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Phase retrieval in Fock space
and perturbation of Liouville sets

Philipp Grohs, Lukas Liehr and Martin Rathmair

Abstract. We study the determination of functions in Fock space from samples of
their absolute value, known as the phase retrieval problem in Fock space. An import-
ant finding in this research field asserts that phaseless sampling on lattices of arbitrary
density renders the problem unsolvable. The present study establishes solvability
when using irregular sampling sets of the form A [ B [ C , where A, B , and C
constitute perturbations of a Liouville set, i.e., a set with the property that all func-
tions in Fock space bounded on the set are constant. The sets A, B , and C adhere to
specific geometrical conditions of closeness and noncollinearity. We show that these
conditions are sufficiently generic so as to allow the perturbations to be chosen also
at random. By proving that Liouville sets occupy an intermediate position between
sets of stable sampling and sets of uniqueness, we obtain the first construction of
uniqueness sets for the phase retrieval problem in Fock space having a finite density.
The established results apply to the Gabor phase retrieval problem in subspaces of
L2.R/, where we derive additional reductions of the size of uniqueness sets: for the
class of real-valued functions, uniqueness is achieved from two perturbed lattices;
for the class of even real-valued functions, a single perturbation suffices, resulting in
a separated set.

1. Introduction

We are concerned with the problem of whether functions F 2F˛.C/ are determined from
samples .jF.u/j/u2U of their absolute value on a set of sampling locations U � C. Here,

F˛.C/ WD
°
F W C ! C W F entire,

Z
C
jF.z/j2 e�˛jzj

2

dA.z/ <1
±

denotes the Fock space with Euclidean area measure dA.z/ on C. Since any function
H D �F with � 2 T WD ¹z 2 C W jzj D 1º produces the same samples of its absolute
values as F , we introduce the equivalence relation

F � H ” 9� 2T W H D �F;
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and denote U�C a uniqueness set for the phase retrieval problem in F˛.C/ if the implic-
ation

.jF.u/j/u2U D .jH.u/j/u2U H) F � H

holds true for every F; H 2 F˛.C/. The construction of uniqueness sets for the phase
retrieval problem with desirable properties, as well as stable and efficient reconstruction
algorithms, are of key importance in a number of applications of current interest, including
diffraction imaging [54,67], audio processing [2,56,62], and quantum mechanics [45, 52].
This is due to the fact that functions in Fock spaces arise naturally from the Gabor trans-
form of f 2L2.R/,

Gf .x; !/ WD

Z
R
f .t/ e��.t�x/

2

e�2�i!t dt;

in the sense that the Bargmann transform

Bf .z/ WD Gf .Re.z/;�Im.z// � e��iRe.z/ Im.z/C �
2 jzj

2

is a unitary operator from L2.R/ onto F�.C/. In addition, the Gabor transform plays a
central role in signal processing and time-frequency analysis [23]. As a result, this problem
has experienced a recent surge of research activity [3–6,15,28–31,33,63], with investiga-
tions conducted from various perspectives. These include finite-dimensional Gabor phase
retrieval problems [12,19], numerical reconstruction algorithms [40,42], group theoretical
settings [9, 22], stability analysis [7, 16, 21, 35], quantum harmonic analysis [45], and the
study of the closely related Fourier phase retrieval problem [11].

In order to be of practical value, a set U of sampling locations needs to satisfy the
key property of having a finite density. A set U � C is said to have finite density (or is
relatively separated) if

sup
z 2C

#.U \ B1.z// <1;

where #.�/ denotes the number of elements in a set�, andBr .z/D ¹w2C W jw � zj � rº
denotes the closed ball of radius r > 0 around z 2C. The Lebesgue measure of Br .z/ is
denoted by jBr .z/j. Moreover, U is said to be uniformly distributed if there exists a non-
negative real number D.U/ satisfying

#.U \ Br .z// D D.U/ jBr .z/j C o.r2/; r !1;

uniformly with respect to z 2C. In this case, the quantity D.U/ is called the uniform
density of U. It corresponds to the average number of points in U per unit ball. Finally,
we say that U is separated (or: uniformly discrete) if

ı.U/ WD inf
u;u0 2U
u¤u0

ju � u0j > 0:

The quantity ı.U/ is called the separation constant of U. Notice that a set has finite density
if and only if it is a finite union of separated sets.

Compared to the phase retrieval problem, the uniqueness problem of F 2F˛.C/ from
(non-phaseless) samples .F.�//u2U is much better understood. Recall that a set ƒ � C
is said to be a uniqueness set for F˛.C/ if the only function in F˛.C/ that vanishes on ƒ
is the zero function (we note that this notion has to be distinguished from the notion
of a uniqueness set for the phase retrieval problem in F˛.C/). Uniqueness sets with finite
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density have already been constructed in the 1990s: results by Lyubarskii [46] and by
Seip–Wallstén [59, 60] show that any F 2 F˛.C/ is stably determined by its samples
.F.u//u2U, provided that U is separated, and its lower Beurling density exceeds the trans-
ition value ˛=� , also known as the Nyquist rate. Further studies related to uniqueness sets
in Fock space can be found in [1,8,10,18,61]. In most applications, it is desirable to sample
along a regular set, which is why lattices constitute an important choice for sampling sets.
Recall that a lattice ƒ � C with periods !1; !2 2C n ¹0º is a set of the form

ƒ D ¹m!1 C n!2 W m; n2Zº;

where Im .!2=!1/ > 0. The quantity s.ƒ/ > 0 denotes the area of a period parallelogram
of ƒ, and is given by the formula

s.ƒ/ D Im.!1!2/:

The density of a lattice ƒ coincides with the reciprocal of s.ƒ/. A characterization of
uniqueness sets for F˛.C/ with a lattice structure was obtained by Perelomov [53]. It
states that any F 2F˛.C/ is uniquely determined by its samples .F.�//�2ƒ if and only if
s.ƒ/ � �=˛, see [53].

The sampling problem from phaseless samples behaves in a completely different way.
Recent work [6, 29, 31] has shown that no lattice can be a uniqueness set for the phase
retrieval problem in F˛.C/, irrespective of how small s.ƒ/ (or equivalently, how large
D.ƒ/) is. A natural question is then whether the phaseless sampling problem is simply
unsolvable or, alternatively, if the lack of uniqueness is due to algebraic obstructions
caused by the regular lattice structure. In other words:

Question. Do there exist uniqueness sets of finite density for the phase retrieval problem?

The main contribution of this article is to provide a positive answer to this question,
thereby affirming that the lack of uniqueness is indeed due to the regular structure of lattice
sampling sets:

While there are no lattices ƒ which are uniqueness sets for the phase retrieval
problem in F˛.C/, for every d > 12˛=� there exist uniqueness sets U for the
phase retrieval problem in F˛.C/ having finite uniform densityD.U/D d . These
uniqueness sets can be constructed as a union of three perturbations of a lat-
tice, where the perturbations can be either deterministic or random. Consequently,
solving the phase retrieval problem from samples with finite density is possible, but
it requires irregular sampling.

The latter implies that – contrary to most other sampling problems – for the phase
retrieval problem, the main obstruction to being a uniqueness set is not due to insufficient
density, but due to the regular structure inherent in lattices. In the context of completeness
of systems of discrete translates, and universal sampling of band-limited functions, similar
phenomena have been encountered in articles by Olevskii, Ulanovskii and Lev [44,48–51].

In the subsequent sections, we present a notably more comprehensive approach to
constructing uniqueness sets. The method builds upon the perturbation of Liouville sets.

Definition 1.1. Let ƒ � C, and let V be a set of entire functions. We say that ƒ is a
Liouville set for V if every f 2V that is bounded on ƒ is a constant function.
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In the extremal case, we have that ƒ D C is a Liouville set for the collection of all
entire functions, according to the classical Liouville theorem. We will be predominantly
interested in sets ƒ which are of discrete nature. If ƒ D .�n/n2N satisfies j�nj ! 1
as n!1, the Weierstrass factorization theorem guarantees the existence of a nonzero
entire function which vanishes on ƒ. In particular, such a set ƒ cannot be a Liouville set
for the space of entire functions, which demonstrates that the restriction to a subclass V is
then inevitable.

From a more general perspective, a Liouville set ƒ ¨ C can be understood as a
stronger version of the classical Liouville principle: to conclude that a given function is
constant, it suffices to check that it is bounded on ƒ. In the context of harmonic functions
on the graph Z2, a strong Liouville principle has been established in [14]. Furthermore, it
is natural to consider the problem of identifying Liouville sets that are in a sense minimal.
We address this question for V D F˛.C/.

Recall that a discrete set � � C is said to be a set of stable sampling for F˛.C/ if
there exist constants A;B > 0 such that

AkF k2F˛.C/ �
X

 2�

e�˛j
 j
2

jF.
/j2 � BkF k2F˛.C/

for all F 2F˛.C/. Sets of stable sampling were characterized by Lyubarskii, Seip, and
Wallstén in [46, 59, 60]. The results of the present manuscript show that Liouville sets
occupy an intermediate position between sets of stable sampling and uniqueness sets.
Moreover, they exhibit a close association with sets of uniqueness for the phase retrieval
problem. This can be summarized as follows:

Every set of stable sampling for F˛.C/ is a Liouville set for F˛.C/, and every
Liouville set for F˛.C/ is a uniqueness set for F˛.C/. Uniqueness sets for the
phase retrieval problem in F˛.C/ can be obtained by combining three perturb-
ations of a Liouville set for F4˛.C/. The perturbations may either be selected
according to a deterministic condition or at random.

Our findings have a series of implications for the Gabor phase retrieval problem. To
fix notation, we say that a set U � R2 is a uniqueness set for the Gabor phase retrieval
problem in X � L2.R/ if

(1.1) .jGf .u/j/u2U D .jGh.u/j/u2U H) f � h

holds true for every f; h 2X . In a similar fashion as above, f � h indicates the exist-
ence of a value � 2T such that f D �h. Note that if X consists of real-valued functions
exclusively, then one can even conclude that f D ˙h, provided that the respective Gabor
transforms coincide on a uniqueness set U for Gabor phase retrieval in X . Denoting by
L2.R;R/ the space of all real-valued functions in L2.R/, and by L2e.R;R/ the space of
all even functions in L2.R;R/, we can summarize our findings in the following way:

For every d > 12, there exists a uniqueness set U for the Gabor phase retrieval
problem in L2.R/ having uniform density D.U/ D d . Moreover, for every d > 6
(respectively, d > 3/, there exist uniqueness sets for the Gabor phase retrieval
problem inL2.R;R/ (respectively,L2e.R;R// of uniform densityD.U/D d . In all
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scenarios, these uniqueness sets are formed by combining perturbations of a subset
of a lattice and can be either deterministic or random. Notably, the uniqueness
set for the space L2e.R;R/ can be created by a single perturbation of a lattice,
resulting in a separated set.

A prominent application of the Gabor phase retrieval problem occurs in ptychography,
a powerful diffraction microscopy technique capable of achieving significantly higher
resolution than methods based on conventional optics [54, 57]. Beyond its mathematical
contributions, our work for the first time provides rigorous results on how to collect meas-
urements from diffraction patterns such that unique recoverability can be guaranteed.

