rE1 /
X p D 0:

By assumption, .M; g/ has negative curvature and thus p has finite Fourier degree by
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[45, Theorem 4.1]. Moreover, since rHom.rE2 ;rE1 / has no non-trivial twisted CKTs, p is
of degree 0 (see [45, Theorem 5.1]). This shows that the connections are gauge-equivalent.

5.2.4. Topological results. In this section we prove a global topological uniqueness result
for the primitive trace map.

Proposition 5.15. Let .M;g/ be an orientable Anosov manifold. If xi D .ŒEi �; ŒrEi �/ 2A
for i D 1; 2, then T ].x1/ D T ].x2/ implies:

� If dim.M/ is odd or more generally the Euler characteristic �.M/ vanishes, then
E1 ' E2 as vector bundles.

� If dim.M/ D 2d for some d 2 N and �.M/ ¤ 0, then

– the Chern classes satisfy ci .E1/D ci .E2/ for i D 1; : : : ; d �1; also cd .E1/�cd .E2/
2 H 2d .M IZ/ Š Z is a multiple of �.M/;

– if the even cohomology ringH even.M IZ/ is torsion-free, and the rank of the bundles
is less than d or more generally cd .E1/ D cd .E2/, then E1 and E2 are stably iso-
morphic, i.e. there is an m � 0 such that E1 ˚Cm ' E2 ˚Cm.

Proof. As a direct consequence of Theorem 3.2, from T ].x1/ D T ].x2/ we deduce that
��E1 ' �

�E2.
If .M; g/ has a vanishing Euler characteristic, there is a non-vanishing vector field

V 2 C1.M; TM/ (see [9, Chapter 11]), which we normalize to unit norm using the
metric g and hence see as a section of SM . Then since � ı V D IdM , we get

E1 ' V
���E1 ' V

���E2 ' E2;

completing the proof of the first item.
The first point of the second item is immediate after an application of the Gysin exact

sequence [9, Proposition 14.33] for the sphere bundle SM . The second point follows from
the first one and the fact that the Chern character gives an isomorphism between rational
K-theory and even rational cohomology [50, Proposition 4.5].

It is not known to the authors if further results hold about the injectivity of �� W
Vect.M/! Vect.SM/ in even dimensions (dim.M/ � 4).

Appendix A. Generic absence of CKTs for the mixed connection

In this section we assume that .M; g/ has negative curvature. For i D 1; 2, we let rEi

be a (smooth) unitary connection on the Hermitian vector bundle Ei !M . By [45, The-
orem 4.5], there exists m0 � 1 (depending on the dimension and the sup norm of the
curvatures of rE1;2 ) such that the mixed connection rHom.rE1 ;rE2 / has no non-trivial
twisted CKTs of degreem �m0. This property is stable by any small perturbation of rEi

in the C 1-topology (so that the curvature is well-defined). From this, we deduce by stan-
dard elliptic theory that if the pair .rE1 ;rE2/ satisfies the spectral condition, then any
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small perturbation (in the C 1-topology) will also satisfy the spectral condition: indeed,
absence of twisted CKTs of degree m is equivalent to the invertibility of a natural Lapla-
cian operator acting on �m ˝Hom.E1;E2/ and this is an open property as there are only
a priori a finite number of integers m � m0 to check; see [15] for further details. This
shows that the set S defined in (5.4) is open.

We now show that it is dense. More precisely, we show the following:

Lemma A.1. Let rE1;2 be a smooth unitary connection on E1;2 ! M and assume that
the mixed connection rHom.rE1 ;rE2 / admits non-trivial twisted CKTs of degree m � 1.
Then, for any " > 0 and k0� 1 large enough, there exists a small perturbationrE2 C�2,
where �2 2 C1.M; T �M ˝ Endsk.E2// and k�2kCk0 � ", such that the mixed connec-
tion induced by the pair .rE1 ;rE2 C �2/ has no non-trivial twisted CKTs of degree m.

Proof. We let X�2 WD ��rHom.rE1 ;rE2C�2/
X , where �2 is small and, as in Section 2.3.2,

we define

X�2
˙
W C1.M;�m ˝ Hom.E1;E2//! C1.M;�m˙1 ˝ Hom.E1;E2//;

and X˙ WD X�2D0. We also let ��2 WD .X�2C /
�X�2C , the Laplacian-type operator acting

on sections of �m ˝ Hom.E1; E2/. The existence of twisted CKTs of degree m for the
mixed connection rHom.rE1 ;rE2 / is equivalent to the existence of a non-trivial kernel for
��2D0; see [15, Section 4] for further details.

Given 
 � C, a small contour in C around 0 (containing only the eigenvalue 0 of
��2D0), we let ��2 be the sum of the eigenvalues of ��2 inside 
 . We see that C k0 3
�2 7! ��2 is at least C 3 when k0 � 1 is chosen large enough. We have ��2D0 D 0 and
d��2 D 0 [15, Section 4]. Moreover, it was shown in [15, Lemma 4.2] that the second
derivative is

d2��2D0.A2; A2/ D
dX
iD1

k�ker X� ŒdX�2D0.A2/�Cuik2L2 D
dX
iD1

k�ker X�.A2/Cuik
2
L2
;

where ¹u1; : : : ; ud º is an L2-orthonormal basis of ker��2D0 (each ui is a smooth sec-
tion of �m ˝ Hom.E1;E2/!M ), A2 2 C1.M; T �M ˝ Endsk.E2// and .A2/C is the
positive part of the operator (see [15, Section 2.2]), and �ker X� is the L2-orthogonal pro-
jection onto ker X�jL2.M;�mC1˝Hom.E1;E2//. The formula for dX�2D0.A2/ D A2 can be
directly read off from (2.3).

