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Asymptotic stability of the fourth-order ¢* kink for
general perturbations in the energy space

Christopher Maulén and Claudio Muifioz

Abstract. The fourth-order ¢* model extends the classical ¢* model of quantum field theory to
the fourth-order case, but sharing the same kink solution. It is also the dispersive counterpart of the
well-known parabolic Cahn—-Hilliard equation. Mathematically speaking, the kink is characterized
by a fourth-order nonnegative linear operator with a simple kernel at the origin but no spectral gap.
In this paper, we consider the kink of this theory, and prove orbital and asymptotic stability for any
perturbation in the energy space.
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1. Introduction

1.1. Setting

In this work we consider the fourth-order ¢* model, or wave-Cahn—Hilliard equation. In
one dimension this model is written as

P+ 02(R2p+¢—¢>) =0, (1.x) eR?, (1.1)
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where ¢ = ¢ (¢, x) is assumed real valued. Equation (1.1) with quadratic nonlinearity and
an additional linear term of order zero was considered by Bretherton [11] as a model for
studying weakly nonlinear wave dispersion. It also appears with an additional parabolic
term in [24].

There are several interesting and profound motivations to study (1.1). The first and
most obvious one is given by its similarity to a recognized model of degenerate
phase transitions. Indeed, the “parabolic” version of (1.1) is the well-known Cahn—Hilliard
model

3 +22p+d—¢>) =0, xeR, >0, (1.2)

introduced by Cahn and Hilliard in the study of phase separation in cooling binary solu-
tions such as alloys, glasses and polymer mixtures [14]; see additionally [76, 77]. Major
mathematical advances have been obtained for this model during past years, not only
in one dimension but also in several dimensions. In this setting, a key question is the
long-time behavior of kinks, usually referred to in the community as fronts. Among other
essential works, one finds the foundational result by Bricmont, Kupiainen and Taski-
nen [12], who showed the stability and asymptotic stability of fronts in one dimension
for (1.2). Many subsequent works have extended and improved this achievement. These
results will be described in detail in Section 1.3.

Additionally, (1.1) can be recast as the natural fourth-order extension of the well-
known ¢* model of quantum field theory,

2¢ — (029 +d—¢°) =0, (1,x) R (1.3)
that has been extensively studied during past years. The ¢* kink

x
H(x) tanh(ﬁ), (1.4)
is a notable example of a simple solution of (1.3) with challenging dynamical behavior,
and its general behavior is still unknown to us. In [42] (see also [41]), the authors showed
asymptotic stability for odd perturbations in the energy space. A proof for the general case
is still missing.

Another interesting motivation for the study of (1.1) is given by its defocusing char-
acter, opposite to the focusing one present in the good-Boussinesq model. See [68] for a
detailed introduction to the soliton problem in good-Boussinesq models. The latter model
and the dynamics of their (unstable) solitons has been studied by many authors during past
years. But, contrary to good-Boussinesq, the model studied in this work will have more
physical interest.

Precisely, the fourth and final motivation to study (1.1) comes from the fact that it
possesses, as well as Cahn—Hilliard and ¢*, stable kink solutions. In the fourth-order ¢*
case, the kink coincides with the one for (1)4, and as far as we understand, for (1.1) there is
not even a single kink stability result. Consequently, in this paper our main objective is to
initiate the study of the dynamics of kinks for (1.1) dealing with the one-dimensional case
for general data in the energy space.
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Following Linares [52], equation (1.1) can be rewritten formally taking

¢ = (¢1.¢2) = (¢, 05" 0:9),

and obtaining the following representation as a 2 x 2 system:

{atqsl = o, s
dr¢pp = —0x(3¢1 + d1 — ¢7).
This system admits kink solutions given by
H,=(H,,—cH;)(x —ct —x¢), c€R, x9€eR,
where + H, solves the ODE
H!4+ (> +1)H, — H? =0, H.(+£00) =40 =++1+c2. (1.6)

One has that H, is a rescaled version of the ¢* kink:
H.(x) =0H(ox), H(x)givenin (1.4),

which differs from the general kink from (1.3) in the sense that the former only has the
Lorentz boost as its scaling symmetry. This subtle difference will remain very important
for the main results of this paper.

System (1.5) will be the exact model worked in this paper. It has the following associ-
ated conserved quantities:

1 1
EW] = Elpr. g2l = 5 [[@xtr? +03 + 567~ 1] (enerey).
1.7

Pl¢] = Pl¢1.¢2] = /¢1¢2 (momentum).

(Here [ means f]R dx.) The quantity P has no good meaning around the kink solution
if one works barely in the energy space, and will be loosely used in this general form.
However, its second variation around the kink is perfectly well defined and will be the
key element to study the long-time behavior of kinks. Following [45], the set of functions
¢ € Ll (R)x L\ (R) for which the energy is finite is

E ={(¢1.¢2) € Lipe(R) x L. (R) | 3x¢p1.¢2 € L*(R). (p7 —1) € L?}.  (1.8)

To study the stability of the static kink
H(x)= Ho = (H.0) = (tanh(%),O), (1.9)

we introduce the subset of E in (1.8) given by

Eg={¢<cE|¢—HecH R)xL*R). (1.10)
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Let us consider a shift modulation p(¢) induced by a perturbation ¢ € Eg in (1.5) of H
of the form

¢1(l,x):H(x—,o(t))+u1(t,x), ¢2(l,x):u2(t,x),
such that
(@), H'(- — p(1))) = (u1(t), H'(x — p(2))) =0, (a,b) = /Clb dx. (111

Then from (1.5) one can see that the perturbation satisfies the following space-time, vari-
able coefficients system:

diuy = Dy + p'H'(- = p), (1.12)
Oiuy = 0, Luq + 0, BH(-— p)u% + u%)’ .
where
L= =03+ Vol —p). with Vo(x) = —1 +3H(x) =2 - 3sech2(i)~ (1.13)
V2

Note that & coincides with the unbounded linear operator appearing around the ¢*# kink.
Recalling [42,45,62] (see also Lemma 2.1 for further details), one has that £ is nonnega-
tive and it has absolutely continuous spectrum [2, c0). Additionally, the discrete spectrum
consists of the simple eigenvalues Ao = 0 and A = ‘/TE, with eigenfunctions

Yo(x) = H' and Y,(x) = sech(i) tanh(i), (1.14)
V2 V2
respectively. Finally, A, = 2 is a threshold resonance, in the sense that £¢ = 2¢ possesses
a smooth L%\ L? solution with spatial derivative in L2.

In the case of (1.12) the situation has its own particularities, similar to the ones already
present in [68], in the sense that now the corresponding linear operator is —32 £, which is
of fourth order and the composition of two second-order operators. The properties of this
operator differ from & itself in the sense that (Lemma 2.2) —32 £ is nonnegative and it has
absolutely continuous spectrum [0, 00), namely, as in KdV, there is no spectral gap. There
are no embedded eigenvalues in the continuous spectrum nor resonances, but o = 0 is an
eigenvalue with kernel Yy in (1.14), generated by the invariance under shifts of the model.
There is an additional linearly growing odd mode at the origin, which in one dimension
is usually harmless. Notice that any suitable scaling modulation of the kink costs infinite
energy and for this reason will not be present in this work.

1.2. Main results

Our first result is the orbital stability of the fourth-order ¢* kink:
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Theorem 1.1. Let H be the kink introduced in (1.9). There exist 8, > 0 and C* > 0 such
that for any ¢ € Eg, with

[¢™ — H | gixr2 < 8. (1.15)

there exists a unique global solution ¢ € C(R, Eg) of (1.5) with ¢(0) = ¢™. Moreover,
for some smooth p(t) € R, one has

SU}E ¢, + p(t) — H|gixr> < C*[|¢™ — Hl|gr1xz2- (1.16)
te

Some previous results are needed for the proof of this theorem, among them a well-
posedness theory for perturbations of the kink in the energy space whose proof relies on
standard energy arguments; see e.g. [45]. The proof of this fact is given in Section 2 and
follows the ideas of Linares [52].

In the case of scalar field models, orbital stability was proved by Henry, Perez and
Wreszinski [30] in the case of static kinks. The general case is contained in [45].

Although the proof of Theorem 1.1 will follow standard ideas, it is worth mentioning
that no result of this type has appeared in the literature for the case of the fourth-order
¢* model. An interesting open question is to prove (1.16) in the case of infinite energy
perturbations that allow for scaling variations. In that case, the energy will no longer be
useful, at least in the classical sense. Our main results, orbital and asymptotic stability,
stated for data in the energy space only, provide a satisfactory answer as in the parabolic
setting [ 12]. Indeed, in the “hyperbolic” case, the final state asymptotics will also be found
in the case of general data perturbations.

Theorem 1.2 (Asymptotic stability). Under assumption (1.15) in Theorem 1.1, and by
making 8, > 0 smaller if necessary, one has that for any compact interval I of R and
y > 0 small enough,

Jgim (190 + p(0) = Hllzowry + (1= 7927809 0.+ p) ) = 0. (117)

Recall that convergence on the whole line will imply that the data is the kink itself.
In that sense, Theorem 1.2 is optimal if one considers the energy space topology only.
Compared with the results in [12] for the parabolic Cahn—Hilliard model and subsequent
improvements, the Hamiltonian character of the dynamics forbids a better understanding
of the exterior regions without the use of well-chosen weighted norms. Additionally, the
parabolic dynamics possesses several key elements that are not present here, the most
important being the presence of good decaying functionals to measure the long-time
dynamics.

The parameter y > 0 in Theorem 1.2 depends on §, in particular, any fixed 0 < y ~ §2/°
suffices to prove (1.17). Additionally, general data with no restriction naturally induce
shifts in the dynamics. This shift parameter in (1.17) satisfies a particular equation that
suggests that, unless one asks for additional space decay at time zero, there will not be
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convergence of p(¢) as time tends to infinity. This is in strong contrast with scalar field
models as in [37, 38,45], where convergence was ensured by quadratic estimates on the
shift parameters.

It is also interesting to compare Theorem 1.2 with the foundational asymptotic stability
result for the defocusing mKdV kink obtained by Merle and Vega [70]. The fourth-order
¢* kink requires more care because of its character as a nonlinear system of equations.
They showed weak convergence of any (suitably shifted) perturbation of the kink towards
the kink itself, once again thanks to the impossibility of performing scalings without
spending an infinite amount of energy. This structural rigidity is present in other models;
see e.g. the case of the Peregrine breather [72]. We believe that our techniques provide a
locally stronger version of the results in [70], and probably improvements of [71] as well.

We believe that our results open the door to the understanding of the long-time solitary
wave dynamics in more general fourth-order models, as well as several other Boussinesq
models. We mention for instance the asymptotic stability, without parity condition, of
the good-Boussinesq standing wave (see [68]), of some particular abcd solitary waves, at
least in the zero-speed even-data case [7,8]. Some of these models have important physical
meaning and are of the utmost interest as well.

1.3. Previous results

We briefly comment now on the main previous contributions to the kink asymptotic sta-
bility problem in our setting. We classify them into three different lines: the Boussinesq
models, the Cahn—Hilliard model and the ¢* and similar models.

The fourth-order ¢* model (1.1) is part of the family of Boussinesq [10] models highly
studied in the literature. One important aspect that is not completely understood is the
behavior of solitary waves in the long-time dynamics. For a complete review of this model
in the “focusing case”, the reader may consult the introduction in [68]. The literature is
extensive and we will concentrate ourselves on the soliton problem. Bona and Sachs [9]
showed the stability of fast solitary waves for the so-called good Boussinesq model. Slow
solitary waves are unstable and may develop blow-up [61]. Pego and Weinstein [79, 80]
addressed the asymptotic stability problem for the first time in the case of the so-called
improved Boussinesq model (see also [69]) revealing its difficulty compared with other
fluid models. Precisely, compared with (1.1), the former has strongly unstable directions,
specially in the case of the standing wave which was proved asymptotically stable in [68],
provided one works orthogonal to the unstable manifold. Our proofs follow the spirit of the
results in [68] (see also a previous work in the case of the improved Boussinesq system
[69]); however, unlike in previous works where parity was needed, here we are able to
consider the problem in full generality. Previous decay results are available for the Bona,
Chen and Saut abcd model [7, 8]; see the references [47,48].

The long-time behavior of kinks (or fronts) in the parabolic Cahn—Hilliard model
[14] has been addressed by many authors during the past decades. Novick-Cohen and
Segel [77] and Novick-Cohen [76] provided foundational energy methods to describe the
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dynamics in the case of the originally motivated strongly degenerate Cahn—Hilliard model.
In [23], local and global well-posedness and long-time behavior for Cahn—Hilliard on an
interval were first obtained. Pego [78] used matched asymptotics to describe the evolution
in higher dimensions of the phase separation in the singular perturbative regime. Later,
Caffarelli and Muler [13] provided rigorous L°° bounds for this regime. Alikakos, Bates
and Chen [4] showed that level surfaces of solutions to the Cahn—Hilliard equation tend to
solutions of the Hele-Shaw problem under the assumption that classical solutions of the
latter exist. As previously mentioned, Bricmont, Kupiainen and Taskinen [12] provided a
foundational result proving that the kink in one dimension is asymptotically stable: if the
perturbation is continuous and for some p > 2, ||(x)? (¢ — H)||L~ is small enough, then
for some xo € R,

t_l)iToo ¢ () — H(- — xo)[lL = 0.

A more precise asymptotics of the remainder term is also given. The method of proof
involves but it is not limited to the renormalization group technique. It is interesting to
mention that in the energy space, the convergence of the shift parameter in Theorem 1.2
towards a final state is probably not possible unless one adds additional information on
the initial data of the problem. The reader may also consult a simplified proof [15] of
the kink asymptotic stability by using free energy techniques. Later, Korvola, Kupiainen
and Taskinen [40] (see also [39]) extended the one-dimensional result to dimension d > 3
and any p > d + 1. There is an interesting anomalous decay for the problem in higher
dimensions, and the shift must take into account the transversal perturbations; however, it
converges to zero as time tends to infinity, unlike in the one-dimensional case.

In the case of a generalized version of the one-dimensional Cahn—Hilliard equation,
Howard [32] established that linear stability of fronts implies nonlinear stability. Nonlin-
ear orbital stability is established for waves with initial perturbations of algebraic decay,
under the spectral stability assumption, described in terms of the Evans function. Later,
Howard [31] established that the planar wave solutions are asymptotically stable, in the d -
dimensional Cahn—Hilliard equation, with d > 2. In this result, it is required that the initial
perturbations decay at an appropriate algebraic rate in an L' norm of the transverse vari-
ables; and in [33], the same author considers the multidimensional Cahn—Hilliard system,
showing for the planar transition front solutions that spectral stability implies nonlinear
stability.