2. Results

2.1. Closeness and noncollinearity

In order to state the general version of our findings, we require two geometrical concepts
related to closeness and noncollinearity.

Definition 2.1. LetAD .a�/�2ƒ �C and B D .b�/�2ƒ �C be two sequences indexed
by ƒ, and let f WC ! Œ0;1/ be a function. We say that A is f -close to B if there exists
a constant � > 0 such that

ja� � b�j � �f .b�/; �2ƒ:

Moreover, A is said to be uniformly close to B if A is f -close to B with respect to a
constant function.

Notice that uniform closeness is the common notion of closeness in the sampling the-
ory and Fock space literature [60,68]. Definition 2.1 can be understood as a more flexible
notion of closeness, as it allows that the permitted deviation depends on the position. For
instance, if f WC ! Œ0;1/ is such that f .z/! 0 as jzj ! 1, then – provided that ƒ is
unbounded – the notion of f -closeness is strictly stronger than uniform closeness, as the
margin of the allowed amount of perturbation becomes arbitrarily small when j�j!1. In
addition to a closeness concept, we require geometrical notions related to noncollinearity.

Definition 2.2. Let a; b; c 2C, and let '1; '2; '3 2 .0; �/ be the interior angles of the
triangle with vertices a; b; c, enumerated such that '1 � '2 � '3. Then we define1

'.a; b; c/ WD '2 2 Œ0; �=2�:

The previous definition allows to introduce noncollinear (respectively, uniformly) non-
collinear sequences.

Definition 2.3. Let J be an index set. We say that .aj /j 2J , .bj /j 2J and .cj /j 2J � C
are noncollinear sequences if for every j 2 J it holds that aj , bj and cj are noncollinear.
We say that .aj /j 2J , .bj /j 2J and .cj /j 2J are uniformly noncollinear if there exists an
angle � 2 .0; �=2/ such that

� � '.aj ; bj ; cj /; j 2J:

1By convention, if the triangle is degenerated (that is, if a; b; c are collinear), we define '.a; b; c/ WD 0.
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2.2. Deterministic perturbations of Liouville sets

Having settled the required notions of closeness and noncollinearity, we are prepared to
state the first main result of the article, which proves uniqueness of the phase retrieval
problem in Fock space from unions of three perturbed Liouville sets.

Theorem 2.4. Let ˛ >0, and letƒ�C be a Liouville set for F4˛.C/. Further, let f WC!
Œ0;1/ be given by f .z/D e�
 jzj

2
with 
 > 2˛. Suppose thatAD .a�/�2ƒ,B D .b�/�2ƒ

and C D .c�/�2ƒ � C are f -close to ƒ. If

(2.1) 9ˇ2 .0; 
 � 2˛/; 9L > 0 W
j�j e�ˇ j�j

2

'.a�; b�; c�/
� L; �2ƒ;

then
U WD A [ B [ C

is a uniqueness set for the phase retrieval problem in F˛.C/. In particular, condition (2.1)
holds if A, B , and C are uniformly noncollinear.

Figure 1. Visualization of Theorem 2.4: the setsA;B , andC are uniformly noncollinear and f -close
to a sufficiently dense (hexagonal) lattice ƒ, which is a Liouville set for F˛.C/. For simplicity, we
consider A to be the lattice itself, i.e., ADƒ. Theorem 2.4 establishes the unique determination (up
to a global phase) of every function in the Fock space by its absolute values located on the union
A [ B [ C . However, it is important to note that sampling only on the lattice A D ƒ does not
guarantee uniqueness.

We emphasize that Theorem 2.4 crucially depends on the interaction of two condi-
tions: the f -closeness of A, B , and C to a Liouville set ƒ with respect to the function
f .z/ D e�
 jzj

2
, and the angle condition (2.1). While the combination of these two con-

ditions is sufficient for U to be a uniqueness set, dropping either of them generally does
not guarantee unique recoverability. For details on this matter, we direct the reader to
Remark 5.1.
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2.3. Sets of stable sampling, lattices, and Hardy’s uncertainty principle

The previous result may appear somewhat abstract, as it involves obtaining the uniqueness
set for phase retrieval through perturbations of Liouville sets. To provide more clarity, we
explore the concept of Liouville sets and its relationship with commonly studied sets of
stable sampling and sets of uniqueness. Our main result in this direction reads as follows.

Theorem 2.5. Let �S be the collection of all subsets of C that contain a set of stable
sampling for F˛.C/, let �L be the collection of all Liouville sets for F˛.C/, and let �U
be the collection of all uniqueness sets for F˛.C/. Then it holds that

�S ¨ �L ¨ �U :

In addition to the inclusion given in Theorem 2.5, we provide a characterization of all
Liouville sets possessing a lattice structure. This characterization is expressed in terms of
the lattice density, as expected when drawing parallels with related statements on sets of
stable sampling and sets of uniqueness.

Theorem 2.6. A lattice ƒ � C is a Liouville set for F˛.C/ if and only if s.ƒ/ < �=˛.

It follows from Theorem 2.6 that the assertion made in Theorem 2.4 remains valid for
any lattice ƒ � C that satisfies s.ƒ/ < �=.4˛/. In this scenario, the sets A, B , and C
in Theorem 2.4 represent perturbations of the lattice ƒ. It is evident that, in this case,
the collective set A [ B [ C exhibits finite uniform density, yielding the first example in
current literature of a uniqueness set for phase retrieval in Fock space with this property.
This effectively addresses the inquiry posed in the introduction.

Having settled the relation to sets of stable sampling and uniqueness sets, we further
notice that each Liouville set for F�.C/ gives rise to a Gabor transform related Hardy
uncertainty principle. The classical form of Hardy’s uncertainty principle states that if a
function f 2L2.R/ satisfies

jf .x/j � c1 e
�a�x2 and j Of .!/j � c2 e

�b�!2 ;

for some c1; c2; a;b > 0with abD 1, then f .x/D c3 e�a�x
2

for some c32C; see [20,37].
In the above inequality, Of denotes the Fourier transform of f , defined on L1.R/\L2.R/
by Of .!/D

R
R f .x/e

�2�i!x dx, and extended toL2.R/ in the usual way. By replacing the
Fourier transform with the Gabor transform (or more generally, with windowed Fourier
transforms), one arrives at a time-frequency analytic version of Hardy’s uncertainty prin-
ciple, originally established by Gröchenig and Zimmermann [27]. The results presented
in the present section can be seen as discretized versions of Hardy’s uncertainty principle
for the Gabor transform. The forthcoming statement elaborates on this interpretation.

Theorem 2.7. Letƒ�C'R2 be a set of stable sampling for F�.C/, and let f 2L2.R/.
If there exists a constant C � 0 such that

jGf .�/j � Ce�
�
2 j�j

2

; �2ƒ;

then f .x/ D ce��x
2

for some c 2 C.
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2.4. Random perturbation of Liouville sets

We now turn our attention towards investigating whether probabilistic uniqueness state-
ments are attainable. The concept of contemplating random perturbations of a Liouville
set is rooted in the fact that one could contend that the condition (2.1) outlined in The-
orem 2.4 is rather generic, and it is possible that random perturbations might satisfy this
condition almost surely. Indeed, the following can be said.

Theorem 2.8. Let ˛ > 0, let f WC! Œ0;1/ be given by f .z/ D e�
 jzj
2
, 
 > 2˛, and let

ƒ � C be a Liouville set for F4˛.C/ of finite density. If

Z�;`; .�; `/ 2 ƒ � ¹1; 2; 3º;

is a sequence of independent complex random variables, where each Z�;` is uniformly
distributed on the disk Bf .�/.�/, then U D ¹Z�;` W .�; `/ 2 ƒ � ¹1; 2; 3ºº is a uniqueness
set for the phase retrieval problem in F˛.C/ almost surely.

Figure 2. Visualization of Theorem 2.8: the grey disks represent neighborhoods around points �
of a sufficiently dense (hexagonal) lattice ƒ. From each disk, three points are selected at random,
resulting in three sets A;B , and C . With probability 1, the union A[B [C forms a uniqueness set
for the phase retrieval problem in Fock space.

2.5. Gabor phase retrieval

In the remainder of this section, we identify R2 with the complex plane C. All definitions
introduced earlier naturally transfer to R2 without further explanations. Throughout the
present section, the function f WR2 ! Œ0;1/ is defined by f .z/ D e�
 jzj

2
with 
 > 2� .

We recall that U � R2 is considered a uniqueness set for the Gabor phase retrieval
problem in X �L2.R/ if the implication (1.1) is satisfied. We begin with an immediate
consequence of Theorem 2.8.
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Theorem 2.9. Let ƒ � R2 be a lattice satisfying D.ƒ/ > 4. Suppose that

Z�;`; .�; `/ 2 ƒ � ¹1; 2; 3º;

is a sequence of independent .R2-valued ) random variables, where eachZ�;` is uniformly
distributed on the disk Bf .�/.�/. Then UD ¹Z�;` W .�; `/ 2ƒ� ¹1; 2; 3ºº is a uniqueness
set for the Gabor phase retrieval problem in L2.R/ almost surely.

We proceed with the introduction of a class of special lattices and define

L WD

²�
p 0

0 q

�
Z2 W p; q 2 R n ¹0º

³
[

²�
p p

q �q

�
Z2 W p; q 2 R n ¹0º

³
:

Such lattices are precisely the ones which are invariant with respect to reflection across
either of the two coordinate axes. The class L contains the important class of separable
lattices. It is important to emphasize that lattices that belong to L do not form uniqueness
sets for the Gabor phase retrieval problem in L2.R;R/, the space of real-valued functions
in L2.R/. That is, for each ƒ2L, there exist two functions f; h2L2.R;R/, satisfying
the two conditions

jGf .z/j D jGh.z/j; z 2ƒ; and f 6� h;

see the proof of Theorem 3.13 in [29]. Clearly, since L2.R;R/ � L2.R/, Theorem 2.4
is applicable and establishes uniqueness in L2.R;R/ through the use of three perturbed
lattices. However, the space L2.R;R/ is significantly smaller in comparison to L2.R/,
leading one to anticipate that a reduced sampling set would suffice for uniqueness. Indeed,
the following theorem asserts that the union of two random perturbations of a lattice in L

is adequate for achieving uniqueness.

Theorem 2.10. Suppose that ƒ2L satisfies D.ƒ/ > 4. Let

Z�;`; .�; `/ 2 ƒ � ¹1; 2º;

be a sequence of independent .R2-valued ) random variables, where each Z�;` is uni-
formly distributed on the disk Bf .�/.�/. Then U D ¹Z�;` W .�; `/ 2 ƒ � ¹1; 2ºº is a
uniqueness set for Gabor phase retrieval in L2.R;R/ almost surely.

If we further restrict the problem to the space L2e.R;R/ of even real-valued functions,
then a single perturbation suffices, and the uniqueness set becomes separated.

Theorem 2.11. Suppose that ƒ2L satisfies D.ƒ/ > 4. Let

Z�; �2ƒ;

be a sequence of independent .R2-valued ) random variables, where eachZ� is uniformly
distributed on the disk Bf .�/.�/. Then U D ¹Z� W � 2 ƒº is separated and a uniqueness
set for Gabor phase retrieval in L2e.R;R/ almost surely.

