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On the local geometry of the moduli space of
.2 ; 2/-threefolds in A9

Elisabetta Colombo, Paola Frediani, Juan Carlos Naranjo and Gian
Pietro Pirola

Abstract. We study the local geometry of the moduli space of intermediate Jacobi-
ans of .2; 2/-threefolds in P2 � P2. More precisely, we prove that a composition
of the second fundamental form of the Siegel metric in A9 restricted to this moduli
space, with a natural multiplication map is a nonzero holomorphic section of a vector
bundle. We also describe its kernel. We use the two conic bundle structures of these
threefolds, Prym theory, gaussian maps and Jacobian ideals.

1. Introduction

Following the philosophy of the work of Andreotti and Griffiths, the local geometry of
subloci of Ag contains relevant information on the global geometry of the varieties of
these loci. For example, the infinitesimal variation of Hodge structure allows recovering
the curve, if the Clifford index is at least 2. The main tool to investigate the local behaviour
of these subvarieties of Ag is the second fundamental form with respect to the Siegel
metric, that is, the orbifold Kähler metric induced by the symmetric metric on the Siegel
space.

This paper deals with the local geometry of the moduli space of intermediate Jacobians
of .2; 2/-threefolds in P2 � P2. These threefolds have the remarkable property of having
two conic bundle structures. As pointed out by Verra in [14], this translates into the fact
that the intermediate Jacobian has two interpretations as the Prym variety of two allowable
double covers of two plane sextics. In fact, using this, he proves that the restriction of the
Prym map to the locus of double covers of plane sextics has degree two, thus giving a
counterexample to the tetragonal conjecture of Donagi ([10]). He also proves a generic
Torelli theorem for the period map of these threefolds in A9.

Our aim is to study the second fundamental form II of the locus Q of intermediate Jac-
obians of these threefolds in A9. One of the main difficulties is that it is non-holomorphic,
hence it is very difficult to make explicit computations. Nevertheless, we show that its
composition with a convenient multiplication map turns out to be holomorphic. This has
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been proven to be the case also for the Jacobian and Prym loci in Ag (see [6,7,9]), where
this composition is given by the second gaussian map of either the canonical bundle, or the
Prym-canonical one. These gaussian maps are generically of maximal rank. In contrast,
an analogous composition of the second fundamental form of the moduli space of inter-
mediate Jacobians of cubic threefolds in A5 with a natural multiplication map is shown to
be zero in [8]. In the case of cubic threefolds, an important tool was the relation between
the Jacobian ring of the cubic threefold and that of the family of plane quintics provided
by the Prym construction.

On the contrary, here we prove that the composition of the second fundamental form of
the moduli space of intermediate Jacobians of .2; 2/ threefolds in A9 with a natural mul-
tiplication map is a nonzero holomorphic section � of the normal bundle NQ=A9

. Again,
Jacobian rings of both the threefold and the associated plane sextics, play a fundamental
role.

More precisely, for a .2;2/ threefold T in P2 �P2, there is a natural bigraded Jacobian
ring ˚Ra;bT such that the differential of the period map can be expressed in terms of this
ring (see [11, 12]). It is the quotient of the ring of bihomogeneous polynomials ˚Sa;b by
the bihomogeneous ideal˚J a;bT generated by the partial derivatives of F .

As explained in Section 3, TQ;T can be identified with R2;2T , and moreover,

OQ;T Š R
4;4
T Š C:

There are isomorphisms

H 2;1.T / Š R
1;1
T and �1Q;T Š R

2;2
T ;

and the dual of the differential of the period map corresponds to the multiplication map

� W Sym2R
1;1
T �! R

2;2
T :

Hence, there is a natural isomorphism

N �Q=A9;JT
D Ker.Sym2R

1;1
T

�
�! R

2;2
T /:

So, the second fundamental form at JT ,

II W N �Q=A9;JT
�! Sym2�1Q;JT ;

can be seen as a map

Ker.Sym2R
1;1
T

�
�! R

2;2
T / �! Sym2R

2;2
T :

The main result of this paper is the following.

Theorem 1.1. For a general T , the composition

m ı II W N �Q=A9;JT
D Ker.Sym2R

1;1
T

�
�! R

2;2
T / �! R

4;4
T Š C;

where mW Sym2R
2;2
T �! R

4;4
T is the multiplication map, is nonzero, and via duality, it

gives a canonical non-trivial holomorphic section � of the normal bundle.
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In particular, Theorem 1.1 implies that the second fundamental form

II W N �Q=A9;JT
�! Sym2�1Q;JT

is nonzero.
We remark that this is also implied by the fact that the monodromy group of the family

of these threefolds is the whole symplectic group (see Proposition 4.6). Nevertheless, our
result is stronger.

