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Six primes in generalized Fermat numbers
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1 Introduction and definitions

This section refreshes some basic knowledge about the Fermat numbers and defines the
generalization used in this paper.

The mathematician Pierre de Fermat introduced the integers Fn D 22n
C 1 (n� 0) and

conjectured them all to be prime. Euler found a divisor of F5, namely 641. Since then,
the Fermat numbers beyond the first five primes ¹3; 5; 17; 257; 65 537º have been widely

Der Mönch Marin Mersenne und der Jurist Pierre de Fermat traten 1636 unter an-
derem über Zahlentheorie in Briefkontakt. Sie brachten dabei je eine Zahlenfolge
zur Diskussion, die Primzahlen enthalten, nämlich die heute nach ihnen benannten
Mersenne-Zahlen Mn D 2n � 1 und die Fermat-Zahlen Fn D 22n

C 1. Die Mersenne-
Zahlen sind häufig prim. Unter den Fermat-Zahlen sind aktuell nur fünf Primzahlen
bekannt. Deshalb verallgemeinerte man die Fermat-Zahlen beispielsweise zu Fb;n D

b2n
C 1 (b > 2 eine gerade Zahl). Mit modernen Methoden fand man in den Folgen Mn

und Fb;n immer wieder sehr grosse Primzahlen, z. B. 2022 eine mit über sechs Millio-
nen Ziffern: F1963736;20 D 1963736220

C 1. Leonhard Euler zeigte, dass die sechste
Fermat-Zahl durch 641 teilbar ist. Seither wurden für fast dreissig Fermat-Zahlen Fak-
toren gefunden. Man vermutet, dass tatsächlich nur die ersten fünf Fermat-Zahlen prim
sind. In der vorliegenden Arbeit wurden bei den Zahlen Fb;n die Parameter b gesucht,
die ebenfalls fünf Primzahlen ergeben. Überraschend wurden dabei vier Fälle mit sechs
Primzahlen gefunden. Kann man daraus etwas für die genannte Vermutung ableiten?
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studied. The existence of a sixth prime is very improbable [2], but its non-existence is not
yet proven.

There exist several ways to generalize the Fermat numbers. A simple one is described
by Dubner and Gallot [4] as follows.

Definition 1.1. Generalized Fermat Numbers (GFN) are defined as

Fb;n D b2n

C 1;

b a positive integer and n � 0. In the search for primes, one can additionally require b to
be even and not to be the square of a lesser b, to avoid a double visit of the same GFN.

This definition of GFN includes with b D 2 the Fermat primes.
In the search for very large primes, Mersenne numbers of the form 2n � 1 (see [6]) and

Fermat numbers are in the focus of the specialists. During many years, Mersenne num-
bers were easier to factorize. In 1994, R. Crandall and B. Fagin discovered the Discrete
Weighted Transforms to speed up the multiplication and applied it to Mersenne numbers.
Around 1998, Dubner and Gallot remarked that the new method is also applicable to Fer-
mat numbers and even to GFN [4]. Since then, many new large primes have been found [8].
At present, the largest known primes are Mersenne numbers, followed by the not so known
Proth numbers of form k 2e C 1 (see [7]), and then by GFN.

The focus of this paper is to count the number of primes in GFN for fixed b, and it
shows what can be done using more traditional software.

The Fb;n have – like the Fermat numbers – a double exponentiation; they grow very
fast. The writing b2n

C 1 is used instead of more general be C 1 with integer e > 0 to skip
composites on the search for prime Fb;n.

Theorem 1.2. Let b be a positive even number and e a positive integer greater than 1, but
not a power of 2; then be C 1 is composite.

Proof. Let the exponent e be written as a binary number; then each digit 1 corresponds to
a divisor b2k

of be . And let kmin denote the least such k; then b2kmin
C 1 is a divisor of

any be C 1. Therefore, more than one digit 1 in the binary number implies be C 1 to be
composite.

