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Criticality transition for positive powers
of the discrete Laplacian on the half line

Borbala Gerhat, David Krejčiřík and František Štampach

Abstract. We study the criticality and subcriticality of powers .��/˛ with ˛ > 0 of
the discrete Laplacian �� acting on `2.N/. We prove that these positive powers of
the Laplacian are critical if and only if ˛ � 3=2. We complement our analysis with
Hardy-type inequalities for .��/˛ in the subcritical regimes ˛ 2 .0; 3=2/. As an
illustration of the critical case ˛ � 3=2, we analyze asymptotic properties of discrete
eigenvalues emerging by coupling .��/˛ with a localized potential.

1. Introduction

1.1. Physical motivation

The uniqueness of the world we live in consists in that R3 is the lowest dimensional Eu-
clidean space for which the Brownian motion is transient. Indeed, it is well known that
the Brownian particle in Rd will escape from any bounded set after some time forever
if d � 3, while the opposite holds true in low dimensions, i.e., the Brownian motion is
recurrent in R1 and R2. This is a well-known criticality transition in dimensions.

Since the Brownian motion is mathematically introduced via the heat equation, it is
not surprising that the transiency is closely related to spectral properties of the Laplacian.
Indeed, the self-adjoint realization �� in L2.Rd / is subcritical if and only if d � 3,
meaning that there exists a non-trivial non-negative function V such that the Hardy-type
inequality �� � V holds in the sense of quadratic forms. On the other hand, �� is
critical if d D 1; 2 in the sense that inf�.��C V / < 0 for every non-trivial non-positive
function V . The Hardy inequality has other physical consequences, namely in quantum
mechanics, where it can be interpreted in terms of the uncertainty principle and leads to
the stability of matter in R3.

The case of Brownian particles dying on massive subsets of Rd is less interesting in
the sense that the Dirichlet Laplacian �� in Rd n�, with any � non-empty and open, is
always subcritical. In particular, the Brownian motion in the half-space Rd�1 � .0;1/ is
transient for every d � 1, so no criticality transition in dimensions occurs.
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There is a probabilistic interpretation of powers of the Laplacian in terms of an anoma-
lous diffusion. From this perspective, the case of the half-line is equally uninteresting
because all the powers .��/k in L2.0;1/, with k 2N, are subcritical. There is no criti-
cality transition in powers.

The objective of this paper is to disclose the surprising fact that the situation is very
different in the discrete setting. Indeed, we demonstrate that the integer powers of the
discrete Laplacian .��/k on `2.N/ are subcritical if and only if k D 1. What is more
curious in fine properties of this transition, we consider possibly non-integer powers and
reveal the following precise threshold in all positive powers:

.��/˛ on `2.N/ is subcritical if and only if ˛ < 3=2.

1.2. Mathematical formulation

The discrete Laplacian on the (discrete) half line N D ¹1; 2; 3; : : : º is defined as the
second-order difference operator �� given by the formula

.��u/n WD �un�1 C 2un � unC1; n2N;

where u D ¹unº1nD1 is a complex sequence, together with the convention u0 WD 0. When
regarded as an operator on the Hilbert space `2.N/, the discrete Laplacian is bounded and
self-adjoint with spectrum �.��/ D Œ0; 4�. The matrix representation of �� with respect
to the standard basis of `2.N/ coincides with the tridiagonal Toeplitz matrix

�� D

0BBB@
2 �1

�1 2 �1

�1 2 �1
: : :

: : :
: : :

1CCCA :
It is well known that�� is subcritical, meaning that there exists a non-trivial diagonal

operator V � 0 such that �� � V in the sense of quadratic forms. Indeed, one has the
classical Hardy inequality �� � V H; where

V H
n WD

1

4n2
, n2N:

Interestingly, even though the constant 1=4 in the Hardy weight is optimal, the shifted
operator �� � V H is still subcritical. An improved Hardy-type inequality �� � V KPP,
with

V KPP
n WD 2 �

r
n � 1

n
�

r
nC 1

n
, n2N;

was found only recently by Keller, Pinchover, and Pogorzelski in [23]; see also [25] for
a simple proof. Moreover, it is proved in these references that �� � V KPP is critical in
the sense of the spectral instability inf �.�� � V KPP C V / < 0 for any non-trivial diag-
onal V � 0. In fact, not only the criticality, but an optimality of the weight V KPP in a
stronger sense was proven in [23], together with more general results on discrete Lapla-
cians on graphs; see also [22,24], and moreover [5,6], for related works in the continuous
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framework. We emphasize the contrast with the (continuous) Dirichlet Laplacian on the
half line, where �� � V H with the classical Hardy weight V H.x/ WD 1=.4x2/ is critical
in L2.0;1/.

While the (sub)criticality and the related Hardy-type inequalities for �� on `2.N/
are well understood, much less is known about their generalization to the discrete poly-
harmonic operator or any positive power of ��. The primary goal of this paper is to
investigate the criticality or subcriticality of .��/˛ depending on ˛ > 0, and to make
the first attempt towards Hardy-type inequalities in the subcritical regimes. The operator
.��/˛ is defined by the usual functional calculus (see Section 2). Except for a partial
result in [19] for ˛ D 2, the topic seems not to be studied for any non-trivial exponent
˛ ¤ 1 so far.

The paper is organized as follows. In Subsection 1.3, our main results are formulated
as Theorems 1.1, 1.3, and 1.4. Subsection 1.4 summarizes some relevant results on posi-
tive powers of Laplacians on the half line or the line in both the discrete and continuous
settings. After Section 2, where preliminary results on powers of the Laplacian and their
Green kernel are presented, the three main theorems are proven in Section 3. Moreover,
weak and strong coupling regimes with localized potentials are studied in Section 4. The
paper is concluded by an appendix with auxiliary integral identities and asymptotics.

1.3. Main results

In this paper, we adopt the following definition of subcriticality/criticality in terms of
spectral stability/instability against small perturbations. Given any bounded self-adjoint
operator H on `2.N/, we say that H is critical if inf �.H C V / < 0 whenever V � 0 is
non-trivial. Generically throughout this paper, V denotes a potential (or a weight), i.e., a
diagonal operator acting on `2.N/. As usual, our notation does not distinguish between
a diagonal operator V on `2.N/ and the sequence V D ¹Vnº1nD1 of its diagonal entries.
We say H is subcritical if it is not critical, which is equivalent to the existence of a non-
trivial weight V � 0 such that H � V in the sense of forms (i.e., h ; .H � V / i � 0 for
all  2 `2.N/).

The question of the criticality of .��/˛ for ˛ > 0 is answered by our first main result.

Theorem 1.1. Suppose ˛ > 0. Then .��/˛ is critical if and only if ˛ � 3=2.

The proof of Theorem 1.1 is given in Subsection 3.1.

Remark 1.2. Notice that .��/˛ is bounded from above by 4˛ , since �..��/˛/D Œ0; 4˛�.
Therefore, one could also study the stability of the upper bound 4˛ when adding a pertur-
bation V � 0, i.e., the criticality of the operator 4˛ � .��/˛ in our setting. We briefly com-
ment on this in Subsection 3.2, where we prove 4˛ � .��/˛ to be subcritical for all ˛ > 0.
This result has no continuous analogue, since the Dirichlet Laplacian on L2.0;1/ is not
bounded from above.

For the particular case of the discrete bilaplacian �2 on `2.N/, it has already been
observed in [19] that no direct analogue of the classical Rellich inequality holds, i.e., that
there exists no c > 0 such that �2 � V R with

V R
n WD

c

n4
, n2NI
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this answers a question from [10]. Our Theorem 1.1 shows that there exists no discrete
Rellich inequality on `2.N/, neither any Hardy-type inequality for the discrete polyhar-
monic operator .��/k on `2.N/ with k D 3; 4; : : : This can be surprising when com-
pared to the continuous setting, where the polyharmonic operator .��/k is subcritical in
L2.0;1/ for all k 2N (while one should also take into account other possible definitions
of powers of Laplacians, cf. Subsection 1.4 below). From this perspective, it would be an
interesting topic for a separate study to investigate transitions between discrete and con-
tinuum operators via continuum limits with the focus on criticality and Hardy inequalities;
see [8, 20, 28] for related recent works.