Moreover, for a general T , the kernel of the composition m ı II is explicitly described
in terms of the geometry of T (see Proposition 4.7, and Remark 4.8).

One of the main ingredients in the proof is to relate the second fundamental form II
with the restriction of the second fundamental form of the Prym map R10 �! A9 to the
locus of double coverings of plane sextics.

We show that the restriction of the composition m ı II to the space of quadrics con-
taining the Prym-canonical image of both the plane sextics is nonzero. This is done using
the fact that it coincides with the composition of the second gaussian map of the Prym-
canonical bundle of the plane sextics with a suitable projection.

The main technical point is the computation of this gaussian map on the quadric con-
taining the Prym-canonical image of the sextic given by the equation of the threefold and
we do this in a specific example.

The structure of the paper is as follows. In Section 2, we recall the properties of .2; 2/
threefolds following [14]. In Section 3, we recall the theory of bigraded Jacobian rings,
we introduce the second fundamental form II, and we recall previous results on the com-
putation of the second fundamental form of the Prym locus. In Section 4, we give an
interpretation of the second fundamental form in terms of Prym theory, and we prove the
main Theorem.

2. .2 ; 2/-threefolds in P 2 � P 2

In this section, we mainly recall the properties of .2; 2/-threefolds proved by Verra in [14].
We consider a threefold T in P2 � P2 given by a bihomogeneous equation F of

degree .2; 2/. More precisely,

F D
X

0�i;j;k;l�2

aijkl xi xj ykyl :

Let W be the image of the Segre embedding sWP2 � P2 ,! P8. Then

T � P2 � P2 Š W � P8:

We denote ˛ik WD xiyk . These are natural coordinates in P8, and T can be seen as a
complete intersection T D W \Q, where Q � P8 is the quadric given by the equation

Q0 D
X

0�i;j;k;l�2

aijkl ˛ik j̨ l :

Remember that the quadratic equations ˛ik j̨ l � ˛il j̨k generate the ideal IW of W .
Then the ideal of T is IT D IW C hQ0i:
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The projections on each factor pi WT ! P2 provide two conic bundle structures on T .
Or, in other words, if we fix a point .x0 W x1 W x2/ in the first plane, then the equation
F.x0; x1; x2; y0; y1; y2/ gives a conic whose matrix A.x/ has degree 2 entries in the x0is,
A.x/kl D

P
i;j aijklxixj . Therefore, the determinant of this matrix gives a sextic plane

curve C which parametrizes the degenerate conics of the family. The lines contained in
these degenerate conics define a curve zC contained in the corresponding Grassmannian
and a natural degree two map �1W zC ! C . It was proved by Beauville in [1] that �1 is
an allowable covering of degree 2 and that its Prym variety P. zC ; C / is isomorphic (as
principally polarized abelian variety) to the intermediate Jacobian JT . Similarly, using
the second projection, there is another sextic plane curve D and a covering �2W zD ! D

with the same property. In particular, P. zC ; C / Š P. zD; D/. This can be written as a
relation of moduli spaces in the following way. Let us define the following:

Q D ¹T � P2 � P2 j T is a .2; 2/ smooth threefoldº= Š;
zQ D ¹.T; pi / j T 2 Q; pi the two natural projections on P2º= Š;

P6 D ¹allowable double coverings QC ! C; where C is a plane sexticº= Š;
A9 D the moduli space of principally polarized abelian varieties of dimension 9:

Then, there is a commutative diagram,

(2.1) zQ
d //

f

��

P6

p

��
Q

j // A9;

where d associates to the conic bundle pi WT ! P2 the discriminant curve C � P2 and the
natural allowable covering �1W zC !C ; f is the forgetful map; j.T /DH 1;2.T /=H 3.T;Z/
is the intermediate Jacobian of T ; and p is the Prym map restricted to P6. Moreover, zQ, Q

and P6 are irreducible of dimension 19.
The main result in [14] is the computation of the degrees of all these maps that turn

out to be generically finite on their images. He proves, based on results in [3], that d and j
have degree 1 and that f and p have degree 2 on their respective images. In particular, the
map d is dominant, since zQ and P6 have the same dimension.

The main theorem in [14] states that the Prym map has degree exactly 2 when restric-
ted to the locus of unramified double coverings of plane sextics.

