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Irregular fibrations of derived equivalent varieties

Federico Caucci and Luigi Lombardi

Abstract. We study the behavior of irregular fibrations of a variety under derived
equivalence of its bounded derived category. In particular, we prove the derived
invariance of the existence of an irregular fibration over a variety of general type,
extending the case of irrational pencils onto curves of genus g � 2. We also prove
that a derived equivalence of such fibrations induces a derived equivalence between
their general fibers.

1. Introduction

In this paper, we investigate the invariance of irregular fibrations under derived equiv-
alence. An irregular fibration is a surjective morphism with connected fibers from a
smooth projective variety onto a normal projective variety of positive dimension admit-
ting a desingularization of maximal Albanese dimension. (This means that the Albanese
map of this smooth model is generically finite onto its image. This property does not
depend on the chosen desingularization.) Two smooth projective complex varieties X
and Y are derived equivalent if there exists an equivalence of triangulated categories
ˆWD.X/ ��! D.Y / between their bounded derived categories of coherent sheaves. The
theorem below is the main result of the paper. It concerns the derived invariance of irreg-
ular fibrations f WX ! V onto varieties of general type, i.e., such that one (and hence
any) resolution of singularities of V is of general type. These fibrations can be regarded
as a higher-dimensional analogue of the notion of irrational pencils over smooth curves
of genus g � 2. It turns out that the mere existence of an irregular fibration imposes quite
strong restrictions on the geometry of Fourier–Mukai partners.

Theorem 1.1. Suppose that D.X/ ' D.Y / and that X carries an irregular fibration
f WX ! V such that V is of general type. Then:
(i) Y admits an irregular fibration hWY ! W such that W is birational to V ;
(ii) The general fibers of f and h are derived equivalent;
(iii) If the (anti)canonical line bundle of the general fiber of f is big, then X and Y are

K-equivalent.
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Recall that two varieties X and Y are K-equivalent if there exists a third smooth
projective variety Z and birational morphisms

Z
pX

~~~~
~~
~~
~~ pY

  @
@@

@@
@@

@

X Y

such that p�X !X ' p�Y !Y . An important aspect of the K-equivalence relation is that it
preserves the Hodge numbers, as proved by Kontsevich’s motivic integration theory.

Theorem 1.1 provides generalizations of several previously known results. First of all,
item (iii) above should be seen as a relative version of Kawamata’s birational reconstruc-
tion theorem [13].1 Moreover, it generalizes Theorem 6 in [20], where the case of irregular
fibrations onto curves of genus g � 2 was considered.

If one restricts to somewhat more specific irregular fibrations, one obtains a stronger
result. Namely, assume that, beyond being of general type, V admits a morphism cV WV !

Alb zV which is finite onto its image and such that the composition zV ! V
cV
�! Alb zVX

equals the Albanese map of a desingularization zV (cf. Section 3.2 of [19]). Note that this
is precisely what happens when dimV D 1.

Proposition 1.2. Let D.X/ ' D.Y /. Under the above assumption, if !X or !�1X is
f -ample, then X is isomorphic to Y .

We now present the second main result of the paper, which generalizes Theorem 1
in [19]. We say that two irregular fibrations f1WX ! V1 and f2WX ! V2 of a variety X
are equivalent if there exists a birational map � WV1 Ü V2 such that f2 D � ı f1.

Theorem 1.3. Suppose D.X/ ' D.Y /. There exists a base-preserving bijection between
the sets of equivalence classes of irregular fibrations of X and Y onto normal projective
varieties of general type.

We refer the reader to Theorem 4.6 for the proof of Theorem 1.3 and a more precise
statement. See also Remark 4.7.

To any fibration f W X ! V onto a normal projective variety V there is attached
an abelian subvariety cBV of Pic0 X as follows. Let Qf W zX ! zV be a non-singular rep-
resentative of the fibration f , namely a commutative diagram

(1.1) zX

Qf

��

� // X

f

��
zV

� // V;

where � and � are birational morphisms from smooth projective varieties and Qf is a fibra-
tion.

1Actually, by the first works of Kawamata, Kollár and Viehweg on the Iitaka conjecture, if in part (iii) of
Theorem 1.1 the general fiber of f is of general type, then X itself is of general type because VX is so (see, e.g.,
Theorem 1.2.9 and Problem 1.1.2 in [7]). However, we do not use this result here. Our approach is self-contained
and moreover it also works verbatim when the anticanonical line bundle of the general fiber of f is big.
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By noting that the push-forward map ��W Pic0 zX ! Pic0 X is an isomorphism, we
define the abelian subvariety cBV def

D �� Qf
� Pic0 zV � Pic0X:

It is easy to check that cBV is well defined, i.e., it does not depend on the choice of the
non-singular representative. What happens is that, if zV is of general type and of maximal
Albanese dimension as in Theorem 1.1, then cBV is a Rouquier-stable subvariety with
respect to any exact equivalence D.X/' D.Y / (cf. Lemma 4.3). The notion of Rouquier-
stable subvarieties was introduced in [4] in order to study the derived invariance of certain
relative canonical rings. Briefly, it refers to abelian subvarieties cBX � Pic0 X that are
mapped isomorphically via the Rouquier isomorphism (2.1) to abelian subvarieties cBY
of Pic0 Y . We refer the reader to Sections 2 and 3 for the definition and main properties
of Rouquier-stable subvarieties. The above fact allows us to apply the general results of
Section 3 to the setting of Theorems 1.1 and 1.3. The proof of (ii) also builds on the latest
relativization technique for the kernel [17].

Finally, we note that in fact we prove slightly more general results than those of The-
orem 1.1, although in a little less geometric settings (see Theorems 4.1 and 4.4). For
instance, we record the following particular case of Theorem 4.4.

Corollary 1.4. Let X and Y be derived equivalent varieties. Assume that �.X;OX / ¤ 0.
If the (anti)canonical line bundle of the general fiber of the Albanese map of X is big,
then X and Y are K-equivalent.