A further objective is to identify the range of densities (depending on the function
class X � L2.R/ considered) such that uniqueness sets for the given class exist. In the
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randomized setting of Theorem 2.10 and Theorem 2.11, we end up with uniqueness sets
of density > 8 and > 4, respectively. The densities of the respective sets can be arbitrarily
close to the lower bounds. As it turns out, the density can be further pushed down by
employing a more elaborate strategy to select the sampling points. Specifically, we have
the following result.

Theorem 2.12. Let j 2 ¹1; 2; 3º. For every d > dj , there exists a uniformly distributed
uniqueness set Uj for the Gabor phase retrieval problem in Xj having uniform density
D.Uj / D d , provided that

(1) d1 D 12 and X1 D L2.R/,

(2) d2 D 6 and X2 D L2.R;R/,

(3) d3 D 3 and X3 D L2e.R;R/.

For X3 D L2e.R;R/, the uniqueness set U3 can be chosen to be separated.

Figure 3. This figure depicts an example related to Theorem 2.12(2). The vertical and horizontal
lines induce a (shifted) square lattice ƒ of density > 4. The black points are perturbations of ƒ.
The red points depict a sublattice ƒ0 � ƒ of density D.ƒ0/ D 1

2D.ƒ/. The union of the black
and red points forms a uniqueness set for the Gabor phase retrieval problem in L2.R;R/, and has
density > 6. The density can be as close to 6 as we please.

Figure 4. This figure depicts an example related to Theorem 2.12(3). The gray mesh induces a
square lattice ƒ of density > 4. The points A, B , and C are perturbations of points of ƒ, with
the property that their union, A [ B [ C , forms a uniqueness set for the Gabor phase retrieval
problem inL2e.R;R/, having density> 3. This density can be as close to 3 as we please. In addition,
A [ B [ C is separated.
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2.6. Previous work

Square-root sampling. To our knowledge, the first construction of a discrete uniqueness
set for the phase retrieval problem in Fock spaces is provided in the recent work [32]. This
uniqueness set is of the form

ƒp� D ¹˙
p
n˙ i

p
m W n;m 2 N0º:

However, since the set ƒp� does not have finite density and is not uniformly distributed,
this result is of limited practical value.

Multi-window approach. In another line of work, the authors show that if for each
F 2F�.C/ one additionally obtains phaseless samples of three judiciously chosen func-
tions F1, F2, and F3, one can even reconstruct uniquely from phaseless samples on any
lattice of density � 4, see [33]. The reformulation of the result in terms of time-frequency
analysis amounts to employing four suitably chosen window functions. This corresponds
to 4-fold sampling on a lattice of density � 4.

Restriction to subspaces. Lastly, we note that phaseless sampling on lattices in F�.C/
can be done uniquely by restricting the problem to specific proper subspaces of F�.C/.
Notable examples of such subspaces include the image of L2.I /, where I � R is com-
pact, under the Bargmann transform or the corresponding image of certain shift-invariant
spaces, see [30, 34, 63, 64].

2.7. Notation

The following notation is used throughout the remainder of the article. Given two vectors
z;w2Cd , we use the abbreviation z �w D

Pd
kD1 ziwi . The Euclidean length of z will be

denoted by jzj. The symbols D, HC, and H� denote the open unit disk, the open upper half
plane, and the open lower half plane, respectively. By @� we denote the boundary of a set
��C. Further, we use the notation�D ¹z W z 2�º and��D ¹�z W z 2�º. Given three
points a; b; c 2 C in the complex plane, we denote by�.a; b; c/ the triangle with vertices
a;b; c. The distance of� to a point z2C is defined by dist.�;z/ WD inf¹jw � zj Ww2�º.

By O.Cd / we denote the collection of entire functions of d complex variables. For
F 2O.Cd /, we use the notation F �.z/ D F. Nz/. Note that F � 2 O.Cd /. The Lebesgue
measure on the d -dimensional complex space Cd will be denoted by A.z/. For ˛ > 0, we
introduce a family of probability measures by defining

d�˛.z/ D
�˛
�

�d
e�˛jzj

2

dA.z/:

The Fock space F˛.Cd / is defined by

F˛.C
d / D

®
F 2O.Cd / W kF kL2.d�˛/ <1

¯
:

Equipped with the inner product

hF;GiF˛.Cd / D

Z
Cd

F.z/G.z/ d�˛.z/;
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the space F˛.Cd / forms a reproducing kernel Hilbert space, and the reproducing kernel
is given by

kz.w/ D e
˛w � Nz :

Notice that every F 2F˛.Cd / satisfies the pointwise growth estimate

(2.2) jF.z/j � kF kF˛.Cd / e
˛
2 jzj

2

; z 2Cd :

The estimate (2.2), in combination with the definition of the norm k � kF˛.Cd /, implies that
for every s 2Cd and every " > 0, one has

(2.3) F.� C s/2F˛C".C
d /:

For a detailed exposition of the theory of Fock spaces, we refer to [68].

3. Liouville sets

This section is devoted to an investigation of Liouville sets for the Fock space. Recall that
ƒ � C is said to be a Liouville set for V � O.C/ if every F 2V that is bounded on ƒ is
a constant function.

3.1. Uniform closeness and Lagrange-type interpolation

As introduced in Section 2.1, a set A is said to be uniformly close to B if A is f -close
to B with respect to a constant function f .z/D � � 0. Within the context of this section,
we need to address the concept of uniform closeness more precisely: we say that a set A is
�-uniformly close to a set B if there exist an index set J , and an enumeration of A and B
with index set J , i.e., A D .aj /j 2J and B D .bj /j 2J , such that

jaj � bj j � �; j 2J:

For ˇ > 0, we define the square lattice ƒˇ by

ƒˇ WD

r
�

ˇ
.ZC iZ/ D .�mn/m;n2Z; �mn WD

r
�

ˇ
.mC in/:

Following Seip and Wallstén [60], we define for a separated sequence �D.
mn/m;n2Z

� C that is uniformly close to ƒˇ for some ˇ > 0, the entire function g� WC ! C by

g�.z/ WD .z � 
00/ �
Y

.m;n/2Z2

.m;n/¤.0;0/

�
1 �

z


mn

�
exp

� z


mn
C
1

2

z2

�2mn

�
;

where

00 D argmin


2�
j
 jDdist.�;0/

arg.
/

is the point which has minimal argument among all minimal length points in � . With this,
� 7! g� is a well-defined map. The derivative of g� at points in � satisfies the following
lower bound, see Lemma 2.2 in [60].
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Lemma 3.1. Let � be separated and�-uniformly close toƒˇ . Then there exist constants
C; c > 0 depending only on � and ı.�/ such that

jg0�.
/j � C e
�cj
 j log j
 j e

ˇ
2 j
 j

2

; 
 2�:

The introduction of g� leads to the following Lagrange-type interpolation formula for
functions in Fock space, see Lemma 3.1 in [60].

Lemma 3.2. Let 0 < ˛ < ˇ, and suppose that � � C is separated and uniformly close
to ƒˇ . Then every F 2F˛.C/ satisfies2 the interpolation formula

F.z/ D
X

 2�

F.
/ g�.z/

g0�.
/.z � 
/
,

where the series on the right-hand side converges absolutely and uniformly on compact
subsets of C.

As a last ingredient, we require the following elementary lemma on uniform closeness
of shifts of sets.

Lemma 3.3. Let � be uniformly close to ƒˇ . Then there exists a constant � � 0 such
that � � s is �-uniformly close to ƒˇ for every s 2C.

Proof. Let s 2C, and suppose that �0 � 0 is a constant such that � is �0-uniformly close
to ƒˇ . This clearly implies that � � s is �0-uniformly close to ƒˇ � s. Since ƒˇ � s isq

�
2ˇ

-uniformly close toƒˇ , it follows from triangle inequality that � � s is�-uniformly
close to ƒˇ with

� D �0 C

r
�

2ˇ
�

Since s was arbitrary, the statement is proved.

3.2. Liouville sets in Fock space

The main results of the present section are based on the following key theorem.

Theorem 3.4. Let 0 < ˛ < ˇ. If � � C is separated and uniformly close to ƒˇ , then �
is a Liouville set for F˛.C/.

Proof. Let F 2F˛.C/ and let L > 0 such that

jF.
/j � L; 
 2�:

Let�� 0 be given as in Lemma 3.3, such that � � s is�-uniformly close toƒˇ for every
s 2C. Since

Fs WD F.� C s/2F˛C".C/ for every s 2C and every " > 0,

2In fact, the interpolation formula is valid for a larger class of functions, namely for the space O.C/ \
L1.C; d�˛/.
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we can expand every Fs in terms of the Lagrange expansion with respect to the set � � s,
resulting in the identity

Fs.z/ D
X


 2��s

Fs.
/ g��s.z/

g0��s.
/.z � 
/
�

The definition of g��s implies that for every s 2C, one has

jg��s.0/j D dist.� � s; 0/:

Now let s 2C n � . This assumption is equivalent to the condition that 0 … � � s. For
such s, we have

(3.1)
jg��s.0/j

j
 j
�
jg��s.0/j

dist.� � s; 0/
D 1; 
 2� � s:

Moreover, it holds that

(3.2) jFs.
/j � L; 
 2� � s:

Evaluating the Lagrange expansion of Fs at zero for some s 2C n � , and using (3.1)
and (3.2), we obtain

jFs.0/j � L
X


 2��s

1

jg0��s.
/j
�

Since � � s is �-uniformly close to ƒˇ for every s 2C, and since ı.� � s/ D ı.�/ for
every s 2C, it follows from Lemma 3.1 that there exist constants C; c > 0, independent
of s, such that

jFs.0/j �
L

C

X

 2��s

ecj
 j log j
 j e�
ˇ
2 j
 j

2

:

We seek to bound the sum on the right-hand side by a constant which is independent
from s 2 C. To do so, note that there exists a constant B > 0 such that

cr log r �
ˇ

2
r2 � B � r; r � 0:

Moreover, since � � s is �-uniformly close to ƒˇ , we can index � � s in terms of ƒˇ ,
� � s D .
�/�2ƒˇ , and obtain that

j
�j � j�j � j
� � �j � j�j ��; �2ƒˇ :

With this, we obtain thatX

 2��s

ecj
 j log j
 je�
ˇ
2 j
 j

2

�

X
�2ƒˇ

eB�j
�j �
X
�2ƒˇ

eBC��j�j DW K <1;

and K does not depend on s as desired. Consequently,

jFs.0/j D jF.s/j �
LK

C
, s 2C n �:

It follows from continuity that F is globally bounded. Liouville’s theorem implies that F
is a constant function.
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We can deduce from the previous statement that every subset of C that contains a set
of stable sampling is a Liouville set.

Corollary 3.5. If ƒ � C contains a set of stable sampling for F˛.C/, then ƒ is a
Liouville set for F˛.C/.