Finally, Theorem 1.2 can be recast as an extension into the fourth-order ¢* model of
the stable [30] kink asymptotic stability proved in [42] using essentially virial identities
(see [41] for a simplified proof and [21] for an extension of the previous result). As pre-
viously explained, the data considered in [42] is odd and the general case is still open.
Earlier results in this direction were obtained by Cuccagna [20], who considered the ¢*
kink in three dimensions, and using vector field methods showed the asymptotic stabil-
ity of the ¢* kink. Under higher-order weighted norms, Kopylova and Komech [37, 38]
showed asymptotic stability of kinks of highly degenerate scalar field theories. Delort and
Masmoudi [22] applied Fourier analysis techniques and proved a detailed asymptotics for
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odd perturbations of the kink up to times O(¢~*), where ¢ is the size of the perturbation. In
[45], a sufficient condition is given to describe the long-time dynamics of kink perturba-
tions for any data in the energy space, including many models of interest in quantum field
theory [62] (except sine-Gordon and ¢*). In this case, kinks must be modulated in terms
of scaling (the Lorentz boost) and shifts, which makes computations harder than usual.
Cuccagna and Maeda provided a new sufficient condition to have asymptotic stability
[21] in the odd data case. Snelson [81] considered the case of the ¢4 kink in the presence
of variable coefficients. The case of the integrable sine-Gordon kink has attracted attention
during past years due to its complexity and lack of kink asymptotic stability in the energy
space; see [3, 16,63, 73] and references therein. The case of collision of kink structures
was treated in [35].

Another point of view, equivalent to the treatment of kinks under symmetry assump-
tions (essentially no shifts or Lorentz boosts), is given by the study of one-dimensional
nonlinear Klein-Gordon models under variable coefficients. Foundational works in three
dimensions were obtained by Soffer and Weinstein [82—84]. In this direction we men-
tion previous scattering results by Lindblad and Soffer [57-59], Hayashi and Naumkin
[27-29], Sternbenz [85], Bambusi and Cuccagna [5], Lindblad and Tao [60] and Lind-
blad et. al. [54-56]. These results have recently been improved by considering quadratic
nonlinearities; see the scattering results by Germain and Pusateri [25]; see also [26]. The
dynamics of solitons in nonlinear Klein—Gordon models has concentrated much effort dur-
ing past years. We mention three-dimensional and one-dimensional works on the descrip-
tion of the manifold by Krieger, Nakanishi and Schlag [46] and Nakanishi and Schlag
[75], and earlier results by Ibrahim, Masmoudi and Nakanishi [34]. Recently, one- and
three-dimensional subcritical dynamics around the soliton have been addressed in great
detail in [6, 17, 18,36,43,44,49-51,64] in the presence of at least one unstable mode.

1.4. Idea of proofs

We will use localized virial estimates to show the asymptotic stability of the fourth-order
¢* kink. Virials have been previously used in many complex dynamics; see e.g. [1,2,
42,44, 66, 67]. In this paper, we follow ideas from [68], which are based on previous
ones from Kowalczyk, Martel and the second author in [44] and Kowalczyk, Martel, the
second author and Van Den Bosch [45] to study the stability properties of kinks for (1+1)-
dimensional nonlinear scalar field theories.
The first step is to decompose the solution close to the kink as follows: we choose p(¢)
such that
{«fn(t,x) = HO) +ui(t.x), y=x—p).
$2(t. x) = uz(t, x),

and (uy, H'(y)) = 0 and |[(u1(¢), u2(t))||g1xr2 < 8. Notice that we have chosen not
to follow the standard centering performed in [45]. There are several reasons to follow
a different approach. The most relevant is that multi-kink structures do not center well,
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specially in the case of several kinks. Another reason is that centering and multiple deriva-
tives as in (1.1) do not cooperate well with each other.

Then we will focus on (u1,u) € H' x L?, which satisfy the linearized equation
(1.12). Following [68, 74], for an adequate weight function ¢4 placed at scale A large, we
obtain the virial estimate (see (4.19))

d

1
o [entme == [wd + 20,007 + 2= ol

+ CI/sech(y)u% + C1p”, (1.18)

where (w7, w») is a localized version of (11, u;) at A scale, and C; denotes a fixed con-
stant. This virial estimate is standard now but it is not enough to conclude because of the
terms C; [ sech(y)u? and p (which is only of quadratic nature). Then we require to
transform the system to a new one which has better virial estimates, in the spirit of Martel
[65]. For any y > 0 small enough, we define new variables (v1,v,) € H! x H? by

{vl =(1—y#)"'Lu,

vy = (1—y33) 'uz

(see (5.1)). In [68], this change of variable was enough to describe the stable manifold
related to the unstable static soliton. Here we have additional complications since shifts
are nontrivial perturbations and (v, v,) € H! x H? follow modified dynamics. In par-
ticular, |p’| is only linear in (11, u»), unlike in scalar field models. However, a surprising
miracle happens and the new system for (v, v2) (see (5.2)) satisfies, for an adequate
weight function ¥4, g, B < A, the new virial estimate (see (5.7))

d 1
o [ Va4, BV1V2 < -5 /[zf + (Vo — C28Y1922 4 2(0,2,)?] + Lo.t., (1.19)

where (z1, zp) is a localized version of (v, v2), at the smaller scale B, Vj is given
by (1.13) and C, denotes a fixed constant. An important point here is that the operator
—28§ + Vjp is now positive, and p’ has a critical almost zero contribution in (1.19), which
is not the case in (1.18). The cancelation of the contribution by p’ is part of a new idea
that reveals that shift and scaling modulations should be treated as if they were additional
internal modes (recall that they are not), just as is done in scalar field models. This is the
main new outcome of this paper, which allows us to treat shifts in a simple fashion in the
case of fourth-order ¢* kink perturbations.

Following [44], in order to combine estimates (1.18) and (1.19) we need an estimate
for the term before last in (1.18). A coercive estimate is proved in terms of the variables
(w1, wy) and (z1, z2) (see (7.2)):

/ sech()u? < 820 (Jlwy |12, + [18xw1[125) + 871202012, + 8275|9212, (1.20)
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We can directly observe that the term d,z; does not appear in (1.19), leading to the main
obstruction present in this paper. This problem is deeply related to the fact that (v, v3) €
H' x H?,i.e. the new variables are in opposite order of regularity.

In order to overcome this problem, we introduce a series of modifications that will
allow us to close estimates (1.18) and (1.19) properly. First, we must gain derivatives. In
a new virial estimate for the system of (d,v1, d,v2) (see (6.2)), we obtain the third virial
estimate

d
E/WA,BaxvlaxUZ
1
== / ((0x21)" + (Vo = C38'19)(3x22)* +2(8322)°) + Lo, (12D)

with C3 > 0 fixed. This new estimate give us local L? control on 9,z and 3)2622, which
was not present before. Together with a similar estimate as (1.20), and in order to control
02 and combine estimates (1.18) and (1.19), we need an estimate for the last terms in
(1.18). A coercive estimate is proved in terms of the variables (w1, w;) and (z1, z5) (see

(7.11)):
p? < 820 w7, + 8720 22|12 + 801022017, + 8370k 227 (1.22)

Finally, we consider a functional J# being a well-chosen linear combination of (1.18),
(1.19), (1.21), (1.20) and (1.22). We get

d
) < —810(lwy 12, + 19xw1 2, + [wal|?,) forallz > 0.

This final estimate allows us to close estimates, and prove local decay for u; after some
standard change of variables from w; to u;.
Organization of this paper

This paper is organized as follows. In Section 2 we provide several basic but not less
important elements for the study of the fourth-order ¢* model. Section 3 is devoted to
the proof of Theorem 1.1. Finally, Sections 4, 5, 6, 7 and 8 deal with the proof of the
asymptotic stability of the kink, Theorem 1.2.

2. Preliminaries

2.1. Linear operators
Recall £ introduced in (1.13). The following results are standard; see [62].

Lemma 2.1 (Properties of £). The linear unbounded operator £, defined in L? with
domain H?, satisfies the following properties:
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(1) The absolutely continuous spectrum of £ is [2, 00).
(2) £ is self-adjoint and nonnegative.

(3) The discrete spectrum consists of simple eigenvalues Ao = 0 and A, = ‘/75 with
eigenfunctions

Yo=H' and Y(x)= sech( 2)tanh(%),

o

respectively.

In a similar way, we have the following properties for the more involved operator
-2 L:
Lemma 2.2 (Properties of —92&). The linear operator —9> £ defined in (1.13), posed in
L? with domain H*, satisfies the following properties:

(1) The absolutely continuous spectrum of —92& is [0, c0).

(2) —02% is nonnegative.

(3) ker(—02£) = span{H'}.

The proofs of the first two statements are direct. For the proof of the last result, see
Appendix A.

Remark 2.1. Unlike good Boussinesq, the operator £ appearing in the case of kinks
has even kernel H’, implying that the equation £ A = 1 cannot have bounded solutions.
Resonances are therefore excluded in this case. See [68] for the case where resonances but
no shifts are allowed.

2.2. Coercivity

The linearization of (1.5) around H involves the operator (1.13) and —8)2613. Here, we
recall a few properties of the operator £.
Let the bilinear form

Hu,v) = (L), v) = /(8xu3xv + Vouv),

where Vj is given in (1.13).

Lemma 2.3 (Coercivity [42]). Ifu € H'(R) satisfies (u, Yy) = 0, where Yy is the even
eigenfunction associated to eigenvalue Ao = 0 of operator £, then

3
H(u,u) > ;||u||§,1. (2.1)

We will need a weighted version of the previous result, which uses (2.1). See [68] for
a similar proof.
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Lemma 2.4 (Coercivity with weight function). Consider the bilinear form

Hiy (1. v) = (/L L), /orv) = / o1 (3xuds + Vouv),

for ¢ such that |¢;| < CL¢pr, with C not depending on L. Then there exists A > 0
independent of L small such that

Hy (u.1) > 2 / b1 (351 +u?)

forallu € H'(R) satisfying (u, Yo) = 0, and provided L is taken small enough, indepen-
dent of the size of u.

2.3. Technical identities related to the operator £

The next lemma will be useful for the first computations related to virial identities, which
allow us to prove the asymptotic stability of the static kink.

Lemma 2.5. Let 1) be a smooth bounded function, and (f. g) € H'(R) x H'(R). The
following identities hold:

(nE(f).g) = / M0 f0xg + Vofel + (795 f.g). 2.2)

1 1
(). f) = =5 [ B+ Voss+ 5 [avir?+ 5 [nr2 3

and
1 1 1 ,
@f).f) = =5 [ 11307+ Vos =3 [avirt+ 5 [ s @4
For the proof see Appendix B.

2.4. Tll-posedness

Before considering perturbations of the kink solution, we will make some remarks about
the case of small data around the zero solution. It is expected, as in the case of ¢* or
Allen—Cahn, that this state is unstable. However, some interesting remarks about local
existence can be made in the fourth-order ¢* case.

System (1.1) can be written as

3 + 029 =0,
dp— 939 —¢ = —¢>.
Let ¢y = ¢ + ig; then
i0:y + 92y +Rey = (Re ).

From this we can see that w has interesting similarities with the equations appearing
in the study of the Peregrine breather [72]. Indeed, the linear fourth-order ¢* equation
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has the same instability issues as NLS around a nonzero background. From a standard
frequency analysis, we get for a formal standing wave ¢ = e’ **~% solution to the linear

(1.1), one has
w(k) = £|k|VkZ -1,

which reveals that for small wave numbers (|k| < 1) the linear equation behaves in an
“elliptic” setting, and exponentially in time growing modes are present from small per-
turbation of the vacuum solution. Unlike [72], where one still has well-posedness in H*,
s > % in the nonlinear case, that approach fails here because of the two derivatives in the
nonlinearity.

2.5. Local well-posedness in a neighborhood of the kink

Contrary to Section 2.4, perturbations of heteroclinic kinks do not suffer from the lack
of well-posedness. To prove well-posedness around the kink solution we will adapt the
well-posedness proof by Linares [52] (see also [53]). Most of the concern is given by how
the linear flow can recover the two derivatives present in the nonlinearity. Let § > 0 small
enough be chosen later. We consider an initial data u™ € Eg (see (1.10)) such that (1.15)
is satisfied.

In this section, we are looking for a solution ¢(¢) of (1.5) in Eg for all time with
initial data ¢™. Now we will focus on the local well-posedness of the perturbed system
around the static kink for equation (1.5). Here, it is remarkable that around the static kink
the nature of the solution changes drastically: here, the exponential growth of the section
above is not present.

We consider an initial data which is perturbation around the static kink, i.e. an initial
data of system (1.5) which has the form

¢ = (H(x) + uf(x).u3(x)), 2.5)
and setting u(¢, x) = ¢(¢t) — H, we reduce our problem to solving the system

0;U1 = 0xUa,

iy = iz, 2.6)
Orup = Ox(—05u1 +2uy + F(t,x,uy)),

in H' x L2, where

F(t,x,uy) = 3u;(H* — 1) + u3(u; + 3H). 2.7)

Notice that F is locally Lipschitz in the third variable, i.e. there exists C > 0, such that
for any v, w, if ||ul|z~ < 1, |w|z~ < 1, then
|F(t,x,u) — F(t,x,w)| = lu —w| |3(H* = 1) + u?> + (u + w)(w + 3H)|
<Clu—w|. (2.8)
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The fourth-order ¢4 linearization around the static kink (see (2.6)) hides a slightly modi-
fied good-Boussinesq equation structure. That means that the linear part of (2.6) is essen-
tially the same as the linear good-Boussinesq equation. We can see that by Duhamel’s
principle, the associated solution is represented as

ur(t, x) = §(Ouf (x) + K(Hud(x) + /t K (t — )03 F(s.x,up)ds,
0
where

8(t) = FIGt.6F. K@) =F 'Kt.EF,

and ¥ and ¥ ! represent the Fourier transform and its inverse, respectively. The Fourier
multipliers are given by

sin(w(§)7)
o)

where w(§) = |£]1/£2 + 2. Then, following Linares’” work [52,53] and noticing that F in
(2.7) is locally Lipschitz and satisfies

G(t.§) = cos(w(§)r). K(1.§) =

|F| < fupe V2=l 402 4 quy 2, (2.9)

we conclude that the equation (2.6) is locally well posed in H! x L?(R). Using the con-
served quantities (1.7), we obtain the global well-posedness of (2.6). To see the complete
proof, the reader may consult Appendix C.

