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Abstract. We show that there are smooth complex projective varieties with infinite 2-torsion in
their third Griffiths groups. It follows that the torsion subgroup of Griffiths groups is in general not
finitely generated, thereby solving a problem of Schoen from 1992.
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1. Introduction

The Griffiths group Griff' (X) of a smooth complex projective variety X is the group
of homologically trivial codimension i cycles modulo algebraic equivalence. This is a
countable abelian group which is a basic invariant of X. However, detecting whether a
given homologically trivial cycle is nontrivial in the Griffiths group is a subtle problem.
For instance, the isomorphism type of the abelian group Griff’ (X) is not known in any
nontrivial example.

Griffiths [15] used his transcendental Abel-Jacobi maps to construct the first example
of a smooth complex projective variety with nontrivial Griffiths group. Clemens [7] com-
bined Griffiths’ approach with a degeneration argument to show that in fact Griff' (X) ® Q
may be an infinite-dimensional Q-vector space for any i > 2. This showed that Griffiths
groups are in general not finitely generated modulo torsion.

Improving earlier results of Schoen [35] and Rosenschon—Srinivas [32], Totaro [41]
showed that Griff’ (X)/£ may for i > 2 be infinite for any prime £. These results rely on
Griffiths’ method, a theorem of Bloch-Esnault [3], and ideas from Nori’s proof [28] of
Clemens’ theorem.

Schoen [33] used Griffiths’ method to show that Griffiths groups may contain non-
trivial torsion. The first nontrivial torsion classes with trivial transcendental Abel-Jacobi
invariants have been constructed by Totaro [40] via a topological method; nontorsion
classes with that property had earlier been constructed by Nori [29].
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1.1. Main result

This article shows that the theory of refined unramified cohomology developed in [38] fur-
nishes a new method to detect nontriviality of classes in the Griffiths group. As a concrete
application, we prove the following.

Theorem 1.1. Let JC be the Jacobian of a very general quartic curve C C }P’é. Then for
any very general Enriques surface X over C, Griff>(X x JC) has infinite 2-torsion.

As an immediate corollary, we obtain the following result

Corollary 1.2. The torsion subgroup of Griffiths groups of smooth complex projective
varieties is in general not finitely generated.

The above results solve a problem of Schoen [33], who writes in the introduction:

Although our experience is that torsion in the Griffiths groups of varieties over C is difficult
to find, we have no compelling evidence that it is always finite or usually zero.

Schoen’s problem and Theorem 1.1 above should be compared to a theorem of
Merkurjev—Suslin [24], who showed that for any integer n, the n-torsion subgroup of
Griff? is finite.

The analogue of Corollary 1.2 is trivial for Chow groups, as any elliptic curve E
has infinite torsion in CHy(E). However, even for Chow groups, the problem becomes
interesting if we restrict to £-torsion for a given prime £. It has been shown in [32,34,41]
that these groups may be infinite, but all the torsion cycles involved are algebraically
equivalent to zero.

The infinitely many different 2-torsion classes in Griff>(X x JC) from Theorem 1.1
are given by exterior products Ky x z, where Kx € Pic X is the unique 2-torsion class
on the Enriques surface X and where z is the Ceresa cycle C — C~ on JC (see [6]),
or a pullback of the Ceresa cycle by one of infinitely many isogenies. We will show that
infinitely many of the cycles Ky x z are linearly independent modulo 2. To this end we
will use Totaro’s result [41], who showed that infinitely many of the classes z are linearly
independent modulo 2 in Griff?(JC). Totaro used among other ingredients the fact that
the Ceresa cycle has nontrivial Abel-Jacobi invariant (see [17]). In contrast, Ky x z has
trivial Abel-Jacobi invariant.

While it is natural to consider cycles of the form Ky X z as above, our method of prov-
ing that they are nontrivial (resp. linearly independent) is new. The main idea is that [38]
allows one to use cohomological tools (most notably Poincaré duality) that are a priori
not available within the framework of algebraic cycles.

Even though Theorem 1.1 concentrates on 2-torsion in the Griffiths group, our method
is flexible and large parts of this paper work for £-torsion for arbitrary primes £. In par-
ticular, it is conceivable that our method will allow one to find infinite £-torsion for
other primes £ by replacing Enriques surfaces by suitable surfaces X with £-torsion in
H*(X,7).
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1.2. An injectivity theorem

Let Y be an arbitrary smooth complex projective variety and let A’ (Y) := CH!(Y)/ ~alg
be the Chow group modulo algebraic equivalence. Theorem 1.1 will be deduced from the
following, which is the main result of this paper.

Theorem 1.3. Let Y be a smooth complex projective variety and let X be an Enriques
surface that is very general with respect to Y . Then the exterior product map

AN(Y))2 - ATY(X xY)[2], [z] — [Kx x 2],

is injective. In fact, [Kx x z] is not divisible by 2 in A"TY(X x Y) unless [z] = 0
€ A (Y)/2.

The condition on X means that it lies outside a countable union of proper closed
subsets (which may depend on X') of the moduli space of Enriques surfaces.

We let TH1(X x Y) C Griff T1(X x Y ) denote the kernel of the transcendental
Abel-Jacobi map (see (2.10) below) and define

EL(Y) :=ker(cly : A'(Y)/2 — H?(Y,Z/2)).
Corollary 1.4. In the notation of Theorem 1.3, there is a canonical injection
ELY) = TN (X xY)[2], [z]~ [Kx x z].
By [38] (see Theorem 2.7 below), there is a canonical extension
0 — Griff' (Y)/2 — EL(Y) — Z'(Y)[2]/H* (Y, Z)[2] — 0, (1.1)

where Z*(Y)[2] denotes the 2-torsion subgroup of coker(cl’f :CH (Y) - H?(Y,2)).
Corollary 1.4 thus shows that there are two sources for nontrivial 2-torsion classes with
trivial transcendental Abel-Jacobi invariants in the Griffiths group of X x Y': one coming
from Griff’ (Y))/2 and one stemming from Z’(Y)[2]/H?* (Y, Z)[2]. While the former may
be infinite [13,41], the latter is always a finite group. One source for nontrivial elements
in Z1(Y)[2]/H? (Y, Z)[2] are nonalgebraic non-torsion Hodge classes o on Y such that
2o is algebraic. Several examples with that property are known (see e.g. [12,30]) and we
will discuss those applications in Corollaries 9.1-9.3 below. For instance, Corollary 1.4
and [30] lead to the first known example of a smooth complex projective variety X with a
rational decomposition of the diagonal for which 73 (X) # 0; see Corollaries 9.1 and 9.2
below.

In [39], Soulé and Voisin constructed nondivisible torsion classes in the Griffiths
group of products X x Y, where H?(X,Z)rs # 0 and Y is a carefully chosen hyper-
surface in P# so that the integral Hodge conjecture fails for Y by Koll4r’s argument [1].
Their argument relies on degenerations of Y. Instead, we will degenerate X, while ¥ may
be arbitrary and the contribution of Griff’(Y)/2 will be taken into account in a precise
way.
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1.3. Degenerations of Enriques surfaces

In addition to the theory of refined unramified cohomology, Theorem 1.3 relies on the
following geometric input.

Theorem 1.5. There is a regular flat projective scheme X, — Spec R over a discrete
valuation ring R whose residue field is an algebraically closed field k of characteristic
zero, such that

(1) the geometric generic fibre Xy is an Enrigues surface;
(2) the special fibre Xo = X X k is a union of ruled surfaces;

(3) the restriction map Br(X)[2] — Br(X5)[2] is surjective.

The geometric meaning of the theorem is as follows. By [11], the unique nonzero
class in Br(X7) >~ Z /2 corresponds to a smooth (i.e. unramified) conic bundle P — X3
and the above theorem implies that this conic bundle extends to a smooth conic bundle
&P — X. That is, while the Enriques surface breaks up into ruled components, the conics
in the fibration P — X7 remain smooth and do not break up into unions of two lines.

The fact that degenerations as above exist was a surprise to the author. To explain one
subtle aspect, note that we may assume that the dvr R in Theorem 1.5 is complete. Item (1)
together with the proper base change theorem can then be used to show Br(X)s =~
Br(Xg)ors (see Proposition 7.2 and Remark 7.3 below) and so Br(Xg)[2] # 0 by item (3).
On the other hand, each component Xg; of X is ruled by item (2) and so Br(Xy;) = 0
foralli.

For us, the crucial consequence of the above theorem will be as follows:

Corollary 1.6. In the notation of Theorem 1.5, there is a class a € Br(X)[2] such that
a|x; generates Br(X5) ~ Z/2 and for any component Xo; of the special fibre, a|x,; =
0e Bl‘(X()i).