Theorem 1.1 implies the existence of Hardy-type inequalities for .��/˛ with ˛ 2
.0; 3=2/. A sufficient condition for admissible Hardy weights is given in the next theorem.
Our analysis is based on a Birman–Schwinger argument, which in turn relies on upper
bounds for the Green kernel of the free resolvent of .��/˛ . The estimate in Lemma 2.5
leads to a sufficient condition in terms of a sequence of functions naturally appearing in
this resolvent bound, namely

(1.1) gn.˛/ WD
�
1 �

.˛/2n

.1 � ˛/2n

�
tan.�˛/

for ˛ 2 .0; 3=2/ and n2N, where .˛/k WD ˛.˛ C 1/ � � � .˛ C k � 1/ is the Pochhammer
symbol. For ˛ D 1=2 and ˛ D 1, the values of gn.˛/ are given by the respective limits

(1.2) gn

�1
2

�
D
2

�

2nX
jD1

1

2j � 1
and gn.1/ D 2�n:

Notice that gn.˛/ > 0 for all ˛ 2 .0; 3=2/ and n2N. In the sequel, � denotes the Gamma
function.

Theorem 1.3. Let ˛ 2 .0; 3=2/. If a potential V � 0 satisfies the condition

(1.3)
1X
nD1

gn.˛/Vn � 2�
�.2˛/

�2.˛/
,

where gn is as in (1.1) and (1.2), then

.��/˛ � V:

The proof of Theorem 1.3 is worked out in Subsection 3.3.
To obtain more concrete Hardy-type inequalities in the subcritical regimes ˛2.0;3=2/,

we consider weights which are of power form. It turns out, however, that an application
of Theorem 1.3 does not yield the expected optimal decay rate of such weights. This is
due to the underlying resolvent bound being symmetric in m and n with an asymptotic
behavior

(1.4) gn.˛/ D

8̂<̂
:
O.1/ if ˛ 2 .0; 1=2/;
O.lnn/ if ˛ D 1=2;
O.n2˛�1/ if ˛ 2 .1=2; 3=2/;
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as n ! 1. Nevertheless, a slightly different approach leads to a refined bound on the
Green kernel respecting its structure and thus eventually to the desired powers in the
weights below. We emphasize that while our definition of subcriticality merely involves
the existence of non-negative weights, the Hardy weights obtained in the following theo-
rem are in fact strictly positive.

Theorem 1.4. For every ˛ 2 .0; 3=2/, there exists a positive constant  D .˛/ such that

.��/˛ � V;

where

Vn D Vn.˛/ WD

´
=n2˛ if ˛ ¤ 1=2;
=.n ln.nC 1// if ˛ D 1=2:

Theorem 1.4 is proven in Subsection 3.4.

Remark 1.5. Even though there is room for optimization of .˛/ in Theorem 1.4, we
doubt that our method provides the optimal result. For this reason, we do not state the
explicit constants nor attempt to optimize them, and leave the quest for the largest con-
stant .˛/ as an open problem. An even more difficult question, which currently seems to
be out of reach, is whether one can find explicit V D V.˛/ � 0 such that .��/˛ � V is
critical for every value ˛ 2 .0; 3=2/.

1.4. Relevant literature

We briefly discuss several closely related results and summarize the state of the art con-
cerning mainly the criticality of positive powers of Laplacians on the half or the full line
in both the discrete and the continuous settings.

(1) Discrete polyharmonic operators on H k
0 .N/.

Let k 2N and let ¹en j n2Nº denote the standard basis of `2.N/. When the discrete
polyharmonic operator .��/k is restricted to the subspace H k

0 .N/ WD ¹e1; : : : ; ek�1º
?

of `2.N/, there exist discrete analogues of the continuous Birman inequality [2, 12] for
the polyharmonic operator .��/k in L2.0;1/, i.e., the inequality .��/k � V B;k with
the weight

(1.5) V B;k.x/ WD
..2k/Š/2

16k.kŠ/2
1

x2k
,

see also [11] for a recent proof. The discrete version of the Birman inequality .��/k �
V B;k on H k

0 .N/, where V B;k
n is as in (1.5) with x replaced by n, was proven in [19]

(while it was deduced with a smaller constant in the PhD thesis [14], see also [16]). An
improved discrete Birman inequality on H k

0 .N/ with a weight strictly larger than V B;k

has been only conjectured in [10] for k � 3.

(2) The discrete bilaplacian on H 2
0 .N/.

More is known about improved inequalities for the discrete bilaplacian�2 onH 2
0 .N/.

In [10], the discrete Rellich inequality �2 � V GKS was derived on H 2
0 .N/ with

V GKS
n WD 6 � 4

�
1C

1

n

�3=2
� 4

�
1 �

1

n

�3=2
C

�
1C

2

n

�3=2
C

�
1 �

2

n

�3=2
; n2N:
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This weight is asymptotically equal but strictly larger than the discrete analogue of V B;2.
Further improvements upon V GKS were obtained only recently in [19]. Nevertheless, a
critical (or even optimal) discrete Rellich weight on H 2

0 .N/ remains unknown at the
moment.

(3) Discrete fractional Laplacians on `2.Z/.
When the discrete Laplacian �� is considered on the full line Z, the picture is more

complete. For fractional powers ˛ 2 .0; 1=2/, it was shown in [4] that .��/˛ � V CR;˛ on
`2.Z/ with the weight

(1.6) V CR;˛
n WD 4˛

�2
�
1C2˛
4

�
�2
�
1�2˛
4

� � �jnj C 1�2˛
4

�
�
�
jnj C 3�2˛

4

�
�
�
jnj C 1C2˛

4

�
�
�
jnj C 3C2˛

4

� ; n 2 Z:

Interestingly, the weight V CR;˛ turns out to be optimal; this was proven only recently
in [21]. It particularly follows that .��/˛ � V CR;˛ is critical for all ˛2 .0; 1=2/. Although
this seems not to be mentioned in the papers [4, 21], we remark without a proof that, for
˛ � 1=2, the operator .��/˛ is critical. This can be verified by the same method which
we use in the proof of Theorem 1.1. It means that there are no Hardy-type inequalities
for .��/˛ on `2.Z/ when ˛ � 1=2, completing the picture of positive powers of the
discrete Laplacian on Z.

(4) Fractional Laplacians in L2.0;1/.
The subcriticality of the polyharmonic operators in L2.0;1/, due to the Birman

inequalities [2, 11, 12] mentioned in point (2), are further complemented by inequalities
.��/˛ � V BD;˛ proved for fractional powers ˛ 2 .0; 1/ in [3], where

V BD;˛.x/ WD
c˛

x2˛

with a constant c˛ � 0; see [3] for an explicit formula. The constant c˛ is positive if
˛ ¤ 1=2, implying .��/˛ to be subcritical for ˛ 2 .0; 1/ n ¹1=2º.

(5) Fractional Laplacians in L2.R/.
The continuous setting on the full line resembles its discrete analogue on Z. Indeed,

for fractional powers ˛ 2 .0; 1=2/, an inequality .��/˛ � V He;˛ holds in L2.R/ with the
weight

V He;˛.x/ WD 4˛
�2
�
1C2˛
4

�
�2
�
1�2˛
4

� 1

x2˛
,

see [18] and also [1,29]. This is in line with the discrete setting on `2.Z/, where the leading
term in the asymptotic expansion of (1.6) as n ! 1 is equal to the discrete analogue
of V He;˛ .