In another direction, even if the base V of an irregular fibration as in (1.1) is not of
general type, then in any case cBV contains a certain Rouquier-stable subvariety (namely,
Pic0 of the base of the Iitaka fibration of V ), leading to the following result extending
Theorem 1.1(i).

Theorem 1.5. Suppose D.X/ ' D.Y /. If X admits an irregular fibration f WX ! V ,
then there exists a fibration hWY ! W of Y onto a normal projective variety W which is
birational to the base of the Iitaka fibration of V . In particular, we have dimW D kod.V /
and any smooth model of W is of maximal Albanese dimension.

This quite satisfactorily answers the problem of understanding in which manner an
arbitrary irregular fibration of a given variety varies under derived equivalence of its
bounded derived category. Moreover, in [25] Popa conjectured the derived invariance of
non-vanishing canonical loci (see also Section 2.1.5 below) figuring out that the geometric
meaning of his conjecture is that derived equivalent varieties should have the same type
of fibrations over lower-dimensional irregular varieties, this allowing for more geomet-
ric tools in the study of Fourier–Mukai partners. Popa proved a version of this principle
assuming his conjecture (see Corollary 3.4 in [25]). Here we notice that, although Popa’s
conjecture is still open, our techniques allow to get an unconditional proof of his result:

Theorem 1.6. Suppose D.X/' D.Y /. If X admits a fibration f WX ! Z onto a normal
projectivem-dimensional varietyZ whose Albanese map2 is not surjective, then Y admits
an irregular fibration hWY ! W onto a variety of general type W , with 0 < dimW � m.

2Actually the Albanese map of a desingularization of Z.
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Proof. If the Albanese map of (a desingularization of) Z is not surjective, then its image
admits a fiber bundle structure g onto a positive dimensional variety of maximal Albanese
dimension and of general type (see Theorem 10.9 and Corollary 10.5 in [29]). By taking
the Stein factorization of the composition g ı aZ , we see that Z admits a fibration g0 onto
a normal projective variety of general type, maximal Albanese dimension and positive di-
mension� m. So Theorem 1.1(i) (and its proof) may apply to the composition g0 ı f .

Notation. Our ground field is the field of complex numbers C. A variety means an irre-
ducible smooth projective variety, unless otherwise stated. A fibration is a surjective mor-
phism of normal projective varieties with connected fibers. If X is a variety, we denote
by D.X/ WD Db

�
Coh.X/

�
the bounded derived category of coherent sheaves on X . The

Albanese map of X is denoted by aX WX ! AlbX . The irregularity of X is q.X/ WD
h1;0.X/ D dim AlbX . If we fix a Poincaré line bundle P on X � Pic0 X , we denote by
P˛ WD P jX�¹˛º the line bundle parameterized by the point ˛ 2 Pic0X . Given a morphism
of abelian varieties 'WA! B , we denote by y'W yB ! yA the dual morphism of '.

2. Rouquier-stable subvarieties

Let X and Y be smooth projective complex varieties and let ˆWD.X/ ��! D.Y / be an
exact equivalence between the derived categories of X and Y . The equivalence ˆ induces
a functorial isomorphism of algebraic groups

(2.1) ' W Aut0X � Pic0X
�
�! Aut0 Y � Pic0 Y

known as the Rouquier isomorphism [27]. This isomorphism has been employed by Orlov
in [24] in order to classify derived equivalences of abelian varieties. Moreover, it plays
a crucial role in Popa–Schnell’s proof of the derived invariance of the irregularity [26].
Other applications are contained in [18], [20], [5] and [17].

The main difficulty in dealing with the Rouquier isomorphism is that, in general, it
does not respect the factors. Namely, there exist equivalences such that

'
�
¹idXº � Pic0X

�
¤ ¹idY º � Pic0 Y:

For instance, this is the case of the Fourier–Mukai–Poincaré transform between an abelian
variety and its dual. Quite naturally, one is led to consider Rouquier-stable subvarieties as
introduced in [4].

Definition 2.1. An abelian subvariety cBX � Pic0 X is Rouquier-stable (with respect to
the equivalence ˆ), if the induced Rouquier isomorphism (2.1) satisfies

'
�
¹idXº � cBX� � ¹idY º � Pic0 Y:

We denote by cBY the abelian subvarietycBY WD pPic0 Y

�
'
�
¹idXº � cBX��

of Pic0Y , where pPic0 Y WAut0Y � Pic0Y ! Pic0Y is the projection onto the second factor.
By a slight abuse of notation, we simply write cBY D '.cBX /.

We refer the reader to Section 2.1 for several examples of Rouquier-stable subvarieties.
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A Rouquier-stable subvariety cBX � Pic0 X induces two morphisms. The first one,
bX WX ! BX , is given as the composition

X

bX

""aX // AlbX
�BX // BX

of the Albanese map aX WX ! AlbX with the dual morphism �BX of the inclusion cBX �
Pic0X . The second, bY WY ! BY , is defined similarly as the composition

Y

bY

""aY // AlbY
�BY // BY :

We refer to the morphisms bX WX ! BX and bY WY ! BY as a (pair of ) Rouquier-stable
morphisms. By taking the Stein factorization, we have commutative diagrams

X
aX //

bX

""F
FF

FF
FF

FF

sX

��

AlbX

�BX

��
X 0

b0X // BX ;

Y
aY //

bY

""E
EE

EE
EE

EE

sY

��

AlbY

�BY

��
Y 0

b0Y // BY ;

where sX WX ! X 0 and sY W Y ! Y 0 are fibrations onto normal projective varieties and
b0X WX

0 ! BX and b0Y W Y
0 ! BY are finite morphism onto their images. A result of [4]

shows that the finite components of these Stein factorizations are isomorphic. More pre-
cisely, there exists an isomorphism  WY 0

�
�!X 0 such that the diagram

X 0

b0X

��

Y 0
 oo

b0Y

��
BX BY

y'oo

is commutative, where y' is the dual isomorphism. In Section 3 we will recall this fact and,
building on [17], we will show that the general fibers of sX and sY are derived equivalent.