1.4. Outline of the argument

Let X and Y be as in Theorem 1.3. The cohomological analogue of the exterior product
map in Theorem 1.3 is the cup product map

H*(X,Z/)2) @ H¥(Y.Z/2) - H*T>(X x Y,Z/2), a® B+ p*aUqg*p,

where p: X XY — X and ¢ : X x Y — Y denote the natural projections. If o €
H?(X,Z/2) is nonzero, Poincaré duality yields a class @ € H*(X,Z/2) witha U@ =
cl§( (pt) and we find

g« (p*a@ U p*a Ug*B) = q«(p*clx(p) Ug™B) = B € H* (Y. Z/2).

This classical argument shows that p*a U ¢* 8 # 0 as long as @ and 8 are nonzero.
We aim to use this approach to prove Theorem 1.3. The obvious obstacle is that
A'(X)/2 does not satisfy Poincaré duality (in fact, Kx - D = 0 for any divisor D on X).
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The crucial input which allows us to circumvent this problem is [38], which shows that
Chow groups modulo algebraic equivalence can be computed by refined unramified coho-
mology. An important observation here is that the Poincaré dual & € H?(X, Z/2) of the
class o := [Kx] € H?(X,Z/?2) generates the second unramified cohomology of X :

Br(X) ~ H2(X,Z/2) = Z/2a].

Hence, algebraic cycles modulo algebraic equivalence as well as the Poincaré dual of Kx
live in the world of refined unramified cohomology and so it is natural to try to work there.

Following this approach, it is straightforward to prove injectivity of the exterior prod-
uct map in Theorem 1.3 on the level of cycles (not modulo algebraic equivalence) purely
in terms of cohomology. While that statement is of course trivial, passing to algebraic
equivalence will introduce an error term of the form

g=(p*@U§) € H¥ ' (V.Z/2). where £ P H'w.Z/2). (12)
we(XxY)®

Here V' C Y is some open subset whose complement R = Y \ V has codimension at
least i — 1. The main technical difficulty in the proof of Theorem 1.3 is to show that (1.2)
vanishes (possibly up to a class that extends to all of ¥').

At this point we use specialization maps for refined unramified cohomology that we
construct in Section 4 below and which serve as a replacement for Fulton’s specialization
maps on Chow groups [14]. These maps are inspired by well-known specialization maps
in Galois cohomology; see also Remark 4.8 below.

Even though we would like to show that (1.2) vanishes for X and Y smooth, we will
be able to reduce the problem to the situation where X splits up into many components
as in Theorem 1.5. This may be surprising, as usually one cannot prove the vanishing of
an invariant by showing that it vanishes after specialization, but we will be able to put
ourselves in a situation where that argument actually works.

At this final step, the geometry of Enriques surfaces via Theorem 1.5 comes in, as it is
exactly the kind of degeneration needed to ensure that @ vanishes on each component of
the special fibre of the degeneration and we will show in Lemma 5.1 that this implies that
the specialization of (1.2) vanishes. This concludes the proof of Theorem 1.3 up to the
proof of Theorem 1.5. The latter relies in turn on an analysis of flower pot degenerations
of Enriques surfaces, constructed by Persson and Horikawa [20,27,31]; cf. Theorem 7.1
below.

2. Preliminaries

2.1. Conventions

For an abelian group G, we denote by G[{”] the subgroup of £”-torsion elements. When-
ever G and H are abelian groups such that there is a canonical map H — G (and there
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is no reason to confuse this map with a different map), we write G/H as shorthand for
coker(H — G).

All schemes are separated. An algebraic scheme X is a scheme of finite type over a
field. Its Chow group of codimension i cycles modulo rational equivalence is denoted by
CH! (X); the quotient of CH! (X) modulo algebraic equivalence is denoted by A*(X).

A variety is an integral scheme of finite type over a field. For an equi-dimensional
algebraic scheme X, we denote by X @) the set of all codimension i points of X. For a
scheme X over a field k, we write for any field extension K of k the scheme given by
extension of scalars as Xg := X X K. A very general point of a scheme over C is a
closed point outside a countable union of proper closed subsets.

If R is an integral local ring with residue field x and fraction field K, with algebraic
closure K, then for any flat R-scheme X — Spec R, we write Xo := X xg k (resp.
X5 := X xg «) for the special (resp. geometric special) fibre and X, := X xr K (resp.
X7 := X xg K) for the generic (resp. geometric generic) fibre.

An irreducible flat R-scheme X' — Spec R over a discrete valuation ring R is called
strictly semistable if X is regular, the generic fibre X, is smooth and the special fibre Xy
is a geometrically reduced simple normal crossing divisor on X, i.e. the components of
Xo are smooth and the scheme-theoretic intersection of r different components of Xy is
either empty or smooth and equi-dimensional of codimension r in X.

2.2. Cohomology

For a scheme X and a prime { invertible on X we write
H (X, u3") = H' (Xe. n&") and  H'(X, Zg(n)) := Hly\(Xe. Ze(n)),  (2.1)

where H! . denotes Jannsen’s continuous étale cohomology (see [21]); sometimes we
also write H'(X, Z/£"(n)) in place of H(X, ,u?}"). These groups are functorial with
respect to pullbacks along arbitrary morphisms.
For a ring A, we write H' (A, /L?}") := H'(Spec A, /L%"). If A = K is a field, then
these groups coincide with the Galois cohomology of the absolute Galois group of K.
For a scheme X and a point x € X, we write

H'(vougy = lim H' (Ve "),
P#VyC{x}

where Vx runs through all open dense subsets of the closure of x. By [25, p. 88, III.1.16],
this direct limit coincides with the étale cohomology of Spec k(x) and hence with the
Galois cohomology of the field «(x).

Remark 2.1. If X is a smooth equi-dimensional algebraic scheme over a field k, then
the groups in (2.1) agree with the Borel-Moore cohomology groups used in [38] (see
[38, Lemma 6.5 and Proposition 6.6]).
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Lemma 2.2. Let f : X — Y be a proper morphism between equi-dimensional smooth
algebraic schemes over a field k. Let £ be a prime invertible in k and let ¢ := dimY —
dim X. Then for A = 7./¢" or A = Zy, there are pushforward maps

fo t HT2(X, A(n — ¢)) - H' (Y, A(n))
that are compatible with respect to open immersions.
Proof. This follows from Remark 2.1 and [38, (P1) in Proposition 6.6]. ]

Lemma 2.3. Let X be a smooth equi-dimensional algebraic scheme over a field k and
let Z C X be a smooth closed subscheme of pure codimension ¢ and with complement U .
Then for A = Z. /8" or A = 7y, there is a long exact Gysin sequence

H (X, A(n)) - H' (U, A(n)) 2 HI172¢(Z A —¢)) = HITY(X, A(n)), (2.2)

where Ly is the pushforward map from Lemma 2.2. This sequence is functorial with respect
to pullbacks along open immersions as well as pushforwards along proper morphisms
f X' — X suchthat X' and Z' = f~V(Z) are smooth and equi-dimensional.

Proof. This follows from Remark 2.1 and [38, (P2) in Proposition 6.6]. [ ]

The Gysin sequence is compatible with cup products in the following sense. If o €
H/ (X, A(m)), then cup product with  induces a commutative diagram

Hi(X, A(n)) ———— H'(U, A(n)) —2—— HI*172¢(Z A(n — ¢))

HII (X, A(n +m)) — H+ (U, A(n + m)) 2 HI+I+122¢(Z A +m — ¢))
(2.3)

This fact is well-known; the case A = Z/{£" (which is enough for the purpose of this
paper) is for instance spelled out in [37, Lemma 2.4].

Remark 2.4. For A = Z /", H' (X, A(n)) commutes with filtered inverse limits of
schemes with affine transition maps (see [25, p. 88, III.1.16]). Using this, it follows that
Lemma 2.3 and (2.2) remain true when X is a regular scheme of finite type over a local
ring R = Op, of a smooth k-variety B at a closed point 0 € B and Z C X is a smooth
equi-dimensional k-variety contained in the special fibre of X — Spec R.

2.3. Classical unramified cohomology and Brauer groups

Let X be an integral regular scheme and let x € X be a codimension 1 point such that
£ is invertible in the residue field k (x). Then there is a residue map in Galois cohomology

0x + H' (k(X). ugy") — H'™ (e (x). "), (2.4)
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where k(X) denotes the residue field of the generic point of X. If £ is invertible in each
residue field of X, then the unramified cohomology of X may be defined as follows (see
[8, Theorem 4.1.1 (a)]):

HE (X, p®") = {o € H' (k(X), 1&") | 9 = 0 ¥x € XV}

For a scheme X, we let Br(X) := H?(Xg. Gp,). For any prime £ that is invertible
on X, the Kummer sequence yields an isomorphism

coker(cy : Pic(X) = H?*(Xa. per)) ~ Br(X)[("]. (2.5)

If X is a regular variety, then Br(X)[€"] ~ H2(X, w¢r) (see [8, Proposition 4.2.3]).