(6) Powers of Laplacians in the higher dimensional setting.
An asymptotic behavior of optimal constants in the discrete Hardy and Rellich inequal-

ities on Zd is studied in [15] for d !1. For further numerous research works related to
fractional Laplacians defined on various subspaces of L2.�/ on open domains � � Rd

and general dimension d � 1, we refer to the recent review [9] and references therein.
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2. Preliminaries

2.1. Powers of the discrete Laplacian on `2.N/

We give more details on the general properties of the discrete Laplacian and its positive
powers on `2.N/, mainly their diagonalization and matrix representation.

First, one can employ basic properties of Chebyshev polynomials of the second kindUn
to diagonalize the discrete Laplacian ��. Recall that the sequence of Chebyshev polyno-
mials Un is determined by the recurrence

(2.1) UnC1.x/ � 2xUn.x/C Un�1.x/ D 0; n2N;

with the initial setting U0.x/ WD 1 and U1.x/ WD 2x; we refer the reader to Section 10.11
of [7] for general properties of Chebyshev polynomials. Further, the set of functions®p

2=� Un j n2N0

¯
forms an orthonormal basis in the Hilbert space L2..�1; 1/;

p
1 � x2 dx/. Therefore, the

mapping U defined as

Uen WD

r
2

�
Un�1; n2N;

where en is the n-th vector of the standard basis of `2.N/, extends to a unitary operator
UW`2.N/!L2..�1;1/;

p
1 � x2 dx/. With the aid of (2.1), it is straightforward to verify

that

(2.2) U.��/U�1 DM2.1�x/;

where Mf .x/ denotes the multiplication operator by a measurable function f in

L2
�
.�1; 1/;

p

1 � x2 dx
�
:

From this observation, the spectral representation of .��/˛ readily follows. Moreover,
one can also compute the matrix representation of .��/˛ with respect to the standard basis
of `2.N/ which turns out to be a particular Hankel plus Toeplitz matrix. The formula for
the matrix elements of .��/˛ is of no explicit use is this paper but can be of independent
interest.

Proposition 2.1. Let ˛ > 0. Then

.��/˛ D U�1M2˛.1�x/˛U:

Further, for m; n2N, the matrix entries of .��/˛ read

(2.3) .��/˛m;n D .�1/
mCn

��
2˛

˛ Cm � n

�
�

�
2˛

˛ CmC n

��
;

where the generalized binomial number is defined by the formula

(2.4)
�
a

b

�
WD

�.aC 1/

�.b C 1/�.a � b C 1/
�

(Recall that the reciprocal Gamma function is an entire function vanishing at the points
0;�1;�2; : : : /
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Proof. The first claim follows readily from (2.2) and the functional calculus for self-
adjoint operators.

Furthermore, the first claim implies that for the matrix entries

.��/˛m;nD hem; .��/
˛eni;

we have the integral representation

.��/˛m;n D
2˛C1

�

Z 1

�1

.1 � x/˛ Um�1.x/ Un�1.x/
p

1 � x2 dx; m; n2N:

Formula (2.3) follows from an explicit calculation of the above integral which is postponed
to the Appendix, see Lemma A.1.

As an immediate corollary of the last proposition, we state an integral representation
for the Green kernel of .��/˛ .

Corollary 2.2. Let ˛ > 0. Then we have

(2.5) ..��/˛ � �/�1m;n D
2

�

Z 1

�1

Um�1.x/Un�1.x/

2˛.1 � x/˛ � �

p

1 � x2 dx

for all m; n2N and � … Œ0; 4˛�.

Remark 2.3. Although negative powers ˛ are not in the scope of the current paper, we
remark on a possible extension of (2.3) to ˛ < 0, in which case .��/˛ is an unbounded
operator. Investigating the convergence of the resulting integrals, one sees that the Cheby-
shev polynomials Un belong to the domain or form domain of M2˛.1�x/˛ , respectively, if
and only if ˛ > �3=4 or ˛ > �3=2. The same conditions thus hold for the standard basis
vectors in `2.N/ to lie in the domain or form domain of .��/˛ . Formula (2.3) remains
valid even for ˛ >�3=2, with the left-hand side interpreted as the corresponding quadratic
form. For the apparent singularities ˛ D �1=2 and ˛ D �1, the right-hand side of (2.3) is
to be understood as the respective limit

.��/�1=2m;n D
.�1/mCn

2

�
 .1=2CmC n/C  .1=2 �m � n/

�.1=2CmC n/�.1=2 �m � n/

�
 .1=2Cm � n/C  .1=2 �mC n/

�.1=2Cm � n/�.1=2 �mC n/

�
;

.��/�1m;n D min.m; n/;

where  WD � 0=� is the digamma function.

2.2. Uniform bounds on the Green kernel

An important ingredient to our proof of Theorem 1.1 is a bound on the modulus of the
Green kernel of .��/˛ which is uniform in the spectral parameter. We prove three such
bounds. First, a rather rough but sufficient bound for the proof of the subcriticality of
.��/˛ for ˛ 2 .0; 3=2/. Second, a refined estimate which will be used in the proof of
Theorem 1.3 and third, a qualitatively more precise bound which eventually leads to the
Hardy weights with expected optimal decay in Theorem 1.4.
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Lemma 2.4. Let ˛ 2 .0; 3=2/. Then there exists a constant C˛ > 0 such that, for all
m; n2N and � < 0, we have

j..��/˛ � �/�1m;nj � C˛mn:

Proof. Observe that the modulus of the integrand in the integral representation (2.5) is
an increasing function of � < 0. Therefore we may estimate it from above by taking
� D 0. The resulting integral remains convergent due to the assumption ˛ 2 .0; 3=2/. This
reasoning yields the upper estimate

j..��/˛ � �/�1m;nj �
2

�

Z 1

�1

jUm�1.x/Un�1.x/j

2˛.1 � x/˛ � �

p

1 � x2 dx � C˛kUm�1k1 kUn�1k1

with the positive constant

C˛ WD
1

2˛�1�

Z 1

�1

p
1 � x2

.1 � x/˛
dx <1;

and where
kUnk1 WD max

x2Œ�1;1�
jUn.x/j:

We conclude the proof by showing that

kUnk1 � nC 1

for all n 2N0, where the above is actually an equality since Un.1/ D nC 1. Using the
identity

(2.6) Un.cos �/ D
sin.nC 1/�

sin �

(see equation (2) in Section 10.11 of [7]), we obtain the expression

Un.cos �/ D
ei.nC1/� � e�i.nC1/�

ei� � e�i�
D e�in�

nX
kD0

e2ik� ;

from which we immediately deduce that

jUn.cos �/j �
nX
kD0

1 D nC 1

for all � 2 .0; �/ and n2N0. The proof is complete.

Lemma 2.5. Let ˛ 2 .0; 3=2/. Then for all m; n2N and � < 0, we have

j..��/˛ � �/�1m;nj �
1

2�

�2.˛/

�.2˛/

p
gm.˛/

p
gn.˛/;

where gn is as in (1.1) and (1.2).
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Proof. Since ˛2 .0; 3=2/, the integral in formula (2.5) is convergent for �D 0. Therefore,
with fixed m; n2N and � < 0, we can estimate the Green kernel as follows:

j..��/˛ � �/�1m;nj �
1

2˛�1�

Z 1

�1

jUm�1.x/Un�1.x/j

.1 � x/˛

p

1 � x2 dx

�
1

2˛�1�

p
Im.˛/

p
In.˛/;

where we used the Cauchy–Schwarz inequality and defined

(2.7) In.˛/ WD

Z 1

�1

U 2n�1.x/

.1 � x/˛

p

1 � x2 dx:

The rest of the proof follows from a formula for In.˛/ in the Appendix, see Lemma A.2,
where it is proven that

In.˛/ D 2
˛�2 �

2.˛/

�.2˛/
gn.˛/

for any ˛2 .0;3=2/ and n2N (see therein also the limiting formulas for the cases ˛D 1=2
and ˛ D 1).