We will assume from now on that T , C and D are generic, in particular, all three are
smooth. We are interested in the realization of C andD in P8. Let C 0 (respectively,D0) be
the set of double points of the conics of the first (respectively, second) conic bundle struc-
ture on T . Notice that C 0;D0 � T �W � P8 and that C 0ŠC andD0ŠD. Moreover, C 0

(respectively, D0) is the locus of points of T where the partial derivatives Fy0 ; Fy1 ; Fy2
(respectively, Fx0 ; Fx1 ; Fx2 ) vanish. So the corresponding ideals are

IC 0 D IT C hFy0 ; Fy1 ; Fy2i and ID0 D IT C hFx0 ; Fx1 ; Fx2i:

In fact,C 0 is the Prym-canonical image ofC : let � 2 JC be the 2-torsion point that defines
the covering �1. For a generic C , we have that h0.C; �.2// D 3, and the tensor product

H 0.C;OC .1//˝H
0.C; �.2// 7! H 0.C; !C ˝ �/
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is an isomorphism. Then the embedding �WC ,! P8 is the composition

C
'1�'2
�! P2 � P2

Š
�! W ,! P8 Š P .H 0.C; !C ˝ �/

_/;

where '1; '2 are the maps defined by the linear systems jOC .1/j and j�.2/j. Thus, by
definition,C 0D .'1 � '2/.C /. The same holds for the cover �2, and we denote by �0 2 JD
the corresponding 2-torsion point.

3. Preliminaries on Jacobian rings and second fundamental forms

3.1. Bigraded Jacobian ring and second fundamental form

In this subsection, we describe the second fundamental form of Q in A9 and the multiplic-
ation maps in terms of Jacobian rings. First notice that, since all the maps in diagram (2.1)
are generically finite onto their respective images, we obtain the following identifications:

�1Q;� Š �
1
zQ;�
Š �1P6;� Š �

1

M
pl
10;�
;

where we denote by M
pl
10 the moduli space of smooth plane sextics in M10, the moduli

space of genus 10 curves.
By abuse of notation, we also denote by Q the closure of its image in A9 via the

map j .
Recall that Griffiths studied the periods of hypersurfaces by means of the Jacobian

ring. Later, Green extended this theory to a more general setting, covering, in particular,
the case of hypersurfaces in the product of two projective spaces (see [12] and Lecture 4
in [11]). More precisely, we consider the bigraded Jacobian ring ˚Ra;bT of T , which is
the quotient of the ring of bihomogeneous polynomials ˚Sa;b by the bihomogeneous
ideal˚J a;bT generated by the partial derivatives of F .

Using the proposition on p. 45 and the theorem on p. 47 of [11], with X D T , Y D
P2 � P2, L D OP2�P2.2; 2/, n D 4, q D 1, one immediately sees that TQ;T can be iden-
tified with R2;2T , H 2;1.T / Š R

1;1
T , OQ;T Š R

4;4
T Š C; and by duality (see part (2) of the

theorem on p. 47 of [11]) we have �1
Q;T
Š R

2;2
T . Moreover, the dual of the differential of

the period map tdj identifies with the multiplication map

� W Sym2R
1;1
T �! R

2;2
T :

Consider now the cotangent exact sequence

0! N �Q=A9
! �1A9 jQ

tdj
! �1Q ! 0:

With the above identifications, there is a natural isomorphism

N �Q=A9;JT
D Ker.Sym2R

1;1
T

�
�! R

2;2
T /:

Denote by r the Chern connection of the Siegel metric and consider the second fun-
damental form

II D . tdj ˝ Id/ ı rjN�
Q=A9

W N �Q=A9
! Sym2�1Q:
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Using the above identifications, at a generic point j.T / D JT 2 Q, the second funda-
mental form can be seen as a map

II W Ker.Sym2R
1;1
T

�
�! R

2;2
T /! Sym2R

2;2
T :

We can compose II with the multiplication map

m W Sym2R
2;2
T �! R

4;4
T Š C;

and we get a map m ı II W N �
Q=A9

�! OQ.
We will prove that m ı II is holomorphic and nonzero, hence, by duality, it gives a

nonzero holomorphic section � of the normal bundle NQ=A9
.