Proof. Suppose that � � ƒ is a set of stable sampling for F˛.C/. Then � contains a
separated subsequence � 0 of lower Beurling density strictly greater than ˛=� , see The-
orem 4.36 in [68]. This in turn implies that � 0 contains a separated subsequence � 00 that
is uniformly close to ƒˇ for some ˇ > ˛, see Lemma 4.31 in [68]. According to The-
orem 3.4, � 00 is a Liouville set for F˛.C/. Since � 00 � ƒ, it follows that ƒ is a Liouville
set for F˛.C/.

Next, we turn towards a characterization of lattice Liouville sets in F˛.C/. To do so,
we apply Perelomov’s theorem (Assertion 1 in [53]).

Theorem 3.6 (Perelomov). A lattice ƒ � C is a uniqueness set for F˛.C/ if and only if
s.ƒ/ � �=˛. If s.ƒ/ D �=˛, then ƒ stays a uniqueness set for F˛.C/ on the removal of
a single point, but fails to be a uniqueness set if more than one point is removed.

Proof of Theorem 2.6. Let ƒ � C be a lattice. If s.ƒ/ < �=˛, then ƒ is a set of stable
sampling for F˛.C/, see Theorem 1.1 in [60]. In view of Corollary 3.5, ƒ is a Liouville
set for F˛.C/.

It remains to show that if a lattice ƒ is a Liouville set for F˛.C/, then s.ƒ/ < �=˛.
To this end, we observe that every Louville set for F˛.C/ is a uniqueness set for F˛.C/.
According to Theorem 3.6, it must hold that s.ƒ/� �=˛. Finally, we prove that any lattice
at the critical rate s.ƒ/ D �=˛ cannot be a Liouville set for F˛.C/. Assume the contrary,
i.e., ƒ is a Liouville set for F˛.C/ satisfying s.ƒ/ D �=˛. Since every Liouville set is
a uniqueness set, and, in addition, remains a Liouville set on the removal of any finite
number of points, we end up with a contradiction to Theorem 3.6.

Remark 3.7 (Critical density). According to Theorem 2.6, a lattice ƒ with s.ƒ/ D �=˛
is not a Liouville set for F˛.C/. Hence, there exists a function in F˛.C/ that is not a
constant function, and, in addition, is bounded on ƒ. Such a function can be constructed
by means of a modified Weierstrass � -function. Recall that the Weierstrass � -function
associated to a lattice ƒ with periods !1 and !2 is given by

�.z/ D z
Y

�2ƒn¹0º

�
1 �

z

�

�
exp

� z
�
C

z2

2�2

�
:

The function � is quasi-periodic, i.e., there exist values �1; �2 2C such that

�.z C !1/ D ��.z/ e
�1zC

1
2�1!1 ;

�.z C !2/ D ��.z/ e
�2zC

1
2�2!2 :

For !1, !2, �1, and �2 given as above, define a.ƒ/2C via

a.ƒ/ D
1

2

�2!1 � �1!2

!1!2 � !2!1
,
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and set �ƒ.z/ WD �.z/ea.ƒ/z
2
. We call �ƒ the modified Weierstrass � -function associated

toƒ. The modified Weierstrass � -function was introduced by Hayman in [39], and played
an important role in a series of articles by Gröchenig and Lyubarskii on sets of stable
sampling in Fock space [24–26]. The term ea.ƒ/z

2
in the definition of �ƒ serves as a

correction term and gives rise to the growth estimate

(3.3) j�ƒ.z/j � C e
�

2s.ƒ/
jzj2
; z 2 C;

with C > 0 a constant depending only on ƒ, see Proposition 3.5 in [26]. Now consider
two distinct lattice points �; �0 2ƒ, and define

Q.z/ WD
�ƒ.z/

.z � �/.z � �0/
�

Since � and �0 are zeros of �ƒ, it follows that Q is holomorphic. Using (3.3) and the
identity s.ƒ/ D �=˛, it follows thatZ

C
jQ.z/j2 e�˛jzj

2

dA.z/

�

Z
B2j���0 j.�/

jQ.z/j2 e�˛jzj
2

dA.z/C C 2
Z

CnB2j���0 j.�/

1

j.z � �/.z � �0/j2
dA.z/:

The first integral on the right-hand side of this inequality exists since the integrand is
continuous. The decay of the function z 7! 1

.z��/.z��0/
on C nB2j���0j.�/ implies that the

second integral exists as well. Consequently, Q 2F˛.C/. As Q vanishes on ƒ n ¹�; �0º,
we have that Q is necessarily bounded on ƒ, while not being a constant.

We proceed by establishing Theorem 2.5.

Proof of Theorem 2.5. The statements discussed in the present section imply that

�S � �L � �U :

To show that the inclusions are proper, we first note that every latticeƒ�C satisfying
s.ƒ/ D �=˛ is a uniqueness set for F˛.C/, but not a Liouville set for F˛.C/. This shows
that �L ¨ �U .

Finally, we construct a Liouville set for F˛.C/ that does not contain a set of stable
sampling for F˛.C/. To do so, let L1; L2; L3 � C be three distinct lines in the plane
intersecting at 0. Then the connected components of C n .L1 [ L2 [ L3/ are six sectors.
Let us further assume that the three lines are chosen in such a way that each of these sec-
tors has an acute angle at the origin. If F 2F˛.C/ is bounded on L1 [L2 [L3, then the
estimate jF.z/j � kF kF˛.C/ e

˛
2 jzj

2
, in conjunction with the Phragmén–Lindelöf principle

(Theorem 10 on p. 68 of [66]), shows that F is bounded in each of the six sectors. Con-
sequently, L1 [L2 [L3 is a Liouville set for F˛.C/. On the other hand, the complement
of L1 [L2 [L3 contains arbitrarily large balls, implying that the lower Beurling density
of every subset ofL1 [L2 [L3 is zero. Since every set of stable sampling contains a sub-
set of positive lower Beurling density (Theorem 1.1 in [58]), it follows that L1 [L2 [L3
does not contain a set of stable sampling.
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We conclude this section with the proof of Theorem 2.7, which states that every
sampling set induces a Hardy uncertainty principle.

Proof of Theorem 2.7. Letƒ�C be a set of stable sampling for F�.C/, and let f 2L2.R/
be such that

jGf .�/j � Ce�
�
2 j�j

2

; �2ƒ:

This bound is equivalent to the condition that the Bargmann transform Bf is bounded
on Nƒ. Note that, as ƒ is a set of stable sampling, so is Nƒ. As per Theorem 2.5, we have
that Nƒ is a Liouville set for F�.C/. Hence, there exists a constant c 2C with Bf D c.
Since B�1.1/.x/ D e��x

2
, we conclude that f .x/ D ce��x

2
.

3.3. Comparison to previous work

Given a constant � > 0, we define

V� WD
°
F 2O.C/ W lim sup

r!1

logMF .r/

r2
<
�

2�

±
;

where
MF .r/ D max

� 2R
jF.rei� /j

denotes the maximum modulus function of F . For the extremal case � D1, we define V1
as the collection of all entire functions F 2O.C/ of order two and minimal type, that is,

lim sup
r!1

logMF .r/

r2
D 0:

In his exposition [65] on interpolatory function theory, Whittaker demonstrated that the
lattice Z C iZ is a Liouville set for V1. Iyer proved in [41] a generalization, namely
that Z C iZ is a Liouville set for V1. The same statement was independently proven a
short time later by Pfluger [55]. Maitland [47] showed that if ƒ D .�nm/n;m2Z � C is a
separated sequence satisfying

n � 1 � Re.�nm/ � n; m � 1 � Im.�nm/ � m; n;m2Z;

then ƒ is a Liouville set for V1. It follows directly from the estimate (2.2) that the sets
obtained by Whittaker, Iyer, Pfluger, and Maitland are Liouville sets for F˛.C/, provided
that 0 < ˛ < � . However, these results are restrictive in the sense that they neither cover
lattices that lack a square structure nor sets that are uniformly close to a square lattice. In
contrast, Theorem 3.4 above covers the results of Whittaker, Iyer, Pfluger, and Maitland,
it implies that all sets of stable sampling are Liouville sets, and it yields a full charac-
terization of lattice Liouville sets in terms of the Nyquist rate. The Nyquist rate is the
decisive quantity that also characterizes all lattices that are sets of stable sampling or
uniqueness sets.

Lastly, we reference Cartwright’s discrete Liouville theorem pertaining to functions
in V1, which exhibit bounded behavior both along a sector’s boundary and at lattice points
within the same sector, see [17].
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4. Auxiliary results

In this section, we collect a couple of intermediate results which will be of fundamental
importance for the proofs of the main results of this article.

4.1. A first uniqueness statement

We begin by establishing a result which will serve as a key piece to bridge the gap from
the discrete sampling set to the full complex plane.

Proposition 4.1. Let ƒ � C be a uniqueness set for F˛.C/. Further, let F;H 2F˛.C/,
and let

G WD FH.FH 0 � F 0H/:

If jF.�/j D jH.�/j for all �2ƒ, and in addition, G D 0, then F � H .

Proof. Since G is the product of the three entire functions F; H , and FH 0 � F 0H , it
follows that at least one of them must be the zero function. If F D 0, then the property
that jF.�/j D jH.�/j for all �2ƒ implies thatH vanishes onƒ. Sinceƒ is a uniqueness
set for F˛.C/, we haveH D 0. In particular, F � H . An analogous argument shows that
ifH D 0, then F �H . Finally, suppose that FH 0 � F 0H D 0 and that F does not vanish
identically. If � � C is a zero-free region of F , then for every z 2� we have�H.z/

F.z/

�0
D 0:

Thus, there exists � 2C such that F D �H . Since F ¤ 0, it follows from the assumption
on ƒ being a uniqueness set for F˛.C/ that there exists a �0 2ƒ such that F.�0/ ¤ 0.
Moreover, jF.�0/j D jH.�0/j. Consequently, jF.�0/j.1� j� j/D 0, which gives j� j D 1.

4.2. First order phaseless information

In the proof of the main result (Theorem 2.4), the function F 0F , where F 2F˛.C/ is to
be determined given its phaseless samples, plays a subtle but nevertheless central role. We
begin with making the observation that this information is encoded in rjF j2, the gradient
of the squared modulus: let z0 2 C be any point and let us identify C and R2 by virtue
of z D x C iy. Suppose we are given first order phaseless information .@xjF j2/.z0/ and
.@y jF j

2/.z0/. Since F is holomorphic and since @z D 1
2
.@x � i@y/, one can infer

.F 0F /.z0/ D .@zjF j
2/.z0/ D

1

2
.@xjF j

2/.z0/ �
i

2
.@y jF j

2/.z0/

from the given information. The purpose of this section is to establish a more general and
quantitative version of this consideration. To this end, for a function QWC ' R2 ! C,
differentiable in the real variable sense (but not necessarily holomorphic), and � 2 Œ0; 2�/
an angle, we denote its derivative at z 2C into the ei� -direction by

ı� ŒQ�.z/ D
d
dt
Q.z C tei� /

ˇ̌̌
tD0
:
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We consider the caseQD jF j2 � jH j2 with F;H 2F˛.C/ a pair of functions in the Fock
space. If �1 and �2 are distinct angles, and if ı�1 ŒQ� and ı�2 ŒQ� vanish in the vicinity of a
point z0 2C, we can control the deviation

jF 0F �H 0H j

at z0. This is the content of the following result.