2.4. Refined unramified cohomology

In this paper we use refined unramified cohomology only for smooth equi-dimensional
algebraic schemes. In this case the cohomology theory in (2.1) agrees with Borel-Moore
cohomology used in [38] (see Remark 2.1). For an equi-dimensional algebraic scheme X,
we denote by F, X the increasing filtration given by

FoX CFHXC--C FeimxX =X, where F;X :={x e X |codimy(x)<j}.

Fix a prime £ invertible on X and let A = Z/{" or A = Zy. If X is smooth (or more
generally, if F; X is contained in a smooth open subset of X'), we define

H'(F;X, A@m):= lim  H'(U.A®)).
FijXcUcx

where U runs through all open subsets of X that contain F; X, and where the cohomology
functor is (continuous) étale cohomology from (2.1).

Lemma 2.5. Let f : X — Y be a morphism between smooth equi-dimensional algebraic
schemes. If f is flat, then there is a pullback map

f*H'(F;Y, A(n)) — H' (Fj X, A(n)).
If f is proper of relative codimension ¢ := dimY — dim X, there is a pushforward map
fet H'(Fi X, A(n)) — H'72(Fj Y, A(n + ¢)).

Proof. Let V' C Y be an open subset with ;Y C V. The complement W =Y \ V has
codimension at least j + 1.If f is flat, then f~!(W) C X has codimension at least j + 1
as well. Hence there is a well-defined pullback map H*(V, A(n)) — H'(F; X, A(n)). This
map is compatible with restrictions to smaller open subsets V' C V with F;Y C V' and
hence induces the pullback f* stated in the lemma.

Assume now that f is proper and let U C X be an open subset with F; X C U and
complement Z = X \ U. Then f(Z) C Y has codimension at least j + ¢ + 1. Moreover,
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Lemma 2.2 induces a pushforward map

fo t HU(X\ fTHS(2)), A@m) — H'P2(Y \ f(Z). A(n + ¢)).

Pre- and postcomposing this with the canonical restriction maps, we get a pushforward
map
fe: H' (U, An)) — H' 2 (FjcY, An + ¢)).

By the compatibility of pushforwards with restrictions along open immersions (see Lem-
ma 2.2), this map is compatible with respect to restriction from U to a smaller open
subset U’ C X with F; X C U’ C U. This implies the existence of f as claimed in the
lemma. ]

We define the j-th refined unramified cohomology of X with values in A(n) by
H! (X, A(n) == im(H' (Fj1 X, A(n)) — H'(F; X, A(n))).

As indicated above, these groups coincide with the refined unramified cohomology groups
from [38] defined via Borel-Moore cohomology (see Remark 2.1).
Taking direct limits over (2.2) twice, we get the following (see [38, Lemma 5.8]).

Lemma 2.6. Let X be a smooth equi-dimensional algebraic scheme over k. For any
j,n € Z, there is a long exact sequence

S HU(F X, A(n) — H (Fj—1 X, A(n)) > P HF T (x A - j))
xexX ()

= H F X Am) > -
where Ly (resp. 0) is induced by the pushforward (resp. residue) map from (2.2).

The above lemma implies H{ (X, u&") = HL(X, u&"), and, by [38, Corollary

5.10],

,nr

H'(X,A(n)) ~ H'(F; X, A(n)) forall j > [i/2]. (2.6)
We define a decreasing filtration F* on H'(F; X, A(n)) by
F™H'(F; X, A(n)) := im(H' (Fu X, A(n)) — H'(F; X, A(n)))

for m > j. In particular, F/T'H!(F; X, A(n)) = H! (X, A(n)). We also define (see

Jjnr
[38, Definition 5.4]) a decreasing filtration G* on H' (F; X, /L?}") by

o€ G"H (F;X, 18" <> 8(a) € F"H'"V(F; X, Zy(n)),
where § denotes the Bockstein map associated to 0 — Zy(n) — Zg(n) — Mf;" — 0.
Moreover,

G"H! (X, u&") :=im(G™H' (Fj11 X, n3") — H' (F; X, u&M)).

J.nr
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Related to 8, there is also the Bockstein map § that is associated to the short exact
sequence 0 — /L?}" — Mg’j — ,u?}” — 0. The Bockstein § is compatible with § in the

sense that § (o) is the reduction modulo £" of §(c). The key feature of § is the derivation
property (see e.g. [19, p. 304]), which yields

S(@UB) =68(c) UB + (—1)%@q U §(B). 2.7)
In analogy to G*, we have the filtration G* on H! (Fj X, M?}”), given by
ae G"H (F; X, u$") <= 8(a) € F"H'TU(F; X, u$")
(see [38, Definition 7.24]). Moreover,
Gm"H! (X, u®") :=im(G™ H' (Fj11 X, n&") — H' (F; X, u&")).

Jonr
The compatibility of § and § implies directly
G"H'(F;X,u$") C G™H' (Fj X, u&"). (2.8)

2.5. Cycle groups in terms of refined unramified cohomology

In [38, Section 7], several cycle groups are computed in terms of refined unramified
cohomology. The set-up in [38] works for arbitrary separated schemes of finite type
over a field; the corresponding cohomology functor should be taken as Borel-Moore
pro-étale cohomology (see [38, Section 4]). We will only use refined unramified coho-
mology for smooth varieties over a field, in which case we may by [38, Lemma 6.5 and
Proposition 6.6] take the cohomology groups from (2.1). It follows that the results of
[38, Sections 5 and 7] hold true in our setting. We will repeatedly make use of this fact in
what follows and in particular freely use the results from [38, Section 7]. We also note that
over algebraically closed fields, [38, Proposition 6.6 and Lemma 7.5] imply that the group
A'(X)z, from [38, Definition 7.2] agrees with A'(X) ®z Z;, where A’ (X) denotes the
Chow group of algebraic cycles modulo algebraic equivalence.
For instance, if we define

E} (X) := ker(A'(X) /0" — H* (X, u")), (2.9)

where the morphism is given by the reduction modulo £” of the cycle class map, then
[38, Corollary 7.12 and Lemma 7.13] imply the following.

Theorem 2.7. Let X be a smooth variety over an algebraically closed field k and let £
be a prime that is invertible in k. Then there is a canonical isomorphism

Ej (X) ~ HPSA (X, u&)/HY 71 (X, 1u8h)
and a canonical extension

0 — Griff' (X)/¢" — E},(X) — Z'(X)[")/H* (X, Z¢(i)[£"] — 0,
where ZH(X)[(T] := coker(cl& : CH"(X)Z(Z — H? (X, Ze())[C].



Infinite torsion in Griffiths groups 2581

2.6. Indivisible torsion classes with trivial transcendental Abel-Jacobi invariant

Let X be a smooth variety over an algebraically closed field k£ and let £ be a prime invert-
ible in k. By [38, Section 7.5], there is a transcendental Abel-Jacobi map on torsion
cycles

AL ¢ Griff! (X)[€°] — H2 71X, Qg/Ze(i)/ N T HP 71 (X, Qq(i)), (2.10)

where N* denotes the coniveau filtration. If X is projective, then the above map agrees
with Bloch’s map and if in addition k = C, then it agrees with Griffiths’ [15] transcen-
dental Abel-Jacobi map on torsion cycles (see [38, Proposition 8.5]). We write

THX)[L"] := ker(AL)[€7] C Griff' (X)[¢7].

Theorem 2.8. Let X be a smooth variety over an algebraically closed field k and let
¢ be a prime invertible in k. Then there are subgroups T¢(X)[€"] C T/ (X)[€"] with
THX)[E>®] = U, T4 (X)[€"] and canonical isomorphisms

HY2(Fo X, HY2 (X

i—3,nr

1 1 o~
T OO )= s ot o8 ™ G ()

i—3,nr
Moreover, the kernel of the canonical surjection

HY2(Fip X, 1) HP 2 (Fioa X, pufY!
— —»> — -
GiHZi_z(Fi_zX, M?;l) GiHZi_Z(F}_zX, M?l)

T (X)) =

is given by all classes in T3 (X)[L"] that are €" -divisible in A'(X).

Proof. This follows from [38, Corollary 7.23 and Proposition 7.25]. ]

3. Product maps

Here and in what follows, all tensor products will be over Z if not mentioned otherwise.