In this paper, we will only need the above notion of solution ¢ = (¢1, ¢2) of (1.5).
Now we are ready to face the orbital stability of the static kink.

3. Orbital stability

First, we will establish the energy and momentum of the static kink, as well as their per-
turbations.

Lemma 3.1. Let E and P be defined as in (1.7). The following are satisfied:

(1) Conservation laws for the static kink:
E[H]=||H'|.. P[H]=0. 3.1
(2) Additionally, for any u = (u1,uz) such that |uy||pe~ <1,

1
E[H +u] = E[H]+E[lluzlliz+($u1,u1)]+Ruls (3.2)

where | Ry, | < C [lutlzoellu1ll7.
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Proof of Lemma 3.1. Proof of (3.1). Recalling that H = (H, 0), one immediately obtains
that P[H] = 0. Furthermore, from (1.6) for ¢ = 0, we have (H')?> = (1 — H?)?/2 ,
concluding that E[H] = ||H’||22.

Proof of (3.2). Expanding the energy, we get
E[H +u] = %/((axum + 2+ (0 H)? + 2H D)
+ % /[u%(ul +2H)? 4 2uy (uy +2H)(H? — 1) + (H* — 1)?]
- %/(axul)z +u§ + (0. H)? —/H”ul
+ 4 [+ 207 + 2w+ 2002 = 1)+ (12— 12,
Using (1.6), we obtain
E[H +u] = %/(axul)2 +ud + (=1 +3H>u? + (0. H)* + %(HZ —1)?

1
+7 / W2 (uy + 2H)? + 2uy (uy + 2H)(H? — 1)]
+d4u  H(1 — H*) +2(1 = 3H*)u?

1 1
— EH]+ 5 () + ol + 5 [ ulln + 4],

Letting Ry, = % [ u3luy + 4H], we quickly obtain that |Ry, | < C |lu1 | Lo |Ju: ||i2 This

concludes the proof of lemma. ]

Proof of Theorem 1.1. Let ¢ be the local-in-time solution of (1.5) with initial data ¢
given in (2.5), satisfying (1.15). For C > 1 to be chosen later, define

T* = sup{r > 0 | ¢ is well defined on [0, ] and
supseqo,.] infper 9(s) — H(- = p)|gixr2 < C*6.}

By continuity and (1.15), we get T* is well defined and T* > 0. Then, if T* < oo, using
a continuity argument and the smallness of the initial data (see (1.15)), ¢ is well defined
on [0, T'] for some 7' > T* and it will hold that

inf |¢(T*) — H(-— p)|ar1xr2 = C*6. (3.3)
pER

Assuming that 7* is finite, we work on the interval [0, T*]. Considering that ¢ has the
form H + u, we get from (3.2),

ELH + () ~ E[H) = 3llualiZ2 + (£ar,u0)] + R,
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so that using the conservation of energy (Lemma 3.1) and (3.3),

1
§[||u2(0)||iz + (Lu1(0), u1(0))] + Ry, 0) — Ru,
C8? + C(C*)*83.

1
5[””2“%2 + (Luy,ur)]

IA

The coercivity of the operator £ (Lemma 2.3 and (1.11)) gives that for some fixed
un,C >0,
plul?n, . < C8% + C(C*)383.

Thus, for all ¢ € [0, T*], if § is small enough,
2C
”"”éleZ = 752; (3.4

here C and p are independent of C*. Fixing (C*)? > C/u we get a contradiction with

(3.3). Therefore, ¢ is a global solution for ¢t > 0, T* and (3.4) hold for any ¢ > 0. This
concludes the proof of Theorem 1.1. ]

4. Asymptotic stability: First estimates

Consider a small perturbation of the kink solution H = (H, 0). In what follows we will
describe this decomposition, introduce some notation, and develop a virial estimate for
the fourth-order ¢* system (1.5).

4.1. Decomposition of the solution in the vicinity of a kink
Let ¢ = (¢,3:97'¢p) = (41, ¢p2) be a solution of (1.5) satisfying
.-+ p() = Hlp1xr2 = u@®)lgixr2 < Cod @.1)

for all + > 0, where § is defined from the initial data ¢i“ (2.5), to be taken small enough.
Recall the decomposition for ¢:

¢(t,x) = H(x —p(t)) +u(t,x), whereu = (u1(t,x),u(t,x)) 4.2)
satisfies (u(z), H'(- — p(t))) =
(u1(2), H'(- = p(t))) = 0.
Note that (4.1) and Theorem 1.1 now read
()l + ua(®)llL2 = Cod. (4.3)

Additionally, from (1.12) u satisfies the equation

0w = 0xJLu+ 0, F (x,u)+ p'H', (4.4)
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where

0 1 £ 0 0
J‘(1 o)’ L‘(o 1) and F(x’”)_(u§+3H(-—p)uf)’

with &£ given by (1.13). Equation (4.4) is equivalent to the system

1 =0 'H’,
1= Oxtia +p (4.5)
Uy = 0xLuy + 0x(ui + 3Hu?).
Notice that from (4.2) one has
(Ml,H/) =0 = (ﬂl,H/) = ,()/(MI,H”),
and from (4.5),
(1, H') = —(uz, H") + p'| H'||?
1/2
— 10| (w2, H")| 5 ( / e‘ﬁ'”'u%) : (4.6)

4.2. Weighted functions

In this section we recall all the necessary auxiliary results that will be needed in forth-

coming sections. The notation is taken essentially from [45], with some particular choices

from [68]. We start by describing the weighted functions used to define our local norms.
We consider a smooth even function y: R — R satisfying

y=1lon[-1,1], y=0o0n(—00,2]U[2,00), x <0on]0,00). 4.7

For any scale K > 0, we define the functions g and ¢k as

() = exp(— (1 — 2l

x 4.8)
o) = [ GOy xer
We consider the function ¥4, p defined as
5 X
Ya.p () = 1(0p(x). where ga(x) = 1( 7). x € R. (4.9)

We recall that ¥4 g and ¢k are odd functions.
These functions will be used several times in arguments of virial type, and with differ-
ent scales, A and B, under the following constraint:

1< B« B« A. (4.10)
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Basic set of technical estimates related to weighted functions. The following technical
estimates on functions {gx and y4 will be useful throughout this work. These estimates
have been used in a similar context (for the proofs, see [42, 68]).

Lemma 4.1. Let {x and y be defined by (4.8) and (4.7), respectively. Then one has

4 1
g_i B _E[_X’(X)|x| + (1 = x(x)) sgn(x)],
” 7N\ 2 1
Z_i N (%) + E[X"(X)le + 2 (x) sgn(x)].
and
bkl o 5) Ll + 34700 senco
tx §KCK C_K g Okl 3 senl

ﬁ = 42K K Sk +3( )2—12 (gK) +6(§)4
lk {k Ck lk tk \lk {k
1
+ 2Pl + 45" (6) sen ().

The previous identities are key through the paper. From the previous lemma we ob-
serve that for any K > 0 sufficiently large,

k(%
= — 5 (4.11)
K (CK)
Furthermore,
/ "
&k S K (), || < K72+ K 'sech(x), (4.12)
K K
and
/// 4)
é’ < K3+ K 'sech(x), [X|<K™*+ K 'sech(x).
K
Then,
" " (4)
K SK
= (4.13)
(K K ‘
In particular, for A large enough, the following estimate holds:
1{A<""<2A’§LK S < forneN. (4.14)

Now we will focus on y4. Considering that y,4 is a cut-off function at A scale, we
notice the following relation between y4 and {4: for each function v,

/szz <[ v? < C/ e 4xl/ A2 g/:ﬂg‘,. (4.15)
|x]<24 |x|<24



Asymptotic stability of the fourth-order ¢* kink 665

This estimate will be essential for the well-boundedness of some nonlinear terms in what
follows (see Sections 5.6.1 and 5.6.2). Notice that this estimate will be used with the
translated variable y = x — p(t).

4.3. A first virial estimate

Following the ideas in [68], we set

1) = /R oa()ur (s, x) dx. y = x — p(t). 4.16)

and
wi(t,x) =ay)u;(t,x), i=172. 4.17)
Here, w = (w;, wy) represents a localized version of u = (u1,u5) at scale A. The
following virial argument has been used in [42,45, 68] in a similar context.

Proposition 4.2. There exist C1 > 0 and 6, > 0 such that for any 0 < § < 8y, the following
holds. Fix
A=681 (4.18)
Assume that for all t > 0, (4.1) holds. Then
d

1
EI <— /(w% + 3(dxw1)* + (Vo — 4Cod)w?) + / a(BH +uy)H'u?

+ Co8lo')? + 0 / paH'uy. (4.19)
The proof of this result requires several computations. We start with a first identity.

Lemma4.3. Let (u1,u2) € H'(R) x L2(R) be a solution of (4.5). Consider ¢4 = ¢4(y)
a smooth bounded function to be chosen later. Then

d 1 1
nli= —Efwg(u% +3(0xu1)” + Vou) + E/so;{’u%
1 3
- 5/90,/(1”?(5“1 +4H) + /(pAufH’(3H + uy)
—p//%uluz +p’/<pAH’uz. (4.20)
Proof. Taking the derivative in (4.16) and using (4.5),

d . .
— I = /¢A(u1u2+u1u2)—p’/(pgu1u2

dt
= /(pA(axuzuz + 0 H'uz + uy (9 £ (ur) + 0x(uj + 3Hu})))
_ ! s+ Dt (uy) — dx(ud + 3Hu?)
- > DUy PAU0x ui PAU10x (U7 uj

—p’/%’;uluz +p’/<pAH’uz. (4.21)
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For the second integral on the right-hand side of the above equation, by (2.3) in Lemma
2.5, we have

1 1 1
/(pAulaxéﬁ(ul) = _5/¢;,[3(axu1)2 + Vou?] + E/goAVo/u% + E/go;;’u%.

For the third integral on the right-hand side of (4.21), separating terms and integrating by
parts we obtain

/(pAulax(u? + 3Hu%) = —/(pAaxul(u? + 3Hu%) - / golﬁi(u‘l‘ + 3Hu?)

4

3
=—Z/<pgu‘1‘—2/<pAHu?+/goAH’u?.

Finally, by collecting, noticing that V; = 6 H H’ and regrouping terms, we obtain

1
= —/fpﬁui‘Jr/(wAH +¢AH’)M?—/¢;1(M;‘+3Hu§)

1= =5 [ b3+ 30 + voud) + 5 [ o
_ %/‘/’fﬁﬁ(%u% + 4Hu1) +/¢AM%H/(3H +uy)
_,O//@luun +P//§0AH’142.
This concludes the proof of (4.20). .

Proof of Proposition 4.2. Recalling that ¢/, = Cfl, we have in (4.20),

/ oy (U3 + Vouy) = / (w3 + Vow?). (4.22)
Also, ,
/cp;,(axul)z =/(axw1)2+/w%§—j. (4.23)
Additionally,
3" (AL
/wA ui = ;_iw% =2/(§—j + ;i )wf. (4.24)

Next, we deal with the nonlinear terms. Using that wy = {4u, we obtain

3 3
/“/’1/4(5”‘11 +4Hui’) = [wf(zuf +4Hu1).

Finally, gathering the previous computation and (4.22), (4.23) and (4.24), we obtain

d 1
ST =5 @i 30w+ vud) + [t G +un

dt
/ !/ / !/
—-p /%uluz+p /wAH Uz,
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where (with variable x, y and ¢)

" 7\2
(€y) 3
V="Vy+-4_2 + “u? +4H). 4.25

Now we consider the range of parameter A > 1. Then from (4.11) in (4.25) one has
V>Vy—C(A™! +6).

This last estimate follows from (4.11) and |u1 ||~ < Coé.
Finally, consider the penultimate term in (4.20). Using (4.3) and (4.18) one gets § =
A7, and ||uz ||z, ||u1 ||z~ < Co8. Therefore,

P'[%Ml”z

Replacing this bound in (4.20), and using the Cauchy inequality, we obtain

<ol / lwiauz| < 10’ [lwillz2ICauzllrz < Codlp'lllwillzz.

d 1 1
EI =-3 /(w% +3(0,w1)? + wa) + 5 / goAu%(Vo/ +2H'uy)
—p’/¢§u1u2+p’/<ﬂAH’uz
1 2 2 —1 2 1,,2
<=3 (w3 + 3(0xw1)” + (Vo —4CA™ )wy) + | 0a(BH +uy)H'uy
+CoBlpP + / oaH'us.

This concludes the proof of (4.19). [

5. Duality and second virial estimates

Following Martel [65], we consider the function vy = £u; instead of u; to obtain a
transformed problem with better virial properties. Unlike generalized KdV, in our case we
have a system of unknowns and some care is needed with the dual transformation. In the
case of the good-Boussinesq equation this was done in [68] with notable success. Since
our original variables (1, 1) belong to H!(R) x L2(R), by using £, the new variables
are not well defined. Therefore, we need a regularization procedure, as in many other
works [42,45, 68].

5.1. The transformed problem

Let y > 0 small, to be determined later. Set

v=(1-y3)""Lu,
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or equivalently,

vy = (1—y02)"1Luy,
1=0-y )2;)_1 1 5.1)

v = (1 —y0%) "us.
From system (4.5) we have v = (v1, v2) € H'(R) x H?(R). Furthermore, from system
(4.4), it follows that

dv=LJdv+(1—-yd*) 'F,
where
7 Y[Vg 0xva + 2V4020v2] — o' Vyuy _
dx[ud + 3Hu?)

The above system is equivalent to

U1 = £(0yv G,
‘1 ( x 2) + (5'2)
Vpy = axvl + F,
where
F = (1—yd) "ax[ui + 3Huj], 53)
G = y(1—yd3) ' [Vg'dxv2 + 2V503va] — o' (1 = y3) ™! (Voun). '
Now we compute a second virial estimate, this time on (vy, v2).
5.2. Virial functional for the transformed problem
Recall that y = x — p(#). Now set
30 = [ vanwiExt. 0 dx. (5.4)
with )
VA.B = X4¥B: 5.5)

zi(t,x) = xyaW)Ee(y)vi(t, x), i =12
Here, z = (z1, z5) represents a localized version of the variables v = (vq, vy) at the scale
B. This scale is intermediate, and § involves a cut-off at scale A, which is needed to bound
some bad error and nonlinear terms; see [45, 68] for a similar procedure.