Definition 1.3. The sequence S.b/ is defined as

S.b/ D ¹Fb;n with integer n � 0º:

Sequences S.b/ with at least five primes are numbered by k.

2 Sequences S.b/ with five or six primes

For practical reasons – computing time and upper limit of isprime function –, only b <

1:5 � 109 were completely studied, additionally few examples up to b < 1026. As result,
more than 500 sequences S.b/ with five primes were found. Here are the first 60.
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k b n1; : : : ; n5 T .b/ k b n1; : : : ; n5 T .b/

1 2 0; 1; 2; 3; 4 — 31 17 702 106 0; 1; 2; 4; 8 24.4
2 2 926 0; 1; 3; 4; 9 3.2 32 18 914 850 0; 2; 3; 4; 9 25.3
3 77 140 0; 1; 2; 4; 9 3.9 33 19 350 688 0; 2; 3; 4; 6 25.7
4 137 650 1; 2; 3; 4; 6 4.2 34 19 862 714 1; 2; 3; 4; 6 26.1
5 337 536 0; 1; 2; 3; 4 5.0 35 20 706 120 0; 1; 2; 3; 4 26.7
6 550 630 0; 2; 3; 5; 6 5.6 36 21 925 150 0; 1; 2; 5; 7 27.6
7 585 106 0; 1; 2; 3; 4 5.7 37 25 038 400 0; 1; 2; 3; 9 30.0
8 602 056 0; 1; 2; 3; 4 5.7 38 25 653 136 0; 2; 3; 4; 5 30.4
9 2 071 960 0; 1; 2; 3; 4 8.5 39 26 661 646 0; 1; 3; 4; 5 31.2

10 2 090 676 1; 2; 3; 4; 5 8.5 40 26 923 886 2; 3; 5; 7; 10 31.4
11 2 379 240 0; 1; 4; 5; 8 9.0 41 32 522 910 0; 1; 2; 4; 6 35.2
12 3 394 606 0; 1; 2; 4; 6 10.4 42 32 885 620 0; 2; 3; 4; 5 35.4
13 4 325 730 0; 1; 2; 4; 8 11.6 43 33 222 152 2; 3; 4; 5; 6 35.7
14 4 457 446 0; 1; 2; 4; 5 11.8 44 41 525 380 0; 1; 2; 4; 5 41.0
15 4 484 610 0; 1; 2; 4; 10 11.8 45 41 704 248 0; 2; 3; 4; 5 41.1
16 5 081 980 0; 1; 2; 4; 5 12.5 46 49 575 022 0; 1; 2; 3; 4 45.9
17 5 594 836 0; 1; 2; 4; 6 13.1 47 53 183 770 0; 1; 3; 6; 7 48.1
18 5 738 496 0; 1; 2; 5; 9 13.3 48 54 020 170 0; 1; 2; 3; 4 48.5
19 8 919 550 0; 1; 2; 4; 9 16.6 49 58 306 668 0; 2; 3; 4; 5 51.0
20 9 255 066 0; 2; 4; 7; 8 17.0 50 60 181 860 1; 2; 4; 5; 9 52.1
21 9 616 612 0; 2; 3; 4; 5 17.3 51 60 453 520 0; 1; 2; 4; 6 52.2
22 10 698 706 0; 2; 4; 5; 6 18.4 52 62 955 688 0; 2; 3; 5; 6 53.6
23 11 815 486 0; 2; 4; 5; 8 19.4 53 68 321 556 0; 2; 3; 4; 7 56.6
24 11 837 826 0; 1; 2; 4; 6 19.4 54 68 615 860 0; 2; 3; 4; 6 56.7
25 11 861 410 0; 1; 2; 3; 4 19.4 55 71 467 216 0; 1; 3; 4; 6 58.3
26 12 603 498 0; 2; 3; 4; 5 20.1 56 75 329 620 0; 1; 3; 4; 5 60.3
27 13 070 076 0; 1; 3; 4; 5 20.5 57 76 192 228 0; 2; 3; 4; 6 60.8
28 14 073 706 0; 1; 2; 4; 5 21.4 58 76 710 916 0; 1; 2; 4; 6 61.0
29 15 438 300 0; 1; 2; 5; 6 22.5 59 79 194 232 0; 2; 4; 5; 7 62.3
30 17 640 486 0; 1; 2; 4; 6 24.3 60 87 155 040 0; 1; 2; 3; 5 66.4