Lemma 3.1. Let k be an algebraically closed field and let £ be a prime invertible in k.
Let X and Y be smooth varieties over k. Then there is a well-defined linear map
. HYSL (Y, 1 H2 (Fi_ (X x Y), u&' !
/\:8([{1()(’111”))(8 l—.2,nr :ué) > — ( -z 1( ) ,u( ')1 ’
H2i=1(y, M(grl) G H2(F_1(X xY), “%H )

which on elementary tensors is given by

AB@)] ®[B]) := [p*a Ug*Bl.

where p: X XY — X and q : X XY — Y denote the natural projections and where
a € H' (X, per) and B € H¥7V(Fi_1Y, ud).
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Proof. Recall G C G™ from (2.8). Well-definedness in B follows therefore from (2.8)
together with the isomorphism

HY (Fq (X x Y),u@ ™) = HP, (X xYopugth
GIHIH2(Fi((X xY), u&tYy  GHIHE, (X x Y, uSth

i—2,nr

from Theorem 2.8. To prove well-definedness in o, assume that § (a) = 0. Then by the
derivation property of the Bockstein § (see (2.7)) together with its functoriality, we find

S(p*aUgq*B) = —p*a Ug*5(p).

By [38, Corollary 7.9], §(B) extends to Y and so p*a U g*B € GI T H2 (F,_ (X x Y),

,u?ﬁ’ *1). This shows that A is well-defined, which concludes the proof of the lemma. m

Lemma 3.2. Let X be a smooth variety over an algebraically closed field k and let £ be
a prime invertible in k. Then there is a canonical isomorphism

SCH' (X, pur)) ~ AN (XO[E7]/€7 AN (X)[%"].

Proof. Since algebraic and homological equivalence coincides for divisors on smooth
varieties,
AN = HA(X, Ze(D)[CT] = 8(H' (X, per)),

where we use the fact that any class in H2(X, Zy(1))[£"] ~ §(H' (X, ju¢r)) is algebraic
as it comes from a - -torsor and hence from a line bundle. The lemma follows therefore
from the compatibility of § and 8. |

Let X and Y be smooth varieties over an algebraically closed field k and let £ be a
prime invertible in k. The natural exterior product map on cycles yields a map

AN X))
AN X))

AFL(X x Y)[er]
CATIX x V)]

®A'(Y)/l" — [z1] ® [z22] = [z1 x z2].  (3.1)

To compare that map with A from Lemma 3.1, we consider the diagram

AI(X)[(r] : (3.1) Ai+1(XXY)[€r]
£r AL(X)[e27] ® AN/t AT (X xY)[€27]

] e

H2i~1 2i ®i+1
¢ 1 l 2n1(Y'u' A H I(Fi—l(XxY)aM r )
S(H (X, ner)) ® i 1(Yu®’) §i+1H2i(Fi_1(XxY),M?}’+l)

where the vertical injection on the left comes from Lemma 3.2 and Theorem 2.7, while
the vertical injection on the right stems from Theorem 2.8.

Lemma 3.3. The diagram (3.2) commutes.
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Proof. Leta € H'(X, pugr) and [B] € H?SL (Y, /Lze}i)/HZ"_l(Y, u?}i) with representa-

i—2,nr

tive 8 € H*~1(F;_,Y, M?}i). We claim first that
8(B) € im(H* (Y, Z(i)) — H* (Fi-1Y, Z4(i))). (3.3)
By (2.6), it suffices to show that
A0SR e E H'(r.Z4(0)
yey®

vanishes, which holds because the right hand side is torsion-free, while §(f8) is torsion.
Mapping o ® [B] to the upper right corner in (3.2) via (3.1), we get the element

71 x [3(B)] € AATHX x V)[L7] /L7 ATH(X x Y)[£?],
where z; € A1 (X)[€"] is the unique class with cl)l( (z1) = 8(a) € H*(X,Z¢(1)) and where
aB) e P y1Ze.
yeYy @)

AT (X xY)[0"]
AT (X xY)[€27]

dy € @ [z]Z /L,

ze(XxY)i+D

On the other hand, the image of ¢ ® [f] in via A is represented by

where y € H¥H1(F;(X x Y), u&'*1)) is alift of §(p*a U g* B). The derivation property

of § (see (2.7)) and functoriality of the Bockstein & yield

B(p*aUq*B) = p*@@) Vg —p e U g G(B) € H* N (Fii(X x V). ug™h).

By (3.3), §(B) and hence the reduction S(,B) extends to a class on Y. Since « is a global

class on X, we find that for any lift y’ € H>+1(F;(X x Y), ,u?}’“) of p*(§(a)) Ug*B,
[0y] = [8y'] € AT (X x Y)/C""

Since § () is an algebraic class, it is supported on some divisor D C X. Since f is defined

away from a codimension i subset Z C Y, p*(g(oz)) U g*B is defined away from the
codimension i + 1 subset D x Z and so we may pick a lift y’ as above in such a way that

0y =p*G@)Ug B=n1xpe P [£zZ/C.
ze(XxY)(@+D

This concludes the proof of the lemma. ]

4. Smooth specialization of refined unramified cohomology

Let k be a field and let R = Op o be the local ring of a smooth pointed curve (B, 0) over «,
where 0 € B is a k-rational point. Let K = Frac R and let £ be a prime invertible in «.
The main result of this section is as follows.
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Proposition 4.1. Let R be as above, fix a uniformizer w € R, and let X; — Spec R be a
smooth morphism with equi-dimensional fibres Xo = X Xg « and X, = X xg K. There
are linear specialization maps

sp: H (F; Xy, p8") — H' (FjXo. n5") (4.1)

with the following properties:
(0) sp does not depend on 7 if k is algebraically closed;
(1) sp respects the filtration F*;

(2) if U C X is an open subset with F; 1 Xy C Uy and F; 1 Xo C Uy, then any class o €
Hi (U, ,u?}”) with restriction [a|y,] € H}’m(X,,, M?}") satisfies sp([a|y,]) = [@|v, )

(3) the pushforwards from Lemma 2.2 commute with specialization: if ¥ — Spec R is
a smooth morphism with equi-dimensional fibres Y, and Yy, and f : X — Y is a
proper R-morphism of pure relative dimension, then (f [x,)« o sp = spo (f|x,)s

(4) sp induces a specialization map between geometric fibres X5 := X; Xg K and X 0=
X() Xy K:
$p: H'(Fj X5, 12" — H'(F; Xg, n3").
The map sp does not depend on the choice of & and respects the filtration F*.

Corollary 4.2. In the above notation, there are well-defined specialization maps

p: Hl (Xp. u8") — H] (Xo.n8") and $p: H} (X, u&") — H} (X, uE").

Jjonr

Remark 4.3. In the above corollary, sp may depend on the choice of the uniformizer
7 € R, while sp is independent of that choice.

4.1. Construction: Part 1
Let U — Spec R be a smooth morphism with equi-dimensional fibres Uy = U xg « and
U, = U xg K. By Remark 2.4, (2.2) yields an exact sequence
. . 9 . .
H (U, pu2") — H Uy p8") = H ™ U, n2" ") — HT' (U ™). (42
We fix a uniformizer 7= € R. Then 7 gives rise to aclassin H (K, jugr) ~ K*/(K*)¥
and so we get a class () € H!(Uy, wgr) via pullback. We then define

sp: H' (Up, u&") — H' (Up, uS"), o« —0((7) Ua),

where 0 is the residue map in (4.2). (If the residue field « is not algebraically closed,
then the class () and hence the map sp may depend on the choice of 7; cf. proof of
Proposition 4.1 below.)

Lemmadd. Ifo € H (U, /L?}") extends to a class & € H' (U, u?}"), then sp(a) = @|y,.

Proof. By (2.3), —9((w) U a) = —(d(7r)) U &@|y, and so the result follows from the fact
that () = —1 € HO(Uj, /L?}O) = Z/{"; see e.g. [38, (P6) in Proposition 6.6]. |
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Lemma 4.5. In the above notation,
sp(ker(H' (Uy, uS") — H' (Uy, u&™))) C ker(H' (Uo, u&") — H' (Ug, u5™)).

Proof. Replacing « by the algebraic closure k¥, we may assume that « is algebraically
closed. Then K has cohomological dimension 1 and so the Hochschild—Serre spectral
sequence [25, p. 105, II1.2.20] yields an exact sequence

0— H' (K, H'"'(Uy. ug")) — H (Up. u§") — H' Uz, ).

Forany class 8 € H/ Uy, u?}m ), cup product with 8 is compatible with the above spectral

sequence. The action on the E;-page is induced by the action of 8 on the coefficients and

hence only depends on the image of f in H’(Uj, u?}m). This description shows that

cup product with the class () € H'(K, ji¢r) acts trivially on the E,-page of the above
spectral sequence. It thus follows from the above short exact sequence that for any class
o € ker(H' (Uy, ;L?}") — H'(Ug, /L?}")), we have

(r)Ua =0e H'TH (U, u&"*),

and so sp(a) = 0. This proves the lemma. |

4.2. Construction: Part 2

Let R and 7 be as above and let X — Spec R be a smooth morphism with equi-dimen-
sional fibres. For any j > i, we define a specialization map

sp: H'(Fj Xy, ng") — H' (Fj Xo. u§")

as follows. Letaw € H' (F; X, u?}” ). Then there is a closed subset Z, C X of codimen-
sion > j such that & = [y, ] is represented by a class

ay, € H' (Uy, ug"),

where U, = X; \ Z;. The closure Z C X of Z,, is automatically flat over R and so
the special fibre Zy has codimension > j in Xy. Let U := X \ Z with special fibre
Uo = Xo \ Zo. By Section 4.1, we get a class ay, := sp(ay,) € Hi(Uy, /L?}") and define

sp(a) = [ay,) € H' (Fj Xo. u&").