Proposition 5.1. Under (4.1), (4.10) and (4.18), the following is satisfied. There exist
Cy > 0and 65 > 0 such that for any 0 < § < 85, the following holds. Fix

B = AV = 57110, — p=4 — §2/5, (5.6)
Then forallt > 0,
d 1 2 1/104,.2 2 2
Eﬂ =-3 (27 + (Vo — C28777)z5 + 2(0x22)7) + C28||z1 (72
+ G810 (w12, + 10w l122 + wallZo) + C287 12 (5.7)

where Vy is given by (1.13).
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The rest of this section is devoted to the proof of this proposition, which has been
divided into several subsections.
5.3. Change of variable

The following identities were proved in [68]; they are useful in the next subsection and in
the proof of Claim 6.3.

Claim 5.2. Let P € WL®(R), P = P(y), v; be as in (5.1) and z; be as in (5.5). Then

/ PR Bxvi)? = / P(3xzi) + / [ 2 ;iﬂz,-u / 81202 (58)

where

Ny
£.(P) = P[ Kiaa+ G2 |+ 5Py, (5.9)
and
161(P)| £ A7 P/ || Looca<iyl<24) + (AB) V| Pl Loo(a<)y|<24)- (5.10)

Remark 5.1. For further purposes, we need the following easy consequences: for P = 1,
we get

/xizé(axvi)z = f(axz,-)2 + /elzgv,, (5.11)
where
& =61(1) = xixa+ (xp) gB (5.12)
Additionally, from (5.11), (4.12) and (5.10), one has the following estimate:
1xagBdxvill® < 19xzil72 + B~ llzillz2 + (AB) ™' I¢pvill 72 (5.13)

This estimate will be particularly useful later in the paper; see e.g. (6.41).

5.4. Proof of Proposition 5.1: First computations

Recall the definition of ¢ in (5.4). We have from (5.4) and (5.2),
5( /I/IAB (éﬁa V) + = 3 (122)+FU1+G122 /WABU1U2

/WA B(L0x vz)vz——/xﬁA BU1 /WAB Guvy + Fuy] — /WA BU1V2.

Applying (2.4) in Lemma 2.5, we obtain

1
/ Van(£0v02)0s = — / Vi 5 ((0v2)? + Voud)

w5 [vimd =5 [vaavid
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Now, we consider the following decomposition
d m
Eél:__/l/fAB(U1+VOU2+3(3 v2)?) + 5 / Vi pvs — /VfABVovz
+/1/fA,Bsz+/1ﬁA,BFU1 —p//lﬂé,Bvlvz
=1+ 2+ J3)+ (Js+ Js+ Jo). (5.14)
By the definition of ¥4 g (see (5.5)), it follows that

Vg = 1als + (X2 ¢B,
no 2 2\ 2N/ (2N 2\ %2 2\
Vap = xa(g)" +3(xa) (Cg) +3(xa)"$g + (xa) " ¢s-

Also, by the definition of z = (z1, z) in (5.5), we have

(5.15)

—2J, = / Vi g (] + Vovl + 3(3xv2)%)

= / (22 + Voz2) + / (X% 0B (V2 + Vo2 + 3(85v2)%) + 3 / 1583 (0xv2)>.

For the last term of the above equation, applying Remark 5.1, we obtain

/ L2 (0x02)? = / (3x22)” + / 2 / [XA+2XA§ ]mgvz.

Then, for J; in (5.14), we obtain

= —%[(z% F30e22)” + Vo)~ 3 22
3 !
-3 | o |- / (20567 + Voo +3(0x02)). (5.16)

Now we turn to J,. By (5.15), J; in (5.14) satisfies the decomposition
1
52 =5 [CAGRY + 303 @) + 3035 + () "vn)v?
7N\ 2 ” 1
B /[(K_B) * _}22+ /(3()(,4) (3) +30x2)" ¢ + (X2 "¢8)v3. (5.17)
B (B

As for J3 in (5.14), using the definition of z; in (5.5) we obtain
- / VapVvd = — ‘;B vz, (5.18)
B

Finally, gathering (5.16), (5.17) and (5.18), we obtain that the first part in (5.14) can be
written as

1 ~
J1+Jr+J3= —5/[2% + VZ% + 3(8)622)2] + J1,
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where , o
Vevo+ B o8B s (5.19)
EB é-B EB

and the error term is given by

- 3
Ii= =5 [ [30ixa = G0 = 3GAY @Y + () Vo~ GAY e |13

1 3
-5 [rewt =3 [Gayenaear (5.20)
In order to control the main part of the virial term, a lower bound for the potential V' is
necessary. We have the following result:

Lemma 5.3. There are C > 0 and By > 0 such that for all B > By, one has
V >Vo—CB™', where Vo =—1+3H?>.

Proof. First, noticing that V{ = 6 HH’ > 0 for y > 0 and using that for y € [0, 00) —
¢p(y) is a nonincreasing function, we have for y > 0,

¥B _ foy $h
RN

Then, from this estimate, (5.19) and (4.11) with K = B,

>y >0.

V(y) = Vo(y) — CB™' + [Vg(»)y| = Vo(y) — CB™".

The case y < 0 is similar. These estimates hold for any y € R. This concludes the proof.

]
First conclusion. Using this lemma, and J 1 in (5.20), we conclude that

d 1 2 —1\.2 2 7

E&’ == [z + (Vo —CB 7 )z5 +30xz2)" |+ i+ Ja+ Js + Js,  (5.21)

where J4 and Js are related to the nonlinear term in (5.14) and Jg is related to the shift
considered on the kink. To control the terms J;, J4, J5 and Jg, and the terms that will
appear in the sections below, some technical estimates will be needed.

5.5. First technical estimates

The following estimates have been used to establish asymptotic stability for the good-
Boussinesq equation, as well as the 1 + 1 scalar fields equation (see [45, 68] for proof).
Fory > 0, let (1 — )/8)26)_1 be the bounded operator from L2 to H? defined by its Fourier
transform as

{¢3)

F((1-ya)~'9)E) = T

We start with a basic but essential result, in the spirit of [45].

for any g € L2.
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Lemma 54. Let f € L>(R) and 0 < y < 1 fixed. We have the following estimates:
O 1A=y flleew < 1fl®)
(i) 1=y f 2@ < v 21 f @)
(i) [1(1=y0) " fllzzw) < v~ ' I/ l2@)-

We also enunciate the following results that appear in [42,45,68]. Notice that now the
variable in the weights is y = x — p(t), but the shift does not affect the final outcome.

Lemma 5.5. There exist y; > 0 and C > 0 such that for any y € (0,y1), 0 < K < 1 and
g € L2, the following estimates hold:

| sech(Ky)(1—y2) g2 < C[(1 — y82) " [sech(Ky)glllz2.  (5.22)

| cosh(Ky)(1 — yd3) ™" [sech(Ky)glliL2 < CI(1 —yd3) ' gll.2, (5.23)
| sech(Ky)(1 — y02) ' dxgllz2 < Cy ™"/ sech(Ky)g| 2. (5.24)

and
| sech(Ky)(1 —y9%) "' (1 = 83)gll2 < Cy "I sech(Ky)g|l 2. (5.25)

where the explicit constant C is independent of y and K.

The following results are also contained in [68], and are essentially obtained from
Lemma 5.4.

Lemma 5.6. Recall v;, w; and z;, i = 1,2 defined in (5.1), (4.17) and (5.5), respectively.
Then one has

(a) estimates on vy and uy:

—1
lvillzz Sy~ w2,

_ B (5.26)
19xv1ll2 S ¥~ Plhenlize + ¥ 19w |2
(b) estimates on v, and u,:
lvallze < Muzlize, 19xv2llze < v 2 uallz2, (527)
183vallr2 S v~ luzll e
Lemma 5.7. Let 1 < K < A fixed. Then
(a) estimates on vy and wy:
vil < vy Hwilzes
¢k vl )/71” 1llz2 (5.28)
[Ekxvrll < v~ (lwillzz + [9xwrllz2)-
(b) estimates on v, and wy:
Ikvallze < lwallzz. 18k 0xvallze < v~ 2 walla. (529)

2 -1
ICxd5v2llL2 S v w2l
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(c) estimates on uy and wy:

y
Hsech(— ur| o < llwillz2,
K) L (5.30)
Jsech (=)o, < Ioxwille + Jwilea.
(d) estimates on u, and wy:
Yy
Hsech(E>u2 L2 < lwallzz. (5.31)

For the purposes of this work, we also include a refined version of Lemma 5.7 (a).
Lemma 5.8. Let 1 < K < A fixed. Then
10— y0) 7 L flle S 1 e + v~ 2195 L2,

1 (5.32)
lexvilee = (14 gz lerlee + v 21k lee
Proof. We have
21 o oav=1[ iy a2y o 2( YV
10 =y 2 flee = [ =y [ -8 —3seer( ) 1],
2y-1 2 2( TP
SN =y =) f oz + [sect®(—2) /],

SIA=ya) ™ @ =) fllee + 1 llga.

Focus on the first term on the right-hand side. Using Plancherel’s theorem, we get

11— y22)" 2= 02) f 2 = %
B (%”‘“ +((1 :5;’)) - ”])f
< e+ [
< ﬁl[—,
b [y OVLETRE,

SN2 + v 19x N2
This concludes the proof of the first estimate in (5.32).
For the second inequality, by (5.22) and using that {g &£ (u1) = £({xu1) + 20 0xur +
{gu1, we obtain
IExvillze S 11— yd2) ™" CxLur) 2
SN =y2) N (L Cxur) + 28k 0xur + Cgur)llLe
SIA =y ECxun) 2 + 1128k 0xurllL2 + ISk ua 2.
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Therefore, from the first identity in (5.32), (4.12) and (4.13),
lexvillze S ICkullzz + v 210 Cxun) iz + 18k 0xurllze + 18kur 2

! _ 1
S (1 g Mokl + (v 4 ) ek oo

1 -
<(1+ Kyl/z)nzmnu + 72k dnu |2
This ends the proof. ]

Remark 5.2. Using (4.23), for K € [1, A], and {4054 = dxw; — %wl, we obtain

" vy /
[y = [ s (232 (- )
Hence, a crude estimate gives
Ik dxuillZ S 18xwil7> + A7 wi 7.
Taking K = A we obtain
l¢adunllee < Nxwillze + A7 lwi | 22, (5.33)

and from (5.32) and K = A,

lgavillze < (1+ lwillze + 7" 2)0xwi 2.

1
(Ay)l/z)
Finally, using (5.6), Ay = §~'72/5 > 1, and

leavillze < willze + v~ 2 w22 (534)

5.6. Controlling error and nonlinear terms

By the definition of £ and y4 in (4.8) and (4.9), it holds that

y 1 1yl
Se B, / < e B, < B,
(5 (7) 0 5 5 o] 535)

gl SA7Y QR SA7Y GRS A7 )" S AT

5.6.1. Control of J7. Considering the following decomposition for J :

J1

1 1
—5 [ Garen? +3Gs0a) = 5 [ Vo~ A o3

1y

Cs :|§Bv2

1
-5 [ [P i -3y

=: Hy + H, + Hs.
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In the case of H; and H>, using |(x3)'¢p| < A™' B and (4.15), we obtain

|H1| S A_lB(”Ul”iZ(MSzA) + ||axU2||1242(|y\52A))
< AT'B(I1GGv 172 + 11659 v2]172),

and
|H>| < AilB||U2||1242(A5|y|§2A) < A71B||U2||1242(\y|52,4) =< AilB”é‘ivzllir

Finally, in the case of H3, using (5.35), we have

|H3| < (AB)_IHé‘BUZ“]ZdZ(D,‘SzA) < (AB)_1||§BU2||%,2-
We obtain, using that {p < {4,

JiI|<A'B 2 2 dxv2|?

/1l < (I1av1liz2 + Cavallzz + 1840 v2ll72)-
Applying (5.34) and (5.29) with K = A, and finally using (5.6), we get

|11 £ AT B(lwillZa + v 8wl + v~ w2llZ2)
< AT By (lwillZe + 18wz + llw2lZ2)

<82 (w7 + 10xwil7> + wallZa)- (5.36)

5.6.2. Control of J4. Using the value of G in (5.3), J4 is bounded as follows:

Ji= v [ Wamval =y R 20, (Vibrs) — Vi 0]
— / Ya,BV2(1 = y33) ™ (Vgur)
= Ju1 + Jaa. (5.37)
Bound on J41. Using the Holder inequality,
|Ja1] S YIIVa,B2lr2 (1 — y02) ' [20x (Vgoxva) — Vg 0xv2]llL2.
Using Y4, = Xj(pg in (5.5), and (4.15), one can see that
1Va,8v2llz2 S Bllxavallze S Bllvallzzqyi<2ay < Bll&zvallze. (5.38)
On the other hand, using Lemma 5.4,
1(1 = y02) ™ 205 (Vydxva) — Vo' dxvalllL2 S v 2 IIVgdevallLe + 1V xv2l 2.
Recall that | V]|, | V]| ~ sech?(y/+/2) < ¢~V2Y! Therefore, we are led to the estimate

le™V2¥19 vy 2.
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First of all, write
eV vy = (e VN2 e V20 (1 = 3 4)3 05
F (e VN2 Y =VA2 Y 1 v,y
Noticing that since e—ﬁ‘y'”{gl <1,
le™v21 02112 < lle™ Y2225 (1 = xa)dxvalle + lle V2V 2t gy 050212
S eV 2 0p0 v e + eV 2 atpd e (5.39)
Using (5.8) and (5.10) with P = e™V2I1/2 we get

le™2P12 patpdivallie S 19xz2llLe + B2 lz2llz2 + e >4 Ep 02l 2.

Coming back to the bound on ||e_“/5|y‘ dx V3|2, we get
le™2a 022 < €242 ggd0a ]l + a2 ll12 + B2z
+ (4eV?42) 712 Epus | 2.
The previous inequality allows us to conclude that

(1 = y32) ™' 20, (Vydxv2) — Vg 2]l 2
<y Y2 (10xz2ll2 + BTV 20IL2)
+ e Ay T2 (legus |12 4 (12805 vallL2)- (5.40)

Gathering (5.38) and this last estimate, we conclude first that
[arl £ v 2BIGGv2 2 (1052202 + 22012 + €44 (g vall2 + 1EBIxv2]1L2))-

Using (5.29) with K = A, B, the Cauchy inequality and (5.6), we obtain e~4/4y~1/2 « |
and

[Ja1] S ¥ 2 Bllwall 21852212 + [122ll2 + ¢4y 2 wal|2)
Sy 2B(lwall7s + 19x22017 + [122172)-
We conclude that y'/2B = B~! = §1/10 and
[ aal S 8100 walZs + 19xz2l22 + z2l3a] (5.41)

Bound on J4,. Now we focus on J4; in (5.37). By the Holder inequality, we get

|Jaz| = |P/|'/ Va, g2 (1 —yd2) " (Vyur)

S 10 lxagsvalliz xa( — yo2) = (Vgur) llzz.
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Now, using (5.27) and |y4¢p| < B, and (4.3),
| xappv2lL2 < Blluz|L2 < BSé.
Additionally, from Lemma 5.4, the fact that
Vota'l =615 H'(MH»)| S 1
and (4.17), we obtain
lxa(t = yd) ™ Voun)liee < [aurllce = w2
Since 8B = §°/19, we conclude
[Jaz| £ 8Blo'willzz < 8710 + lwil72)- (5:42)
Gathering (5.41) and (5.42), we finally arrive at the estimate
[Jal < 81wz + w2l + 122172 + 19x220172] + 8%/, (5.43)

5.6.3. Control of Js. Recalling that Y4 5 = Xjpr, using the Holder inequality and
Remark 4.15, we get

< lxaesviliczllxa F 2

|Js| = ‘/%A,BFW

< lxaesvillc2164(1 = yd3) ™" dxfui + 3Hui] 2.