Lemma 2.6. Let ˛ 2 .0; 3=2/. Then there exists a constant C˛ > 0 such that, for all
m; n2N and � < 0, we have

(2.8) j..��/˛ � �/�1m;nj � C˛

8̂̂<̂
:̂

1
max.jn�mj1�2˛ ;1/ if ˛ 2 .0; 1=2/;

min
�
n
m

ln.mC 1/; m
n

ln.nC 1/
�

if ˛ D 1=2;

min.m2˛�2n; n2˛�2m/ if ˛ 2 .1=2; 3=2/:

Proof. We define t WD ��=22˛ > 0 and derive a formula for the resolvent kernel which
exhibits a convenient structure for our analysis. Recalling identity (2.6), the substitution
x WD cos � in formula (2.5) and further elementary manipulations yield

(2.9)

..��/˛ � �/�1m;n D
22�˛

�

Z �

0

sin.m�/ sin.n�/
.1 � cos �/˛ � 2�˛�

d�
2

D
22�2˛

�

Z �=2

0

sin.2m'/ sin.2n'/
sin2˛.'/C t

d'

D
21�2˛

�

Z �=2

0

cos.2.m � n/'/ � cos.2.mC n/'/
sin2˛.'/C t

d':

Case ˛ 2 .0; 1=2/.
Since ˛ < 1=2, one can split the last integral above and study its summands separately.

Let firstm¤m. Setting either k WD jm� nj or k WD nCm and considering that jm� nj �
mC n, it is sufficient to prove an estimate of the formˇ̌̌ Z �=2

0

cos.2k'/
sin2˛.'/C t

d'
ˇ̌̌
�

C

k1�2˛
, k 2N;
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with a constant C D C.˛/ > 0 which does not depend on t 2RC. To this end, we first
estimate the integral over a small neighborhood around the singularity byˇ̌̌ Z �=.4k/

0

cos.2k'/
sin2˛.'/C t

d'
ˇ̌̌
�

Z �=.4k/

0

sin�2˛ ' d' �
� �

2
p
2

�2˛ Z �=.4k/

0

'�2˛ d'

D
�

22�˛ .1 � 2˛/k1�2˛
�

Here we have employed the elementary fact that

(2.10)
2
p
2

�
' � sin' � '; for 0 � ' �

�

4
�

For the bulk of the integral, by the second mean value theorem for definite integrals, one
calculates Z �=2

�=.4k/

cos.2k'/
sin2˛.'/C t

d' D
1

sin2˛
�
�
4k

�
C t

Z �

�=.4k/

cos.2k'/ d'

D
1

sin2˛
�
�
4k

�
C t

sin.2k�/ � 1
2k

,

with some �2 .�=.4k/; �=2�. Using again (2.10), it then follows for the modulus thatˇ̌̌ Z �=2

�=.4k/

cos.2k'/
sin2˛.'/C t

d'
ˇ̌̌
�

1

sin2˛
�
�
4k

�
k
�

2˛

k1�2˛
,

and the claim follows form¤ n. FormD n on the other hand, the claimed bound (which
then reduces to a constant) is a consequence of Lemma 2.5 and the asymptotic behav-
ior (1.4) of gn.˛/ as n!1.

Case ˛ 2 Œ1=2; 3=2/.
Since ˛ � 1=2, one cannot split the integrals in the last line of (2.9) and the second line

therein is of more convenient form. We derive the upper bound by the respective first entry
in the minimum in (2.8), the bounds by the second entry (and thus the resulting bounds by
the minima) then follow from the underlying symmetry in m and n. Splitting the area of
integration as before, we see thatˇ̌̌ Z �=.4m/

0

sin.2m'/ sin.2n'/
sin2˛.'/C t

d'
ˇ̌̌
� 4mn

Z �=.4m/

0

'2

sin2˛ '
d'

� 4
� �

2
p
2

�2˛
mn

Z �=.4m/

0

'2�2˛ d' D
2˛�4�3

3 � 2˛
m2˛�2n:(2.11)

In the remaining part, we integrate by parts and obtainZ �=2

�=.4m/

sin.2m'/ sin.2n'/
sin2˛.'/C t

d'

D �

hcos.2m'/
2m

sin.2n'/
sin2˛.'/C t

i�=2
�=.4m/

C

Z �=2

�=.4m/

cos.2m'/
2m

d
d'

� sin.2n'/
sin2˛.'/C t

�
d'

D

Z �=2

�=.4m/

cos.2m'/
2m

�2n cos.2n'/
sin2˛.'/C t

�
sin.2n'/2˛ sin2˛�1 ' cos'

.sin2˛.'/C t /2

�
d':
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Taking absolute values and using (2.10), this leads to the estimate

(2.12)

ˇ̌̌̌
ˇZ �=2

�=.4m/

sin.2m'/ sin.2n'/
sin2˛.'/C t

d'

ˇ̌̌̌
ˇ

�
n

m

� �

2
p
2

�2˛�
1C 2˛

� �

2
p
2

�2˛� Z �=2

�=.4m/

'�2˛ d':

The claim then finally follows from

(2.13)
Z �=2

�=.4m/

'�2˛ d' D

´
ln 2C lnm if ˛ D 1=2;
1

1�2˛

�
�
2

�1�2˛ �
1 � .2m/2˛�1

�
if ˛ 2 .1=2; 3=2/

(and since the bound obtained from (2.12) and (2.13) is larger at infinity than (2.11) with
˛ D 1=2). Notice that in the second case, the term m2˛�1 diverges due to ˛ > 1=2.

3. Proofs of Theorems 1.1, 1.3, and 1.4

Our method relies on the Birman–Schwinger principle, see Theorem 1 and Corollary 6
in [17], which allows to relate both criticality and subcriticality to the behavior of the
Green kernel (2.5) as the spectral parameter � approaches the spectrum. The uniform
bounds from Lemmas 2.4, 2.5 and 2.6 guarantee a finite limit of the Green kernel as
�! 0�. This leads to Hardy-type inequalities and thus to the subcriticality of .��/˛ for
˛ 2 .0; 3=2/. On the other hand, if ˛ � 3=2, the diagonal entries of the Green kernel have
a singularity as �! 0�, which results in the criticality of .��/˛ .

3.1. Proof of Theorem 1.1

Recall that we always assume ˛ > 0. The statement of Theorem 1.1 is proven in two steps:
(i) if ˛ < 3=2, then .��/˛ is subcritical;
(ii) if ˛ � 3=2, then .��/˛ is critical.

Step (i): Proof of the subcriticality in Theorem 1.1. Suppose that ˛ 2 .0; 3=2/. Consider
the potential

Vn WD


n4
, n2N;

where  > 0. Since V is compact (even trace class), the spectrum of .��/˛ � V below 0

can contain only eigenvalues. With this particular choice of V , we show that there exists
a sufficiently small  > 0 such that the operator norm of the Birman–Schwinger operator

(3.1) K.�/ WD �V 1=2..��/˛ � �/�1V 1=2

fulfills

(3.2) sup
�<0

kK.�/k < 1:

By the Birman–Schwinger principle (Theorem 1 in [17]), it follows that there exists no
negative eigenvalue of .��/˛ � V . Consequently, .��/˛ � V and .��/˛ is therefore
subcritical.
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By means of Lemma 2.4, we derive the following bound on the Hilbert–Schmidt (and
thus operator) norm of K.�/:

(3.3) kK.�/k � kK.�/kHS D

� 1X
mD1

1X
nD1

jKm;n.�/j
2
�1=2
� C˛

1X
nD1

n2Vn D C˛

1X
nD1



n2

for all � < 0. Thus, for any 0 <  < 6=.�2C˛/, inequality (3.2) holds true.

For the proof of Step (ii), we will need two auxiliary results.