2.1. Examples

In this subsection, we present a few examples of Rouquier-stable subvarieties. Let us fix
an equivalenceˆWD.X/! D.Y / of triangulated categories and let 'WAut0X � Pic0X !

Aut0 Y � Pic0 Y be the induced Rouquier isomorphism. We point out that, aside from
Section 2.1.4, all the examples presented below are intrinsically Rouquier-stable, i.e., they
are stable with respect to any equivalence.

2.1.1. The trivial example. The subset ¹O0º � Pic0 X is Rouquier-stable. The induced
pair of Rouquier-stable morphisms are the constant maps X ! ¹0º and Y ! ¹0º.
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2.1.2. A numerical condition. Let a.X/ WD dim Alb.Aut0 X/. If q.X/ > a.X/, then
there exists a Rouquier-stable subvariety of positive dimension of Pic0 X . For a proof of
this fact we adopt the terminology of [26], pp. 532–533. Set GX D Aut0X . Then

dim.ker.�/0/ D dim
�
ker
�

Pic0X ! yA
�
0

�
D q.X/ � dim yA � q.X/ � a.X/ > 0;

so that ker.�/0 is an abelian variety of positive dimension, which must be Rouquier-stable.

2.1.3. Affine automorphism group. This is a special case of the above (2.1.2). Follow-
ing [26], p. 534, Aut0 X is an affine algebraic group if and only if Aut0 Y is so. In this
case, since Pic0 X is projective and the irregularity is a derived invariant (cf. Corollary B
in [26]), one has

(2.2) '
�
¹idXº � Pic0X

�
D ¹idY º � Pic0 Y;

so that Pic0X is Rouquier-stable.3 The induced pair of Rouquier-stable morphisms are the
Albanese maps aX and aY themselves. Instances of varieties with affine automorphism
group Aut0.�/ are varieties with non-vanishing Euler characteristic �.X;OX / ¤ 0 (see
Corollary 2.6 in [26]), and varieties with big (anti)canonical line bundle (see, e.g., Propo-
sition 2.26 in [3] for a detailed proof of this folklore result. Besides, the automorphism
group Aut.�/ of a variety of general type is finite by a classical result of Matsumura, see
Corollary 2 in [21]).

2.1.4. Strongly filtered equivalences. In the paper [16], the authors introduce a notion
of equivalence called strongly filtered.4 For this type of equivalence, the formula (2.2)
continues to hold. As suggested in [26] and [16], the level of mixedness of the Rouquier
isomorphism could be interpreted as a measure of the complexity of a derived equiva-
lence from the point of view of birational geometry. For instance, in [16] it is proved that
a strongly filtered equivalence of smooth projective threefolds with positive irregularity
induces a birational isomorphism.

2.1.5. Cohomological support loci. Given a coherent sheaf F on a variety X , the coho-
mological support loci attached to F are the algebraic closed subsets

V i .X;F / D ¹˛ 2 Pic0X jH i .X;F ˝P˛/ ¤ 0º:

Let us denote by V i .X;F /0 the union of the irreducible components of V i .X;F / passing
through the origin. By Claim 3.3 in [18], one has

(2.3) '
�
¹idXº � V i .X;�

j
X ˝ !

˝m
X /0

�
� ¹idY º � Pic0 Y

for all i; j � 0 and all m2 Z. In particular, any abelian subvariety of Pic0 X that
is contained in some V i .X; �jX ˝ !

˝m
X /0 is Rouquier-stable. Moreover, since ' is an

isomorphism of algebraic groups, the abelian subvarieties of Pic0 X generated by the

3Proof: Since Aut0 Y is affine, the composition ¹idX º � Pic0 X
'
�! Aut0 Y � Pic0 Y ! Aut0 Y is constant.

4An equivalence is strongly filtered if it preserves the codimension filtration on the numerical Chow ring,
together with the Hochschild–Kostant–Rosenberg filtrations on the Hochschild homology and cohomology.
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loci V i .X;�jX ˝ !
˝m
X /0 (or by any of their irreducible components) are Rouquier-stable.

It is also known by Proposition 3.1 in [18] that the Rouquier isomorphism preserves the
full loci V 0.X; !˝mX /, namely

(2.4) '
�
¹idXº � V 0.X; !˝mX /

�
D ¹idY º � V 0.Y; !˝mY /; 8m2 Z :

Note that the same behavior is expected to hold for the loci V i .X; !X /0 for any i , see
Conjecture 11 in [20].

2.1.6. The Albanese–Iitaka morphism. Suppose that the Kodaira dimension of X is
non-negative. We can choose a smooth birational modification zX!X such that the Iitaka
fibration is represented by a morphism f zX W

zX ! ZX , with ZX smooth. More concretely,
we have a commutative diagram

zX

a zX

""
//

f zX   A
AA

AA
AA

A X
aX //

���
�
�

cX

##H
HH

HH
HH

HH
AlbX

�X

��
ZX

aZX // AlbZX ;

where aX , a zX and aZX are Albanese maps, and �X is a fibration of abelian vari-
eties induced by f zX (cf. Lemma 11.1(a) in [9]). Note that AlbZX , �X and cX D �X ı aX
only depend on X , and not on the modification zX we fixed. In [4], the morphism cX is
called the Albanese–Iitaka morphism of X . It follows from (2.4) that the Rouquier iso-
morphism acts as

'
�
¹idXº � y�X .Pic0ZX /

�
D ¹idY º � y�Y .Pic0ZY /

(see the proof of Lemma 3.4 in [5]). In particular, y�X .Pic0 ZX / is a Rouquier-stable sub-
variety and the Albanese–Iitaka morphisms cX and cY are Rouquier-stable. This fact was
already noted (and used) in [5], and moreover, it is particularly useful in [4].