First of all, since |pg| < B, we have

Il xaesviliz < Bllxavilize < Bllvillzzgyi<2ay S BlIigivillzz. (5.44)
Furthermore, using (5.22) and Lemma 5.4, we have
1651 —y03) " 0x[uf + 3Huilll L2 S 1830x[u] + 3Hui]|| L2,
and expanding the above term, one gets
1830 ] + 3HuTl L2 = (165 [Buidxur + 3H uT + 6 Hurdxua]|| 2
< ||U1 ||L00||§‘21[3U18xu1 =+ 3HIU1 + 6H8xu1]||Lz
< lurlleee[lwillz218a0xunllp2 + llwillz2 + [18a0xuillz2]
< lurlleee[lwillzz + 18a0xun (| 2] (5.45)

Finally, by (5.45), (5.44) and (5.34), we conclude that

|Js] < Bllurllze 1G5 vtllz2[lwillzz + a0y 2]
< B8[|lwillz2 + v 20wy l|2]llwi 2 + [18adxurllz2]
< SO lwi |12, + [[0xwi]|2,]. (5.46)

In the last inequality we have used (5.30) combined with (5.35), and also B§y~1/2 =

§1-1/10-2/10 _ §7/10



Ch. Maulén and Cl. Muiioz 678

5.6.4. Control of J¢ in (5.14). Replacing Wf/t, g from (5.15), we have

|J6| = 'p'/%ﬁ,gvlvz

<1p'|

/(Xiﬁ; + 2))4 X4PB)V1V2

= P//Zl)(Avaz + 29//X,/4XA¢BUIU2 =:Js,1 + Jo,2.
Bound on Jg,1. Applying the Holder inequality, estimate (5.27) and (4.3), we get

el < 10'llz1 Iz lluzll2 < Codlp|llz1 ]l 2

Bound on J¢ ;. Here, after invoking (5.35) and the Holder inequality, we get

—1
|Je2| S A7 Blp| | xavillL2llvzll L.

Using (5.1), Lemma 5.4 and (4.3), we easily have ||va] 12 S ||uz]lz2 < 8. From (4.15), we
also get
lxavillze S 183villze < Savallze-

Hence, by (5.34),
|Je2] < 8AT B0 |(Jwillz2 + ¥ 2 dxwillz2).

Since A~'By~1/2 = §7/10_after applying the Cauchy—Schwarz inequality we conclude
that

|6l £ 847" Blo'|(lwillz> + v~ 210z willL2) + C8lo'll|z1 2

< 870N (lwillz + 195w ll2) + €3l 112
< 870 (w72 + 13 wall72) + Cllzall72 + C3lp'P. 5:47)

5.7. End of proof of Proposition 5.1
From (5.36), (5.43), (5.46) and (5.47), we obtain
|J1 4+ Ja+ Js + Je|
<SV2(Jwi )2, 4 8xwi 122 + wall22) + 8710w l|25 + [9xwi]|22)

+ 8710wl + 18xwil72) + 8 (w172 + wal72)
+8M10(19x 221172 + I22l172) + Sllz1 1172 + 87100 + 60,

Finally, simplifying, we obtain that (5.48) is bounded as

|J1 + Ja + Js + Jg| < 51/10(||w1||22 + 0xwil72 + w272 + 22172 + [19x221172)
+8lz1l7. + 8010 (5.48)
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Finally, the virial estimate is concluded as follows: for some C, > 0 independent of §
small, (5.21) becomes

_g < __/[z + (Vo — C28'19)22 4 2(3522)%] + Ca8| 2112,
+ C281/10(”w1“L2 + ”axwlan + ||w2"L2) + C289/10|p | .

This ends the proof of (5.7) and Proposition 5.1.

6. Gain of regularity

We will focus now on a new virial estimate obtained from the new system of equations
involving the variables
U; = 0xv;, 1 =1,2. (6.1)

Formally taking derivatives in (5.2), we have

b1 = 0x L + G, G = 3,G,
{v1 vy + 6.2)

Uy = 3,0, + F, F =0,F,

where G and F are given in (5.3) and v; given in (6.1). For this new system, we consider
the virial functional

M(t) = [qu,B(y)ﬁl(t,x)ﬁz(t,x) dx = [¢A,B(y)8xv1(t,x)8xv2(t,x) dx. (6.3)
Later we will choose ¢4, = V4,8 = XfﬁoB (see (5.9)).

6.1. A virial estimate related to M

Lemma 6.1. Let (v1,v2) € H'(R) x H?(R) be a solution of (5.2). Consider ¢4,p an
odd smooth bounded function to be chosen later. Then

St = =3 [ 510007 + Vo2 + 302020 + 5 [ 915 0r07

+ 5/¢A,BV5(axv2)2 +[¢A,B[axGaxv2 + Foyv]

_ / By 50019, 02. 64)
Proof of Lemma 6.1. We compute from (6.3),

d o ~ 2 / ~ o~
EM = [¢A’Bv1v2+/¢A,BU1U2—P//¢A,BU1U2‘
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From (6.2) and (2.3), we have

4
dt

/¢A,B(ax$62 + 6){)2 +/¢A,Bﬁl(axﬁl + ﬁ)_p//¢2,38xvlaxvz
:__/¢AB[ + Vo3 + 3(0x02)%] + = /‘f’g/Bg
- 5/¢A,BV565 +f¢A,B[Gl72 + Fiy] —p’/¢§,33xv13xvz-

Rewriting the above identity in terms of the variables (vy, v2) and using the definition of
G, we have

d 1 1
S = = [ B al@0? + Vo(@rvn? + 3020202 + 5 [ 615002
1 , ~
+ §/¢A,BV0(axvz)2 + /¢A,B[axGaxU2 + Faxvl] - p//(p,g,Baxvlaxvz-
This ends the proof of Lemma 6.1. ]

The following proposition connects two virial identities in the variables (z1, z).
Finally, let z;, i = 1,2 be as in (5.5).

Proposition 6.2. There exist C3 > 0 and 63 > 0 such that for any 0 < § < 83, the following
holds. Assume that for all t > 0, (4.1) and (5.6) hold. Then for allt > 0,

d

1
dtM ) /[(3x21)2 +2(0222)%1 + C3(llz1ll72 + llz2l172 + 19222117 2)

+ G581 (wn 2, + [0xwi |2, + [wal22) + Cs6™ 2. (65)

The proof of the above result requires some technical estimates. We first state them,
and then prove Proposition 6.2 (Section 6.3).

6.2. Second set of technical estimates

Recall the following technical estimates on the variables {g and other related error terms.
These estimates have been proved and used in [68]; therefore we only enunciate the main
results.

Claim 6.3. Let R be a W™ (R) function, R = R(y), v; be as in (5.1) and z; be as in

(5.5). Then
/ R v = / R@z)? + / Rz? + / Pr(3xzi)’

[l s et [oa

N / 61(PRIGV + / €582 (0.e0)?,
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where
R=§R=—2R[2+£§—B}—2R 5 —R'2B B (6.6)
{8 (BB B i’
B 53) } B
Pr =R 2R'2E 6.7
[ s (ZB * (B ©7)
&, is defined in (5.9),
€ = E(R) = — (xﬁ{”m +4x 1 gB + 6XAXA§— +202%) - )
B
-R (ZX”’XA + 64 )(Ag— + 64 x4 EB)
- R“( Xaxa+ = (xA) gB) (6.8)
and
&3 = 63(R) = R[%u —2(0)” + zg—i(xi)’} + R'(x3). (6.9)

Finally, PR, &, and &3 satisfy the bounds

PRl S B7H Rl + B™[|R|L=.

|PRI < B7HIR ||l + BTHIR Lo + B7V | R|[1os,

1€2] S (AB) [ R" | axly<24) + (AB*) | R | Looa<iyi=2a) (6.10)

+ (AB*) | R| oo (a<iyl<24),

€3] S AR [lLo(a<iyi<2a) + (AB) M| Rl|Lo(a<lyl<24).
Remark 6.1. Estimates (6.10) are of a technical type, needed at some particular stage
to control the error terms on the gain regularity virial (see (6.20)). A proof of these esti-

mates is present in [68], but without the localization terms. Here we slightly improve these
estimates by considering the region of space where these functions are supported.

Remark 6.2. For further purposes, we will need the previous identities in the simplest
case R = 1. We obtain

242 (92, \2 _ 2,2 ) \2 B }
/XAEB(axvl) — /(axzz) +/R121 +/P1(8XZ,) —|—/|: §B +P ;B
+[82§123U?+/81(P1)§§vi2+/83§§(8xv,~)2, 6.11)

where (see (6.6) and (6.7))

B ) “) " é‘B » R // Eé; 2 "
1__|:§B+§B§B:| YT (E_B) 12
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& is defined in (5.9), &, in (6.8) becomes

é- 1 "
62(1) = —[ XA+ 40 a2 +6xhxa 2 +2(x3) 2| (6.13)
ZB g‘B CB

and (6.9) now reads

V4 / é./
&3(1) = 4yxlixa —2(x)* + 2§—§

Finally, by (4.13) and (4.14), we obtain the simplified estimate

(x3)- (6.14)

lxagpdivill S 1932il17. + B~ 10xzill72 + B |zill7
+ (AB) " (gl + 1B Ixvill72).
6.3. Start of proof of Proposition 6.2

The proof of this result needs the following computation:

Lemma 6.4. Let (vy,v2) € HY(R) x H*(R) be a solution of (5.2). Consider ¢pa.p =
Ya,B = 1398 Then

d
EM =—— /[(a 21)% + Vo(0x22)® 4+ 3(3%222)* 1 + R, + Ry + DR,

-3 / 345V (Bxv2)® + / $4.500xGdxvs + Focui]
—p’/¢,2,38xv18xvz, (6.15)

where R, (1), Ry (t) and DRy (t) are error terms that, under the constraint (5.6), satisfy
the bound

Rz + Ry + DRo| < 810 (lwillza + [0xwi 72 + w272
+llz1lZ2 + 22072 + 19x221172). (6.16)

Proof. First, we recall that z; = y4{gv;, and by (5.15) and Remark 5.1, one gets

[ i@ = [z + g—ﬁ + [agit+ [Gares@mr. e

where & is given by (5.12). For the second term of (6.4), applying (5.8), we obtain

/gb;l,BVO(axUZ)Z = / Vo(0x22)> +/|: EB +V 53}

+ / &1 (Vo) 303 + / (2 908 Vo(02)?,
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where following (5.9),

19

€1(Vo) = V0|:XAXA +(x3) is

}+2%(®4
Now, using (6.11) in Remark 6.2, we get
/%w@ﬁ=/@mﬂjfwmfﬁ”m+ag+HQ}
+ [emgi+ [arngi+ [ s0G6.ny
+ / (x3) 0B (33v2)%, (6.18)

where Ry, P1.E>(1), €3(1) are given by (6.12), (6.13), (6.14), and & is given by (5.9).
Now, continuing with the second integral on the right-hand side of (6.4), we have

2\
/ B 5 (0502) = (‘;‘;) BB (Bxv)
B
+/[6(xﬁ) EB +300)" + (XA)”’wf]Zé(axvz)z,
{p

and using Claim 5.2,

2\ 2\ 1! /AN
/ ¢4 p(0xv2)” = @32) @y + [ B S8 2y / (@B) ) % 2

g (% CB 3 ZB
-F(z[mu+um?]wﬁ—[CZ)(bﬁ@
+/kmo%+xmv+md”ﬂngﬁ (6.19)

¢ 3
Collecting (6.17), (6.18) and (6.19), we obtain
%,M = /[(a 21)% + Vo(0x22)* + 3(0222)*]1 + Rz + Ry + DR,

45 [ 04050027 + [ 94000:60,02 + Foruil =o' [ 4l pdsvidevs,

where the error terms are the following: associated to (z1, z) is

_ g, 1 B Bi| 2 3 [ B Bi|
Re=- CB 2/[V§B+V0§B Z/R +P1§B+P1§ %
(€3 &y [(fg)"]fg
+ 2 é‘B {B + / é‘B EB
+%[[%§—ﬁm}mhﬂ (6.20)
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associated to (v, vp) is

1 1 "
Ry = [ E1()EGvi — [ 61(Vo)(3 2+ 1 (%;) |:X x4 +20(x3) EB] 303

1 7=/

and associated to (0, v1, dv3) is

3 1 1
DR, = —5/33(1)§§(3xvz)2 ~3 /(Xi)/‘PB(axvl)z 3 /(Xi)/(PBVO(axUZ)z

1
+3 / [60&) gB +3G)" + (xA)”";’z]zB(a v2)°

3
-3 / (x3) ¢B(92v2)>. (6.22)

We have obtained the identity (6.15). To conclude the proof of Lemma 6.4, we must
estimate the error terms.

6.4. Controlling error terms
Recall R (¢) from (6.20). Decompose
R=(1) = R3(1) + R2(1) + R,

where

A= ;[zlwol 3 ?5,

3 "
R 2/[R1+p1§B+PIZB} 41 /[(Z) -3p @2

RiGanA ((m’) cB}
2‘2/[ 2o g )u)

In the case of R ; recalling the estimate (4.13), we obtain

w

R

IR < B (21122 + llz21172). (6.23)

As for 322, we recall the form of P; (see (6.12)), Ry (see (6.12)), and by (4.13), we
conclude that

|R2| < B7 (22012, + [9x2222). (6.24)

Now we consider the term 32; From (4.14) we obtain
R3] < BV |z2]3.. (6.25)
Collecting (6.23), (6.24) and (6.25), and considering (5.6), we finally get

|R2| < 8 0Iz1072 + 122172 + 119x22117)- (6.26)
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Controlling R,. For the term R, given by (6.21), we consider the following decompo-
sition

Rl=—1 [ &1 (18307 - [ (€1 (Vo) + 36,(1) + 36,(P))E302,
Re= [ B L2y B e+ () odres

We note that the terms &;(P;) and &;(1) (see (5.9), (6.12) and (6.13)), by (4.14) and
(6.10), are bounded and satisfy the estimates

E2(1)] S (AB%)™" and  |€1(P1)| S (AB%)7,
and for &1 (1) in (5.12) and &;(Vp) in (5.10) (replacing P by V),
[E1(DI < (AB)7", |61(Vo)l S (4B)7".