Lemma 3.1. Let ˛ � 3=2. Then, for all n2N, we have

lim
�!0�

..��/˛ � �/�1n;n D C1:

Proof. Taking the formal limit �! 0� under the integral in (2.5) produces a singularity
in the integrand at x D 1. The strategy is to split off an interval touching this singularity
where the integrand is strictly positive (and one can thus easily show this portion of the
integral to diverge). The remaining term can be easily bounded uniformly in �. For this
partition, the sign of the Chebyshev polynomials Un is of interest. As we know from the
proof of Lemma 2.4,

(3.4) max
x2Œ�1;1�

jUn�1.x/j D Un�1.1/ D n; n2N:

Therefore, we can pick a point larger than the largest zero of Un�1, which are explicitly
cos.k�=n/, k D 1; : : : ; n � 1, see (2.6), e.g.,

max¹x 2 Œ�1; 1� j Un�1.x/ D 0º D cos
��
n

�
< an WD cos

� �

nC 1

�
2 Œ0; 1/; n 2 N;

and we have
min

x2Œan;1�
Un�1.x/ > 0; n 2 N:

For arbitrary fixed n2N and a spectral parameter � < 0, we start estimating (2.5) with
m D n from below. Since the integrand is non-negative, we have

(3.5) ..��/˛ � �/�1n;n �
2

�

Z 1

an

U 2n�1.x/

2˛.1 � x/˛ � �

p

1 � x2 dx:

We show that the integral in (3.5) tends to infinity as �! 0�. Using that ˛ � 3=2 and
an � 0, we have

.1 � x/˛ � .1 � x/3=2

for all x 2 Œan; 1� � Œ0; 1�. We therefrom conclude a lower estimate on the integral in (3.5)
as follows:Z 1

an

U 2n�1.x/

2˛.1 � x/˛ � �

p

1 � x2 dx

�
p
1C an min

x2Œan;1�
.U 2n�1.x//

Z 1

an

p
1 � x

2˛.1 � x/3=2 � �
dx:
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Hence, it suffices to check that the integral on the right-hand side tends to infinity as
�! 0�. This is the case indeed as, by the monotone convergence, one has

lim
�!0�

Z 1

an

p
1 � x

2˛.1 � x/3=2 � �
dx D

1

2˛

Z 1

an

dx
1 � x

D1:

We next use the above lemma to show that, when ˛ � 3=2, for any arbitrarily small
localized perturbation of .��/˛ a unique eigenvalue emerges from the bottom of the
spectrum. We denote by

ın WD hen; � ien

the delta potential localized at n2N.

Lemma 3.2. Let ˛ � 3=2. Then for any n2N and c > 0, the operator .��/˛ � cın has
a unique negative eigenvalue.

Proof. Fix c > 0 and n2N. Since ın is a projection, one has ın D ı2n, and the correspond-
ing Birman–Schwinger operator reads

K.�/ WD �cın..��/
˛
� �/�1ın; �2C n Œ0; 4˛�:

For all � 2C n Œ0; 4˛�, the Birman–Schwinger principle (Theorem 1 in [17]) gives the
equivalence

(3.6) � 2 �p..��/
˛
� cın/ ” �1 2 �p.K.�//;

where �p denotes the point spectrum. Since K.�/ is a rank one operator with the single
non-zero eigenvalue

(3.7) �.�/ WD �c..��/˛ � �/�1n;n;

equivalence (3.6) can be rewritten as

(3.8) � 2 �p..��/
˛
� cın/ ” �.�/ D �1:

The strategy is to show that there exists a unique �D �n.c/ < 0 such that �.�/D�1. For
this, it is sufficient to verify that �, as a function on .�1; 0/, has the following properties:
(a) � is strictly decreasing on .�1; 0/,
(b) � is continuous on .�1; 0/,
(c) �.�/! 0 as �! �1,
(d) �.�/! �1 as �! 0�.

Property (a) is immediate from the integral representation

(3.9) �.�/ D �
2c

�

Z 1

�1

U 2n�1.x/

2˛.1 � x/˛ � �

p

1 � x2 dx;

see (2.5). Since the resolvent ..��/˛ � �/�1 is an analytic (operator-valued) function of �
on C n Œ0; 4˛�, (b) follows. By monotone convergence applied to the integral in (3.9), one
easily verifies property (c). Finally, (d) is a consequence of Lemma 3.1.



Criticality transition for positive powers of the discrete Laplacian on the half line 1187

We are now ready to prove the remaining part of Theorem 1.1.

Step (ii): Proof of the criticality in Theorem 1.1. Let ˛ � 3=2. From Lemma 3.2, it fol-
lows that if

.��/˛ � cın

with any n2N and c � 0, then necessarily c D 0. Suppose that V � 0 is a given bounded
potential such that .��/˛ � V . Then, for all n2N, one has V � Vnın and thus .��/˛ �
Vnın. By the observation above, it follows that Vn D 0. Since n2N is arbitrary, we con-
clude V D 0.

3.2. A comment on the subcriticality of .��/˛ from above

Recall that �..��/˛/ D Œ0; 4˛� for any ˛ > 0. Analogously to the usual notion of criti-
cality of .��/˛ , one may ask about the stability of the upper bound 4˛ when .��/˛ is
perturbed by a bounded potential V � 0. In other words, we may investigate the criticality
or subcriticality of the operator 4˛ � .��/˛ . It turns out that this operator is subcritical
for all ˛ > 0, which can be seen from essentially the same arguments as in the proof of
Theorem 1.1.

Proposition 3.3. The operator 4˛ � .��/˛ is subcritical for all ˛ > 0.

Proof. Fix any ˛ > 0. First, from (2.5) we deduce the integral representation of the Green
function

.4˛ � .��/˛ � �/
�1
m;n D

2

�

Z 1

�1

Um�1.x/Un�1.x/

4˛ � 2˛.1 � x/˛ � �

p

1 � x2 dx

for any � … Œ0; 4˛� andm;n2N. Next, similarly as in Lemma 2.4, we deduce the uniform
bound

j .4˛ � .��/˛ � �/
�1
m;n j � C˛mn

for all � < 0, with the positive constant

C˛ WD
2

�

Z 1

�1

p
1 � x2

4˛ � 2˛.1 � x/˛
dx:

The only difference to the proof of the subcriticality of .��/˛ is that the above integral is
always finite regardless the value of ˛ > 0. Indeed, its integrand is a continuous function
on .�1; 1� which equals O.

p
x C 1/ as x ! �1C. The rest of the proof is analogous to

Step (i) in the proof of Theorem 1.1.

3.3. Proof of Theorem 1.3

As a byproduct of our method, in the proof of the subcriticality in Theorem 1.1 we
already obtain a (rather rough) Hardy inequality for .��/˛ . This is done using the bound
from Lemma 2.4 when estimating the Hilbert–Schmidt norm of the Birman–Schwinger
operator, see (3.3). We proceed similarly with the refined bound in Lemma 2.5 to prove
Theorem 1.3.
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Proof of Theorem 1.3. Let ˛ 2 .0; 3=2/. Suppose first that a potential V � 0 satisfies con-
dition (1.3) with the strict inequality, i.e., that

(3.10)
1X
nD1

gn.˛/Vn < 2�
�.2˛/

�2.˛/
�

Using Lemma 2.5, we estimate the norm of the corresponding Birman–Schwinger opera-
tor, cf. (3.1) and (3.3), as follows:

kK.�/k �
� 1X
mD1

1X
nD1

jKm;n.�/j
2
�1=2

D

� 1X
mD1

1X
nD1

Vm
ˇ̌
..��/˛ � �/�1m;n

ˇ̌2
Vn

�1=2
�

1

2�

�2.˛/

�.2˛/

1X
nD1

Vngn.˛/

for all � < 0. Hence, assumption (3.10) implies kK.�/k< 1 for all � < 0, and thus further

.��/˛ � V

by the Birman–Schwinger principle (Corollary 6 in [17]).
Suppose now that V � 0 satisfies (1.3). We introduce the auxiliary potentials

V.q/ WD qV for all q 2 .0; 1/.