2.1.7. Fibrations over varieties of general type. Let f WX! V be an irregular fibration
onto a normal projective variety of general type. By keeping notation as in (1.1), we will
show in Lemma 4.3 that the abelian subvariety �� Qf � Pic0 zV � Pic0X is Rouquier-stable.
In particular, the abelian subvarieties attached to �-positive fibrations considered in [19]
are Rouquier-stable (cf. Remark 14 in [19]).

3. The Stein factorization of a Rouquier-stable morphism

In this section, we study the effects of the existence of a non-trivial Rouquier-stable subva-
riety. Informally speaking, one such subvariety turns a derived equivalence into a relative
equivalence, at least generically.

LetˆWD.X/!D.Y / be an equivalence of triangulated categories. Let pWX � Y !X

and qWX � Y ! Y be the natural projections onto the first and second factor, respectively.
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By Orlov’s representability theorem (Theorem 2.2 in [23]), there exists an object E in
D.X � Y / that is unique up to isomorphism and such that

ˆ.�/ ' ˆE.�/ WD R q�
�
p�.�/

L
˝ E

�
:

We denote by 'E the Rouquier isomorphism induced by ˆE .

Theorem 3.1. Let ˆE W D.X/ ! D.Y / be an equivalence and let cBX � Pic0 X be a
Rouquier-stable subvariety. Moreover, let bX WX ! BX and bY WY ! BY be the induced
pair of Rouquier-stable morphisms. By considering the Stein factorizations of bX and bY ,
we have the following commutative diagrams:

(3.1) X
aX //

bX

""F
FF

FF
FF

FF

sX

��

AlbX

�BX

��
X 0

b0X // BX ;

Y
aY //

bY

""E
EE

EE
EE

EE

sY

��

AlbY

�BY

��
Y 0

b0Y // BY ;

where sX and sY are surjective morphisms with connected fibers, and b0X and b0Y are finite
morphisms onto their images. Then:

(i) There exists an isomorphism  W Y 0
�
�!X 0 of normal projective varieties such that

the kernel E is set-theoretically supported on the fiber product X �Y 0 Y defined as
follows:

X �Y 0 Y //

��

X

 �1ısX
��

Y
sY // Y 0:

(ii) The finite parts of the Stein factorizations are isomorphic, i.e., the following dia-
gram commutes:

X 0

b0X
��

Y 0
 

�oo

b0Y
��

BX BY :b'E

�oo

(iii) The fibers s�1X . .y0// and s�1Y .y0/ are derived equivalent for y0 general in Y 0.

Proof. The proofs of (i) and (ii) are given in [4] (see Section 8.1 of loc. cit. and, especially,
Theorem 8.1.1) and follow the general strategy of Theorem 1 in [19]. We just recall the
main points of the proof of (i) for the reader’s convenience. Denote by

p0WX 0 � Y 0 ! X 0 and q0WX 0 � Y 0 ! Y 0

the natural projections. Let

Supp.E/ WD
[
j

Supp.H j .E// � X � Y
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be the support of E , equipped with the reduced scheme structure. Then the projec-
tions p0W .sX � sY /.Supp.E//! X 0 and q0W .sX � sY /.Supp.E//! Y 0 have finite fibers.
Moreover, they are surjective with connected fibers. In other words, .sX � sY /.Supp.E//
dominates isomorphically both X 0 and Y 0. Hence the map

 WD .p0 ı q0�1/ W Y 0 ! X 0

is an isomorphism and .sX � sY /.Supp.E// D Graph. /. In particular, we have

Supp.E/ � .sX � sY /�1.Graph. // D X �Y 0 Y:

In order to prove (iii), we denote by � WU ,! Y 0 a smooth open subvariety over which
both sY and  �1 ı sX are smooth morphisms, and define the preimages

XU WD . 
�1
ı sX /

�1.U / and YU WD s
�1
Y .U /:

By a slight abuse of notation, we continue to denote by  �1 ı sX and sY the two restric-
tions . �1 ı sX /jXU WXU ! U and sY jYU WYU ! U , respectively. Moreover, we consider
the closed subscheme

(3.2) Z WD XU �U YU
`
,! XU � YU :

As E is set-theoretically supported on X �Y 0 Y , the derived restriction k� E is set-
theoretically supported on Z, where kW XU � YU ,! X � Y is the inclusion map.
Denote by

i WXU � Y ,! X � Y and j WXU � YU ,! XU � Y

the open immersions so that k D i ı j .

Claim 3.2. The kernel EU WD k� E 2 D.XU � YU / defines an equivalence of bounded
derived categories

ˆEU W D.XU /! D.YU /

(the functor is well defined as the support of EU is proper over both XU and YU /.

Proof. Let n D dimX . The claim is proved in Section 3.18 of [17]. For the reader’s ease,
we reproduce here the argument. Denote by ad.E/ the adjoint kernel:

ad.E/ WD E
R
_
˝p�!X Œn� ' E

R
_
˝q�!Y Œn�

in D.X � Y / (the superscript
R
_ denotes the derived dual). By considering the Fourier–

Mukai transform in the other direction,

‰ad.E/.�/ WD Rp�.q�.�/
L
˝ ad.E//WD.Y /! D.X/;

one can check that ‰ad.E/ is a quasi-inverse of ˆE . By denoting by pij the projections
from X � Y �X onto the i -th and j -th factors, it follows

Rp13�.p�12 E
L
˝ p�32ad.E// ' ıX�OX ;
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where ıX W X ,! X � X is the diagonal embedding. Let aij be the projection from
XU � YU � XU onto the i -th and j -th factors and set ad.E/U WD k�ad.E/. Moreover,
let ıXU WXU ,! XU � XU be the diagonal embedding of XU . By pulling-back the above
isomorphism under the open immersion r WXU �XU !X �X , and by noting that i� E is
supported on XU � YU so that i� E ' R j� EU and i�ad.E/' R j�ad.E/U (see (1.4.3.4)
on p. 45 of [1] or the proof of Lemma 36.6.2 in [28]), we have the isomorphism

R a13�.a�12 EU
L
˝ a�32ad.E/U / ' ıXU �OXU :

Similarly, we can prove

R a13�.a�12ad.E/U
L
˝ a�32 EU / ' ıXU �OXU

and that ˆEU is an equivalence.