Consequently,

|Ry| < —(IIEBvllle + gBvalZ2)-
Also,

R3] < —(IIEBvllle + EBvalZ2)-
Then, applying (5.34) and (5.29), we have

[Rol < (AB)'(IEBu1l7 + 1€BV2175)
S @By (lwillFs + 19xwi 7 + wal75),

By (5.6), we have (AB)~'y~! = §7/19 Then we get
|Ro| 87w ll72 + 19xwil7 + lwal72). (6.27)

Controlling DR,. In the case of the term DR, given by (6.22), first of all we have from
(6.14) and (5.35),

1
& (D) < —.
&) < -

Using (5.35) and (4.15) again, we have

DR < / 1€3(DIE (0 v2)° + / ()¢ |(@xv1) + / (2) 108 Vol (9:02)°
+ / 63" ? & (0v2)” + / 12 081(202)?
< BA (120,01 25 + 182050l + 130202 ]22).

Now, applying (5.28) and (5.29) with K = A, and by (5.6), we get

303"+ (2)” ‘;B

DRy S 80 (Jwill7a + 19xwillF> + w2llF5). (6.28)
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And, by (6.26), (6.27) and (6.28), we obtain

|Rz + Ry + DRyl

< 80wl + 18xwil72 + lwalZo + 21172 + 122072 + 19x22072). (6.29)

which proves (6.16). This ends the proof of Lemma 6.4. [

6.5. Controlling nonlinear terms

Recall the second line of error terms in (6.15):

1 ~
5 [ 0aaVi@02? + [ 9anl0.Gsvs + Foro = [y posvidsus.

In order to control them in a well-ordered fashion, we set

1
Mo = 3 / basVi@x2)? My = / $4.50:G 002,
(6.30)

My = /¢A,BaxFaxv1, My = —p’/m,Baxvlaxvz.
6.5.1. Control of M. Noticing that Vj = 6HH', |Vy| < H', ¢4, = x5¢s and that

' 0es ] 5 [y sect®( )| e,

we get
1 _
§/¢A,BV6(3xv2)2 < lle 'y'/zaxszIiz-

Following a decomposition similar to that in (5.39), using (5.29), and recalling the values
for B and y in (5.6), one gets

1
|Mo| = §[¢A,BVé(axv2)2‘
< e 2)tgdcval|2, + 0x 220172 + B |22)|20 + (AeM )TN [Cg 2|2,
< 19xz2)125 4 81102512, + 8lw2 2. (6.31)

6.5.2. Control of M. Recalling M in (6.30) and that F = dy F, with F given by (5.3),
we can say the following:

|M1| S I xapsdxvillzllxa(l — yd3) "' 05 [ui + 3Hui]l| 2.
Using (4.15),

| Mi| < lxappdsvillzz 1851 — yd2) ™ 03 ui + 3Hui]|| 2.
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Now, using (5.24) and by (5.45), we obtain
1851 =y~ 93] + 3H U2 < v~ V218505 + 3HuT] L2
<y P urlizellwilzz + [8adxu 2] (6.32)
Then, by (5.44), (5.28) and the above estimates, we get

| M| <y V2B vrll 2 [lwillze + [1Gadxu]lz2]

< )’_3/235[”%01”1%2 + 19xwi172].
Considering that §y~3/2B = §3/1°_ by (5.6), we conclude that
|Mi| S 81w lI72 + 0w I3 (6.33)

6.5.3. Control of M,. Recall that G = dxG, G given by (5.3). First of all, we have

My = /¢A,BaxG3xvz

-y /((Xﬁ)/izz; + X2 (€30 v2(1 — y02) T [V Bx vz + 2V403 2]
-y / )(i(pgi))zcvz(l — yafc)—l[v(;’axvz + 2V0’8)2€v2]

— p//xirpgaxvz(l —y02) 7 0x (Vyur)
=: My + M>; + M>s.
First, we focus on M5;. Using (5.35), (5.13) in Remark 5.1 and (5.29), we have
I((x2)¢5 + x4 (3))0xv2 ]2
=2||(x4¢B + xaLp) x4BOxv2| L2
<A™+ B7Y 1 xalpoxvallL2
< B (19xz2ll22 + B2 |22l 12 + (AB) 2| Lgval12)
< BT (|0xz2ll 2 + B7Y2||z2ll 22 + (AB) V2 |lwal|2)
< B (I0x22llL2 + lz2llz2 + llwallz2).
Additionally, by (5.40) and (5.29), and e=4/4y~1 « 1,
(1 —y02) "' [Vg 0z + 2Vgd2valllzz < v~ 2(10xz2ll 2 + B™?||z2]|12)
e Ay T2 (L]l e + (|88 Oxv2lL2)
<y V2(J0xzallz2 + lz2llz2) + lwall 2.

After applying the Cauchy—Schwarz inequality on M»;, we conclude that

|Ma1| £ By 2 [19x22017 + 22017 + lw2ll7.]- (6.34)
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Second, for M5, we set o(y) = sech(y/10) and we perform the following separation:

|Maa| < 'J’ f XaeB0ava(1 — y32) 7 [V dxva + 2V(0% 2]
< vllexaesdivaliczllio™ (1 —yd3) ™ [V dxvz + 2V503va] 2
Since opplz'| < B, one gets
|Maa| < yBxagpdvallcello™" (1= y9) ™ Vg dxvz + 2V53 va]ll 2.

Now we focus on the second term on the right-hand side above. Using (5.23) from Lemma
5.5, we obtain

o™ (1 — y@2) ' [Vy dxva + 2V§0202] | 12
<1 = yd2) [V 0o dxva + 2Vg0 182 0a]|| 2
< Vo axvallpe + Vg~ 02vz| L2 (6.35)

Since |Vy'o™!| < e~ 1¥I following a similar decomposition to (5.39), we obtain

le ™1 vall 2 < 0xz2llz2 + B2 22ll2 + A7 e A4 LpvallL2 + e 40405022

< 19xz2llz2 + B7Y?|za)l 2 + A7 e 4 Jwa | 2.

The case of the second term on the right-hand side of (6.35) requires more care. First of
all, we note again that V p~ 1 ~ e 1P and repeating the same decomposition, we have

le™ 9% vallz2 < ™42 (1850302 L2 + eV xalp 0T 02l .
Applying Remark 6.2 and Lemma 5.7 (5.29), we have

le 120,112 < 18222 )12 + B30 22ll22 + B7Y?||z2) 2

+ (AB) T2y T2 wa 2 + ey T w2
Finally, gathering the previous estimates, for M5, we have

|Mas| < yB(|10222]125 + B4 [0:2202, + BV ||22112,
+ (AB) T2 lwy|2,). (6.36)

Third, we treat the term M»3. By the Holder inequality and Lemma 5.4 (i), we get

Mas] = |p’|' [ ragmdava =y o, 0

S 1Pl xaesdxvallr2ll(1 — y92) 'y (Vour) 22
S0l xaesoxvallrz0x (Vour)ll 2.
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Expanding the derivatives, by (5.35) one gets

|Mas| S 10" | xapBOxvall2 Ve ur + Vodxuil L2
< Blo'|10xv2ll 211V ur + Vedxurll .

and by (5.27), we obtain
|Mas| < By ™20 uallL2 Vg ur + Vadzu | .
Then having in mind (4.17) and (4.3), using (5.33) (since | V|, |V{/| ~ e~ ¥2}1), we obtain
|Mas| < By~ 2810 | (lwi |2 + |9 wi [l 2)- (6.37)
Collecting (6.34), (6.36) and (6.37), one obtains

|Ma| < B7YyY2[105 220125 + [12202, + w2]2,]
+ yB|0222]12, + B 352212, + BV 22)12,]
+ By V2810 |[Ilwr [l 22 + 105w [l 22)-

Using (5.6) and the Cauchy—Schwarz inequality, we conclude that

| Ma| < 8010322075 + 19x221172 + 122017 2]

+ 87 will7a + [19xwi 72 + w272 + 10']. (638)

6.5.4. Control of M 3. Replacing (5.15), we get
M3 = —p’/()(ifﬁ + (X2 ¢B)dx V10502
= —p/[xiééaxvlaxvz —2p//x11<p3xA3xv13xvz = M3; + M3,.

Control of M3;. By the Holder inequality, recalling that v; = (1 — y32) "' Lu; (see
(5.1)), and using (5.26), we get

IM31] < 10|l xalBdxv1 2]l xalBOxv2l| L2

Sy Ul | xagBdxv2 2.

From (4.3),
IM31] S v~ '810" Il xalrxv2llL2- (6.39)

Control of M3,. Applying the Holder inequality, we get
|M3z| < BA™ |0/ 10xv2ll L2 (a<y)<2) 19501 [l 2
Using (5.26) and (4.15), we obtain

|M32| <y~ BATH P lun | g 11830502l 2.
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and
|M3s| <y 8BAT /| (18505 v2 I 2 (6.40)
Collecting (6.39) and (6.40), we get
|M3| <y 1810 |1l xalpdxv2llL2 + BATH|E30x 02 L2].
Then, by (5.13), (5.29) and (5.6), we obtain
| Ms| S 7" 810'[19xz2ll2 + B2 l|z2ll2 + (AB) ™2 [[wa 2

+ BAT Yy 2wy | 2]

< 81010022022 + 82022l 2 + 812wl 2],
Hence, using the Cauchy—Schwarz inequality, we conclude that

|M3] < 83110/ + [0x22]2, + 810 22]|2, + 8110w, 12,]. (6.41)

6.6. End of proof of Proposition 6.2
Gathering (6.29), (6.31), (6.33), (6.38) and (6.41), we obtain

d 1
M / [(8x21)% + Vo(8x22)% + 3(3222)2] + C38%10|82 2,2,

+ C38M1 (2112, + 1122117 2) + C3ll0xz213
+ G380 (w17 + N0xwi 172 + lwall32) + 87710012,
Finally, for § small enough, we conclude that for some C5 > 0 fixed,

d 1
ﬁeM =-3 /[(3x21)2 +2(8222)°1 + C3(l 21132 + 221172 + 19x221172)
+ C351/1°(||w1||i2 + 0xwi 172 + wall7.) + C38710 012

This proves (6.5).

7. Coercivity estimates

Before starting the proof of Theorem 1.2, we need coercivity results to deal with the terms
/¢A(3H+u1)H’u%, 81’12, p’/(pAH’uz, (7.1)

which appear in the virial estimates of I () (see (4.19)). We will decompose this term in

terms of the variables (w;, wz) and (z1, z2). The last ones involve the variables (vy, v3);
then we should be able to reconstruct the operator £ from our computations.
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7.1. First coercivity estimate
The key element of the proof of Theorem 1.2 is the following transfer estimate.

Lemma 7.1. Let uy be in H', (wy,w5) be as in (4.17) and (z1, z3) as in (5.5). Then

‘/m@ﬂ+mwuh~ymwmhﬁwamhn

+ sias 7172 + 821921 7. (7.2)

Proof. First, we observe that g4(y) < |y|, and
e s le() se(l). o
leaBH +u)H'| 5 |y sec 75) S seeh’(3 (13)

Set % <l < min{ \/_ A} < 5, where A is such that the coercivity on Lemma 2.4 holds.

We note that
/sechz(%>u% < /sechz(Ey)u%.

Now, we focus on the term on the right-hand side of the last inequality. Applying Lemma
2.4 with ¢y = sech?(£y), and using that |¢’| < C£¢ and that (u;, H') = 0, we obtain for
some A > 0,

/sechz(ﬁy)u% < fsechz(ﬁy)[u% + (0xu1)?]
1
< 5 [ st @@y + Vo)
Now, integrating by parts, one gets
/sech(ﬁy)(axul)2 /sechz(ﬁy)ulazul + = /(sechz(ﬁy))” 2

Using that
|(sech®(£y))"| < €2 sech®(£y),

and choosing £ small enough (0 < £ < ‘/TX), one gets
/sechz(éy)u% < /sechz(ﬁy)éﬁ(ul)ul.
Now, using the definition of v, we obtain
[sechz(ﬁy)i(ul)ul = /sechz(ﬁy)ulvl —y[sechz(ﬁy)ulaivl. (7.4)

For the first integral on the right-hand side of (7.4), using the definitions of z; and w1, one
can see that

/sechz(ﬁy)ulvl

= /Xi sech?(€y)uiv; + /(1 — x3) sech?(£y)uyvy
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- / 15 sech? (09)(Eals) " wrzt + / (1= 13 sech®(€) 252w (E4v1)
< max {sech®(€3)€ats) Y il 21 ]2z

|y|<2A4

+ max fsech?(€0) 252} w122 €1 12

ly|>A

< max {sech®(€3)(€ats) " Hwi 2 lz1lls + ¥~ max {sech®(€)E5% w22

[y|<24 |y|>A

_ 1 A

Sellwillf, + e Hlzul7z + vy e B w3, (7.5)

where ¢ is a positive number to be chosen later. Note that the last inequality holds if
2B~ ! < £. Now, for the second integral on the right-hand side of (7.4), integrating by
parts we obtain the expression

[ dslsect eyl
= /[(sechz(fy))’ul + sech?(£y)dxu1]0x vy
= /(sechz(ﬁy))')(flulaxvl + /(1 — Xﬁ)(sechz(ﬁy))'ulfﬂxvl

+ / sech? (€y) 3,1 dyv1 + / (1= 1) sech®(€3) 3519501

=l + 4l +4l3+ 4. (7.6)

We treat each term ¢; in (7.6), starting with £;. Using the following decomposition and by
the Holder inequality, we get

] / (sech® (L)Y 185 vy

<
~

f (sech® (€)Y 1185 v1

+ '/(Sechz(fy))'(l — XA XUz V1

S

/(sechz(ﬁy))’)(jul 0 V1

S Ulxav 2188 x5G0xv1 L2 + € lg‘lgﬁ{sechz(fwgz}llwl Iz2M8adxv1 ]2

+ ‘/(Sechz(ey))'éf(l — X)W1 (adxv1)

Furthermore, by the definition of z;, we can check

/

¢
XatBOxv1 = Ya0xz1 — XA;,_iZl — X471 1.7)

and by Lemma 5.7 (5.28) and Remark 4.15, we obtain

4] = ‘ [ et eny s

< Uwillz(18xz1ll2 + B~ z1llz2)

o+ €y max {sech® (@) 5 (w72 + i) (7.8)
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In similar way, we obtain for {3,

)/ sechz(ﬂy))(iaxulaxvl

<

~

/ sechz(ﬁy))(flaxulaxvl

+ '/ sech®(£y) (1 — ) x30xu10xv1

S Nl xadsunllz2l1Es x5 9xv1 [l L2 + ltf}gﬁ{sechz(ﬁy)éf}||§A8xu1IILz 4050122
y
By (7.7), Lemma 5.7 and Remark 4.15, we get

‘/Sechz(ﬁy)axulaxvl S 8adxurll2 (192211l 2 + |21 l22)

1
\

We conclude using (5.5) with K = A. We obtain

+y” ryn‘gﬁ{sechz(ﬁy)éf}IICAaxul||iz.