It thus suffices to produce a small perturbation such that this second derivative is
positive. We can argue by contradiction and assume that for any perturbation, this second
derivative vanishes. Following verbatim the arguments of [15, Section 4.3], and using the
fact that the operator X� is of uniform divergence type (see [15, Section 3]), this would
imply that

hu1.x/; .A2/�wix D 0

for all x 2M , A2 2 C1.M;T �M ˝ Endsk.E2//;w 2 �mC1.x/˝Hom.E1.x/;E2.x//.
It thus suffices to show, as in [15, Lemma 4.8] that this forces u1 to be zero, which is a
contradiction since ku1kL2 D 1.
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We now fix an arbitrary point x0. We can write u1.x0/ D
Pk
iD1 pi ˝ si , where

k D rank.Hom.E1; E2//, ¹s1; : : : ; skº is an orthonormal basis of Hom.E1; E2/ at x0,
and pi 2 �m.x0/. We write .e1; : : : ; en/ for an orthonormal basis of Tx0M . Taking
A2 D i1E2 ˝ e�1 , w D f ˝ si0 where f 2 �mC1.x0/ is such that .v1/�f D pi0 (here
v1 D e�1.v/ and .v1/� is the minus operator associated; this operator is surjective by
[15, Lemma 2.4]), we get, as in [15, Lemma 4.8],

hu1.x0/; .A2/�wix0 D

kX
iD1

hpi ˝ si ; .v1/�f ˝ i1E2 � si0i

D ikpi0k
2
ksi0k

2
D ikpi0k

2
L2
D 0:

Hence u1 � 0. This concludes the proof.
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M. Cekić, T. Lefeuvre 2248

[55] Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. Ency-
clopedia of Mathematics and its Applications 54, Cambridge University Press, Cambridge
(1995) Zbl 0878.58020 MR 1326374

[56] Katsuda, A., Sunada, T.: Homology and closed geodesics in a compact Riemann surface.
Amer. J. Math. 110, 145–155 (1988) Zbl 0647.53036 MR 926741

[57] Klingenberg, W.: Riemannian manifolds with geodesic flow of Anosov type. Ann. of Math.
(2) 99, 1–13 (1974) Zbl 0272.53025 MR 377980

[58] Kobayashi, S.: La connexion des variétés fibrées. II. C. R. Acad. Sci. Paris 238, 443–444
(1954) Zbl 0055.42102 MR 60889

[59] Kobayashi, S., Nomizu, K.: Foundations of differential geometry. Vol. II. Interscience Tracts
in Pure and Applied Mathematics 15, Interscience Publishers, New York (1969)
Zbl 0175.48504 MR 238225

[60] Kuwabara, R.: Isospectral connections on line bundles. Math. Z. 204, 465–473 (1990)
Zbl 0728.53025 MR 1062129

[61] Labourie, F.: Lectures on representations of surface groups. Zurich Lectures in Advanced
Mathematics, European Mathematical Society, Zürich (2013) Zbl 1285.53001
MR 3155540

[62] Lang, S.: Fundamentals of differential geometry. Graduate Texts in Mathematics 191,
Springer, New York (1999) Zbl 0095.53001 MR 1666820

[63] Lang, S.: Algebra. 3rd ed., Graduate Texts in Mathematics 211, Springer, New York (2002)
Zbl 0984.00001 MR 1878556

[64] Lefeuvre, T.: On the rigidity of Riemannian manifolds. https://thibaultlefeuvre.files.
wordpress.com/2019/12/main.pdf (2019)

[65] Lefeuvre, T.: Isometric extensions of Anosov flows via microlocal analysis. Comm. Math.
Phys. 399, 453–479 (2023) Zbl 1518.37044 MR 4567379

[66] Liverani, C.: On contact Anosov flows. Ann. of Math. (2) 159, 1275–1312 (2004)
Zbl 1067.37031 MR 2113022

[67] Livšic, A. N.: Cohomology of dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat. 36,
1296–1320 (1972) (in Russian) Zbl 0273.58013 MR 334287

[68] Loll, R.: Gauge theory and gravity in the loop formulation. In: Canonical gravity: from classi-
cal to quantum (Bad Honnef, 1993), Lecture Notes in Physics 434, Springer, Berlin, 254–288
(1994) Zbl 0820.53060 MR 1297337

[69] Lopes, A. O., Thieullen, P.: Sub-actions for Anosov flows. Ergodic Theory Dynam. Systems
25, 605–628 (2005) Zbl 1078.37021 MR 2129112

[70] Merry, W. J., Paternain, G. P.: Inverse problems in geometry and dynamics. Lecture notes,
https://www.dpmms.cam.ac.uk/~gpp24/ipgd(3).pdf (2011)

[71] Nicol, M., Pollicott, M.: Measurable cocycle rigidity for some non-compact groups. Bull.
London Math. Soc. 31, 592–600 (1999) Zbl 0984.37003 MR 1703845
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