Functoriality of the Gysin sequence with respect to open immersions (see Lemma 2.3)
immediately shows that this definition is well-defined.

Lemma 4.6. The specialization map
sp: H' (Fj Xy, u&") = H'(Fj Xo. n3"). o [ag,),

defined above is compatible with the filtration F*.
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Proof. Let m > j and assume in the above notation that @ € F™ H' (Fj Xy, /L?}”). This
means that we may choose ay, € H i (Up. M?}" ) in such a way that Z; actually has codi-
mension > m in X,. But then the above construction immediately shows that sp(«) lifts
to a class in H! (Fy, Xo, /L?}") and hence lies in F™ H'(F; Xo, u?}”). [

Lemma 4.7. Let ¥ — Spec R be another smooth morphism with equi-dimensional fibres
Y, and Yy and let [ : X — Y be a proper R-morphism of pure relative codimension
¢ :=dim X, — dimY,,. Then the following diagram commutes:

HY (Fj Xy, u§") ————— H'(F; Xo. p§")

al |+

. sp .
HI42(Fy Yy, p @) =2 H¥2(Fy oy Yo, p )

Proof. This follows directly from the projection formula and the fact that the Gysin
sequence is functorial with respect to proper pushforwards (see Lemma 2.3). ]

4.3. Proofs of Proposition 4.1 and Corollary 4.2

Proof of Proposition 4.1. The existence of the specialization map together with item (1)
follows from the construction in Section 4.2 and Lemma 4.6. Items (2) and (3) follow
from Lemmas 4.4 and 4.7, respectively. By construction, sp depends on the class () €
H' (K, jgr) of m. On the other hand, the map will not change if we replace R by its
completion, and so we may from now on assume that R is complete. If « is algebraically
closed, then H!(Spec R, ji¢r) ~ H'(k, jugr) = 0 by [25, Corollary V1.2.7] and so 9 :
HY(K, pgr) — Hk,Z/€") = 7Z,/€" is an isomorphism, which implies that in this case
the class () € H'(K, ju¢r) is independent of 7. Hence, sp does not depend on the choice
of m if k is algebraically closed, as claimed in item (0).

To prove the existence of the specialization map on geometric fibres in item (4), up
to replacing k by its algebraic closure we may assume that « is algebraically closed. It
follows from what we have said above that sp is in this situation independent of the choice
of 7. To prove (4), it thus suffices by Lemmas 4.5 and 4.6 to show that, up to a finite base
change, any class [o] € H'(F; X, /L?}") comes from H'(F;X,, /L?}"). To prove this,
let Uz C X7 be an open subset with F; X5z C Uy and let @ € H'(Uy, /L?}"). Taking the
Galois closure of the complement of Uy C X, up to shrinking Uz we may assume that
Uz = Uy, x K for some open subset U, C X, with F;X, C U,. Since H' (Us, /Lée}")
is a finite group, up to a finite base change we may also assume that the Galois group
G = Gal(K/K) acts trivially on «. Since k is algebraically closed, K has cohomological
dimension 1. The Hochschild—Serre spectral sequence [25, p. 105, I11.2.20] thus shows
that o lies in the image of H' (U, ug") — H'(Uy. u§") as we want. This concludes the
proof of the proposition. ]

Proof of Corollary 4.2. Since H! (X, A(n)) = F/*'H' (F; X, A(n)), the corollary fol-
lows from Proposition 4.1. ]
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Remark 4.8. The above specialization maps yield as a special case (where j = 0) maps
sp H'(K(Xy). ug") — H' (k(Xo). ") 4.3)

that are well-known from Galois cohomology. On the other hand, the specialization maps
between refined unramified cohomology from Corollary 4.2 seem new even in the case
j = 0, where the groups in question coincide with traditional unramified cohomology.
In fact, the situation is somewhat subtle: Unramified classes may in proper flat families
specialize via (4.3) to ramified classes and this was the main technique to prove nontriv-
iality of certain unramified classes in [36, Section 6]. The main point is that the families
X — Spec R considered in loc. cit. are flat but not smooth and our results here show that
the ramification has to lie on the singular locus of X over R.

5. A vanishing result

Let « be an algebraically closed field. We assume for simplicity that « has characteristic
zero. Let R be the local ring of a smooth pointed curve (B, 0) over « with fraction field
K = Frac R. Let X, ¥, and ‘W be flat R-schemes with equi-dimensional fibres and let

p:W—->X and g:W->Y

be R-morphisms with ¢ := codimy(g(W)). Assume that

(1) X is regular, W is integral and normal, ¥ — Spec R is smooth;
(2) g is proper and generically finite onto its image g('W) C ¥,

(3) p is dominant.

Since « has characteristic zero, the generic fibre W, of ‘W is generically smooth.
Lemma 2.5 thus yields pushforward maps

g : Hi (FOanl/L%n) N Hi+2C(FCYn,M?n+C),
with ¢ as above.

Lemma 5.1. In the above notation, let £ be a prime and let « € H! (X, u?in) be an
unramified class on X whose restriction to the generic point of any component of the
special fibre X vanishes. Then for any £ € H/ (K (W), ,u?}m ), the class

gx(p*a UE) € H'TIH2(F Y, n&rimte)

lies in the kernel of sp : H' M F2¢(F Y, u&""+¢) — HITIT2¢(F Yo, u&" ") from
Section 4.2.

Proof. Since k has characteristic zero and ‘W extends to a normal k-variety over some
neighbourhood of 0 € B, up to shrinking ‘W we may assume that ‘W — Spec R is
smooth. By linearity of g, up to shrinking ‘W we may assume that W is irreducible.
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By Lemma 4.7, it then suffices to show that
sp(p*a U§) =0e€ H'M (FoWo, ud"*™).
This vanishing in turn follows from the fact that the residue map
9 - Hi+j+1(F0Wn, M%n+m+1) = HH (1k(Wy), /128;”+m)

factorizes through the cohomology of the completion @W,Wo of the local ring of ‘W at the
generic point of W together with the claim that

pfa=0¢ Hi(@ijo,u?}”).
To prove this last claim, note that the restriction map
H (Ow,wo- 2" — H' (c(Wo). u&")

is injective (see [25, Corollary VI.2.7]) and p*« lies in the kernel of the above map
because o vanishes on any component of the special fibre X by assumption. (This last
step uses the fact that p is dominant by assumption (3).) This concludes the proof of the
lemma. ]

6. An injectivity theorem

Theorem 6.1. Let k be an algebraically closed field of characteristic zero and let R be
the local ring of a smooth pointed curve (B, 0) over k. Let k be an algebraic closure of
Frac R and let £ be a prime. Assume that there is a proper strictly semistable R-scheme
X — Spec R with connected fibres of relative dimension 2 such that the following holds,
where X := X Xpg k denotes the geometric generic fibre:

(C1) the restriction map H2(X, wer) — H2(X, jugr) is surjective;

(C2) for each component Xo; of Xo, the restriction map HX(X, wer) — H2(Xoi, [ter)
is zero.

Then for any smooth projective variety Y, over k with base change Y = Y, x, k, and for

any free Z./4"-module M C §(H' (X, u¢r)), the following composition is injective:

HE o Weoni)  HESL(LRGE) & HY (Fia (X x V). u™)
HA= N (Yo, ! HA=N(Y. ugh)  GHUH (Fioa (X x V) pfi ™)

where A is the map from Lemma 3.1.

Proof. Letay,... o, € H'(X, ptgr), such that the free Z/{"-module M is given by

M = )2/ Z C S(H (X, j10r)). (6.1)
j=1
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Let further
Bej € H* N (Fim1Ye.n&') forj=1,....n (6.2)

and denote the image of B, ; in H*~1(F;_1Y, Mgi) by B;. For a contradiction, we
assume that

“ S 21 1 Y, @;i
28(0(])®[ﬁk’]]750€M® 12nr(K/J«e)

. ) (6.3)
j=1 H2l I(YKvl’LZe;)
and
o . H? (Fm (X x Y), ™)
<jZ::1 ( ]) [ﬂ]]> ]Z::I[p g 'Bj] Gl+1H21(F 1(XXY) M?H_l)

By the derivation property for § (see (2.7)), the latter is equivalent to

D P @) Ug B = p*(a) Ug*(3B) € FITTHX P (F (X x ). u§' ),
J=1 j=1
(6.4)

which by (2.6) means that the above class in H2**1(F;_(X x Y), u?}i"'l) extends to
a class on X x Y. The theorem will be proven if we derive a contradiction from (6.3)
and (6.4).