Claim 3.3. The restricted kernel EU is isomorphic to a pushforward `�C for some
object C in D.Z/, where ` is defined in (3.2).

Assuming the above Claim 3.3 for a moment, we conclude the proof as follows. From
the isomorphism EU ' `�C we have that

ˆEU D ˆC W D.XU /! D.YU /

is a relative integral functor. As showed in Propositions 2.15 and 2.10 of [11], the derived
restriction

Cu WD C j. �1ısX /�1.u/�s�1Y .u/

induces a derived equivalence

ˆCu W D.s
�1
X . .u///! D.s�1Y .u//

for any closed point u 2 U if ˆEU is an equivalence. Therefore, we get (iii).

Remark 3.4. The equivalence ˆEU WD.XU /! D.YU / is U -linear in the sense that for
all F in D.XU / and G in D.U /, there are bifunctorial isomorphisms

ˆEU

�
F

L
˝ . �1 ı sX /

� G
�
' ˆEU .F /

L
˝ s�Y G

(cf. Lemma 2.33 in [15]).

Proof of Claim 3.3. This is an application of the criterion Theorem 1.1 in [17]. More pre-
cisely, we need to verify the conditions (3.10) below, in order to apply Theorem 1.1 in [17]
and hence to get our result. In what follows, we argue similarly to the proof of Lemma 4.11
in [17]. Recall the commutative diagram

X
bX

}}||
||
||
||

sX

��

Y

sY

��

bY

!!C
CC

CC
CC

C

BX X 0
b0Xoo Y 0

 oo
b0Y // BY :

y'E

ee
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Let us define the morphisms

uX WY
0
! BX � Y

0; p 7! .b0X . .p//; p/

and
uY WY

0
! BY � Y

0; p 7! .b0Y .p/; p/ D ..c'E/
�1.b0X . .p///; p/:

Lemma 3.5. One has

(3.3) p�12.bX � idY 0/�.uX�OY 0/˝ p
�
13 E ' p�32.bY � idY 0/�.uY �OY 0/˝ p

�
13 E

in D.X � Y 0 � Y /, where we dropped the derived notation R and L for simplicity.

Proof. The isomorphism .c'E/
�1 � 'E WBX � cBX ! BY � cBY preserves Poincaré line

bundles, that is, ..c'E/
�1 � 'E/

� P ' Q where P and Q are normalized Poincaré line
bundles on BY � cBY and BX � cBX , respectively. By Theorem 1.1 in [22], we have an
equivalence of derived categories

D.cBX � Y 0/ '�! D.BX � Y 0/; G 7! p2�.p
�
1 G ˝p�12 Q/;

where
p12 W BX � cBX � Y 0 ' .cBX � Y 0/ �Y 0 .BX � Y 0/! BX � cBX :

Moreover, the following diagram is commutative:

(3.4) D.cBX � Y 0/ ' //

.'E�id/�
��

D.BX � Y 0/

..b'E /
�1�id/�

��
D.cBY � Y 0/ ' // D.BY � Y 0/;

where the bottom equivalence is similarly defined, using P instead of Q. In particular,
there exists a unique object G 2 D.cBX � Y 0/ such that

(3.5) uX�OY 0 ' p2�.p
�
1 G ˝p�12 Q/:

Let us consider the commutative diagram:

X � cBX � Y 0 � Y p134 //

p123

��

p14

**
X � Y 0 � Y

��

// X � Y

X � cBX � Y 0 //

bX�idbBX�Y 0
��

X � Y 0

bX�idY 0

��
BX � cBX � Y 0 D .cBX � Y 0/ �Y 0 .BX � Y 0/

p1

��

p2 // BX � Y 0

cBX � Y 0
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When needed, we identifyX � cBX � Y 0 � Y withX � cBY � Y 0 � Y via the isomorphism
idX � 'E � idY 0 � idY in order to lighten notation. From this and (3.5), by using flat base
change and the projection formula, one obtains

p�12.bX � idY 0/�.uX�OY 0/˝ p
�
13 E ' p�12.bX � idY 0/�.p2�.p

�
1 G ˝p�12 Q//˝ p�13 E

' p134�.p
�
123.bX � idbBX�Y 0/�.p�1 G ˝p�12 Q//˝ p�13 E

' p134�.p
�
23 G ˝p�12 QX ˝p

�
14 E/;

where
QX WD .bX � idbBX /�Q

and in the last equality we also used the commutative diagram

X � cBX � Y 0 � Y p123 //

p12

**UUU
UUUU

UUUU
UUUU

UUUU
X � cBX � Y 0

��

bX�idbBX�Y 0 // BX � cBX � Y 0
p12

��
X � cBX bX�idbBX // BX � cBX :

By Lemma 4.10 in [17],5 one has that

(3.6) p�12 QX ˝p
�
14 E ' .idX � 'E � idY 0�Y /�.p�42 P Y ˝p

�
14 E/;

where P Y WD .bY � idcBY /�P . Therefore, we get

(3.7)
p134�.p

�
23 G ˝p�12 QX ˝p

�
14 E/

' p134�..idX � 'E � idY 0�Y /�.p�23.'E � idY 0/� G ˝p�42 P Y ˝p
�
14 E//

and, by arguing as before (in the reverse order) and using the commutativity of (3.4), we
see that the right-hand side in (3.7) is isomorphic to p�32.bY � idY 0/�.uY �OY 0/˝ p

�
13 E ,

as desired.