3.2. Second fundamental form of the Prym locus

In this subsection, we recall some results of [6] on the second fundamental form of the
Prym map

pg W Rg ! Ag�1:

Recall that Rg denotes the moduli space of pairs .C; �/ of smooth curves C of genus g
and a non-trivial two-torsion point � 2 JC Œ2�, and pg maps .C; �/ to the Prym variety
associated with the attached double covering. The codifferential of the Prym map at the
point .C; �/ is naturally identified with the multiplication map

ˇ W Sym2H 0.C; !C ˝ �/ �! H 0.C; !2C /:

Hence, we can identify the conormal bundle N �
Rg=Ag�1;.C;�/

with the kernel I2.!C ˝ �/
of this multiplication map. Denote by

� W I2.!C ˝ �/ �! Sym2H 0.C; !2C /

the second fundamental form of the Prym map at .C; �/. We recall the following.

Theorem 3.1 (Theorem 2.1 in [6]). The diagram

I2.!C ˝ �/

�2

��

� // Sym2H 0.!˝2C /

ˇww
H 0.!˝4C /

is commutative up to scalar, where �2 is the second gaussian (or Wahl ) map.

For the reader’s convenience, we recall the definition of the second gaussian map in
local coordinates. For more details on gaussian maps, see [15].

Take a basis ¹!1; : : : ; !g�1º of H 0.C; !C ˝ �/, choose a local coordinate z, and a
local frame l for the line bundle �, so that locally we write !i D hi .z/dz ˝ l . A quadric
Q 2 I2.!C ˝ �/ has the following expression:

Q D

g�1X
i;jD1

aij !i ˇ !j ;
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with X
i;j

aij hi .z/hj .z/ D 0:

Then

(3.1) �2.Q/ WD
X
i;j

aij h
0
i .z/h

0
j .z/.dz/

4
D �

X
i;j

aij h
00
i .z/hj .z/.dz/

4:

4. Prym theory and proof of the main theorem

The proof of Theorem 1.1 relies on the fact that Q can be seen as the image of the Prym
map restricted to P6. Let C be a smooth sextic plane curve, and let R�C be the Jacobian
ring of C . So the identification

�1
M

pl
10;C
Š R6C

holds. Then, we use Prym theory to express the normal sheaf of Q in A9 in another way.
Consider the restriction p of the Prym map p10 to P6:

P6 ,! R10

p10
�! A9:

Recall that the map p is generically finite of degree 2. The transpose of dp10 at a point
.C;�/2R10 is the multiplication map Sym2H 0.C;!C ˝ �/�!H 0.C;!2C /. In a generic
point .C; �/ 2 P6 it is surjective by (3.6) in [14]. Thus, we have

N �R10=A9;.C;�/
Š I2.!C ˝ �/;

which is the vector space of equations of quadrics through C 0, the Prym-canonical image
of C . We have a short exact sequence of conormal bundles:

0 �! I2.!C ˝ �/ �! N �Q=A9;JT
�! N �P6=R10;.C;�/

D J 6C =hC i �! 0:

Here, J �C means the Jacobian ideal of C , and hC i the subideal generated by the equation
of the sextic C .

We have the following diagram:

N �
R10=A9;.C;�/

Š I2.!C ˝ �/
� //

� _

��

Sym2�1
R10;.C;�/

Š Sym2H 0.C; !2C /

��
N �

Q=A9;JT
// Sym2�1

P6;.C;�/
Š Sym2R6C ;

where � is the second fundamental form of the Prym map p10 and the second horizontal
row is another way of representing the map II using Prym theory. Notice that the first
vertical arrow is the inclusion of the conormal bundles, while the second vertical arrow is
induced by projection of cotangent bundles.
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Recall that, by Theorem 3.1, the composition of � with the multiplication map

Sym2H 0.C; !2C / �! H 0.C; !4C /

is the second gaussian map �2W I2.!C ˝ �/ �! H 0.C; !4C /.
Observe that

H 0.C; !2C / Š H
0.C;OC .6//

and there is a mapH 0.C;OC .6//!R
6
C induced by the projectionH 0.P2;OP2.6//!R

6
C ,

since the equation of C belongs to the Jacobian ideal of C . Analogously, we have a map

� W H 0.C;OC .12// �! R12C :

So we have the following commutative diagram:
(4.1)

I2.!C ˝ �/

��

� //

�2

++
Sym2H 0.C; !2C / D Sym

2H 0.C;OC .6//

��

m// H 0.C;OC .12//

�

��
N �

Q=A9;JT

II // Sym2R6C
m // R12C D C:

We will prove that the composition � ı�2 is nonzero, showing on an explicit example
that � ı �2.F / ¤ 0, where

F D
X

0�i;j;k;l�2

aijkl xi xj ykyl D
X

0�i;j;k;l�2

aijkl ˛ik j̨ l 2 I2.!C ˝ �/

denotes as usual the equation of the threefold T .