Since X is a smooth proper connected surface over an algebraically closed field,

HY(X, n$?) = 2/ - Iz (pr)

where 01)2( (pt) denotes the cycle class of a closed point on X .

Step 1. Forany jo € {1,...,n}, there is a class S(ajo) € H?(X, jgr) with

8(ejo) Ub(a)) = otherwise

{cli(m ifj = Jjo.
0

Moreover, the above property does not change if we add to § (@j,) a class that lifts to
H?(X, Z(1)).

Proof. Since X is a smooth proper surface over the algebraically closed field k, Poincaré
duality implies that the cup product pairing on H?(X, j¢r) is perfect (see e.g. [26, The-
orem 24.1]). This implies the existence of the classes § (@j,), because S(Olj) are Z /0" -
linearly independent for j = 1,...,n by (6.1).

By the compatibility of § and 8 the class & (o) is the reduction modulo £” of a torsion
class in H2(X, Zy(1)). Since any class in H?(X, Z;(1)) has trivial cup product pairing
with a torsion class in H?(X, Z¢(1)), we find that the properties in question do not change

if we add to S(O(jo) a class that lifts to H2(X, Z¢(1)). This concludes Step 1. |
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By (6.2), there is an open subset U, C Y, with codimy, (Y, \ Uc) > i — 1 and such
thatforall j = 1,...,n,
Bej € H '(Ue. pu) and B; € H* (U uE),

where U = U, x k, and where by slight abuse of notation we do not distinguish between
the above classes on the open subsets U, and U and their restrictions to F;_;Y, and
F;_,Y, respectively.

Assumption (6.4) together with Lemma 2.6 implies that there is a class

te P H'w )
we(XxU)@)
such that

y =Y p*@a) Ug*Bi — Y p*(a)) Uq*(BB)) + 1k € H*TH(F;(X x U), u'*)
j=1 j=1 (6.5)

extends to a class on X x Y. (Note that the above class lies on F;(X x U), not on
Fi (X xY))

Step 2. The map
s : H¥ P (F;(X x U), nf ™) - H* N (FioU, u)
from Lemma 2.5 satisfies, for any jo € {1,...,n},
4+ (p* (8(ejo)) U ) = By + 4x(p* (B(ej)) U 1) € HH 7N (FioU ). (66)

Proof. This is a consequence of (6.5), the computation in Step 1 and the fact that

g+ (p* (8(eyp) Uey) Ug*(3B;)) =0,

which follows from the projection formula, because g (p* (3 (@j,) Uaj)) = 0 for degree
reasons. This concludes Step 2. ]

Recall that U = U, x, k and consider the smooth R-scheme U := U, X, R. Since
Kk is algebraically closed, applying item (4) of Proposition 4.1 to this family, we get a
specialization map

p: H¥ N (Fi2Uopg) — HY N (FiaUe, ).
Step 3. We have

@(Q*(p*(g(ajo)) U L*E)) =0¢ HZi_l(Fi—ZUKs M?;i)-

Proof. By linearity, we may assume that § € H!(k(w), j¢r) for some w € (X x U)®,
Since X is a surface, g(w) € U has codimension at least i — 2. If ¢g(w) has codimension
greater than i — 2, then

qx(P*(8(ejp)) U 1) = 0 € H¥ N (F; U, ¥’

by Lemma 2.6 and we are done. Hence, we may assume g(w) € U2,
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The pullback of § (@j,) via p* factorizes through the restriction

8(ejp) |y € H>(k(p(w)), prer).

If p(w) is not the generic point of X, then the latter group vanishes for dimensional
reasons and we are done. Hence, we may assume that p(w) is the generic point of X .

Recall that R is the local ring of a smooth pointed curve (B, 0) over k. We wish
to perform a base change corresponding to a ring map R — R’, where R’ is the local
ring of a smooth pointed curve (B’,0") over x and B’ — B is a finite morphism that
maps 0’ to 0. When we perform such a base change, the model X becomes singular, but
it follows from [18, Proposition 2.2] that X’ xg R’ can be made into a strictly semistable
R’-scheme X’ — Spec R’ by repeatedly blowing up all non-Cartier components of the
special fibre. The exceptional divisors introduced in these blowups are ruled surfaces over
the algebraically closed field ¥ and so they have trivial second unramified cohomology.
For this reason, assumptions (C1) and (C2) remain true after such a base change. We may
thus in what follows freely apply base changes as above.

Up to a base change as described above, we may assume that the point w is defined
over K = Frac(R). We may then consider the normalization ‘W of the closure of w in
X xg U. The projections of X’ xg U to the two factors yield natural maps

plw:W—->X and gq|lw:W— U.

By the above reduction step, p|w is dominant and g|+ is generically finite onto its image.
It follows that (1)—(3) from Section 5 are satisfied.

Since H'(k(w), ter) =~ k(w)*/(k(w)*)*", up to a finite base change as above we
may assume that £ extends to a class on the generic point of ‘W. By assumption (C1),

§ (aj,) lifts to a class in H2(X, j1gr) whose restriction to each component of the special

fibre of X — Spec R vanishes by (C2). The vanishing claimed in Step 3 is therefore a
consequence of Lemma 5.1. ]

By assumption, §; is the image of B, ; via the natural map
HY N (FiU ') — H* 7N (FiaU, uh),

where we recall U = Uy X, k. The pullback of ; , to the product U := U, x, Spec R
is thus a class that restricts to §; on the geometric generic fibre and to f; . on the special
fibre. Proposition 4.1 (2) thus implies

P(Bj) = By € H 7 (FiaUs. )
for all j. Step 3 together with (6.6) in Step 2 thus imply
P(q+(p* (8(eio)) UY)) = 5(Bjo) = Brjo € HY N (FiaUe.n). (6.7

Since H2(X, jugr) — H2(X, per) is surjective by (2.6), p*(8(aj,)) extendsto X x Y.
The same holds for y by assumption. Hence,

g+ (p* (S(Oljo)) Uy) e H* (F;,U, uffii)
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extends to a class on Y. Note that F; _»,Y = F;_,U and F; Y, = F;_,U,. Item (2) (resp.
(4)) in Proposition 4.1 thus implies that the left hand side of (6.7) extends to a class on Y
and so

Bejo € H¥ N(FiaUe, n&) = H* "N (Fi2 Y, u$))
extends to a class in Y,.. This holds for all jo = 1,...,n and so the class in (6.3) vanishes,

which contradicts our assumptions. This concludes the proof of the theorem. ]

Remark 6.2. The proof of Theorem 6.1 shows that conditions (C1) and (C2) can be
slightly weakened as follows. The surjectivity in (C1) is only needed to lift the classes

§ (orj) from Step 1 to X. These classes may by Step 2 be modified by the image of integral
classes and so (C1) may be weakened to only ask that the composition

HZ(X, per) > HI(X, pgr) = HE(X, per) /HZ(X, Zg(1))

is surjective, or even weaker, that the images of S(aj) in H2(X, wer)/H2(X, Z¢(1)) are
contained in the image of the above map.

Condition (C2) is only used to ensure that the lifts of the classes § (@j,) to X from
Step 1 restrict trivially to the components of the special fibre of X and it would be enough
to replace (C2) by this more precise condition.

Recall Eé, (Y) C A*(Y)/€" from (2.9). The exterior product map (3.1) induces a map
x: A ® EL(Y) — AT X x V], [21] ® [22] = [21 % 23]
Corollary 6.3. In the notation of Theorem 6.1, the kernel of the natural composition
AN ® Ej(Ye) — A ® Ej(Y) S A (X x V)] — AT (X x ¥)/¢
is given by (£ - AL(X)[(?]) ® Eé(YK).

Proof. It is clear that any class in (£ - A'(X)[(?]) ® Eé (Y, ) maps to zero in the group
A1(X x Y)/L. The converse implication follows by the commutative diagram in (3.2)
(see Lemma 3.3) from Theorem 6.1, applied to M = §(H ' (X, ¢)). |

7. Flower pot degenerations of Enriques surfaces

Let k be an algebraically closed field of characteristic zero and let R = k[[¢]]. Following
previous work of Kulikov and Perrson, Morrison classified all semistable degenerations
X — Spec R of Enriques surfaces over R in [27, Corollary 6.2]. In contrast to Kulikov’s
original claim in [22], it is not true that up to birational equivalence we can always assume
that Ky is 2-torsion. In fact, there are three additional types of degenerations (called
(ib), (iib), and (iiib) in [27, Corollary 6.2]) that do not admit an étale 2 : 1 cover by
a Kulikov degeneration of K3 surfaces. The simplest example of such an exceptional
degeneration of Enriques surfaces is given by type (ib), called flower pot degenerations
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(see [31, Proposition 3.3.1 (3)]). The central fiber X of a flower pot degeneration is con-
structed as follows. One starts with a rational surface S¢ which contains a disjoint union
of smooth rational (—4)-curves Cy,...,C,. Foreachi = 1,...,r, one attaches to Sy a
chain of Hirzebruch surfaces F4 by identifying C; C Sy with a suitable section of the first
Hirzebruch surface in the chain. Finally, for each attached chain of Hirzebruch surfaces,
one attaches a P2 as an end-component which is glued to the last F4 along a smooth
conic. On the level of K3 covers, a flower pot degeneration corresponds to the degenera-
tion of a K3 surface 7" with a fixed point free involution ¢ to a nodal K3 surface 7y and an
involution ¢y which fixes exactly the nodes of Tj.