Proposition 4.2. Let ˛; " > 0, let z0 2 C, and suppose that

0 � � � min
®
.2˛ C "/�1=2; .2˛ C "/�1jz0j

�1
¯
:

Moreover, let F;H 2F˛.C/, let �1; �2 2 R be two angles such that �1 � �2 … �Z, and
assume that there exist p1; p2 2B�.z0/ such that

ı�j ŒjF j
2
� jH j2�.pj / D 0; j 2 ¹1; 2º:

Then it holds that

j.F 0F �H 0H/.z0/j �M
.jz0j C 1/ e

.˛C "
2 /jz0j

2

j sin.�1 � �2/j
� ,

where M is a constant depending only on ˛, ", kF kF˛.C/, and kHkF˛.C/.

Before we turn towards the proof of Proposition 4.2, we collect three intermediate
results. These results involve the function

dist˛.z; w/ WD kkz � kwkF˛.Cd /; z; w 2Cd ;

where kz denotes the reproducing kernel in F˛.Cd / with respect to z 2Cd . The latter
defines a metric on Cd . The following result makes matters more explicit and provides a
link to the Euclidean metric.

Lemma 4.3. For all z; w 2Cd , it holds that

dist˛.z; w/ D
q
e˛jzj

2
� 2Re.e˛z� Nw/C e˛jwj2 :

Moreover, if jz � wj � min¹˛�1=2; ˛�1jzj�1º, then

dist˛.z; w/ � 4 jz � wj e
˛jzj2

2
�
˛jzj C

p
˛
�
:

Proof. Recall that the reproducing kernel is kw.z/ D e˛z� Nw . Making use of the defining
property of the reproducing kernel gives that

dist˛.z; w/2 D hkz � kw ; kz � kwiF˛.Cd / D kz.z/ � kz.w/ � kw.z/C kw.w/

D e˛jzj
2

� 2Re.e˛z� Nw/C e˛jwj
2

:

This proves the first part of the statement. For the second part, we denote ı WD w � z and
get that

dist˛.z; w/2 D e˛jzj
2

� 2Re.e˛z�
Nı/ e˛jzj

2

C e˛jzCıj
2

D e˛jzj
2 �
1 � 2Re.e˛z�

Nı/C e˛.2Re.z� Nı/Cjıj2/�:
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The expression inside the brackets is equal to

A D je˛z�
Nı
� 1j2 C e2˛Re.z� Nı/ .e˛jıj

2

� 1/:

Note that jeu � 1j � .e � 1/juj for all u2C with juj � 1. The assumption for the second
statement implies that

max¹˛jz � Nıj; ˛jıj2º � 1:

Hence, we can bound

A � .e � 1/2˛2jzj2jıj2 C e2˛Re.z� Nı/.e � 1/˛jıj2:

Since
e2˛Re.z� Nı/

� e2˛jz�
Nıj
� e2;

we obtain that

dist˛.z; w/2 D e˛jzj
2

A � e˛jzj
2

jıj2 ..e � 1/2˛2jzj2 C e2.e � 1/˛/

� 13e˛jzj
2

jıj2 .˛2jzj2 C ˛/;

which implies the second claim.

An application of the Cauchy–Schwarz inequality yields Lipschitz estimates for func-
tions in F˛.Cd / with respect to the metric dist˛ . We will need something a bit more
specific concerning the real part of such functions.

Lemma 4.4. Let G 2F˛.Cd / and suppose that � 2Cd is such that ReG.�/ D 0. Then it
holds, for all �0 2Cd , that

jReG.�0/j � kGkF˛.Cd / dist˛.�0; �/:

Proof. We rewrite

ReG.�0/ D ReG.�0/ � ReG.�/ D Re
�
hG; k� 0 � k� iF˛.Cd /

�
:

The Cauchy–Schwarz inequality implies that

jReG.�0/j � jhG; k� 0 � k� iF˛.Cd /j � kGkF˛.Cd / kk� 0 � k�kF˛.Cd /:

The relevant case for our purposes is d D 2. The following construction allows us
to conceive F 0F as the restriction to R2 � C2 of an entire function of two complex
variables. This will enable us to apply above estimates to F 0F , even though the function
is not holomorphic (in the 1d -sense) itself.

Lemma 4.5. Suppose that F 2F˛.C/, and define

G.z1; z2/ WD F
0.z1 C iz2/ F

�.z1 � iz2/:

Then, for all ˇ > 2˛, it holds that G is an element of Fˇ .C
2/, and satisfies the estimate

kGkFˇ .C2/ �
ˇ2

.ˇ � 2˛/3=2
kF k2F˛.C/:
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Proof. First, recall that a function F 2 F˛.C/ satisfies the pointwise growth estimate
jF.w/j � e

˛
2 jwj

2
kF kF˛.C/. Moreover, a similar type of estimate is available for the deriv-

ative (see equation (2.5) in [38]):

jF 0.w/j �
p
˛.1C ˛jwj2/ e

˛
2 jwj

2

kF kF˛.C/:

Let us denote zD .z1;z2/T 2C2. By employing the two pointwise bounds on jF j and jF 0j,
it follows that

kGk2Fˇ .C/ D
�ˇ
�

�2 Z
C2

jF 0.z1 C iz2/j
2
jF.z1 C iz2/j

2 e�ˇ jzj
2

dA.z/

�
˛ˇ2

�2
kF k4F˛.C/

Z
C2

.1C ˛jz1 C iz2j
2/ e˛jz1Ciz2j

2C˛jz1�iz2j
2�ˇ jzj2 dA.z/

D
˛ˇ2

�2
kF k4F˛.C/

Z
C2

.1C ˛jz1 C iz2j
2/ e�.ˇ�2˛/jzj

2

dA.z/

�
˛ˇ2

�2
kF k4F˛.C/

Z
C2

.1C 2˛jzj2/ e�.ˇ�2˛/jzj
2

dA.z/;

where we used that jz1 C iz2j2 C jz1 � iz2j2 D 2jzj2 and that jz1 C iz2j �
p
2 jzj. The

integral on the right-hand side of the previous equation exists, provided that ˇ > 2˛. In
this case, it evaluates toZ

C2

.1C 2˛jzj2/ e�.ˇ�2˛/jzj
2

dA.z/ D
�2.ˇ C 2˛/

.ˇ � 2˛/3
�

Consequently, we arrive at

kGk2
Fˇ .C2/

� kF k4F˛.C/
˛ˇ2.ˇ C 2˛/

.ˇ � 2˛/3
� kF k4F˛.C/

ˇ4

.ˇ � 2˛/3
,

where we used that ˇ > 2˛ in the last inequality.

We are prepared to prove the result stated at the beginning of this paragraph.

Proof of Proposition 4.2. Let us denote Q D jF j2 � jH j2 and Rj D ı�j ŒQ�, j 2 ¹1; 2º.
First observe that with @z D 1

2
.@x � i@y/, it holds that

@zQ D F
0F �H 0H:

Now set � D �1 � �2, and consider the linear system�
cos �1 cos �2
sin �1 sin �2

��
c1
c2

�
D
1

2

�
1

�i

�
with its solution

c D

�
c1
c2

�
D �

1

2 sin �

�
sin �2 � cos �2
� sin �1 cos �1

��
1

�i

�
;
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which has Euclidean length jcj D j
p
2 sin � j�1. Using the definition of Rj as a derivative

into ei�j '
� cos �j

sin �j

�
-direction yields

Rj D

�
cos �j
sin �j

�
� rQ D

�
Re.ei�j /
Im.ei�j /

�
�

�
@xQ

@yQ

�
:

In addition, one has

2ei�j @zQ D Re.ei�j /@xQC i Im.ei�j /@xQ � iRe.ei�j /@yQC Im.ei�j /@yQ:

Therefore, we obtain the relation

(4.1) Rj D Re.2ei�j @zQ/:

Hence,

c1R1 C c2R2 D
1

2

�
1

�i

�
� rQ D

1

2
.@x � i@y/Q D @zQ D F

0F �H 0H:

An application of the Cauchy–Schwarz inequality gives

(4.2) j.F 0F �H 0H/.z0/j � j
p
2 sin � j�1

p
jR1.z0/j2 C jR2.z0/j2:

We continue by upper bounding the terms jR1.z0/j and jR2.z0/j. To do so, we define for
j 2 ¹1; 2º functions Gj WC2 ! C via

Gj .z1; z2/ D 2e
i�j .F 0.z1 C iz2/F

�.z1 � iz2/ �H
0.z1 C iz2/H

�.z1 � iz2//:

This definition implies that for all z 2C, it holds that

Gj .Re.z/; Im.z// D 2ei�j .F 0.z/F.z/ �H 0.z/H.z//:

Using (4.1), it follows that

Rj .z/ D Re.Gj .Re.z/; Im.z///:

Now let ˇ D 2˛ C ". According to Lemma 4.5, one has

kGj kFˇ .C2/ �
.2˛ C "/2

"3=2

�
kF k2F˛.C/ C kHk

2
F˛.C/

�
:

For z0 2C and p1; p2 2B�.z0/ given as in the assumption of the claim, set

� D .Re.pj /; Im.pj // 2 C2 and �0 D .Re.z0/; Im.z0// 2 C2:

The previous considerations, in conjunction with Lemma 4.4, yields

jRj .z0/j � kGj kFˇ .C2/ distˇ .�0; �/ �
.2˛ C "/2

"3=2

�
kF k2F˛.C/ C kHk

2
F˛.C/

�
distˇ .�0; �/:
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We continue by upper bounding the term distˇ .�0; �/ via Lemma 4.3. To do so, we
observe that jz0j D j�0j and that

j�0 � �j D jpj � z0j � � � min¹ˇ�1=2; ˇ�1j�0j�1º:

Therefore, the assumptions of Lemma 4.3 are fullfilled and we get

distˇ .�0; �/ � 4� e.˛�
"
2 / jz0j

2 �
.2˛ C "/jz0j C

p
2˛ C "

�
� 4� e.˛�

"
2 /jz0j

2

.2˛ C "C 1/.jz0j C 1/:

Hence, by setting

M WD 4
.2˛ C "/2

"3=2
.2˛ C "C 1/

�
kF k2F˛.C/ C kHk

2
F˛.C/

�
;

we obtain
jRj .z0/j �M�e.˛�

"
2 /jz0j

2

.jz0j C 1/:

Plugging in the latter bound in (4.2) yields

j.F 0F �H 0H/.z0/j �M
.jz0j C 1/ e

.˛C "
2 /jz0j

2

j sin.�1 � �2/j
�;

as announced.

4.3. Perturbation of Liouville sets

Next, we require a lemma which indicates that the property of being a Liouville set is
invariant under a certain type of perturbation.

Lemma 4.6. Let ƒ � C be a Liouville set for F˛.C/, and let

f .z/ D e�
 jzj
2

; 
 > ˛=2:

If � D .
�/�2ƒ � C is f -close to ƒ, then � is a Liouville set for F˛.C/.