Table 1. The first 60 sequences S.b/ with at least five primes Fb;n1
; Fb;n2

; Fb;n3
; Fb;n4

; Fb;n5
. The number

T .b/ D 1:038
R b

2 dt=ln.t/5 (b > 2) is defined in Section 3.

The first example (k D 1) are the Fermat primes F2;n with n D ¹0; 1; 2; 3; 4º. The
requirement in Definition 1.1 that b must not be the power of a lesser b excludes fewer than
one in thousand b; it avoids to count a GFN a second time. Although the data of Table 1
comprise only the first 60 examples, they represent the 500 studied sequences quite well.
The largest prime in Table 1 is in k D 40 with b D 26 923 886 and Fb;10 � 107608:46.

Remarks. To keep the computing time low, we often limited the index to n � 10 and
skipped by this measure a few examples. Astonishing results are that nj D 3 (35×) is in
Table 1 less frequent than nj D 4 (51×), or that n D ¹0; 1; 2; 3; 4º exists only 9× instead
of the expected 20×. More details about these remarks follow in Section 3.
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As a surprise, four sequences were found with six primes:

k b n1 n2 n3 n4 n5 n6 T .b/

152 292 582 836 0 1 2 3 4 7 152.8
175 377 434 326 0 1 2 5 6 10 183.0
468 1 381 729 444 1 2 4 6 8 9 469.9

approx. 3 350 19 388 732 416 0 1 3 6 8 9 3 352.1

Table 2. The four sequences S.b/ found with six primes Fb;n1
; Fb;n2

; Fb;n3
; Fb;n4

; Fb;n5
; Fb;n6

. The last k is
an approximation because the S.b/ in-between where not studied throughout.

The large k on the last line suggests that there exist many more S.b/ with six primes.
The b-numbers in Table 2 do not exhibit any obvious mathematical property.

To do the calculations, we used the software PARI/GP and Maple on standard comput-
ers and invested about 3000 computing hours. The largest prime encountered is Fb;12 �

1020883:19 with b D 125 440. The function isprime in PARI/GP takes (depending on the
computer) 3 to 15 minutes to test its primality.

3 Theoretical approach to k

The theoretical approach to k presented in this section is based on and shows similarity to
the prime number theorem. This states that the number of primes not exceeding x grows
asymptotically like

Li.x/ D

Z x

2

dt

ln.t/
.x � 2/

(see e.g. [1] or [5]). The derivation d=dx Li.x/ D 1=ln.x/ (x � 2/ implies that a good
approximation of the probability of x to be prime is

w.x/ D 1=ln.x/:

An often cited consequence is that the squaring of x to x2 halves the probability, i.e.
w.x2/ � w.x/=2, which is a good thumb rule for natural numbers x. But for the con-
structed numbers Fb;n (Definition 1.1), one gets for small n big deviations, i.e.

w.Fb;nC1/ ¤ w.Fb;n/=2 .nC 1 means an additional squaring of b/:

The following two theorems give an explanation for this fact.

Theorem 3.1. Any two numbers in S.b/ are relatively prime.

Proof. Let Fb;n D b2n
C 1 and Fb;nCk D b2nCk

C 1 (k > 0) be any two numbers. Suppose
that m is a positive integer such that m j Fb;n and m j Fb;nCk . Setting x D b2n

, we have

Fb;nCk � 2

Fb;n

D
x2k
� 1

x C 1
D x2k�1

� x2k�2
C � � � � 1
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so that Fb;n j .Fb;nCk � 2/. It follows that m j .Fb;nCk � 2/. Since m also divides Fb;nCk ,
this implies that m j 2. But Fb;n and Fb;nCk are odd. Therefore, m D 1, which proves the
theorem. This is an adapted version of Polyas’ proof for Fermat numbers (see [3]).