Let
ı0; ı1 W XU � YU ! XU � U � YU

be defined as ı0..x; y// D .x;  �1.sX .x//; y/ and ı1..x; y// D .x; sY .y/; y/. Note that
we may (and do) assume that U D  �1.b0X /

�1.V /, where V � BX is an open subscheme
such that bX is flat over it. Consider the commutative diagram

X � Y 0 � Y
p12 // X � Y 0

bX�idY 0 // BX � Y 0

XU � U � YU
� � //

˛0

++
XU � U � Y //?�

OO

V � U:
?�

OO

5In loc. cit., the authors assume cBX D Pic0 X . However, their proof works in our more general situation as
well (see also Lemma 3.1 in [26]).
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Denote by qij the projections from XU � U � YU onto the i -th and j -th factors, and
by p1 and p2 the two projections from XU � YU . Then, the restriction of the left-hand
side in (3.3) to XU � U � YU is isomorphic to

˛�0 ..RuX�OY 0/jV�U /
L
˝ q�13 EU ' ˛

�
0 RuX;U �OU

L
˝ q�13 EU ;

where uX;U WU ! V � U is the restriction of uX . Consider the cartesian diagram

XU � YU
. �1ısX /ıp1 //

ı0

��

U

uX;U

��
XU � U � YU

˛0 // V � U:

By flat base change and the projection formula, one has

˛�0 RuX;U �OU

L
˝ q�13 EU ' R ı0�OXU�YU

L
˝ q�13 EU

' R ı0�ı�0q
�
13 EU ' R ı0� EU :

Similarly, the restriction of the right-hand side in (3.3) to XU � U � YU is isomorphic to
R ı1� EU . In this way, we get an isomorphism

(3.8) R ı0� EU
'
�! R ı1� EU :

Let us also note that the pushforward of (3.8) through the projection q13.

(3.9) EU ' R q13� R ı0� EU ! R q13� R ı1� EU ' EU :

is the identity morphism of EU (cf. Section 4.15 of [17]).
Moreover, as by Claim 3.2 the functor ˆEU is in particular fully faithful, it holds true

that
Exti

�
L i�x .EU /;L i

�
x .EU /

�
D Exti

�
ˆEU .C.x//; ˆEU .C.x//

�
D 0

for all i < 0 and for any closed point x 2 XU , where ix W ¹xº � YU ,! XU � YU . There-
fore, by cohomology and base change for complexes (Section 7.7 of [8]), one has that
Rp1� R Hom.EU ;EU / lies in D�0.XU /.

Hence,

(3.10) Rı0�EU ' Rı1�EU ; (3.9) holds; and Rp1�RHom.EU ;EU /2 D�0.XU /:

At this point, the statement follows from Theorem 1.1 in [17].

4. Irregular fibrations under derived equivalence

We begin by recalling some definitions. We continue to denote by X a smooth projective
complex variety of dimension n. The irregularity of a normal projective variety is defined
as the irregularity of any of its resolution of singularities.
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A non-singular representative of a fibration f WX ! V onto a normal projective vari-
ety V is a commutative diagram

zX

Qf

��

� // X

f

��
zV

� // V;

where � and � are birational morphisms from smooth projective varieties and Qf is a fibra-
tion. We define the abelian subvariety

cBV def
D �� Qf

� Pic0 zV � Pic0X:

Theorem 4.1. Let X and Y be smooth projective varieties and let ˆWD.X/! D.Y / be
an equivalence. If f WX ! V is an irregular fibration such that cBV is Rouquier-stable,
then Y admits a fibration hW Y ! W onto a variety W that is birational to V . Moreover,
the general fibers of f and h are derived equivalent.

Proof. Consider the commutative diagram

zX
a zX //

Qf

��

Alb zX

�

��
zV

a zV // Alb zV ;

where � is the fibration induced by Qf at the level of Albanese varieties. By definition, there
is an isomorphism BV Š Alb zV and � ı aX D bX , where bX WX ! BV is the Rouquier-
stable morphism induced by cBV � Pic0X (see Section 2). Since

a zX D .aX ı �/W
zX ! X ! AlbX ' Alb zX and ��O zX D OX ;

we have that X 0 (notations as in (3.1)) is isomorphic to the base of the Stein factorization
of � ı a zX D a zV ı Qf . But Qf� O zX D O zV , hence X 0 is also isomorphic to the base of the
Stein factorization of a zV , which is birational to zV as a zV is generically finite onto its image.
Namely, Qf is a non-singular representative of the fibration sX WX ! X 0 too, and we have
the following commutative diagram:

(4.1) zX

Qf

��

a zX

""
� // X

sX

��

aX // Alb zX

�

��
zV

a zV

>>
// X 0

b0X // Alb zV :

In particular, X 0 is birational to V .
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Let cBY WD '.cBV / and let bY W Y ! BY be the corresponding Rouquier-stable mor-
phism. Moreover, consider the Stein factorization of bY :

Y

bY

��sY // Y 0 // BY ;

where the first morphism is a fibration and the second is finite onto its image. By The-
orem 3.1, there exists an isomorphism X 0 ' Y 0. In particular, by taking h WD sY W Y !

W WD Y 0, we have that V and W are birational. The second statement follows from the
above construction and Theorem 3.1(iii).

Recall from the Introduction that two irregular fibrations f1WX ! V1 and f2WX ! V2
are equivalent if there exists a birational map � W V1 Ü V2 such that f2 D � ı f1. We
record for later use the following consequence of the proof of the previous theorem.

Lemma 4.2. The irregular fibration f WX ! V we started with is equivalent to sX . In
particular, the general fibers of f and sX are isomorphic.

It turns out that irregular fibrations onto varieties of general type provide a natural
geometric framework where the Rouquier-stableness assumption of Theorem 4.1 is auto-
matically satisfied.

Lemma 4.3. If f WX ! V is an irregular fibration and V is of general type, then the
associated abelian variety cBV is Rouquier-stable with respect to any equivalence.