V sech”(€y)dxu1dxv1| < (lwillzz + [8xwillL2)(19xz1liz2 + llz1llz2)

+y! ‘Iylgﬁ{sechz(ﬁy)gz}(llwlIIiz + 19w l72). (7.9)
Collecting (7.5), (7.8), (7.9) and by the Cauchy—Schwarz inequality, we obtain

1
[ sectiond < ehwrlzz + 4 =111

+y(lwillZz + 19xwil72) + y(13xz1 0172 + B~2[1z11172)
< max{e, A7', p}llwillzz + y 3wl

+max{e™" B2}l|z1 172 + v 119521172

Finally, by (5.6) and choosing & = §/2°, we conclude that
[SeCh(Y)u% < Bil/z(”wlniz + ”axwl“iz) + Bl/z”ﬁ“zz + V”aleniz
1
< 8V20(lwy |12, + [9xwi2,) + m”h”iz + 8220y z1 )12, (7.10)
This ends the proof of Lemma 7.1. ]

7.2. Second coercivity estimate

Now we consider the second term in (7.1). Recall the estimate for the shift p obtained in
(4.6), where
2 —2lyl, 2
1o'1> S /e Va2,

In order to manage this term, we will decompose it in localized terms for w, and z5.
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Lemma 7.2. Let uy be in L?, (w1, wy) be as in (4.17), and (z1, z2) as in (5.5). Then

1

st 122172 + 82103221172 + 81922072 (711)

[V < 50wl +
Proof. First, we consider the decomposition

/e—ﬁ|y|u§ _ /Xie—ﬁlylu% n /(1 e VL2, (7.12)

For the second integral on the right-hand side it holds that

[ (1= xhe V2Pl < sup {eV2ble?) / w2 < yllwal?,.  (7.13)
y|>A

Now, we focus on the first integral on the right-hand side of (7.12). We observe that

Xié’gaxvz = Y40xZ2 — (XAé‘B)/EEIZZ’

and

X4889%v2 = 150522 — (xalB)"C5" xaz2 — 2(xa8B) {5 X4CBOxv2
= 120222 — (x4lB) (5" xaz2
—2(xalB) (5" (xa0xz2 — (xalB) L5 22). (7.14)

Recalling that v, = (1 — y92) " u, (see (5.1)), (5.5) and using (7.14), we obtain

U e V2

- V e_ﬁlyl(fAEB)_lwz)(ifB(l —yd3)v2

< / wal 1311 = 782)vs]

3 2
< llwallzzllz2llzz + vllwallz2 1 x48B 9% v2 2
< llwallzzllz2llp2 + )’||w2||L2(||3;2622||L2

+ B |0xz2llp2 + BV |22l L2).

Using the Cauchy inequality and (7.13), we get for ¢ > 0,
—2|yl,,2 < 2 l 2 92 2 B9 2
e uy S (&4 Y)wallpz + Zllz2llpe + vI9izall + yB~ ll0xz2)lL..
and, by (5.6), choosing ¢ = 81/20, we get
_ 1
/e ﬁb"u% < 8V w2, + mllzzlliz + 8251922212, + 82| 0x 22125,

which proves (7.11). [
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7.3. Third coercivity estimate

Notice that on the variation of the functional I (see (4.19)), the integral term

(foore)

can be treated in a similar way to (7.3) in the above lemma, since

lpaH'| < sechz(g),

and, by the Holder inequality, we get

([seer(Zpe) = [sear (L)

By (7.11),

2
1
( / wAH/uz) <8V wallf + s lizale + 82032l + 620l

We conclude the following corollary.

Corollary 7.3. Under the assumptions in Proposition 4.2, (4.18) and (5.6), one has for
some C1 > Cy > 0,

d 1
ST =5 [ 430w + - acioud)

Cy
+ C18 20 (w12, + 0xwi 72 + wall72) + m(”zlﬂiz + l1z21172)
+ C182P(|0x 211172 + 10x220122 + [10222]12,). (7.15)

Proof. Recalling that Vy = 2 — 3sech?(y/+/2) (see (1.13)) and calling to mind the defi-
nition of wy (see (4.17)), we get

1 > 1 2,3 2( Y \s2,2
_5/‘([/0_46‘05)11;1 = —E[(2—4C08)w1 + E/sech (E> U7

The proof concludes by applying (7.10) to the last term on the right-hand side of the above
equality. |

7.4. Final coercivity estimate
Lastly, we need the following coercivity property for z5.

Lemma 7.4. There exists mo > 0 such that for any z € H' it holds that

/(2(8x2)2 + Voz?) = mo|z|31- (7.16)
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Remark 7.1. Notice that no orthogonality condition is needed in Lemma 7.4. Indeed,
the term 2(d,z)? is sufficiently robust to elude the requirement for a very complicated
condition to ensure orthogonality on z, in Proposition 5.1.

Proof of Lemma 7.4. Define

X
Ly = —28)2c + Vo = —28)26 +2-3 sech2<ﬁ).
Since £4 > £, we easily have £4 > 0. Let us write

_ 1 2 _ 9 2 2f X
i#—g(—ax‘i‘l)‘Fi##, Ly = §( 0% + 1) — 3sech (E)

It is not difficult to check that £ is a classical self-adjoint operator, with first eigenfunc-
tion given by

1
sechm<%), m = =(v129-3) ~ 139,

and eigenvalue £ = %(\/ 129 — 11) ~ 0.054 > 0. Therefore, since L > 0, we conclude
(7.16) with mg = 1. n
From the previous result, we obtain the following corollary.

Corollary 7.5. Under the hypotheses in Proposition 5.1, the following is satisfied: there
exist Co > 0 and mo > 0 such that, for allt > 0,
d my
E&’ < _T(Hzlniz + 22172 + 19x221172)
+ C251/10(||w1||zz + 05w + [wall7,) + C256/5||3;2522||iz- (7.17)

Proof. Direct from Proposition 5.1 and Corollary 7.4. ]

8. Proof of Theorem 1.2
Now we are ready to conclude the proof of Theorem 1.2. Recall the constants §; > 0 for
i = 1,2, 3, defined in Propositions 4.2, 5.1 and 6.2.

Proposition 8.1. There exist C4 > 0 and 0 < §4 < min{8y, 82, 83} such that for any 0 <
8 < 84, the following is satisfied. Assume that for all t > 0, (4.1) holds. Let

H =g +16C281°T + 80C,C2C48 5 M.

Then, under (4.18) and (5.6), one has for all t > 0,

d
IS —SY10(Jwy |2, + 19xwi 122 + [w2]|2,). (8.1)
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Proof. First, from (7.15), we obtain for § > 0 small and some C fixed,

d 1 Cy
I=—7 /(w% +30w)* + wi) + ss Iz 172 + 122172)
+ C182P (0xz1 1122 + 10x22012, + [10222]12,). (8.2)

From (7.17) we also have

d mo
-8 = =7 (=105 + 2201z + 10x22172)

+ €8V |32 + [19xw1 22 + 02]2) + o8 [R2aZa. (83

Gathering (8.2) and (8.3), we conclude that

d
@+ 16C,81/1°1)
mo
< _?(”21“22 + llz2ll72 + 10x22(7.)
— 3G 0 (lwilI7 2 + 0w lF + lwzll?2)
+16C, C28" (10521172 + 1022272) + C28%%(10223 7,
mo
< —?(Ilzllliz + 220172 + 19x221172)

—3Co80(lwill7s + 10xwi 172 + wal72)

+16C1C28Y2([|0x 21112 + 10222]125) + C289/571/281/21 922,12, (8.4)

On the other hand, from (6.5) and (7.11), we get

d 1
M= =5 [(@z0? + @z + 200 + s + 10zal)

+2C38 0w 17 + [9xwillF> + wal72)-

Finally, define
H =g + 16C28V10T 4+ 40C,C,8'2 M. (8.5)

We conclude from the last estimate and (8.4),

ot =021 + ks + Iazale)
= 3G 0 (Jwi |72 + 19xw1 (172 + llw2ll72)
+16C1 G282 (0521 (172 + 102220122) + C26%°1|02 2213
—20C1C28" 2 (||9xz1 |12, + [18222]122)
+80C1C2C38" 2 (||21[172 + 22072 + 10x221172)

+ 80C1C2C381/10+1/2(||w1IIiz + ||3xw1||1242 + ||w2||iz)
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mo
< =S5 Uz E2 + 2202 + 19522132)

— G810 (wy |12, + 0xwill72 + llwall32)

— Co8'2(4C = 8710 (19: 211172 + 193221172
From (8.6) we obtain (8.1). This ends the proof of the proposition.

We will use now Proposition 8.1 as follows.

Lemma 8.2. One has
o0
/ w22, + 135w |25 + wi]2,]dr < 811710,
0

Proof. Integrating estimate (8.1) on [0, ¢], we get

t
/ [lwallZ2 + [8xwillZ2 + llwill721dr £ 2 sup |H(s)| < 2sup |H(s)].
0 0 s>0

<s<t
Now we estimate the functional # (¢). Indeed, from (8.5),

|#| = | + 16C26"10T 4 80C, C2Ca8"° M|
<191+ 81T+ 810 M|

/W,Bvlvz /cpAuluz /WA,B(?xvlaxvz
R

< Blvivallr + A8V lugusl| L + BSY5(|85v1d5va]lL1.

5 +81/10 +81/5

Now, from estimates (5.26), (5.27) and (5.32), we conclude that

19| < 3527/—1/2 4 Ag2TI/10 4 381/5)/_18)/_1/28.
Finally, using (4.18), (5.6),

19| < 51+1/10(86/10 41 4 §10/10 +54/10) < gli/1o,
Passing to the limit as ¢t — oo, we conclude.

By Lemma 5.7, estimates (5.30)—(5.31), one obtains

/w(/(u% + (Oxu1)* +u3) sech(y)) dt <.
0

Using the above estimate, we will conclude the proof of Theorem 1.2. Let

K@) = [ sechoned + [ sech()(1 =y i) =5 K (@) + Ko).

698

(8.6)

8.7)
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For X1, using (4.5) and integrating by parts, we have

d X,
dt

=2 [ sech(y)(u111) — o’ / sech’(y)ui
= 2/sech(y)u1(8xu2 +o HY—p / sech’(y)u?
= =2 [ (et (s + sech(n)suuz + 24/ [ sech(3) A/
-0 / sech’(y)us.
Then, applying the Holder inequality, the Cauchy—Schwarz inequality and (4.6), we get

1/2 1/2
< [seennd + @ + )+ (([eVmhd) ([ eoid)

< /sech(y)(uf + (xu1)* +u3).

d
‘chl(f)

For X5, passing to the variables (v1, v3) (see (5.1)),

%, = / sech(y) (95 v2)?.

and using (5.2), we get

d
L x
dr’?

2/sech(y)3xv28§v1 +2/sech(y)8xv23xF —,o'/sech/(y)(axvz)2
=: K1 + K22 + K>3.
Integrating by parts in K»;, we have
Ky = —2/(sech’(y)8xv2 + sech(y)02v2)dx V1.
Using (5.1) we obtain
Karl % [ sech(n)(@0a(1 = o)) + @201 = y92) " ua)?

+ (0x(1 —y32) " 2uy)?)
< [Isech!2(y)(1 = y2) ™ dus |2, + || sech/2(y) (1 — y32) ™' (@2 — 1 + Dua |2,
+ [ sech'/2(y)(1 — y32) ™ 0 (Lur) |2,

Using Lemma 5.22, more precisely (5.24) and (5.25), (1.13) and (5.26), we obtain
1 _
IKal £ 1 sech'/2(y)uz |17 + || sech' () (1 — y33) ™ (Ldx11 + 9xVoun) |7

<y / sech(y) (w3 + (Bxu1)? +162).
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For K35, we use the Cauchy—Schwarz inequality, (5.24) and a similar computation of
(6.32); then

|K22| < /sech(y)[((l —y8) T 0xu2)? + (1 = y39) ™1 0x((u} + 3Hu1)))’]

<y /sech(y)[u% + u% + (xu1)?].

The term K53 is bounded as follows: using (5.1)

1/2
|Kas| < ( / e—ﬁ'”uz) ( f sech(y)(axvz)z)

2
<972 [ seond + Vz(/ sech(y)(0x (1 = y32) ™) 2)

2
< y_Z/sech(y)ug + (/ sech(y)u%) .

Then we conclude that
La00] % [ st + @+,
By (8.7), there exists an increasing sequence ¢, — oo such that
Jim [K1 (1) + Ka(ta)] = 0.

For ¢t > 0, integrating on [f, ¢, ], and passing to the limit as n — 0o, we obtain

K(t) < /w[/ sech(y)(u? + (8xu1)2+u§):| dt.

By (8.7), we deduce
lim K (z) =0.
t—>00

By the decomposition of solution (4.2) and the boundedness in H! of u, this implies
(1.17). This ends the proof of Theorem 1.2.

A. Proof of Lemma 2.2

The first step is to understand the generalized null space of this operator. By Coppel [19],
we know that the asymptotic behavior of the solutions of fourth-order differential equation

—02%p =0 (A.1)
are determined by the asymptotic behavior of the solutions

—92Lou =0, where £9 = —32 + 2.
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One can see, analyzing the coefficient matrix of the first-order system associated to the
above equation, that the eigenvalues are simple and given by ++/2 and 0 is an eigenvalue
of multiplicity two. Then, by [19, Theorem 4 of Chapter 4], the asymptotic behavior of
the solutions of (A.1) are, modulo scaling, as x — 400,

V2 VA

e , X.

