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Short note Jacobsthal analogues of two
Fibonacci–Lucas identities
and a generalization

Emil Daniel Schwab and Gabriela Schwab

1 Two Fibonacci–Lucas identities

The Fibonacci sequence 0; 1; 1; 2; 3; 5; 8; 13; : : : and its companion Lucas sequence 2; 1; 3;

4; 7; 11; 18; : : : are defined by the same recurrence relation but with different initial condi-
tions

F0 D 0; F1 D 1; FnC2 D FnC1 C Fn and L0 D 2; L1 D 1; LnC2 D LnC1 C Ln:

In [14], B. Sury proved the nice Fibonacci–Lucas relation

2nC1FnC1 D

nX
iD0

2i Li (1)

using a polynomial identity. Kwong uses in [9] an alternate proof via generating functions,
and earlier, Benjamin and Quinn [2] proved (1) through colored tilings (see also [3, Iden-
tity 236]). It should be noted that, after the publication of the proof of identity (1) in [14],
many extensions and generalizations of (1) appeared in the mathematical literature (see
[1, 5–7, 10–13], etc.).

One of the first extensions of identity (1) is Martinjak’s [11] Fibonacci–Lucas identity

.�1/nFnC1 D

nX
iD0

.�1/i 2n�i LiC1: (2)

The goal of this note is to obtain analogues of these identities for the Jacobsthal
sequence and its companion the Jacobsthal–Lucas sequence and to extend (1) to gener-
alized Fibonacci–Lucas numbers.

https://creativecommons.org/licenses/by/4.0/
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2 The Jacobsthal analogues

The Jacobsthal and the Jacobsthal–Lucas sequences 0; 1; 1; 3; 5; 11; 21; 43; : : : and 2; 1; 5;

7; 17; 31; 65; : : : , respectively, are defined by

J0 D 0; J1 D 1; JnC2 D JnC1 C 2Jn and j0 D 2; j1 D 1; jnC2 D jnC1 C 2jn:

As we shall prove, the Jacobsthal analogue of identity (2) has the following two ver-
sions, one for even and one for odd terms:

.�1/nJ2.nC1/ D

nX
iD0

.�1/i 2n�i j2iC1; (3a)

.�1/nJ2nC1 D �2n
C

nX
iD0

.�1/i 2n�i j2i ; (3b)

and the Jacobsthal analogue of identity (1) is

2nC1JnC1 D

nX
iD0

2i ji : (4)

A striking similarity between these Fibonacci–Lucas identities and their Jacobsthal
analogues (especially between (1) and (4)) can be recognized. In what follows, we shall
present two significantly different proofs of identities (3a)–(3b) and (4), one proof charac-
terized by its simplicity, and the other one by its specificity.

3 A simple proof of Jacobsthal analogues (3a) and (3b)

We begin with the simple proofs of the Jacobsthal analogues (3a) and (3b).
In the case of Fibonacci and Lucas numbers, the basic connected identity is LnC1 D

Fn C FnC2. The corresponding connected identity between Jacobsthal and Jacobsthal–
Lucas numbers is the following one:

jnC1 D 2Jn C JnC2:

Thus, using this identity and rearranging the parentheses, we obtain

nX
iD0

.�1/i 2n�i j2iC1

D 2nj1 � 2n�1j3 C 2n�2j5 � � � � C .�1/n�12j2n�1 C .�1/nj2nC1

D 2nJ1 � 2n�1.2J2 C J4/C 2n�2.2J4 C J6/ � � � �

C .�1/n�12.2J2n�2 C J2n/C .�1/n.2J2n C J2nC2/

D 2n.J1 � J2/ � 2n�1.J4 � J4/C � � � C .�1/n�12.J2n � J2n/C .�1/nJ2nC2

D .�1/nJ2.nC1/

since j1 D J1 D J2 D 1.
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We proceed in a similar way in the case of (3b):
nX

iD0

.�1/i 2n�i j2i D 2nj0 C

nX
iD1

.�1/i 2n�i .2J2i�1 C J2iC1/

D 2n.j0 � J1/C

n�1X
iD1

.�1/i 2n�i .J2iC1 � J2iC1/C .�1/nJ2nC1

D 2n
C .�1/nJ2nC1:

4 A proof of the Jacobsthal analogue (4)

We give now a proof of identity (4) using Euler’s Telescoping Lemma.
In 2011, Bhatnagar [4] reformulated an identity used by Euler in his proof of the Pen-

tagon Number Theorem. This new version was called by Bhatnagar “Euler’s Telescoping
Lemma”.