Remark 4.1. Observe that, for a general T , by symmetry, similar diagrams and maps
exist for the curve D. Notice that, by the proof of Proposition 5.3 in [14], the intersec-
tion of I2.!C ˝ �/ and I2.!D ˝ �0/ is the vector space of the equations of the quadrics
containing the threefold T , which is 10-dimensional. Therefore, the sum I2.!C ˝ �/C

I2.!D ˝ �
0/ has dimension 26 and hence it equals N �

Q=A9;JT
.

To show that the mapm ı II is holomorphic, first notice that I2.!C ˝ �/ is the fibre of
a holomorphic vector bundle I2 over P6 at the point .C;�/, and analogously, I2.!D ˝ �0/
is the fibre a holomorphic vector bundle I02 over .D; �0/. We have shown that N �

Q=A9
D

I2 C I02. The second gaussian map �2 is a holomorphic map between vector bundles
over P6 (see, e.g., [6]), and also � varies holomorphically. Since the restriction of m ı II
to I2 is the composition � ı�2 (and analogously for the restriction to I02), we have shown
that m ı II gives a holomorphic section of the normal bundle N �

Q=A9
.

Denote by A.x/ the symmetric matrix given by

A.x/kl D
X
i;j

aijkl xi xj ;

and by OAij .x/ the cofactor, that is, the product of the determinant of the matrix obtained
from A.x/ by removing the i -th row and the j -th column with .�1/iCj .
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Lemma 4.2. We have the following commutative diagram:

(4.2) C

'1
��

'2 // P2

v2
��

P2
h // P5;

where h.x/ D . OAij .x//i;j , v2 is the Veronese map, and '1 and '2 are the maps defined at
the end of Section 2.

Proof. Since for any x 2 C , �.x/D .'1 � '2/.x/ is the intersection point of the two lines
corresponding to the singular conic A.x/, '2.x/ D .y0 W y1 W y2/ is the point in P2 given
by Ker.A.x//. So there exist nonzero constants �i such that

�i .y0; y1; y2/ D .. OAi0.x//; . OAi1.x//; . OAi2.x///; for all i D 1; 2; 3.

By the symmetry of A.x/, we can identify �i D yi for all i D 0; 1; 2. So the diagram is
commutative and, if we restrict to C , we have

yiyj D OAij .x/:

Now choose a local coordinate z on C , a local frame l for OC .1/ and a local frame �
for �. Then locally we write xi D fi .z/l , yi D gi .z/l2� and ˛ij D fi .z/gj .z/l3� . So,
by (3.1), the local expression for �2.F / is given by

�2.F / D �
X
i;j;k;l

aijkl .figk/
00.fjgl /.dz/

2 l6 D
X
i;j;k;l

aijkl .figk/
0.fjgl /

0 .dz/2 l6:

First, notice that since F 2 I2.!C ˝ �/, we haveX
i;j;k;l

aijkl .figk/.z/.fjgl /.z/ D 0;

hence, taking the derivative with respect to z, we get

0 D
X
i;j;k;l

aijkl .figk/
0.fjgl / D

X
i;j;k;l

aijkl f
0
i fj gk gl C

X
k

g0k

�X
i;j;l

aijkl fi fjgl

�
D

X
i;j;k;l

aijkl f
0
i fj gk gl C

X
k

g0k

�X
l

Akl .z/gl .z/
�
D

X
i;j;k;l

aijkl f
0
i fj gk gl ;

where Akl .z/ D
P
i;j aijklfi .z/fj .z/, and where the last equality holds since the point

.y0; y1; y2/
t is in the kernel of the matrix A.x/, hence

P
l Akl .z/gl .z/ D 0.

So, differentiating with respect to z the polynomial equationX
i;j;k;l

aijklf
0
i fj gk gl D 0;
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we obtain

(4.3)
X
i;j;k;l

aijklf
00
i fj gk gl C

X
i;j;k;l

aijklf
0
i f
0
j gk gl C 2

X
i;j;k;l

aijklf
0
i fj g

0
k gl D 0:

Now

�2.F / D �
X
i;j;k;l

aijkl .figk/
00.fjgl /.dz/

2 l6

D �

� X
i;j;k;l

aijklf
00
i fj gk gl C 2

X
i;j;k;l

aijklf
0
i fj g

0
k gl

�
.dz/2 l6

D

X
i;j;k;l

aijklf
0
i f
0
j gk gl .dz/

2 l6;

where the last equality follows from (4.3) and we used thatX
i;j;k;l

aijklfifj g
00
k gl D

X
k

g00k

X
l

Akl .z/gl .z/ D 0:

So we have found the following local expression for �2.F /:

(4.4) �2.F / D
X
i;j;k;l

aijklf
0
i f
0
j gk gl .dz/

2 l6:

Proposition 4.3. The map � ı �2 is nonzero.