Using classical techniques of ODEs and the principle of superposition, one obtains that
the solution of —32£¢ = 0 is a linear combination of the linearly independent functions

uo(x) = H'(x), ui(x) = H’(X)/0 (H'(y)~>dy,

x y
us(x) = —2H'(x) /0 (H' (7)) /_ H'(s)ds dy,

y

us(x) = H'(x) [o (H' (7)) / SH'(s) ds dy.

We also have limy_, o uo(x) = 0, but the others do not belong to L?2:

. g H ) Pdy (H'(x))~?
xllrl]oo i (x) = xll>r—noo W o xll>r—noo —(H'(x))"2H"(x)
. 1
- xll}lloo —H(H2-1) = oo
Also,
“(H'(y))"2(H d
_ 5 (H'(x))*(H(x) + 1)
w2 —(H/ (1) 2 H ()
_ lm 2 H(x)+1 _
T x>0 —H(H-1)(H+1)
Finally,
Y(H'(y) 72 Y _sH'(s)dsd
lim_ua() = _tim_ Jo( (y))(H%:,)o)i1 (s) ds dy
_ (H'(x))™2 [2 sH'(s)ds _ [ sH'(s)ds
Tt T —(H)PHI) v —HI(x)
_ xH'(x) xH'(x)
= x50 T”(x) = x5bo —H'(x)3H?—1)

X

x—>—oc0 1 —-3H2

This proves Lemma 2.2.
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B. Proof of Lemma 2.5

Replacing £ (see (1.13)) and integrating by parts, we get

(n2(f).g) = / M0x fxg + Vofel + (105 f . g).

In particular, we get
(021 f) = [0 11 + (V)]
= [ sor + Vs + vare s+ [ niss
= [ (5o@ 1+ Vs + 3vadels) = [ 0u 10 s

= f W10 ) + Vo) + f o f? - %/nVo/fz

= [ors +tarrons
1 ’ 2 2 1 /r2 1 " p2
=3 n30xf)"+ Vo f ]+§ VoS t5 |7 1
Lastly, integrating by parts, we have

(L@ f). f) = / W83 fF + Vods £ 1]

=5 [z e var=3 [avir2+ 3 [

The proof is complete.

C. Local well-posedness

In this section, we will prove that the small perturbations around the static kink are in fact
locally well posed on the energy spaces associated, i.e. on H! x L2. It has been proved
that the linear part of (2.6) is well posed on H! x L? (see [53]). Now we will focus on
whether the nonlinear equation associated to (2.6) is locally well posed. Notice that (2.6)

is equivalent to

%uy — 20%uy + 0%uy — 02F (¢, x,u;) = 0,
where F(f,x,u1) = 3ui(H? — 1) + u3(u1 + 3H), satisfies (2.9). Let the operator ® be
given by

du](r) = §()ul(x) + K()ud(x) + /t K(t — )2 F(s, x,u)ds, (C.1)
0
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where
g1t)=F1Gt.6)F, K@) =F 'Kt &)F;

F and F ! represent the Fourier transform and its inverse, respectively. The Fourier
multipliers are given by

G(1.£) = cos(@(®)1). K(r,@:%, and () = [€|VE T 2.

Following the ideas in the proof of [53], we will use a contraction mapping argument and
analogous estimates in the linear case.

Remark C.1. One will notice that %a)(é) = ¢(§) = |§| 1+ 52, where the last one is the

same symbol studied by Linares for the good-Boussinesq equation. In fact, letting v € L?
and considering £ = t/+/2, we get

V@020 = [ OO @) ds

_ %/ei(”‘l’@)*ﬁ"f)v/@)(%) dt

— l/ei(tw(r)+xr)ﬁ<£) dr.
2 2

Let u be a function such that (u/(x\))(r) = (v/(x\))(t /2); then
hEue = 5 [ OG0 dr = Rouo),

where V; = F1[e!* (! #] is related to the Fourier multiplier §. It is analogous for V,
and the Fourier multiplier K.

The following results have been proved in [52, 53].

Lemma C.1 ([53, Lemma 2.7]). Let f € L? and
Vi) f(x) = / OO+ f (e gt

where ¢ (&) = |&|(1 + £2)'/2. Then
V@) fllez < 1/ llz2

and
T 1/4
( /0 VL0 f dr) < (1 + T fo.

Lemma C.2 ([53, Lemma 2.8]). Letg = h’ € L? and

Va(t)h (x) :/‘ei(mﬁ(é)ﬂg)%ds'
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Then
Va2 < cllhll g

and

T 1/4
( [ im0t dr) < (L4 TV Al o1,
0
Lemma C.3 ([53, Lemma 2.8]). Let g = p” € L? and

Va(t)p(x) = / ei(t¢(§)+x§)% d.

Then
1Va() p"ll2 < clipllez

T 1/4
(/0 ||V2<r>p”||2wdr) < clplze.

Finally, we have the following lemma.

and

Lemma C.4 ([53, Proposition 2.12]). Let

(—32) 7129, Vi (1) f(x) = / iE]71p(§)e’ 0O f(g) qg,
sgn(£)h(£)

23—1/2 _ | i1g1-1,iGh(E) +xE)
(—ax) 8tV2(l)h/(X) —/Z|E| e ! (1 +EZ)1/2 ds
and
_ " S PN x —A( )
() 2020 () = [ ale 0000 P g,
Then
”(_a)zc)_l/zazvl(l)f”LZ =< C”f“Hl’
[(=82)Y28,Va(t)h' || 2 < C ||k L2
and

1=32)720,V20)p" 12 = Cllp I

Let the operator ® be given by (C.1) and, similarly to [53],

704

Y ={ueC(0,T]: H'(R)) N L*([0, T]; L (R)) | (=32)~"/?d,u € C([0, T], L*(R)),
suppo,71 (1 = 83)"2u(0)) > <a,
SUppo,7] ||(—a)2c)_1/23tu(f)||L2 <a

and [|ulll; < a},

T 1/4 T 1/4
|||u|||1=( / ||u(z)||zwdz) +(/0 T dz) .

where
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Remark C.2. The multipliers ¥ and X are directly related to V; and V5, respectively.
This means that, considering Remark C.1, Lemmas C.1, C.2, C.3 and C.4 are valid for §
and KX, respectively.

First, we will show the following proposition.

Proposition C.5. Let uy € H'(R) and uS = 9,43 € L?, and define ®[u] as in (C.1).
Then
P YE > YE

for some T = T(8), where § such that ||u®|| g1, |[ud|l.> < 4.
We will need the following technical lemma to manage the nonlinearity of F.

Lemma C.6. Let F be as in (2.7), then the following inequalities hold:

IF@ x,u)llze S [u(H? = Dlize + ([ullfoe + lullzeo) ull22,
195 Flize S (1+ lullzee) [l |22 + [0xu(H? = 1) .2 (C2)
+ (ullzoe + llullzee)[8xul L2
and
|F(t,x,u) — F(t,x,v)| 2
< D= vl (lull7e + wll7e + ullze + [v]Le)
+ | = v)(H? = D)2,
|10x F(s,x,u) — dx F(s,x,v)|r2
S N8xu = dxvll(ullzoe + vz + [ull7 + [0]7)
+ = vl (lullzoe + [vllzee + [ull7e + 01700 + 1851700
+ 19xv[1700)
+ I(H? = 1)@xu — 8x0) |2 + I6HH (4 — )| 2.

(C.3)

Proof. The first inequality follows directly from the definition of F. For the second
inequality, we notice that

O F(t,x,u) = 3uH'(2H + u) 4+ 0,u(H?> — 1) + (3u® + 6 Hu)du.
Then we get
19x F(t, x,w)ll 2 S (14 llullzoe) [uH |2 + 1950 (H? = 1) 2
+ (lullZ oo + lullzoo)l[0xull 2.
Second, using (2.8), we get

IF @ xu) = F(t.x,v)llz2 < 3] — v)(H? = 1|2

2 2
+ lu = vll2(ullZoo + V70 + 1l + f[v]lzeo).
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For the last inequality, we notice that
|0x (F(t,x,u) — F(t,x,v))|
S [0xu — 30| [(H? = 1) + u” +v* + u + v
+u—v||6HH +u+v+u®+ 02+ (0,u)* + (0,v)?].
Then
105 F(t,x,u) — 0x F(2,x,0)]2
< [18xu = dxvl[(lullzoe + [vllLe + [ull7 + [0]7)
+ llu = vllz2(lullzee + vllzee + ullzoe + 10lIZo + 19x2llZe0 + 185017 00)
+ [(H? = 1)(3xt — 3xv) |2 + |6HH' (u — V)| 2.
This concludes the proof. ]
Now we prove Proposition C.5.

Proof of C.5. First, we will focus on the norms || - || ;2. By Remark C.1, Lemmas C.1
and C.2 and the Holder inequality, we get

sup [|®[u]llz> < sup [[§()uf(x)]lz2 + sup | K (u3(x)|.2
[0,T] [0,T] [0,T]
t
+ sup / K (t — )02 F (s, x,u)ds
[0,7111/0

L2
T
< cllu} )iz + a3 | - +[ [1F (s, x.u)|| .2 ds.
0
Using (C.2) and the Sobolev embedding, one has

[sup] IP]llz2 < clluf )l + 1732 + T Sup](IIMIIH1 + Nl + el
0,T T
Similarly, for the term 9, ®, using Lemmas C.1 and C.2 it is obtained that

T
[Suﬁ] 195 ®[llzz < [19xu} () lIL2 + lluz(x)] L2 +/0 05 F(s,x,u)ds| 2.
0,

From (C.2) and the Sobolev embedding, we get

Suﬁ] 19x@[ulllz2 < c(lu} ()l + [lu3(x)z2)
0,

+ cT{sup}(HunHl + el + Tul3).
0,7
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Then we arrive at

sup [|®[u]llgr < sup [|P[u]ll> + sup [[dx Plu]] .2
[0.T] [0.T] [0.7]

< 2¢(luf () g + uz(x)L2) +2¢T [Sup](IIMIIH1 + luliFn + el )
0,7

Hence, if
a=8c5 and T = 84/46,
we obtain
4¢8 +2cTa(l +a+a®) = 4c8(1 + 4cT(1 4+ a + a?)) < 8c6.

Now, to estimate (—92)~'/29, ®[u], we will use Lemma C.4 and (C.2); we obtain

sup 1(=03) "8, @ulll> < e} () | + [u3(0)|L2)
0,

+ CT[SUP](”””Hl + ullz + lulz).
0,7

As before,
2¢8 +acT(1 +a+a*) =2¢8(1 +2cT(1 +a+ a®)) < 8¢c6.

Finally, we will estimate the L*L° norm. Applying Lemmas C.3, C.2 and C.1 and using
(C.2), we get

I1@llzs o0 < 116 @OuF L3 oo + 1K Ou3() 14 120

+ H/tJC(t —s)BiF(s,x,u)ds
0

LYLY

< A+ T2 + 18022 + CT[Sup](IIMIIH1 + lullz + lulizp)-
0,T

Similarly to the above estimates we obtain

10Dl gz < (1 + TVl + 133112) + T [Sup](IIUIIH1 + el + N3
0,7

Finally,
lpellly = N PLe]lips ree + 195 Plaelll s e
<2¢8(1 4+ TY* + 2¢Ta(l + a + a?),
and we get
2¢8[(1 + TY*) + 2¢Ta(l + a + a®)] = 2¢8[(1 + TV*) + 2¢T(1 + a + a?)] < 8¢8.

This ends the proof of the proposition. ]
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Second, we will prove that ® is a contraction mapping.

Theorem C.7. Let ud € H'(R) and ul = i3 € L>. Then there exist T = T(8) and a
unique solution of the integral equation (C.1) in [0, T with

u € C([0,T]: H'(R)) N L*([0, T]; L™)

and

(—92)"20,u € C([0, T; L*(R)).

Proof. Proposition C.5 ensures that ®[u]: Y7 — Y£, so we only need to show that ® is a
contraction. First, we notice that

(®u] — PP)(¢) = /Ot K(t — )02 (F (s, x.u) — F(x,s,v)) ds.

Now, we will focus on the L°L2 norm. By the Holder inequality and Lemma C.3, we
obtain

sup [|[@u] — @[v]llL2(2)
[0,T]

T
<c [ I + (u + )(v + 3H) | [t — vlz2 ds
0
T
+C/ ot — o] [3CH? — 1)[[l22 ds
0

T T
< C sup Ju— vl (/ (eloo + 0120 + Tl + [ollio) ds +/ 1ds).
[0,T] 0 0

Applying the Holder inequality,

sup || ®[u] — ®[v]||2(t) < CTY?[2a? 4+ 2TV*a + TV?] sup ||lu — v]| 2.
[0,T] [0,T]

Then, by (C.3),

sup [[0x Plu] — dx Pv]]l 2 (1)
[0,7]

T
< C/ [0 — dxwllp2||lu? + v* 4+ u + v Lo
0

T
+ C/ = wllzz e + v+ 12 + v + @y + (90) 1 ds
0

T T
e / 1@t — Byw) (H? — 1)1 + C [ I — w)6HH |12 ds. (C4)
0 0
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Hence, by Lemma C.3, we get

sup [|9x Pu] — 0x P[v]||L2(r)

[0.7]
< C sup ||0xu — dxwl|2[2a>TY? + 2T3*a + T]
[0,T]
+ C sup |lu—w| 22T *a + 4T"?a® + T)
[0.7]

< C( sup ||[0xu — dxw| 2 + sup |ju — u)||Lz>[4(12T1/2 +273%a + 7).
[0,T] [0,T]

Now, as in (C.4),

sup [|(—03)~"/29, ®[u] — (=83)/*8, D[v]ll 2
[0.7]

< c( sup [|dxu — dxwlz2 + sup flu — w||Lz)[4a2T1/2 12734+ 7).
[0,T7] [0,T]

Finally, we will estimate the L‘Y‘,L;<> norm. Using the Holder inequality, we get

@[] — D[]l a0 < CTY?[2a + 2T *a + T2 sup |ju —v]| 2.
[0.7]

Furthermore,
182 @[] — B D[]l 5 1

< c( sup [|9xu — dxwllz2 + sup [lu — w||Lz)[4a2T1/2 +2T3 4% + 7).
[0,7] [0.7]

Then, for T = §*/4c < 1 and a = 8¢§, we get

4a®TYV? +2T3*a + T < 8*(3(8¢)® + (8¢ + 1)?),
2a2TYV? 4 2T3%a + T < §*((8¢)? + (8¢ + 1)?),

and for § small enough we obtain that & is a contraction. ]
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