Proof. We aim to prove that cBV is contained in a Rouquier-stable subvariety. Take nota-
tions as in Subsection 2.1.5. By Kollár’s decomposition theorem [14] one has that

Qf �V 0. zV ; ! zV / � V
k. zX;! zX /;

where k is the dimension of the generic fiber of Qf (see Lemma 6.3 in [18]). Therefore,

�� Qf
�V 0. zV ; ! zV / � V

k.X; !X /:

The Rouquier isomorphism ' induces a map

Pic0 Y ! Aut0X; ˇ 7! pAut0X .'
�1.idY ; ˇ//;

whose image is an abelian variety denoted by A � Aut0 X . If A is trivial, then Pic0 X

is Rouquier-stable by definition. So we may assume that dimA > 0. Now take a general
point x0 2 X and consider the orbit map

gWA! X; � 7! �.x0/:

Using Brion’s results on the action of a non-affine algebraic group on smooth projective
varieties ([2], see also Section 2 of [26]), it can be proved that V k.X; !X / is contained
in the subgroup ker.g�W Pic0 X ! yA/ of Pic0 X (see formula (8) on p. 524 of [18]). In
particular, this yields the inclusion

�� Qf
�V 0. zV ; ! zV / � ker.g�/:
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By assumption, zV is of maximal Albanese dimension and of general type, hence The-
orem 1 in [6] says that V 0. zV ;! zV / generates Pic0 zV as a group. Therefore, from the above
discussion we get cBV D �� Qf � Pic0 zV � ker.g�/:

Moreover, since cBV is an abelian subvariety, it is actually contained in the connected com-
ponent .ker.g�//0 of ker.g�/ through the origin. Now we employ the fact that .ker.g�//0
is Rouquier-stable as in p. 533 of [26].

4.1. Proof of Theorem 1.1 (i) and (ii)

The proof of Theorem 1.1 (i) and (ii) follows from Theorem 4.1 and Lemma 4.3.

4.2. Proof of Theorem 1.1 (iii)

Let sX WX ! X 0 (respectively, sY WY ! Y 0) be the fibration induced by cBV (respectively,
by '.cBV /). We know that

W WD Y 0 ' X 0

thanks to Theorem 3.1 and, moreover,

(4.2) Supp.E/ � X �W Y;

where E 2 D.X � Y / is the kernel of the equivalence. At this point, the proof is a relative
version of Kawamata’s technique [13]. Let Z � Supp.E/ be an irreducible component
such that the first projection �X WZ ! X is surjective (see Corollary 6.5 in [12]). In par-
ticular, the inequality dimX � dimZ holds. Denote by �Y WZ! Y the second projection.
From (4.2) we get a commutative diagram

(4.3) Z
�X

~~}}
}}
}}
}} �Y

  A
AA

AA
AA

A

X
sX

  B
BB

BB
BB

B Y
sY

~~}}
}}
}}
}}

W:

Note that, for any point w 2W , one has

��1X .s�1X .w// D Z \ .s�1X .w/ � s�1Y .w// � Supp.E/ \ .s�1X .w/ � s�1Y .w//

D Supp.L�� E/

where
�W s�1X .w/ � s�1Y .w/ ,! X � Y

is the inclusion map (the last equality is Lemma 3.29 in [12]). Thanks to Lemma 4.2, for a
generalw2W the (anti)canonical bundle of s�1X .w/ is big, which implies, by an argument
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of Kawamata in [13], that the morphism ��1Y .s�1Y .w//
�Y
��! s�1Y .w/ is generically finite.

We briefly sketch this for the reader’s convenience. Set

Xw WD s
�1
X .w/; Yw WD s

�1
Y .w/; and Zw WD Z \ .s

�1
X .w/ � s�1Y .w//

for a general point w 2W . Moreover, let �w W zZw ! Zw be the normalization and assume
that !Xw is big (the other case is completely analogue). By Kodaira’s lemma, for m� 0

one has that
!˝mXw ' OXw .H/˝OXw .D/;

where H is an ample divisor and D is an effective divisor on Xw . We now prove that the
morphism

.�Y ı �w/ W zZw n �
�1
w ��1X .D/! Yw

is finite. Suppose by contradiction that there exists an irreducible curve C � zZw con-
tracted by �Y ı �w and such that C 6� ��1w ��1X .D/. Then

0 D deg
�
��w�

�
Y .!Yw /

�ˇ̌
C
D deg

�
��w�

�
X .!Xw /

�ˇ̌
C
�
1

m
deg

�
��w�

�
X O.H/

�ˇ̌
C
> 0;

where the second equality is an application of Lemma 6.6 in [12].
In particular, �Y WZ ! Y is generically finite and dimZ � dim Y . But we already

know that
dimY D dimX � dimZ:

Therefore, dimX D dimZ. At this point, another well-established argument due to Kawa-
mata [13] says that X and Y are K-equivalent (see also p. 149 in [12], or Lemma 15
in [20]). This concludes the proof of (iii).

The argument we just employed also provides a further generalization of Kawamata’s
birational reconstruction theorem (see the Introduction).

Theorem 4.4. Let ˆW D.X/ ! D.Y / be an equivalence and let cBX � Pic0 X be a
Rouquier-stable subvariety. If the (anti)canonical line bundle of the general fiber of the
Rouquier-stable morphism bX is big, then X and Y are K-equivalent.

Remark 4.5. If!X (respectively,!�1X ) is big as in Kawamata’s theorem, then Aut0X is an
affine algebraic group (see Subsection 2.1.3). Hence the whole Pic0 X is Rouquier-stable
and !X (respectively, !�1X ) is obviously bX -big (note that bX D aX if cBX D Pic0 X ).
Moreover, as recalled in Subsection 2.1.3, varieties with non-zero Euler characteristic
have affine automorphism group Aut0.�/. Hence Corollary 1.4 of the Introduction is a
particular case of the above Theorem 4.4.