Then (3.10) holds for V.q/, and therefore

.��/˛ � V.q/

for all q 2 .0; 1/ by the first part of this proof. Since V.q/ ! V converges strongly as
q! 1�, the above inequality in sense of forms remains valid in the limit, and we conclude
that .��/˛ � V .

3.4. Proof of Theorem 1.4

Similarly to Theorem 1.3, the Hardy-type inequality is achieved by using the bound in
Lemma 2.6 on the resolvent kernel to derive a uniform estimate on the norm of the
Birman–Schwinger operator. The structure of the resolvent estimate thereby allows for
a weighted Schur test along the lines of [26, 27] instead of having to bound the Hilbert–
Schmidt norm.

Proof of Theorem 1.4. As before, the claimed inequality follows from the uniform bound
kK.�/k < 1 on the norm of the Birman–Schwinger operator for all � < 0, cf. the proof
of Theorem 1.3 and Theorem 1 and Corollary 6 in [17]. We suitably employ a weighted
Schur test for the matrix operator

Km;n.�/ D �
p
Vm ..��/

˛
� �/�1m;n

p
Vn; m; n2N:
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Case ˛ 2 .0; 1=2/.
In view of Lemma 2.6, it suffices to apply the weighted Schur test to K.�/ with the

resolvent kernel replaced by the upper bound in (2.8). Choosing both weights in the Schur
test as 1=n˛C" with suitable " > 0, and since the problem is symmetric inm and n, it thus
suffices to show that there exists M˛ > 0 such that for all n2N one hasX

m2N;m¤n

1

m˛
1

jm � nj1�2˛
1

n˛
1

m˛C"
C

1

n3˛C"
�

M˛

n˛C"
�

The second summand (which is the contribution from m D n) can be trivially bounded
by the right-hand side and can hence be omitted. We multiply the rest of the claimed
inequality by n˛ , split the sum into three parts and estimate them separately. For the first
part of the sum, we observe that if m � n=2, then jm � nj � n=2, and thus

bn=2cX
mD1

1

jm � nj1�2˛
1

m2˛C"
�

�2
n

�1�2˛ bn=2cX
mD1

1

m2˛C"
�

�2
n

�1�2˛�
1C

Z n=2

1

dm
m2˛C"

�
:

The needed bound for this sum follows fromZ n=2

1

dm
m2˛C"

D
1

1 � 2˛ � "

��n
2

�1�2˛�"
� 1

�
and choosing " < 1 � 2˛ such that the integral diverges like n1�2˛�" (which is possible
since ˛ < 1=2). In the next part of the sum, we use n=2 � m � 2n to estimate

2nX
mDbn=2cC1;m¤n

1

jm � nj1�2˛
1

m2˛C"

�

�2
n

�2˛C"� n�2X
mDbn=2cC1

1

.n �m/1�2˛
C 2C

2nX
mDnC2

1

.m � n/1�2˛

�
�

�2
n

�2˛C"� Z n�1

n=2

.n �m/2˛�1 dmC 2C
Z 2n

nC1

.m � n/2˛�1 dm
�
:

As before, the bound straightforwardly follows by calculating the above integrals. Finally,
observing that if m � 2n then jm � nj � m=2, the tail of the sum is estimated as

1X
mD2nC1

1

jm � nj1�2˛
1

m2˛C"
� 21�2˛

1X
mD2nC1

1

m1C"

� 21�2˛
Z 1
2n

m�1�" dm D
21�2˛�"

"n"
�

Case ˛ D 1=2.
In this case, no weight is needed and by the symmetry we again only need to estimate

the sum over m 2 N. It again suffices to employ the Schur test with the bound on the
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Green kernel of the resolvent from Lemma 2.6, while we split the summation at m D n
and use the respective more convenient member of the minimum in (2.8) as follows:X
m2N

jKm;n.�/j � C1=2

nX
mD1

1

m1=2 ln1=2.mC 1/

m

n
ln.nC 1/

1

n1=2 ln1=2.nC 1/

C C1=2

1X
mDnC1

1

m1=2 ln1=2.mC 1/

n

m
ln.mC 1/

1

n1=2 ln1=2.nC 1/
�

We need to prove that the right-hand side is bounded in n 2N. As the function m 7!
m= log.mC 1/ is increasing on Œ1;1/, we may estimate the first sum by

ln1=2.nC 1/
n3=2

nX
mD1

m1=2

ln1=2.mC 1/
�

ln1=2.nC 1/
n3=2

n3=2

ln1=2.nC 1/
D 1:

For the tail, we proceed by an integral estimate:

n1=2

ln1=2.nC 1/

1X
mDnC1

ln1=2.mC 1/
m3=2

�
n1=2

ln1=2.nC 1/

Z 1
n

ln1=2.mC 1/
m3=2

dm:

Integrating by parts givesZ 1
n

ln1=2.mC 1/
m3=2

dm D �2
h ln1=2.mC 1/

m1=2

i1
n
C

Z 1
n

dm

m1=2.mC 1/ ln1=2.mC 1/
�

Further estimations show thatZ 1
n

ln1=2.mC 1/
m3=2

dm � 2
ln1=2.nC 1/

n1=2
C

1
p

ln 2

Z 1
n

dm
m3=2

�

Since the last integral decays as n�1=2, we see that there exists a constantM > 0 such thatˇ̌̌ Z 1
n

ln1=2.mC 1/
m3=2

dm
ˇ̌̌
�
M ln1=2.nC 1/

n1=2
, n2N:

It follows that the tail of the sum is also uniformly bounded, which completes the proof in
the case ˛ D 1=2.

Case ˛ 2 .1=2; 3=2/.
Here we choose both weights in the Schur test to be 1=n˛�1C" with suitable " > 0, and

again estimate only the sum over m 2 N due to the symmetry. Splitting the summation
along the diagonal and using the respective suitable bound from the minimum in (2.8), it
suffices to boundX

m2N

jKm;n.�/j
1

m˛�1C"
� C˛

nX
mD1

1

n˛
n2˛�2m

1

m˛
1

m˛�1C"

C C˛

1X
mDnC1

1

n˛
m2˛�2 n

1

m˛
1

m˛�1C"
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by a constant multiple of 1=n˛�1C". For the first sum, we estimate

1

n2�˛

nX
mD1

1

m2˛�2C"
�

1

n2�˛

�
1C

Z n

1

dm
m2˛�2C"

C
1

n2˛�2C"

�
;

and calculating the integralZ n

1

dm
m2˛�2C"

D
1

3 � 2˛ � "
.1 � n3�2˛�"/:

The needed bound then readily follows by requiring "< 3� 2˛ such that the above integral
diverges like n3�2˛�" (which is possible since ˛ < 3=2). For the tail of the sum, the
claimed bound is immediate from

1

n˛�1

1X
mDnC1

1

m1C"
�

1

n˛�1

Z 1
n

m�1�" dm D
1

"n˛�1C"
�

4. Coupling with localized potentials

We study the asymptotic behavior of the unique negative eigenvalue of the perturbation
.��/˛ � cın from Lemma 3.2 in the regime of small and large coupling constants. Recall
that Un denotes the nth Chebyshev polynomial of the second kind.