Proof. We show this by exhibiting an explicit example where the map is nonzero.
Consider the smooth .2; 2/-threefold X D ¹F D 0º, where

(4.5)
F D 6x20 y

2
0 C 2�x

2
2 y0y1 C 2�x

2
1 y0y2 C 6x

2
1 y

2
1 C 2�x

2
0 y1y2 C 6x

2
2 y

2
2

D 6˛200 C 2�˛20˛21 C 2�˛10˛12 C 6˛
2
11 C 2�˛01˛02 C 6˛

2
22;

with �3 D �108. Thus, the equation of the plane sextic attached to the first projection p1
is the determinant of the following symmetric matrix:

A D

0B@ 6x20 �x22 �x21
�x22 6x21 �x20
�x21 �x20 6x22

1CA ; det.A/ D �6�2.x60 C x
6
1 C x

6
2/:

So the plane curve C is the Fermat sextic with equation G WD x60 C x
6
1 C x

6
2 D 0. We

will show that � ı�2.F /¤ 0. Consider the affine chart x0 ¤ 0, set wi D xi=x0, i D 1; 2,
and let h.w1; w2/ WD G.1; w1; w2/ D 1C w61 C w

6
2 : Assume that @h=@w2 D 6w52 ¤ 0;

so z WD w1 is a local coordinate, hence w2 D f2.z/. In this local setting, we have z D w1,
l D x0, x1 D w1x0 D zl and x2 D w2x0 D f2.z/l . So in the above notation, we have
f0.z/ D 1, f1.z/ D z and f2.z/ D w2.z/, and since h.z; f2.z// D 0, we have

@h=@w1 C f
0
2.z/ @h=@w2 D 0;

so f 02.z/ D �hw1=hw2 (where hwi D @h=@wi ), while clearly f 00 D 0, f 01 D 1.
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Then, by (4.4), we have

�2.F / D
X
i;j;k;l

aijklf
0
i f
0
j gk gl .dz/

2 l6

D

X
k;l

.gkgl /l
4
�
a11kl .f

0
1/
2
C 2a12kl f

0
1f
0
2 C a22kl .f

0
2/
2
�
.dz/2 l2

D

X
k;l

.gkgl /l
4
�
a11kl � 2a12kl .hw1=hw2/C a22kl .hw1=hw2/

2
�
.dz/2 l2:

Recall that by (4.2) we have OAkl .z/ D .gkgl /l4, thus

�2.F / D
X
k;l

OAkl .z/.a11kl � 2a12kl .hw1=hw2/C a22kl .hw1=hw2/
2/.dz/2 l2

D

X
k;l

OAkl .z/.a11kl � 2a12kl .hw1=hw2/C a22kl .hw1=hw2/
2/.hw2/

2 l8;

since, by adjunction, we can write dz D hw2 l
3. So we have

(4.6)

�2.F / D
X
k;l

OAkl .a11kl � 2a12kl .Gx1=Gx2/C a22kl .Gx1=Gx2/
2/
.Gx2/

2

x100
x80

D

X
k;l

OAkl .a11kl .Gx2/
2
� 2a12klGx1Gx2 C a22kl .Gx1/

2/
1

x20
�

Now, using our equation and computing the minors of the matrix A, we obtain

�2.F / D
36

x20
.x101 .2� OA01 C 6 OA22/C x

10
2 .2� OA02 C 6 OA11//

D �18�2
36

x20
.x101 x42 C x

10
2 x41/ D �18�

2 36

x20
x41 x

4
2 .x

6
1 C x

6
2/:

Since we are on the curve C , we have x61 C x
6
2 D �x

6
0 , so finally we get

�2.F / D 18�
2 36

x20
x41 x

4
2 x

6
0 D .18 � 36/�

2x40 x
4
1 x

4
2 ;

which is not in the Jacobian ideal of C that is generated by x50 ; x
5
1 ; x

5
2 . Notice that if

@h=@w1 ¤ 0, then w2 is a local coordinate, so in this case we have z D w2, w1 D f1.z/,
f2.z/ D z, f0.z/ D 1, dw2 D �.@h=@w1/x30 and f 01.z/ D �hw2=hw1 , and the computa-
tion is the same. By symmetry, an analogous computation holds in the other affine charts.
So �2.F / is the restriction of the polynomial .18 � 36/�2x40x

4
1x

4
2 2H

0.P2;OP2.12//

to C , and hence � ı �2.F / ¤ 0.