Proof. Let C > 0 and F 2F˛.C/ be such that jF.
�/j � C for all � 2ƒ. We have to
show that F is a constant function. To this end, we observe that for all � 2 ƒ,

jF.�/j � jF.
�/ � F.�/j C jF.
�/j � dist˛.�; 
�/kF kF˛.C/ C C:

For R > 0 sufficiently large, we have according to Lemma 4.3 that

(4.3) dist˛.�; 
�/ � 4 j� � 
�j e
˛
2 j�j

2

.˛j�j C
p
˛/

for all �2ƒ which satisfy j�j > R. The closeness assumption on � implies that the right-
side in equation (4.3) is bounded. Hence F is bounded on ƒ, which is a Liouville set by
assumption. Consequently, F is a constant function.
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4.4. Integrability lemma

Finally, we require a technical lemma concerning the difference FH 0 � F 0H with F
and H elements in the Fock space.

Lemma 4.7. Let ˛ > 0, and let F;H 2F˛.C/. Then FH 0 � F 0H 2F2˛.C/.

Proof. We only have to show that FH 0 � F 0H 2L2.C; d�2˛/, as this function is obvi-
ously entire. It is well known (see [13]) that if H 2F˛.C/, then the function

QH.z/ WD H 0.z/ � ˛zH.z/

belongs to the polyanalytic Fock space of order two, i.e., QH 2L2.C; d�˛/, and @2
Nz
QH D 0,

where @ Nz D 1
2
.@x C i@y/. Now observe that

(4.4)
.FH 0 � F 0H/.z/ D F.z/ .˛zH.z/C QH.z// � .˛zF.z/C QF .z//H.z/

D F.z/ QH.z/ � QF .z/H.z/:

By invoking (2.2), we get thatZ
C
jF.z/ QH.z/j2 d�2˛.z/ D

Z
C
jF.z/j2 e�˛jzj

2

j QH.z/j2 e�˛jzj
2

dA.z/

� kF k2F˛.C/ k
QHk2
L2.C;d�˛/ <1:

With this (and by interchanging roles of F and H ), we find that both terms on the right-
hand side of (4.4) are members of L2.C; d�2˛/, and as a consequence, FH 0 � F 0H has
the same property. This concludes the proof.

5. Proofs of the main results

5.1. Deterministic perturbation of Liouville sets

We are prepared to prove the first main result of the present exposition.

Proof of Theorem 2.4. First we observe that we can assume without loss of generality
that ƒ \ B1.0/ D ;. Indeed, since the property of being a Liouville set is invariant under
removing a bounded set of points we may just consider ƒnB1.0/ instead of ƒ. Recall
that, by assumption, condition (2.1) is satisfied. That is,

9ˇ2.0; 
 � 2˛/; 9L > 0 W
j�j e�ˇ j�j

2

'.a�; b�; c�/
� L; �2ƒ:

In particular, all of the triangles �.a�; b�; c�/ are non-degenerate. Without loss of gen-
erality, we can assume that for each � 2ƒ, the angle '.a�; b�; c�/ is the acute angle
enclosed between the lines c� C R.a� � c�/ and c� C R.b� � c�/. This can always be
achieved by means of a pairwise interchange of the elements in A, B , and C . It follows
from Lemma 4.6 and the assumption on ƒ that C is a Liouville set for F4˛.C/. This
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implies that C is a uniqueness set for F4˛.C/ and for F˛.C/. Suppose F;H 2F˛.C/ are
such that

jF.�/j D jH.�/j; �2A [ B [ C:

We want to show that F � H . As per Proposition 4.1, it suffices to prove that

G D FH.FH 0 � F 0H/

vanishes identically. Utilizing Lemma 4.7 implies that G 2F4˛.C/. Consequently, it suf-
fices to show that G is bounded on C and that

inf
�2ƒ
jG.c�/j D 0:

To show this, we proceed as follows. We use K1; K2; : : : for positive constants which
crucially do not depend on �2ƒ. As C is f -close to ƒ, there exists K1 > 0 such thatˇ̌

jc�j
2
� j�j2

ˇ̌
D .jc�j C j�j/ jjc�j � j�jj � .2 j�j C jc� � �j/ jc� � �j

� .2j�j CK1 e
�
 j�j2/K1 e

�
 j�j2 :

In particular, there exists K2 (independent from �2ƒ) such that

(5.1)
ˇ̌
jc�j

2
� j�j2

ˇ̌
� K2:

Consequently,

f .�/ D e�
 j�j
2

D e�
 jc�j
2

e
.jc�j
2�j�j2/

� e�
 jc�j
2

e
K2 :

Since A and C are f -close to ƒ, it follows that there exists K3 > 0 such that

ja� � c�j � ja� � �j C jc� � �j � K3f .�/ � K3 e

K2 e�
 jc�j

2

; � 2 ƒ:

Thus, A is f -close to C . We can argue in the same way for B instead of A to get that B
is f -close to C . Therefore, both A and B are both f -close to C , i.e., there exists � > 0
such that

max¹ja� � c�j; jb� � c�jº � �.�/; �2ƒ;

where �.�/ WD �e�
 jc�j
2
.

We seek for an application of Proposition 4.2. To this end, for every � 2 ƒ, we intro-
duce angles �1;� and �2;� by

�1;� D arg.a� � c�/ and �2;� D arg.b� � c�/:

Note that
'.a�; b�; c�/ D ˙.�1;� � �2;�/ mod 2�; �2ƒ:

By assumption, we have that Q D jF j2 � jH j2 vanishes at the endpoints of the segment
connecting c� and a�. As per Rolle’s theorem, there exists a point p1;� on the segment
where the derivative satisfies ı�1;� ŒQ�.p1;�/D 0. One can argue analogously for b� instead
of a�. Hence, we get that

9p1;�; p2;� 2 B�.�/.c�/ W ı�j;� ŒQ�.pj;�/ D 0; j 2 ¹1; 2º:
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Let " WD 
 � 2˛ � ˇ > 0, and let R0 � 1 be chosen in such a way that for all c� 2 C with
jc�j > R0, one has

�.�/ � min
®
.2˛ C "/�1=2; .2˛ C "/�1 � jc�j

�1
¯
:

Clearly, this condition is satisfied if R0 is sufficiently large. In the following, we assume
that c� 2 C satisfies jc�j > R0. Proposition 4.2 implies that there exists a constant M D
M.˛; "; kF kF˛.C/; kHkF˛.C// such that

j.F 0F �H 0H/.c�/j �M
.jc�jC1/e

.˛C "
2 /jc�j

2

j sin.�1;� � �2;�/j
�.�/�2�M

jc�je
.˛C "

2 /jc�j
2

j sin.'.a�; b�; c�//j
e�
 jc�j

2

� ��M
jc�je

.˛C "
2 /jc�j

2

'.a�; b�; c�/
e�
 jc�j

2

� ��ML
jc�j

j�j
e.˛C

"
2 /jc�j

2

e�
 jc�j
2

eˇ j�j
2

:

In the third inequality, we used that sin # � 2
�
# for all # 2 Œ0; �=2�, and in the fourth

inequality we used the assumption on '.a�; b�; c�/. Since

jc�j � j�j C j� � c�j � j�j CK1 � .K1 C 1/j�j;

it follows that there exists a constant K4 > 0 such that

j.F 0F �H 0H/.c�/j � K4 e
.˛C "

2 /jc�j
2

e�
 jc�j
2

eˇ j�j
2

:

By noticing that jF.z/j2e�˛jzj
2

is bounded in C, and that jF.c�/j D jH.c�/j, it follows
that there exists a constant K5 > 0 such that

jG.c�/j D jF.c�/j jH.c�/j j.FH
0
� F 0H/.c�/j D j.jH j

2FH 0 � jF j2F 0H/.c�/j

D jF.c�/j
2
j.H 0H � F 0F /.c�/j � K5 e

˛jc�j
2

e.˛C
"
2 /jc�j

2

e�
 jc�j
2

eˇ j�j
2

:

By the choice of ", we have that

2˛ C
"

2
� 
 D �ˇ �

"

2
�

This, in combination with equation (5.1), yields

e˛jc�j
2

e.˛C
"
2 /jc�j

2

e�
 jc�j
2

eˇ j�j
2

D e�
"
2 jc�j

2

eˇ.j�j
2�jc�j

2/
� e�

"
2 jc�j

2

eˇK2 :

As a result, there exists a constant K6 > 0 such that

jG.c�/j � K6 e
� "2 jc�j

2

:

Since C is necessarily unbounded, we obtain that inf�2ƒ jG.c�/j D 0: On the other hand,
we have that

sup
�2ƒ

jG.c�/j � max
°

sup
jzj�R0

jG.z/j; K6

±
<1:

This finishes the proof.
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Remark 5.1 (On the sharpness of Theorem 2.4). Theorem 2.4 relies on an interplay
between two conditions: the f -closeness of A, B , and C to a Liouville setƒ with respect
to f .z/ D e�
 jzj

2
, and the angle condition (2.1). We emphasize that dropping one of the

two conditions implies that U D A [ B [ C is in general not a uniqueness set for phase
retrieval in Fock space anymore. To see this, we assume for simplicity that ƒ is a lattice
satisfying s.ƒ/ < �=.4˛/. According to Theorem 2.6, ƒ is a Liouville set for F4˛.C/.

First, consider the case where A, B , and C are merely f -close to ƒ but (2.1) is not
fulfilled. In this case, one can choose A, B , and C in such a way that

U � ei� .R � �Z/

for suitable � > 0 and � 2R. That is, U is contained in a set of equidistant parallel lines.
According to Theorem 1 in [6], U is not a uniqueness set for the phase retrieval problem
in F˛.C/.

On the other hand, suppose that A, B , and C have the property that U � � , where
� � C is a lattice, and that condition (2.1) is fullfilled. Such a choice for A, B , and C can
be done without A, B , and C being f -close to ƒ. For instance, we can assume that A, B ,
and C are merely uniformly close to ƒ. Since lattices are never uniqueness sets for the
phase retrieval problem in F˛.C/, it follows that U is not a uniqueness set for phase
retrieval in Fock space, although condition (2.1) is satisfied.

5.2. Random perturbation of Liouville sets

This section is devoted to the proof of Theorem 2.8, which states that the union of three
random perturbations of a Liouville set forms a uniqueness set for the phase retrieval
problem almost surely.

We start with the observation that three randomly picked points A, B , and C in the
unit disk (uniformly distributed) are almost surely noncollinear. In particular, the resulting
triangle �.A;B;C / is almost surely non-degenerate. We require a quantitative version of
this observation.

Lemma 5.2. Let � � C be a disk in the complex plane. Let A, B , and C be independent
and identically distributed complex random variables, uniformly distributed on �. Then
it holds, for all " > 0, that

P Œ'.A;B; C / < "� � 4":

Proof. Without loss of generality, we assume that � D D. It is obvious that A, B , and C
are pairwise distinct with probability 1. Let a; b 2 D be arbitrary, and let L.a; b/ D aC
R.b � a/ denote the line through a and b. Moreover, let ı > 0 and let

Sı.a; b/ D ¹z 2 D W dist.L.a; b/; z/ < ıº:

We note that if c 2 D n Sı.a; b/, then the triangle �.a; b; c/ has an acute angle  at
either a or b (or both) which satisfies tan � ı=2. As arctan.x/ � 2 arctan.1=2/x for
x 2 Œ0; 1=2�, we get that

'.a; b; c/ �  � arctan.ı=2/ � arctan.1=2/ı � 0:4 ı:
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Since P ŒC 2Sı.a; b/� �
4
�
ı; it follows that for ı D "=0:4, we have

P Œ'.a; b; C / � "� D P Œ'.a; b; C / � 0:4 ı � � P ŒC …Sı.a; b/� � 1 �
4

�
ı:

Consequently,

P Œ'.a; b; C / < "� �
4"

0:4 �
� 4";

and therefore P Œ'.A;B; C / < "� � 4".