Bhatnagar, by examining the finite version of the product
Q1

1 .1C xi /, that is,

.1C x1/.1C x2/ � � � .1C xn/

D .1C x1/C .1C x1/x2 C � � � C .1C x1/ � � � .1C xn�1/xn;

in short,
nY

iD1

.1C xi / D 1C x1 C

nX
iD2

.1C x1/ � � � .1C xi�1/xi ;

and by setting 1C xi D
yi

zi
(zi ¤ 0) obtains the following lemma.

Lemma 1 (Euler’s Telescoping Lemma [4, Equation (3.4)], [5, Equation (2.1)]).
nY

iD1

yi

zi

D
y1

z1

C

nX
iD2

y1y2 � � �yi�1

z1z2 � � � zi�1zi

.yi � zi / .zi ¤ 0/: (5)

Now, it is straightforward to check that the Jacobsthal analogue (4) of identity (1) is
obtained when yi D 2JiC1 and zi D Ji . Thus,

nY
iD1

yi

zi

D 2nJnC1 D
2nC1JnC1

2
.since z1 D J1 D 1/;

and

y1

z1

C

nX
iD2

y1y2 � � �yi�1

z1z2 � � � zi�1zi

.yi � zi / D 2C

nX
iD2

2i�1.2JiC1 � Ji /

D 1C 1C

nX
iD2

2i�1ji D 1C

nX
iD1

2i�1ji

D

Pn
iD0 2i ji

2

since 2JiC1 � Ji D JiC1C .JiC1 � Ji /D JiC1C 2Ji�1D ji . The proof is now complete.
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5 A generalization of identity (1)

Let a and b be two fixed real numbers. Kalman and Mena [8] denote by R.a; b/ the set of
all sequences ¹Anºn�0 with initial terms A0, A1 and all succeeding terms given by

AnC2 D aAnC1 C bAn:

The space R.a; b/ is a subspace of R1 and every subspace R.a; b/ contains two distin-
guished elements called by Kalman and Mena [8] the .a; b/-Fibonacci sequence denoted
¹F

a;b
n ºn�0, and the .a; b/-Lucas sequence denoted ¹La;b

n ºn�0. The initial terms of the
first sequence are F

a;b
0 D 0, F

a;b
1 D 1, and the second starts with L

a;b
0 D 2, L

a;b
1 D a.

For example, the ordinary Fibonacci and Lucas sequences are the .1; 1/-Fibonacci and
the .1; 1/-Lucas sequences, respectively. The Jacobsthal sequence is the .1; 2/-Fibonacci
sequence and the Jacobsthal–Lucas sequence is the .1; 2/-Lucas sequence.

Now, the fundamental connectivity between the .a; b/-Fibonacci numbers and the
.a; b/-Lucas numbers is given by (see [8, Equation (5)])

L
a;b
nC1 D bF a;b

n C F
a;b
nC2:

Since

2F
a;b
iC1 � F

a;b
i D F

a;b
iC1 C .F

a;b
iC1 � aF

a;b
i /C .a � 1/F

a;b
i

D F
a;b
iC1 C bF

a;b
i�1 C .a � 1/F

a;b
i D L

a;b
i C .a � 1/F

a;b
i

for i � 1, using Euler’s Telescoping Lemma (5) with yi D 2F
a;b
iC1 and zi D F

a;b
i ; and

following step by step the proof of the Jacobsthal analogue (4), we obtain the following
generalization:

2nC1F
a;b
nC1 D

nX
iD0

2i ŒL
a;b
i C .a � 1/F

a;b
i �: (6)

6 Two examples

The Pell numbers Pn and the Pell–Lucas numbers Qn are the .2; 1/-Fibonacci and the
.2; 1/-Lucas numbers, respectively. Following (6), the Pell analogue of the Fibonacci–
Lucas identity (1) is

2nC1PnC1 D

nX
iD0

2i .Qi C Pi /:

The Mersenne numbers Mn D 2n � 1 are the .3; �2/-Fibonacci numbers and the
Mersenne–Lucas numbers mn D 2n C 1 are the .3;�2/-Lucas numbers. Following (6),
the Mersenne analogue of the Fibonacci–Lucas identity (1) is

2nC1MnC1 D

nX
iD0

2i .mi C 2Mi /:

Other examples and extensions can be given and we encourage the reader to find them
using Euler’s Telescoping Lemma.
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