4.3. Proof of Theorem 1.3

An irregular k-fibration is an irregular fibration onto a variety of dimension k. For any
variety X and integer 0 < k < n WD dimX , we define the following set:

GX
def
D ¹equivalence classes of irregular k-fibrations f WX ! V

such that V is of general type and 0 < k < dimXº:

We aim to prove Theorem 1.3. Indeed, we prove the more precise Theorem 4.6 below.
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Theorem 4.6. Let ˆWD.X/! D.Y / be a derived equivalence. There exists a bijective
correspondence �ˆWGX ! GY such that if �ˆ.f WX ! V / D .hW Y ! W /, then the
varieties V and W are birational. Moreover, the generic fibers of f and h are derived
equivalent.

In the rest of this section, we prove the above theorem. The function �ˆ is defined by
Theorem 4.1: we take the Stein factorization of the Rouquier-stable morphism bY ,

bY WY
hWDsY
����! W WD Y 0

b0Y
�! BY ;

where cBY WD '.cBV /. In particular, we already know that V andW are birational and that
the generic fibers of f and h are derived equivalent.

Now we turn to prove that �ˆ is a bijection. Take notations as in the proof of
Theorem 4.1. By Theorem 3.1(ii) and (4.1), there exists an isomorphism of varieties
 WW

�
�!X 0 such that the diagram

zV

a zV

$$
// X 0

b0X // BV ' Alb zV

zW

OO�
�
�

// W

 

OO

b0Y // BY

y'

OO

is commutative. Hence we get that BY ' Alb zW , and moreover that the bottom composi-
tion is isomorphic to the Albanese map a zW of a resolution zW of W .

Now let
zY

zh

��

� // Y

h

��

// AlbY

��
zW

� // W // Alb zW ' BY ;

where the left vertical morphism is a non-singular representative of the irregular fibra-
tion h, and the right-hand one is the fibration induced by the universal property of the
Albanese variety. Then we havecBY ' �� Qh� Pic0 zW DWbBW � Pic0 Y:

Hence
'.cBV / D cBY 'bBW :

At this point, if we apply �ˆ�1 to h, where ˆ�1 is a quasi-inverse of ˆ, we get

�ˆ�1.h/ D �ˆ�1.�ˆ.f // D sX

thanks to the functoriality of the Rouquier isomorphism. By Lemma 4.2 f and sX are
equivalent fibrations of X , so �ˆ�1 ı �ˆ D idGX and, since the role of X and Y can be
symmetrically exchanged, we also get �ˆ ı �ˆ�1 D idGY by the same reasoning.
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Remark 4.7. Let us restrict ourselves to irregular fibrations f WX ! V onto varieties V
admitting a morphism cV W V ! Alb zV finite onto its image and such that the composi-
tion zV

�
�! V

cV
�! Alb zV equals the Albanese map of a desingularization zV .6 In this case,

two fibrations f WX ! V and f 0WX ! V 0 are equivalent if there exists an isomorphism
� W V ! V 0 such that f 0 D � ı f . Then the bijection of Theorem 4.6 is base-preserving
in a stronger sense: namely, V is isomorphic to W . In fact, there exists an isomorphism
� WV

�
�!X 0 such that sX D � ı f (see Lemma 19 in [19]).

4.4. Proof of Proposition 1.2

Once the K-equivalence among X and Y has been proved by Theorem 1.1 (iii), Proposi-
tion 1.2 follows at once by standard arguments (see [20], p. 304). Namely, if the rational
map  W Y Ü X induced by the K-equivalence is not a morphism, there exists a curve
C � Z that is contracted by �Y but not by �X (see (4.3)). So

.��X!X � C/ D .�
�
Y!Y � C/ D 0:

On the other hand, by Lemma 4.2 and the above Remark 4.7, we see that !X is f -
(anti)ample if and only if it is sX -(anti)ample, and, since �X .C / is contained in a fiber
of sX , one gets .!X � �X .C // ¤ 0. This gives a contradiction. Hence  is a crepant bira-
tional morphism between smooth projective varieties, hence an isomorphism.

4.5. Proof of Theorem 1.5

For the proof of Theorem 1.5, we apply the main result of [6]. Let f WX ! V be an
irregular fibration of X . Since by definition V is of maximal Albanese dimension, one
has that kod.V / � 0. Then it makes sense to consider the Iitaka fibration of V , which by
definition is the Iitaka fibration of a non-singular model of V . So we get the following
commutative diagram:

(4.4) zX
� //

Qf

��

X
aX // AlbX

�

��
zV

a zV //

g

��

BV D Alb zV

�

��
ZV

aZV // AlbZV ;

where ZV is a smooth projective variety of dimension dimZV D kod.V /, and � is the
fibration between Albanese varieties induced by the Iitaka fibration g of V .

By Theorem 2.3 in [6], the abelian variety b�.Pic0 ZV / is contained in the abelian
subvariety of Pic0 zV generated by V 0. zV ; ! zV /.

7 Since in the proof of Lemma 4.3 we

6This is precisely what happens if dimV D 1.
7For the sake of clarity, let us say that we are applying Theorem 2.3 in [6] to the generically finite morphism

a zV , and the variety Pic0 S in loc. cit. coincides with our y�.Pic0 ZV /.
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observed that �� Qf �V 0. zV ; ! zV / is contained in a subgroup of Pic0 X whose connected
component through the origin is a Rouquier-stable subvariety, it follows from the commu-
tativity of (4.4) that y�.y�.Pic0 ZV // is a Rouquier-stable subvariety of Pic0 X . Hence, by
taking the Stein factorization of the morphism induced by '.y�.y�.Pic0 ZV /// � Pic0 Y ,
we obtain a fibration hWY ! W . Since the base of the Stein factorization of the composi-
tion � ı � ı aX is equal to the base of the Stein factorization of aZV , which is generically
finite onto its image (Proposition 2.1(a) in [10]), we see that W is birational to ZV by
Theorem 3.1(i).
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