Notice that Lemma 5.2 makes a probabilistic statement on the acute angle '.a; b; c/
of the triangle �.a; b; c/ in a disk. Related probabilistic problems on acute angles in
triangles were studied, for instance, in [36, 43]. We are equipped to prove the uniqueness
result regarding three random perturbations of a Liouville set for F4˛.C/.

Proof of Theorem 2.8. We show that the statement holds true when the assumption thatƒ
has finite density is replaced by the weaker condition that ƒ is countable and that

9ˇ 2 .0; 
 � 2˛/ W
X
�2ƒ

j�j e�ˇ j�j
2

<1:

Clearly, we have thatAD ¹Z�;1 W �2ƒº, B D ¹Z�;2 W �2ƒº and C D ¹Z�;3 W �2ƒº
are noncollinear almost surely. In order to deduce the desired assertion from Theorem 2.4,
it remains to verify that condition (2.1) holds almost surely, i.e., to show that the sequence

j�j e�ˇ j�j
2

'.A�; B�; C�/
; � 2 ƒ;

is bounded with probability 1. To this end, we define the events

E WD
°

sup
�2ƒ

j�j e�ˇ j�j
2

'.A�; B�; C�/
<1

±
;

as well as

EL WD
°

sup
�2ƒ

j�j e�ˇ j�j
2

'.A�; B�; C�/
� L

±
; L > 0:

By continuity of measure, we have that P ŒE� D limL P ŒEL�. With Lemma 5.2, we get

P ŒEL� D 1 � P
h
9�2ƒ W

j�j e�ˇ j�j
2

'.A�; B�; C�/
> L

i
D 1 � P

h
9�2ƒ W '.A�; B�; C�/ <

j�j e�ˇ j�j
2

L

i
� 1 �

X
�2ƒ

P
h
'.A�; B�; C�/ <

j�j e�ˇ j�j
2

L

i
� 1 �

4

L

X
�2ƒ

j�j e�ˇ j�j
2

:

Recall that
P
�2ƒ j�j e

�ˇ j�j2 < 1 by assumption. Therefore, the right-hand side con-
verges to 1 as L!1. Thus, P ŒE� D limL P ŒEL� D 1, meaning that (2.1) holds almost
surely, and we are done.
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Remark 5.3. Theorem 2.8 could have been stated slightly more generally: the proof only
uses that .Z�;1;Z�;2;Z�3/ are independent for each �2ƒ, which is weaker than the con-
dition demanded in Theorem 2.8 (i.e., that the sampling points are picked independently
across the full index set ƒ � ¹1; 2; 3º). Corresponding statements hold true for Theor-
ems 2.9, 2.10 and 2.11.

5.3. Sub-classes with symmetry properties

The contents presented in this section provide the foundation for proving the Gabor phase
retrieval results in the spaces of real-valued and even real-valued functions. We will pri-
marily investigate two classes of entire functions which obey certain symmetry conditions,
and are defined by

�� WD ¹F 2O.C/ W F.�z/ D F.z/º and �� WD ¹F 2O.C/ W F � D F º:

Further, we denote their intersection by ��� WD �� \ ��. The symmetry classes �� and ��

arise naturally as the images of suitable sub-classes of L2.R/ under the Bargmann trans-
form BWL2.R/! F�.C/. Recall that L2.R;R/ � L2.R/ denotes the subspace of real-
valued functions. By L2e.R/ � L

2.R/ we denote the subspace of even functions. With
this, we have the relations

B.L2.R;R// D F�.C/ \ �� and B.L2e.R// D F�.C/ \ ��:

Hence, for the intersection consisting precisely of all even and real-valued functions,
denoted by L2e.R;R/, we have that

B.L2e.R;R// D F�.C/ \ ���:

We proceed by introducing two variants of Liouville sets which are geometrically linked
to the subclasses �� and ��� in Fock space.

Definition 5.4. Let V � O.C/. We say that ƒ � C is a 1=2-Liouville set (1=4-Liouville
set, respectively) for V if

ƒ [ƒ .ƒ [ƒ [ .�ƒ/ [ .�ƒ/; respectively/

is a Liouville set for V .

Simple examples of 1=2- and 1=4-Liouville sets for Fock spaces are obtained by restrict-
ing suitable lattices to the upper (or lower) half plane or to one of the quadrants, respect-
ively. For instance, if � D aZC ibZ with s.�/ D ab < �=˛, then it is easy to see that
ƒ D � \HC is a 1=2-Liouville set for F˛.C/. Indeed, as per Theorem 2.6, we have that

� D ƒ [ƒ

is a Liouville set for F˛.C/. Similarly, if one only takes the points of � which are located
in the closed first quadrant one ends up with a 1=4-Liouville set for F˛.C/. At this junction,
we can formulate two uniqueness theorems for the phase retrieval problem in F�.C/\ ��

and F�.C/\ ��� which employ the notions of 1=2-Liouville set and 1=4-Liouville set. The
first one reads as follows.
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Proposition 5.5. Let ˛ > 0, let f WC! Œ0;1/ be given by f .z/ D e�
 jzj
2
, 
 > 2˛, and

let ƒ � C. Suppose that A;B;C � C are f -close to ƒ, and that

(5.2) 9ˇ 2 .0; 
 � 2˛/; 9L > 0 W
j�j e�ˇ j�j

2

'.a�; b�; c�/
� L; �2ƒ:

Then the following holds.

(1) If ƒ is a 1=2-Liouville set for F4˛.C/, then every set U � C with

U [U � A [ B [ C

is a uniqueness set for the phase retrieval problem in F˛.C/ \ ��.

(2) If ƒ is a 1=4-Liouville set for F4˛.C/, every set U � C with

U [U [ .�U/ [ .�U/ � A [ B [ C

is a uniqueness set for the phase retrieval problem in F˛.C/ \ ���.

Proof. To prove the first assertion, we let F;H 2F˛.C/ \ �� such that

(5.3) jF.�/j D jH.�/j; �2U:

We have to show that F � H . To this end, we observe that the assumption F; H 2 ��

gives jF.z/j D jF.z/j and jH.z/j D jH.z/j for every z 2C. It follows from (5.3) that

jF.�/j D jH.�/j; �2U [U:

Therefore, it suffices to prove that U[U is a uniqueness set for the phase retrieval prob-
lem in F˛.C/. To do so, we observe that the assumption on U implies that

U [U � .A [ A/ [ .B [ B/ [ .C [ C/:

As ƒ is assumed to be a 1=2-Liouville set for F4˛.C/, we have that ƒ0 D ƒ [ ƒ is
a Liouville set for F4˛.C/. Moreover, we can extract subsequences A0 D .a�0/�02ƒ0 ,
B 0 D .b�0/�02ƒ0 and C 0 D .c�0/�02ƒ0 � U [U, which are f -close to ƒ0 and such that
condition (5.2) holds with ƒ replaced by ƒ0. The statement now follows by applying
Theorem 2.4.

The second assertion follows analogously to the first assertion.

5.4. Gabor phase retrieval via random perturbations

This section is dedicated to the proof of Theorem 2.10 and Theorem 2.11, which state
that two (respectively, one) random perturbations of a lattice forms a uniqueness set for
the Gabor phase in L2.R;R/ (respectively, L2e.R;R/) almost surely. To begin with, we
require a result which asserts that�.A;B;A/ is generically non-degenerate whenA andB
are picked at random in a disk centered on the real axis.

Lemma 5.6. Let � � C be a disk centered at the real line. Moreover, let A;B be a pair
of independent complex random variables, both uniformly distributed on �. Then it holds
for all " > 0 that

P Œ'.A;B;A/ < "� � 4":
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Proof. Without loss of generality, we may assume that � D D. For a 2 D, and for ı > 0,
we denote

Sı.a/ WD ¹z 2 D W jRe.z/ � Re.a/j < ıº:

Notice that with probability one, it holds that a 2D n R. In this case, an analogous argu-
ment as in the proof of Lemma 5.2 shows that for all b 2 D n Sı.a/, we have

'.a; b; a/ � 0:4 ı:

Since P ŒB 2 Sı.a/� �
4
�
ı, it follows that

P Œ'.a; B; a/ < 0:4 ı� � 1 � P ŒB …Sı.a/� �
4

�
ı:

Choosing ı D "=0:4 shows that

P Œ'.a; B; a/ < "� � 4";

and therefore P Œ'.A;B;A/ < "� � 4"

With this, we are ready to prove that two random perturbations of a sufficiently dense
lattice ƒ 2 L yield a uniqueness set for Gabor phase retrieval in L2.R;R/ almost surely.

Proof of Theorem 2.10. We identify R2 with the complex plane C by virtue of .x; y/T '
x C iy. Recall that B.L2.R;R// D F�.C/ \ ��. We will show that U forms a unique-
ness set for the phase retrieval problem in F�.C/ \ �� almost surely, which implies the
statement. To do so, denote by HC the open upper halfplane and define ƒC WD ƒ \HC.
As ƒ 2 L, we have that ƒC [ƒC D ƒ. Therefore, as ƒ is a Liouville set for F4�.C/,
we have that ƒC is a 1=2-Liouville set for F4�.C/. For �2ƒC, we define

A� WD Z�;1; B� WD Z�;2; and C� WD Z N�;1:

Note thatC� is well defined since N�2ƒ. Moreover, denoteAD.A�/�2ƒC ,BD.B�/�2ƒC
and C D .C�/�2ƒC . It is obvious that A; B are f -close to ƒC. Since Z N�;1 2 Bf . N�/. N�/,
we have for all � 2 ƒC that

jC� � �j D
ˇ̌
Z N�;1 � �

ˇ̌
D
ˇ̌
Z N�;1 �

N�
ˇ̌
� f . N�/ D f .�/:

This shows that C is f -close to ƒC. Notice that U D ¹Z�;`; .�; `/ 2 J º satisfies

U [U � A [ B [ C:

We fix ˇ2.0; 
�2˛/ arbitrary. According to Proposition 5.5(1), with ˛D� andƒDƒC,
it suffices to show that the sequence

�� WD
j�j e�ˇ j�j

2

'.A�; B�; C�/
; �2ƒC;

is almost surely bounded from above. Consider the events

E WD ¹sup�2ƒC �� <1º and EL WD ¹8�2ƒC W �� � Lº; L > 0:
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Since E � EL for all L > 0, it suffices to show that P ŒEL�! 1 as L!1 in order to
conclude that P ŒE�D 1. We proceed similarly as in the proof of Theorem 2.8 and estimate

P ŒEL� D 1 � P Œ9�2ƒC W �� > L�

� 1 �
X
�2ƒC

P
h
'.A�; B�; C�/ <

1

L
j�j e�ˇ j�j

2
i
:

We claim that for all �2ƒC and " > 0, it holds that

P Œ'.A�; B�; C�/ < "� � 4":

Indeed, if � 2ƒC \ R, the statement follows from Lemma 5.6. On the other hand, if
� 2 ƒC \HC, we have that

.A�; B�; C�/ D .Z�;1; Z�;2; Z N�;1/

are independent random complex variables, with each of them uniformly distributed on
the disk Bf .�/.�/. In this case, we can resort to Lemma 5.2. Consequently, we have that

P ŒEL� � 1 �
4

L

X
�2ƒC

j�j e�ˇ j�j
2

! 1; L!1;

and are done.