Remark 4.4. Notice that formula (4.6) is valid for any equation F of a .2; 2/-threefold,
where G is the equation of one of the sextics. Nevertheless, the computation can be quite
difficult if the equations F and G are not as simple as in the above example. Moreover,
showing that �2.F / does not belong to the Jacobian ideal can also be quite complicated
in general.
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Recall that by (2.1), we have an identification

R
2;2
T Š �

1
Q;JT Š �

1
P6;.C;�/

Š R6C :

These identifications can also be seen as induced by the pullback via the map � D '1 � '2:

�� W H 0.P2 � P2;OP2�P2.2; 2// �! H 0.C;OC .6//:

In fact, we show the following.

Lemma 4.5. The space J 2;2T maps to J 6C =hC i via '�, and therefore there is an isomorph-
ism R

2;2
T Š R

6
C and a commutative diagram

(4.7) Sym2R
2;2
T

Š

��

m // R4;4T Š C

Š

��
Sym2R6C

m // R12C Š C:

Proof. Clearly, all the elements of the form yjFyi map to zero, since they are in the ideal
of C 0 D �.C /. So we have to show that all the elements xjFxi map to J 6C =hC i. In fact,
we show that

��.Fxi / D @xi .detA.x// 2 J 6C =hC i;

where the coefficients of the symmetric matrix .A.x//kl D
P
i;j aijklxixj are quadrics

in the coordinates xi .
Using (4.2), we have

��.Fxi / D �
�
�
@xi

�X
ij

A.x/ij yi yj

��
D @xi

�X
ij

A.x/ij OAij .x/
�
D @xi .detA.x//:

In the same way, one immediately sees that �� induces an isomorphism R
4;4
T Š R

12
C and

we have a commutative diagram as (4.7).

Proof of the main Theorem 1.1. In Proposition 4.3, we have proven that � ı�2 is nonzero.
Diagram (4.1) together with Lemma 4.5 show that the restriction of m ı II to I2.!C ˝ �/
is identified with � ı �2, hence it is nonzero for a generic T . So by Remark 4.1, m ı II
gives a non-trivial holomorphic section � of the normal bundle.

We observe that the fact that the second fundamental form is nonzero is also implied
by the following proposition, by a result of Moonen ([13]).

Proposition 4.6. The monodromy group of the family Q is the symplectic group. Hence,
the special Mumford–Tate group of a generic .2; 2/-threefold is the whole symplectic
group.

Proof. We prove that the monodromy group of P6 is the full symplectic group Sp.18;Z/.
Recall that the monodromy map of plane sextics,

�1.M
pl
10; C / �! Sp.H 1.C;Z//;

is surjective (see Théorème 4 in [2]). In particular, reducing coefficients modulo 2, this
implies that P6 is irreducible.
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For any symplectic basis ¹˛1; : : : ;˛g ;ˇ1; : : : ;ˇgº ofH 1.C;Z/, where �D˛g (mod 2),
there is a natural symplectic basis inH 1.P.C; �/;Z/ (see, e.g., Proposition 12.4.2 in [4]).

Consider a Lefschetz pencil around a Prym semi-abelian variety attached to a covering
QC0 ! C0 such that C0 has only one node and the two preimages of the node are two

nodes of QC0. Then, writing explicitly the Picard Lefschetz transformation in terms of the
basis defined above, one easily checks that the associated monodromy generates the whole
symplectic group.

We will now give a complete description of the kernel of m ı II, that can be inter-
esting for a deeper understanding of the second fundamental form. First, we describe the
kernel of

� ı �2 W I2.!C ˝ �/! R12C :

Denote by
L WD OC .1/ and M WD OC .2/˝ �;

so that L˝M Š !C ˝ �. Take a point p 2 C and consider the two line bundles

L.�p/ D OC .1/˝OC .�p/ and M.p/ D OC .2/˝ �˝OC .p/:

Then clearly
L.�p/˝M.p/ Š !C ˝ �:

Since L is base point free, we have h0.C; L.�p// D 2, and we fix a basis ¹s1; s2º of
H 0.C;L.�p//. We have a map

(4.8)

2̂

H 0.M.p//! I2.!C ˝ �/;

.t1 ^ t2/ 7! Q.t1; t2/ WD s1t1 ˇ s2t2 � s1t2 ˇ s2t1;

where ˛ ˇ ˇ WD ˛ ˝ ˇ C ˇ ˝ ˛.