Therefore, a once used prime factor cannot be used a second time at higher n. This
increases the probability of Fb;n to be prime. The next theorem has a very big influence on
the distribution of primes in GFN.

Theorem 3.2. The prime factors of Fb;n are of the form 2nC1uC 1 (u a positive integer).

Proof. Let p be a divisor of Fb;n (b is even!); then

b2n

� �1 .mod p/:

Squaring, we obtain b2nC1
� 1 .mod p/. It follows that 2nC1 is the smallest positive integer

e such that be � 1 .mod p/, so b has order 2nC1 modulo p. The full multiplicative group
of integers modulo p has order p � 1. The order of any element divides the order of the
group, so 2nC1 divides p� 1. Equivalently, p is of the form 2nC1uC 1. (A proof according
to Gauss and Lukas.)

This theorem excludes prime factors at most 2nC1 C 1 and delivers a hint why Fermat
primes Fn often divide GFN.

As an example, one can conclude from Theorem 3.2 that, in 17 consecutive b-numbers,
there are exactly eight Fb;3, four Fb;2, two Fb;1, and one Fb;0 divisible by F2 D 17, and
two b are without this divisor. Analog statements are possible for all Fermat primes.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

times 471 426 433 302 380 244 164 72 98 59 23 (12) (6) (3)

Table 3. The frequencies of the index n in the 500 b found with at least 5 primes. The numbers in brackets are
estimated.

The divisibility of GFN by Fermat primes spreads quite remarkably the numbers in
Table 3, and it explains why nD 4 (380×) occurs more often than nD 3 (302×). Similarly,
nD 8 is more frequent than nD 7. Above nD 8 and far away from the last Fermat prime,
the rule w.Fb;nC1/ D w.Fb;n/=2 should be applicable. It allows to estimate the numbers
in brackets, the missed b by our limit n � 10.

The next definition is an analytical approximation to the counting numbers k.

Definition 3.3. Approximating bj C 1 by bj and assuming w.Fb;n/ to be proportional to
1=ln.b/ (with unknown factor), then the expected number of sequences S.b/ with at least
five primes is defined as

T .b/ D c

Z b

2

dt

ln.t/5
.c D 1:038; b > 2/:
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Figure 1. The sequences S.b/ numbered by k with five (�) or six (•) primes and T .b/ (—) (Definition 3.3), up to
b D 1500 � 106.

The number T .b/ is defined in analogy to Li.x/ (at top of Section 3) by a logarithmic
integral function. The constant c D 1:038 is a best fit to the numbers k. All endeavors to
calculate c were fruitless; the combinatorial statistics of the n-sequences (in consequence
of Theorem 3.2) got too complex: c� 1 is a random coincidence. Figure 1 and also Table 1
show that T .b/ is a good approximation to the counting number k.

It is well known that the density of prime natural numbers fluctuates. There are e.g.
six primes p in the interval 97 � p � 113, whereas, in 524 � p � 540 of equal length,
there is none. Similarly (see Table 1), there are seven q with five primes in the interval
2926 � b � 602 056, whereas, in the larger interval 602 058 � b � 2 071 958, there is
none. Figure 1 shows that the fluctuations in sequences S.b/ with five primes are higher
than in prime natural numbers.

It was shown that some GFN with fixed b have six primes. It can be expected that
many more with six primes exist and that also more than six primes are possible.

Recently found: There exists a very similar set of Generalized Fermat Numbers (GFN)
defined as Fb;n D .b2n

C 1/=2 with n � 0 and b a positive odd integer. The first three
elements of this set with at least five primes are b D 3 with n D ¹0; 1; 2; 4; 5; 6º (even six
primes), b D 125 001 with n D ¹0; 1; 2; 4; 5º, and b D 724 741 with n D ¹0; 1; 2; 4; 8º.
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