Proposition 4.1. For ˛ � 3=2 and for n 2 N, the unique negative eigenvalue �n.c/ of
.��/˛ � cın with c > 0 satisfies the asymptotic formula

�n.c/ D

8<:�e�
3�

2n2c
.1CO.c// if ˛ D 3=2;

�

�
n2c

˛ sin. 3�2˛ /

� 2˛
2˛�3

.1C r.c// if ˛ > 3=2;
as c ! 0C;

with the decaying remainder

r.c/ D

8̂<̂
:

O.c/ if ˛ 2 .3=2; 5=2/;
O.c ln 1

c
/ if ˛ D 5=2;

O
�
c

2
2˛�3

�
if ˛ > 5=2:

For large coupling constants, one has

�n.c/ D �c
�
1CO

�1
c

��
; as c !C1:

Proof. According to (3.8) and (3.9), the defining equation for � D �n.c/ readsZ 1

�1

U 2n�1.x/

2˛.1 � x/˛ � �

p

1 � x2 dx D
�

2c
�
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From this formula, it is clear that � tends to zero as c ! 0C, and to negative infinity
as c!C1. We first consider the regime c! 0C. Using Lemma A.3, it follows that one
can write

(4.1)
�

2c
D

8<:
n2

3
ln 1
j�j
CO.1/ if ˛ D 3=2;

n2�

2˛ sin. 3�2˛ /
j�j

3�2˛
2˛ C s.j�j/ if ˛ > 3=2;

with

s.j�j/ D

8̂̂<̂
:̂

O.1/ if ˛ 2 .3=2; 5=2/;

O
�

ln 1
j�j

�
if ˛ D 5=2;

O
�
j�j

5
2˛�1

�
if ˛ > 5=2:

Reducing j�j � �� in equation (4.1) for ˛ D 3=2, one immediately obtains the respective
claim. Further, from (4.1) for ˛ > 3=2, one deduces the relation

j�j D O
�
c

2˛
2˛�3

�
and the equation can be written as

�

2c
.1C Qr.c// D

n2�

2˛ sin
�
3�
2˛

� j�j 3�2˛2˛ ;

where the remainder
Qr.c/ WD �cs.j�j/

decays as a function of c as specified in the claim. Solving the last equation for j�j yields
the asymptotic formula for c ! 0C when ˛ > 3=2.

In the regime c !C1, the claim follows in an analogous way from Lemma A.4.

For the discrete bilaplacian, the emerging negative eigenvalue can be characterized by
an implicit equation. If nD 1, it can even be expressed fully explicitly as a function of the
coupling constant.

Proposition 4.2. For n 2N and c > 0, the unique negative eigenvalue of �2 � cın is
given as

�n.c/ D �
.1 � r2/4

r2.1C r2/2
,

where r is the unique solution of the implicit equation

r2

1 � r2

n�1X
jD0

r2j U2j

� 2r

1C r2

�
D
1

c

in .0; 1/. In particular, for n D 1 it is

�1.c/ D �
c4

.c C 1/.c C 2/2
�
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The proof relies on an explicit formula for the Green kernel of the resolvent. The latter
might be of independent interests and is therefore stated in a lemma. It uses a convenient
transformation of the spectral parameter. Recall that the Joukowski transform is the bijec-
tion

� W D n ¹0º ! C n Œ�2; 2�; �.z/ WD z C z�1;

where D WD ¹z 2 C j jzj < 1º. For every � … �.�2/ D Œ0; 16�, there exist unique 0 ¤
�; �2D such that

(4.2) 2C
p
� D � C ��1 and 2 �

p
� D �C ��1:

Notice that the resolvent formula below does not depend on the particular definition of
the complex square root. Choosing another branch only exchanges the roles of � and �, in
which the formula indeed commutes.

Lemma 4.3. For � 2C n Œ0; 16� and m; n 2N, the Green kernel of the bilaplacian is
given by

.�2 � �/�1m;n D
��

.1 � ��/.� � �/

��mCn � � jm�nj
� � ��1

�
�mCn � �jm�nj

� � ��1

�
:

Here 0 ¤ �; �2D are uniquely determined by (4.2).

Proof. Follows immediately from (2.5) and Lemma A.5.

Proof of Proposition 4.2. Notice first that if � < 0, then
p
� 2 iR, such that � D � fol-

lows easily from (4.2). Hence, using Lemma 4.3 with m D n, the defining relations (3.7)
and (3.8) for � D �n.c/ become

1

c
D
j�j2

1 � j�j2
1

Im �
Im
� �2n � 1
� � ��1

�
D
j�j2

1 � j�j2

n�1X
jD0

Im .�2jC1/

Im �
�

Next, from (4.2) it is elementary to derive

(4.3) Re � D
2j�j2

1C j�j2
and Im2� D �

�j�j4

.1 � j�j2/2
,

and thus for the cosine of the argument,

cos.Arg �/ D
Re �
j�j
D

2j�j

1C j�j2
�

Using (2.6), we can further compute

Im .�2jC1/

Im �
D j�j2j

sin..2j C 1/Arg �/
sin.Arg �/

D j�j2jU2j

� 2j�j

1C j�j2

�
:

Combining the above, we see that j�j solves the equation

(4.4)
1

c
D
j�j2

1 � j�j2

n�1X
jD0

j�j2jU2j

� 2j�j

1C j�j2

�
:
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The dependence of � on j�j can be expressed from (4.3) as

(4.5) � D �
.1 � j�j2/4

j�j2.1C j�j2/2
�

From this it is easy to see that there is a one to one correspondence between � < 0 and
j�j 2 .0; 1/. Hence an occurrence of two different solutions j�j of (4.4) gives rise to two
different eigenvalues of �2 C cın, which would contradict Lemma 3.2. Therefore there
is exactly one solution j�j of (4.4) located in .0; 1/. The formula for n D 1 then follows
easily from (4.4) and (4.5).

A. Integral identities and asymptotics with Chebyshev polynomials

To compute two integrals with Chebyshev polynomials needed in our proofs, we use a
slight modification of equation 8 in 3.631 of [13] which reads

(A.1)
Z �=2

0

sin��1.'/ cos.2`'/ d' D
.�1/`��.�/

2��
�
�C1
2
C `

�
�
�
�C1
2
� `

�
for any ` 2 Z and Re � > 0. Indeed, this formula can easily be derived from equation 8
in 3.631 of [13] by using the relation sin x D sin.� � x/ and the fact that a D 2l 2 2Z
therein.

Lemma A.1. For all m; n2N and ˛ 2C with Re˛ > �3=2, one hasZ 1

�1

.1 � x/˛ Um�1.x/ Un�1.x/
p

1 � x2 dx

D
�

2˛C1
.�1/mCn

��
2˛

˛ Cm � n

�
�

�
2˛

˛ CmC n

��
;

where the generalized binomial number is defined in (2.4). For fixed m; n2N, the right-
hand side of the formula is understood as the respective limit at its removable singulari-
ties ˛ D �1 and ˛ D �1=2.

Proof. Similarly as (2.9) follows from (2.5), we use the substitution x WD cos � and (2.6)
to get

(A.2)

Z 1

�1

.1 � x/˛ Um�1.x/ Un�1.x/
p

1 � x2 dx

D 2˛
Z �=2

0

sin2˛.'/ Œcos.2.m � n/'/ � cos.2.mC n/'/� d':

In the last integral, we apply identity (A.1) twice and find that it is equal to

�

2˛C1
.�1/mCn

h �.2˛ C 1/

�.˛ C 1Cm � n/�.˛ C 1 �mC n/

�
�.2˛ C 1/

�.˛ C 1CmC n/�.˛ C 1 �m � n/

i
:
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When rewritten in terms of the binomial numbers, we arrive at the statement. Note that
even though formula (A.1) only applies for Re˛ >�1=2, (withm;n2N fixed), a straight-
forward identity argument between holomorphic functions implies the sought equality for
Re˛ > �3=2. To this end, the left-hand side of (A.2) is easily verified to be holomorphic
on the half plane Re˛ > �3=2 by dominated convergence.

Lemma A.2. For all n2N and ˛ 2C with Re˛ < 3=2, one hasZ 1

�1

U 2n�1.x/

.1 � x/˛

p

1 � x2 dx D 2˛�2
�2.˛/

�.2˛/

�
1 �

.˛/2n

.1 � ˛/2n

�
tan.�˛/;

where .˛/k WD ˛.˛ C 1/ � � � .˛ C k � 1/ is the Pochhammer symbol. At the removable
singularities ˛ 2Z=2, the right-hand side is to be understood as the respective limit.