Proposition 4.7. For a general T , the quadrics defined in (4.8) generate the kernel of the
map � ı �2.

Proof. A direct computation using formula (3.1) (see, e.g., Lemma 2.2 in [5]) shows that
we have

�2 W I2.!C ˝ �/! H 0.C; !˝4C / Š H 0.C;OC .12//;

�2.Q.t1; t2// D �1;L.�p/.s1 ^ s2/ � �1;M.p/.t1 ^ t2/;

where

�1;L.�p/ W

2̂

H 0.C;L.�p// Š hs1 ^ s2i ! H 0.C;L˝2.�2p/˝ !C /

Š H 0.C;OC .5/.�2p//;

and

�1;M.p/ W

2̂

H 0.C;M.p//! H 0.C;M˝2.2p/˝ !C / Š H
0.C;OC .7/.2p//

denote the first gaussian maps of the line bundles L.�p/ and M.p/.
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In local coordinates, if si D fi .z/l , where l is a local frame for L.�p/, we have

�1;L.�p/.s1 ^ s2/ D .f
0
1f2 � f1f

0
2/l

2dz:

Then, clearly we obtain

div.�1;L.�p/.s1 ^ s2// D div.Polp.C /jC / � 2p;

where Polp.C / denotes the polar of the plane sextic C with respect to p.
Choose now t1 2H 0.C;M.�2p//�H 0.C;M.p//, and assume that in local coordin-

ates we have ti D gi .z/� , where � is a local frame for M.p/. Then we have

�1;M.p/.t1 ^ t2/ D .g
0
1g2 � g1g

0
2/�

2dz:

Since ordp g1 D 3, clearly

div.�1;M.p/.t1 ^ t2// D 2p CE;

where OC .E/ Š OC .7/. Since the restriction to C gives a surjective map

H 0.P2;OP2.7//! H 0.C;OC .7//;

there exists a polynomial G 2 H 0.P2;OP2.7//, such that div.GjC / D E. Then

div.�2.Q.t1; t2/// D div.Polp.C /jC / � 2p C 2p CE D div..Polp.C / �G/jC /;

hence � ı �2.Q.t1; t2// D 0, since Polp.C / �G 2 J 12C .
It remains to show that varying the point p 2C , and choosing t1 2H 0.C;M.�2p//�

H 0.C;M.p// (which is 1-dimensional for p general inC ), and varying t22H 0.C;M.p//,
the quadrics ¹Q.t1; t2/º generate a 17-dimensional subspace of I2.!C ˝ �/:

We will show it in the example (4.5), and this is enough, since it is an open property.
Let us now explain how we compute this dimension: first observe that the choice of s1
corresponds to the choice of a line l1 through p, hence we have

div.s1/ D p CD5;

where D5 is an effective divisor of degree 5. The same holds for s2, so

div.s2/ D p CD05:

Thus, by our choice of t1, s1 t1 is a generator of the one-dimensional vector space
H 0.C; !C ˝ �.�D5 � 3p//; and s2 t1 is a generator of H 0.C; !C ˝ �.�D

0
5 � 3p//:

To choose the forms s1 t2 and s2 t2, namely to choose t2 2 H 0.C; M.p// general, it is
equivalent to choose three general points q1; q2; q3 2 C so that

hs1 t2i D H
0.C; !C ˝ �.�D5 � q1 � q2 � q3//

and
hs2 t2i D H

0.C; !C ˝ �.�D
0
5 � q1 � q2 � q3//:
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Now we have to check that varying a point p on C , choosing two lines through p,
and three points q1, q2 and q3 on C , one obtains a linear space of quadrics constructed as
above of dimension 17. To do this computation of the dimension of this vector space of
quadrics on the example (4.5), we used a MAGMA script.

This shows that, for a generic .C; �/, the quadrics we considered generate the kernel
of � ı �2.

Remark 4.8. By Remark 4.1, we know that

I2.!C ˝ �/C I2.!D ˝ �
0/ D N �Q=A9;T

:

Hence the kernel of m ı II is generated by the quadrics of I2.!C ˝ �/ and I2.!D ˝ �/
that we have just described.
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