We will need the following evident properties for a flower pot degeneration X —
Spec R:
e if we perform a base change t — ™ and resolve the resulting family by repeatedly

blowing up all non-Cartier components of the special fibre, then the new semistable
degeneration of Enriques surfaces is again a flower pot degeneration;

e cach component of the central fibre Xy is rational and the dual complex of Xy is a tree
(i.e. a finite connected undirected acyclic graph).

Explicit examples of flower pot degenerations of Enriques surfaces have been constructed
by Horikawa [20, Section 10.2] and by Persson [31, Appendix 2]. The dual complex of
the central fibre is in both constructions given by a straight line, i.e. the components of
the special fibre form a chain of rational surfaces.

Theorem 7.1. Let k be an algebraically closed field of characteristic zero and let R be
the local ring at a closed point of a smooth curve over k. Let Xi — Spec R be a strictly
semistable degeneration of Enriques surfaces such that the special fibre X is a flower
pot as in [27, type (ib), Corollary 6.2]. Then up to a base change, the restriction map

Ha (X, it2) = Hop (X, p2)
to the geometric generic fibre X7 is surjective.

Proof. Up to a base change (followed by resolving the resulting family by blowing up all
non-Cartier components of the special fibre), we may assume that the monodromy action
on H2(X 7, M2) is trivial. The Hochschild—Serre spectral sequence

EPT = H?(G, HY(X5. p2)) = HP™(Xy. p2)

degenerates at E,, because the absolute Galois group G of Frac R has cohomological
dimension 1. Hence we get an exact sequence

d
H2(X,. o) = H*(X5. 12) —> H*(G, H' (X5, 12)).

Since G has cohomological dimension 1, we find that H?(G, H' (X7, i12)) = 0 and so
H?(X,, n2) — H?(Xj, o) is surjective. Hence there is a class « € H?(X,, u») whose
image in H? (X7, ;t2) generates

H (X, 2) ~ coker(cly_ : CH'(X5) = H?(X7, t2)) =~ Z/2.
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To prove the theorem, it suffices to show that « is unramified on X (as the latter implies
that « lifts to a class on H 2(X , L2); see Lemma 2.3 and Remark 2.4). To prove the latter,
let Xo; fori € I denote the components of Xy. There is a natural residue map

3: H*(Xp, p2) — @ H'(k(X0i).Z/2)
iel
and we let
vi =0 € H (k(X0;),Z/2).

Up to a ramified 2 : 1 base change (followed by resolving the resulting family as
above), by the commutative diagram in [9, p. 148], we may assume that y; = 0 for all
components that have not been introduced by resolving the singularities introduced by
the 2 : 1 base change. Since the dual graph of Xy is a tree, we conclude that whenever
Xo; meets Xo; withi # j, then either y; or y; is zero. This implies that there is a subset
J C I such that

X§ = Xoj C Xo
jeJ
is smooth and & extends to an unramified class on X \ X|. Since « has degree 2, it actually

extends to an honest class
o € H*(X\ X}, u2)

(see (2.6)). Since X|) is smooth, the residue of o satisfies
do’ € H (X}, 7./2).

Since each component of Xy is rational, the same holds for the components of X, and so
H'(X{, u2) = 0. Hence, do’ = 0 and we find that o’ extends to a class in H2(X, j12).
This concludes the proof of the theorem. ]

Proof of Theorem 1.5. By [20, Section 10.2] or [31, Appendix 2], there is a strictly
semistable degeneration X{ — Spec R of Enriques surfaces such that the special fibre
X is a flower pot as in [27, type (ib), Corollary 6.2] and where R is the local ring at a
closed point of a smooth curve over an algebraically closed field of characteristic zero.
Then H2(X, jrer) = Br(X)[€"] and H2 (X7, ier) = Br(X7)[£"] by [8, Proposition 4.2.3]
and Remark 2.4. Theorem 1.5 follows therefore from Theorem 7.1. ]

We end this section with the following result which reveals some subtlety of the geom-
etry of degenerations as in Theorem 1.5.

Proposition 7.2. Let XX — Spec R be as in Theorem 1.5. Then Br(Xo)[2] # O while
Br(Xy;) = 0 for each component Xg; of X.

Proof. Since each Xy; is a smooth projective ruled surface over an algebraically closed
field, Br(Xo;) = O is clear and it suffices to prove Br(Xg)[2] # 0. Replacing R by its com-
pletion, we may assume that R is complete and so there is a noncanonical isomorphism
R >~ k[[t]] because the residue field « has characteristic zero.
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By the proper base change theorem [25, Corollary 2.7], we get canonical isomor-
phisms

H*(X., por) ~ H*(Xo,por) and  H?(X,Z»(1)) ~ H*(Xo.Z»(1)).  (7.1)

where the latter uses [21, (0.2)]. Let X, = X xg K where K = Frac R >~ «((t)). The
Gysin sequence yields an exact sequence

P Z:[X0i] > H?(X, Zo(1)) - H> (X, Za(1)), (7.2)

where X(; denote the components of the special fibre Xy and the first arrow is given by
> aiXoi = > aic1(Ox(Xoi)). Note that G := Gal(K/K) has cohomological dimen-
sion 1 because R =~ k[[t]] with « algebraically closed. Moreover, Kummer theory shows

H' (G, par) = k() (@)
This is a finite group (isomorphic to Z/2") and so R!lim H'(G, uor) = 0. Hence,
H2 (G, Z(1)) >~ lim H*(G, uar) = 0 by [21, (1.6)] because G has cohomological
dimension 1. Moreover, H' (X5, Z2(1)) = 0 because X5 is an Enriques surface. The
Hochschild—Serre spectral sequence for continuous étale cohomology (see [21, (0.3)])
thus yields an isomorphism

H>(Xy. Z>(1)) = H(X5. 22(1)).
Since H'(G, G,) = H?(G, G,) = 0, the Hochschild-Serre spectral sequence yields
similarly an isomorphism Pic(X;) =~ Pic(X,—,)G. Since X5 is an Enriques surface,
H?(Xj,Za(1)) ~ Pic(X5) ® Z, is algebraic. We thus conclude from the above isomor-

phism that
H?(Xy,Z5(1)) ~ Pic(Xy) ® Z».

Taking closures of divisors on X, thus shows via (7.2) that H?(X, Z»(1)) is algebraic.
Since algebraic classes restrict to algebraic classes, the second isomorphism in (7.1)
shows similarly that H? (X, Z,(1)) is algebraic. Hence, (2.5) implies

Br(X)[2"] >~ H*(X, par)/H*(X, Za(1)), 13)
Br(Xo)[2"] =~ H*(Xo, ptor)/H?*(Xo, Z>(1)). '

We thus conclude from (7.1) that there are canonical isomorphisms
Br(X)[2"] > Br(Xo)[2]

for all > 0. By Theorem 1.5 (3), Br(X)[2] # 0 and so Br(Xy)[2] # 0, which proves the
proposition. ]

Remark 7.3. The above proof shows more generally that if R in Theorem 1.5 is com-
plete, then the natural restriction map Br(X)ors — Br(Xp)ors 18 an isomorphism.

Remark 7.4. One can use Proposition 7.2 to check that several degenerations of Enriques
surfaces as in [27, Corollary 6.2] (e.g. those of type (iia)) do not satisfy the conclusion of
Theorem 1.5.
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8. Proofs of Theorems 1.1 and 1.3

Proof of Theorem 1.3. Let Y be a smooth complex projective variety and let X be an
Enriques surface that is very general with respect to Y. We aim to show that the exterior
product map

A(Y))2 > ATNX xY)/2, [z]+ [Kx x z],

is injective. Using the Kiinneth decomposition for cohomology with Z /2-coefficients
together with the fact that Ky has nontrivial cycle class in H?(X, us), we see that
[Kx x z] = 0 implies that [z] has trivial cycle class in H? (Y, u?i). The problem thus
reduces to the statement that

EL(Y) = AN X xY)/2, [z]— [Kx xz],

is injective, where EL(Y) = ker(cly, : A*(Y)/2 — H? (Y, u$")) from (2.9).