Proof. As in (2.7), we denote the integral on the left-hand side of the claimed formula
by In.˛/. Lemma A.1 applied with m D n and ˛ replaced by �˛ leads to

In.˛/ D
��.1 � 2˛/

21�˛

� 1

�2.1 � ˛/
�

1

�.1 � ˛ C 2n/�.1 � ˛ � 2n/

�
:

Repeatedly using the well-known identity �.z C 1/ D z�.z/, we arrive at

1

�.1 � ˛ C 2n/�.1 � ˛ � 2n/
D

1

�2.1 � ˛/

.˛/2n

.1 � ˛/2n
,

and therefore

In.˛/ D �2
˛�1 �.1 � 2˛/

�2.1 � ˛/

�
1 �

.˛/2n

.1 � ˛/2n

�
:

Applying the reflection identity

�.1 � z/�.z/ D
�

sin.�z/
,

one further gets

�.1 � 2˛/

�2.1 � ˛/
D

sin2.�˛/
� sin.2�˛/

�2.˛/

�.2˛/
D

tan.�˛/
2�

�2.˛/

�.2˛/
�

The claimed formula now readily follows.
Notice that, for n2N fixed, the left-hand side of the claimed identity is analytic for

Re˛ < 3=2, while the right-hand side has removable singularities at ˛ 2 �N0=2, as well
as at ˛ D 1=2 and ˛ D 1. The respective formulas at the two positive parameters can be
determined as

lim
˛!1=2

In.˛/ D
p
2

2nX
jD1

1

2j � 1
and lim

˛!1
In.˛/ D �n:

In the weak coupling regime in Section 4, the needed asymptotic formulae for the
Green kernel of the resolvent are a consequence of the following lemma.
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Lemma A.3. For all n2N, we have the relationZ 1

�1

U 2n�1.x/

2˛.1 � x/˛ C t

p

1 � x2 dx D

8<:
n2

3
ln 1
t
CO .1/ if ˛ D 3=2;

n2�

2˛ sin. 3�2˛ /
t
3
2˛�1 C r.t/ if ˛ > 3=2;

as t ! 0C, where r.t/ is the decaying remainder

r.t/ D

8̂<̂
:

O.1/ if ˛ 2 .3=2; 5=2/;

O
�
ln 1
t

�
if ˛ D 5=2;

O
�
t
5
2˛�1

�
if ˛ > 5=2:

Proof. It follows from a dominated convergence argument that the integral over the subin-
terval Œ�1; 0� is bounded as t ! 0C. The (divergent) quantity of interest is thus

I.t/ WD

Z 1

0

U 2n�1.x/

2˛.1 � x/˛ C t

p

1 � x2 dx:

By the mean value theorem applied to the function U 2n�1.x/
p
1C x together with (3.4),

there exists a bounded function !W Œ0; 1�! R such that

(A.3) I.t/ D n2
p
2

Z 1

0

p
1 � x

2˛.1 � x/˛ C t
dx C

Z 1

0

!.x/.1 � x/3=2

2˛.1 � x/˛ C t
dx:

It remains to study the asymptotic behavior of the above integrals as t ! 0C (while the
first one grows faster and the second one gives only a lower order term). We denote the
respective first and second integral by I1;˛.t/ and I2;˛.t/. The substitution 2˛.1 � x/˛ D
y˛t and the boundedness of ! lead to

I1;˛.t/ D
1

2
p
2
t3=.2˛/�1

Z 2t�1=˛

0

p
y

y˛ C 1
dy;

jI2;˛.t/j �
C

4
p
2
t5=.2˛/�1

Z 2t�1=˛

0

y3=2

y˛ C 1
dy;

where C WD maxx2Œ0;1� j!.x/j.
We start by analyzing I1;˛.t/. For ˛ > 3=2, the integral therein converges as t ! 0C

and its remainder can be bounded as follows:Z 1
2t�1=˛

p
y

y˛ C 1
dy �

Z 1
2t�1=˛

y1=2�˛ dy D O.t1�3=.2˛//:

Using equation 2 in 3.241 of [13] to determine the value of the limit integral, we obtain

I1;˛.t/ D
1

2
p
2
t3=.2˛/�1

� �

˛ sin
�
3�
2˛

� CO.t1�3=.2˛//
�
; ˛ >

3

2
�
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When ˛ D 3=2, on the other hand, the integral in I1;3=2.t/ diverges as t ! 0C. Indeed,
the substitution z D y3=2 C 1 then gives

I1;3=2.t/ D
1

3
p
2

Z 2
p
2t�1C1

1

1

z
dz D

1

3
p
2

ln.t�1/CO.1/:

Considering I2;˛.t/, analogous arguments lead to

I2;˛.t/ D

´
O.ln.t�1// if ˛ D 5=2;

O
�
t
5
2˛�1

�
if ˛ > 5=2:

In case that ˛ 2 Œ3=2; 5=2/, we have

jI2;˛.t/j �
C

4
p
2
t5=.2˛/�1

Z 2t�1=˛

0

y3=2�˛ dy D t5=.2˛/�1 O.t1�5=.2˛// D O.1/:

The claim follows by combining the proven asymptotic relations for I1;˛.t/ and I2;˛.t/
with (A.3), together with the boundedness of the integral over Œ�1; 0�.

In the strong coupling limit in Section 4, the asymptotic regime for large t is needed.

Lemma A.4. For all n2N, we haveZ 1

�1

U 2n�1.x/

2˛.1 � x/˛ C t

p

1 � x2 dx D
�

2t

�
1CO

�1
t

��
; t !C1:

Proof. By Taylor’s theorem, we have

1

1C 2˛.1 � x/˛ t�1
D 1C r.t; x/; r.t; x/ D O

�1
t

�
; t !C1;

where the asymptotic relation is uniform in x 2 Œ�1;1�. Using the orthonormality property
of the Chebyshev polynomials, the claim then follows fromZ 1

�1

U 2n�1.x/

2˛.1 � x/˛ t�1 C 1

p

1 � x2 dx

D
�

2
C

Z 1

�1

U 2n�1.x/
p

1 � x2 r.t; x/ dx D
�

2
CO

�1
t

�
:

To compute the Green kernel of the bilaplacian, we use a slight extension of equa-
tion 2:6 in 3.613 of [13], namely

(A.4)
Z �

0

cos.l'/
1 � 2k cos' C k2

d' D
�kl

1 � k2

for l 2N0 and k 2D (extended by analyticity from the original statement for k 2 Œ0; 1/).
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Lemma A.5. For all m; n2N and � 2 C n Œ�4; 4�, one hasZ 1

�1

Um�1.x/Un�1.x/

4.1 � x/2 � �2

p

1 � x2 dx

D
�

2

��

.1 � ��/.� � �/

��mCn � � jm�nj
� � ��1

�
�mCn � �jm�nj

� � ��1

�
;

where �; �2D n ¹0º are (unique) such that 2C � D � C ��1 and 2 � � D �C ��1.

Proof. We start by the simple identity

1

4.1 � x/2 � �2
D

1

2�

� 1

2.1 � x/ � �
�

1

2.1 � x/C �

�
;

which together with the substitution x WD cos � and relation (2.6) results inZ 1

�1

Um�1.x/Un�1.x/

4.1 � x/2 � �2

p

1 � x2 dx

D
1

2�

Z �

0

� 1

2.1 � cos �/ � �
�

1

2.1 � cos �/C �

�
sin.m�/ sin.n�/ d�

D
1

4�

Z �

0

� �

1 � 2� cos � C �2
�

�

1 � 2� cos � C �2

�
� Œcos.jm � nj�/ � cos..mC n/�/� d�:

The claim follows from suitably applying (A.4) to each summand above and observing

2� D � C ��1 � .�C ��1/ D .� � �/.1 � ��1��1/:
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