In the setting of Theorem 2.10, we produce a uniqueness set of density 8 C ", with
" > 0 arbitrarily small. In fact, the proof shows that

¹Z�;1; � 2 ƒº [ ¹Z�;2; � 2 ƒCº

forms a uniqueness set almost surely. Thus, a quarter of the available information (the
samples at Z�;2, � 2 ƒ nƒC) is not used. This partly explains why we are able to further
push down the lower bound on the density to > 6, cf. Theorem 2.12. A related statement
holds with regards to the result where we restrict to signals in L2e.R;R/. The proof of the
corresponding theorem comes next.

Proof of Theorem 2.11. Identifying R2 with the complex plane, it suffices to show that U

is a uniqueness set for the phase retrieval problem in B.L2e.R;R//D F�.C/\ ��� almost
surely.

To do so, we denote byƒ0 the set of lattice points which are in the closed first quadrant
minus the origin, that is,

ƒ0 WD ¹�2ƒ n ¹0º W Re.�/ � 0; Im.�/ � 0º:

Since ƒ2L, it follows that

ƒ0 [ƒ0 [ .�ƒ0/ [ .�ƒ0/ D ƒ n ¹0º;

which implies that ƒ0 is a 1=4-Liouville set for F4�.C/. For each �2ƒ0, we define three
complex random variables via

A� WD Z�; B� WD Z N�; and C� WD �Z��:
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Clearly, A D .A�/�2ƒ0 is f -close to ƒ0. It is not difficult to see that the same holds true
for B D .B�/�2ƒ0 and C D .C�/�2ƒ0 . Indeed, if �2ƒ0, we have that

jB� � �j D jZ N� � �j D jZ N� �
N�j � f . N�/ D f .�/:

Similarly,

jC� � �j D j �Z�� � �j D jZ�� � .��/j � f .��/ D f .�/:

Moreover, we have that

U [U [ .�U/ [ .�U/ � A [ B [ C:

Let ˇ 2 .0; 
 � 2˛/ be fixed and define a sequence of random variables by

�� WD
j�j e�ˇ j�j

2

'.A�; B�; C�/
; �2ƒ0:

Proposition 5.5(2) states that U is a set of uniqueness for phase retrieval in F4�.C/
provided that .��/�2ƒ0 is bounded. Thus, it suffices to show that

E WD
°

sup
�2ƒ0

�� <1
±

occurs with probability one. We introduce

EL WD ¹8�2ƒ0 W �� � Lº; L > 0:

Since E � EL for all L > 0, it suffices to show that P ŒEL�! 1 as L!1 in order to
conclude P ŒE� D 1. Note that

P ŒEL� D 1 � P Œ9�2ƒ0 W �� > L�

� 1 �
X
�2ƒ0

P
h
'.A�; B�; C�/ <

1

L
j�j e�ˇ j�j

2
i
:

Given �2ƒ0, then (a) � is in the open first quadrant, (b) � is on the real axis, or (c) � is
on the imaginary axis. In case (a), we have that

.A�; B�; C�/ D .Z�; Z N�;�Z��/

is a triple of i.i.d. complex random variables, uniformly distributed on Bf .�/.�/. Thus, it
follows from Lemma 5.2 that

(5.4) P Œ'.A�; B�; C�/ < "� � 4"; " > 0:

In case (b), we have that

.A�; B�; C�/ D .Z�; Z�;�Z��/:

Hence, B� D A�. Note that C� is uniformly distributed on Bf .�/.�/ and independent
from .A�; B�/. Thus, it follows from Lemma 5.6 that (5.4) also holds true in case b). For
case (c), one argues in a similar way. As a result, we have that

P ŒEL� � 1 �
4

L

X
�2ƒ0

j�j e�ˇ j�j
2

! 1; L!1:
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5.5. Gabor phase retrieval, density reduction, and separateness

In this section, we prove Theorem 2.12. Observe that Theorem 2.12(1) follows directly
from Theorem 2.4 and the fact that every latticeƒ�R2 of densityD.ƒ/> 4 is a Liouville
set for F4�.C/ (see Theorem 2.6). It remains to show the second and third claims of The-
orem 2.12, which state that for every d > 6, respectively d > 3, there exists a uniformly
distributed uniqueness set for the Gabor phase retrieval problem in L2.R;R/, respectively
L2e.R;R/ having density d . In the latter case, the uniqueness set can be chosen to be sep-
arated. Before turning to the proofs of the statements, we require an elementary lemma
related to translates of lattice Liouville sets.

Lemma 5.7. Letƒ�C be a lattice, and let ˛ > 0. If ƒ is a Liouville set for F˛.C/, then
ƒ � w is a Liouville set for F˛.C/ for every w 2C.

Proof. The lattice ƒ is a Liouville set for F˛.C/ if and only if s.ƒ/ < �=˛. Let " > 0
such that s.ƒ/ < �=.˛ C "/. Suppose that F 2F˛.C/ is bounded on ƒ � w for some
w 2C. According to equation (2.3), F.� � w/ is a function belonging to F˛C".C/, and
this function is bounded on ƒ. Theorem 2.6 yields the assertion.

In the following proof, we use the fact that ifƒ has uniform densityD.ƒ/ D d , andA
is uniformly close to ƒ, then D.A/ D d . This follows, for instance, from Lemma 4.23
in [68]. Moreover, the definition of the uniform density directly implies that if A and B
are disjoint and have uniform density dA and dB , respectively, thenD.A[B/D dAC dB .

Proof of Theorem 2.12(2). Let � D v.ZC iZ/ be a square lattice with 0 < v < 1=2. Then
D.�/ D 1=v2 > 4, and therefore � is a Liouville set for F4�.C/. Further, consider the
shifted lattice

ƒ WD � C
v

2
i:

In view of Lemma 5.7, the set ƒ is a Liouville set for F4�.C/, and is symmetric with
respect to both coordinate axes. Let � 0 � � be the sub-lattice defined by

� 0 WD v¹m.1C i/C n.1 � i/ W .m; n/2Z2º:

Then D.� 0/ D 1
2
D.�/ D 1=.2v2/. Defining

ƒ0 WD � 0 C
v

2
i;

it follows that
ƒ0 tƒ0 D ƒ;

where the symbol t indicates that the union is disjoint. In particular, this shows that ƒ0

is a 1=2-Liouville set for F4�.C/. We proceed by choosing sequences A D .a�/�2ƒ0 ,
B D .b�/�2ƒ0 , and C D .c�/�2ƒ0 � C that are uniformly noncollinear and f -close
to ƒ0. Since ƒ0 is a 1=2-Liouville set for F4�.C/, it follows from Proposition 5.5(1) that
U WD A [ B [ C is a uniqueness set for the phase retrieval problem in F�.C/ \ ��.
Thus, U is a uniqueness set for the Gabor phase retrieval problem3 in L2.R;R/.

3Notice that a specific choice for the sequence A is A D ƒ0, and an alternative to the uniqueness sets
U WD A [ B [ C D ƒ0 [ B [ C is given by the union U2 D ƒ

0 [ B [ C . Figure 3 visualizes the set U2 for
specific choices of the f -close sets B and C .
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Since � 0 is a sub-lattice with densityD.� 0/ D 1=.2v2/, its shifted versionƒ0 also has
density D.ƒ0/ D 1=.2v2/. Moreover, as A, B , and C are pairwise disjoint and f -close
to ƒ0, we get that

D.U/ D
3

2v2
�

Since v can be as close to 1=2 as we please, the statement follows.

For the space L2e.R;R/, a further reduction of the density by a factor 1=2 compared to
the space L2.R;R/ can be performed. In contrast to all previous results, also separateness
occurs.

Proof of Theorem 2.12(3). Let � D v.Z C iZ/ be a square lattice with v < 1=2. Then
D.�/ D 1=v2 > 4, and therefore � is a Liouville set for F4�.C/. Consider the shifted
lattice

ƒ WD � C
v

2
.1C i/;

enumerated in the following natural order:

ƒ D
°
�mn D vmC

v

2
C i

�
vnC

v

2

�
W .m; n/2Z2

±
:

In view of Lemma 5.7, ƒ is a Liouville set for F4�.C/, and is symmetric with respect to
both coordinate axes.

We extract a 1=4-Liouville set out of ƒ as follows: let Q1; Q2; Q3; Q4 � ƒ denote
columns of the shifted lattice ƒ belonging to the four quadrants (i.e., Q1 belongs to the
first quadrant, Q2 belongs to the second quadrant, etc.), defined by

Q1 WD ¹�4m;n W m; n � 0º;

Q2 WD ¹��2�4m;n W m; n � 0º;

Q3 WD ¹��3�4m;�n�1 W m; n � 0º;

Q4 WD ¹�3C4m;�n�1 W m; n � 0º:

Further, let
ƒ0 WD Q1 tQ2 tQ3 tQ4:

It follows from the definition of Q1, Q2, Q3, and Q4 that

ƒ D ƒ0 [ƒ0 [ .�ƒ0/ [ .�ƒ0/:

Hence, ƒ0 is a 1=4-Liouville set for F4˛.C/. Further, ƒ0 is uniformly distributed with
densityD.ƒ0/D 1

4
D.ƒ/D 1=.4v2/. We choose sequencesAD .a�/�2ƒ0 ,B D .b�/�2ƒ0

and C D .c�/�2ƒ0 �C that are uniformly noncollinear and f -close toƒ0. Further, we set

U WD A [ .�B/ [ .�C/:

Proposition 5.5(2) implies that U is a uniqueness set for the phase retrieval problem in
F�.C/ \ ���. Thus, it is also a uniqueness set for the Gabor phase retrieval problem4

in L2e.R;R/.

4The uniqueness set U D A [ .�B/ [ .�C/ is visualized in Figure 4.
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Figure 5. Visualisation of the sets Q1;Q2;Q3, and Q4 used in the proof of Theorem 2.12(3). The
union ƒ0 WD Q1 tQ2 tQ3 tQ4 is a 1=4-Liouville set for F4˛.C/ (the intersections of the grey
mesh are the points of the square-lattice ƒ).

Now observe that U admits an enumeration by means of the elements of ƒnƒ0, such
that U is f -close to ƒnƒ0. This implies that U is separated. Further, ƒnƒ0 is uniformly
distributed with density D.ƒnƒ0/ D 3=.4v2/. Using f -closeness once more, we con-
clude that D.U/ D D.ƒnƒ0/ D 3=.4v2/, where v can be as close to 1=2 as we please.
This yields the assertion.
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