By a straightforward specialization argument and because the moduli space of com-
plex Enriques surfaces is irreducible, it suffices to prove the result for some smooth
projective Enriques surfaces X over C.

Since Chow groups modulo algebraic equivalence are countable, there is a countable
algebraically closed field x C C such that Y = Y, x C for some smooth projective vari-
ety Y, over x and such that the natural map

EL(Ye) — EL(Y)

is surjective, hence an isomorphism because k and C are algebraically closed.

Let R := «[[t]]. By Theorem 1.5, up to enlarging k we may assume that there is a
regular flat proper scheme X — Spec R whose generic fibre is a smooth Enriques surface
and such that

e there is a class @ € H2(X, ug‘)z) whose pullback to the geometric generic fibre is the
unique nonzero Brauer class of the Enriques surface Xy;
o the restriction of « to each component of the special fibre is trivial.

Let k be an algebraic closure of the fraction field of R. Since « is countable, we may
assume that k C C.
It follows from Corollary 6.3 that

EL(Y,) — ATV (X7 x Y3) /2, [2] = [Kx x z],

is injective. Since k C C, we may consider the base change X := X5 x; C. Since k C C
is an extension of algebraically closed fields, a well-known and straightforward special-
ization argument shows that

AT Xz xY)/2 - AU (X xY)/2
is injective. Altogether, we thus see that
EL(Y) ~ EL(Y,) — AN (X xY)/2, [z]~ [Kx x 2],

is injective. Here the Enriques surface X is somewhat special, but as noted above, this
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also shows that the map in question is injective for a very general Enriques surface in
place of X. This concludes the proof. ]

Proof of Corollary 1.4. Note that Ky € A'(X) is 2-torsion and the Jacobian variety of
X is trivial. It follows that the Deligne cycle class (see e.g. [42]) of Ky is 2-torsion.
Hence, for z € A'(Y) with [z] € Eé(Y) = ker(cliy CANY)/2 — H? (Y, /L?i)), the class
[Kx x z] € A'T1(X x Y) has trivial Deligne cycle class, because the Deligne cycle class
of Kx is 2-torsion, while that of z is divisible by 2. It follows that the exterior product
map
EL(Y) — AN X xY), [z]~ [Kx x z],

lands in the subspace of classes of the Griffiths group with trivial Abel-Jacobi invariant.
Since the image of the above map is clearly 2-torsion, we find that its image is contained

m
THUX x Y)[2] C Griff T1(X x Y) c ATTH(X x ).

Corollary 1.4 follows therefore from Theorem 1.3. ]

Proof of Theorem 1.1. Let C C Pé be a very general quartic curve. Since the group of
algebraically trivial cycles modulo rational equivalence is divisible, we have CH?(Y)/2 ~
A2(Y)/2. Hence, [41] shows that Griff?(JC)/2 is infinite. Theorem 1.3 implies that for
a very general Enriques surface X, the map

Griff?(JC)/2 — Griff2 (X x JO)[2], [z] — [Kx x z],
is injective. Hence, Griff>(X x JC) has infinite 2-torsion, as we want. |

Remark 8.1. Replacing [41] in the above proof by [13], we see that Theorem 1.1 remains
true if JC is replaced by the product of three very general elliptic curves.

Corollary 8.2. Foranyn > 5and any3 <i <n — 2, there is a smooth complex projective
n-fold X with infinite torsion (in fact 2-torsion) in Griff’ (X).

Proof. Forn > 5, the projective bundle formula shows that the smooth complex projective
variety X x JC x P"=> where C and X are as in the proof of Theorem 1.1, has infinite
2-torsion in Griff* for all 3 <i < n — 2. This proves the corollary. [

Remark 8.3. It remains open whether Griff' (X) may have infinite torsion for i = 2 or
n — 1; but recall that the n-torsion subgroup of Griff?>(X) is finite for any n > 1 (see
[24, Section 18]).

9. Further applications

In [23, 42], Voisin and Ma showed that for any smooth complex projective variety X
whose Chow group of zero-cycles is supported on a threefold, there is a short exact
sequence
H>(X,7)
0— (

ki el H*(X,Q/Z) = T3(X) — 0,
VRSG5 )., QD) = 700
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where N*H5(X, Z) denotes the coniveau filtration and where 73(X) C Griff3(X)
denotes the subgroup of torsion classes with trivial transcendental Abel-Jacobi invariants.
All three terms in the above sequence are birational invariants of X. In [42, Section 4],
Voisin considered the question whether it can happen that the first term vanishes, while
the unramified cohomology group in the middle is nonzero. In loc. cit., Voisin showed that
the generalized Hodge conjecture implies the existence of such examples; by the general-
ized Bloch conjecture, her examples should actually satisfy CHo(X) = Z. By a result of
Ottem and Suzuki [30], Theorem 1.3 answers Voisin’s question unconditionally.

Corollary 9.1. For any n>5, there is a smooth complex projective n-fold X with CHy(X)
=~ 7 such that

N?H>(X,Z) = H>(X,Z) and HX(X,Q/Z) ~ T3*(X) = Griff*(X)ors # 0.

Proof. By [30], there is a smooth complex projective threefold Y, given as a pencil of
Enriques surfaces, such that CHo(Y) >~ Z, H*(Y, Z) is torsion-free and ¥ admits a non-
algebraic Hodge class o € H?2(Y, Z) such that 2« is algebraic. It thus follows from
Theorem 1.3 that for any very general Enriques surface X, the product

Z:=XxYxP"?

contains a nonzero 2-torsion class in 73(Z). Moreover, CHy(Z) ~ Z, because X has
trivial Chow group of zero-cycles. Since Y has torsion-free cohomology, the Kiinneth
formula applies and shows that H>(Z, Z) decomposes as

(H3(X,Z) @ H* (Y xP" >, 2))® (H*(X,Z) @ H*(Y xP"™> 7))
® H>(Y xP"°,7),

where we have used b1 (Y) = 0, since CHy(Z) >~ Z (see [5]). Since CHp of X and Y are
supported on a point, the positive degree integral cohomology of X and Y is contained
in N! (see [10, Proposition 3.3]). Using this, the above decomposition (together with
the Kiinneth decomposition for ¥ x P"~9) easily shows that N2H>(Z,7Z) = H>(Z,Z).
Since CHo(Z) = Z, this implies by [42, Corollary 0.3] that H}(Z,Q/Z) ~ T3(Z).
Moreover, N2H>(Z,7) = H>(Z,Z) implies that the intermediate Jacobian J>(Z) of Z
is generated by the images of J ! (W), where W C Z runs through all subvarieties of codi-
mension 2 and W denotes a resolution of W. In particular, the transcendental intermediate
Jacobian J2 (Z) vanishes, and so T3(Z) = Griff? (Z)ors. This concludes the proof of the
corollary. [ ]

The condition CHo(X) ~ Z means that X admits a rational decomposition of the
diagonal. By [5, Theorem 1 (ii)],

CHo(X) ~ Z = Griff>(X) = 0.

This implication fails for Griff*, because we may blow up varieties with CHy = Z along
a smooth subvariety with nontrivial Griff>. We are however not aware of any other con-
struction that would yield varieties with small Chow groups of zero-cycles but nontrivial
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Griffiths groups. For instance, to the best of our knowledge, it has not been known whether
varieties with a rational decomposition of the diagonal always admit a birational model
with trivial Griffiths groups. The following consequence of the above corollary solves that
problem.

Corollary 9.2. For any n > 5, there is a smooth complex projective n-fold X such that
any smooth complex projective variety X' that is birational to X satisfies

CHo(X') ~7Z and Griff*(X') # 0.

Proof. The result follows directly from Corollary 9.1 and the fact that 73(Z) is a bira-
tional invariant of smooth complex projective varieties (see [42, Lemma 2.2]). [

Corollary 9.3. Let JC be the Jacobian of a smooth quartic C C ]P’é defined over Q, with

good reduction at 2 and with associated Kummer variety Y = JC /£. Then for any very
general Enriques surface X over C,

Griff’(X x Y)[2] #0 and Griff*(X x Y)/2 # 0.

Proof of Corollary 9.3. Let C be a smooth plane curve of degree 4 defined over Q and
with good reduction at 2. Then JC has good reduction at 2, and [12, Corollary 2.13]
implies that the Kummer variety ¥ = JC/+ associated to JC is a smooth complex
projective variety with H3(Y, o) # 0. As noted in loc. cit. the Chow group of Y is
supported on a surface (see [5, Section 4, Example (1)]) and the integral cohomology of
Y is torsion-free, so that [10] implies that there is a nonalgebraic nontorsion Hodge class
a € H?2(Y,Z) such that 2« is algebraic (cf. [12, Corollary 3.3]). For any very general
complex projective Enriques surface X, Theorem 1.3 thus implies that Griff> (X x Y)[2]
# 0 and Griff>(X x Y)/2 # 0, as we want. |
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