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Short note An extension of the Kantorovich inequality
to Hilbert spaces

Saikat Roy and Debmalya Sain

Abstract. By using the singular value decomposition, we present an extension of the
famous Kantorovich inequality for a class of operators on Hilbert spaces, including
the invertible ones. In particular, this extends the Kantorovich inequality for positive
definite matrices due to Greub and Rheinboldt. We also obtain a refinement of the
finite-dimensional version of the Kantorovich inequality for invertible operators due
to Strang.

1 Introduction

Let �1; �2; : : : ; �n be non-negative real numbers with
Pn

kD1 �k D 1 and let

0 < �1 � �2 � � � � � �n:

The following inequality is known as the Kantorovich inequality for real numbers:� nX
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The Kantorovich inequality was first presented in the pioneering article [7] for Hermi-
tian positive definite matrices. Let A be a Hermitian positive definite matrix with smallest
eigenvalue ˛ and largest eigenvalue ˇ. It was proved in [7] that, for all vectors x of unit
norm, the following inequality holds true:
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:

It is clear that the Kantorovich inequality for real numbers follows as an easy consequence
of the above inequality. The proof of the original Kantorovich inequality for Hermitian
positive definite matrices can be obtained by using techniques from convex analysis, and
we refer the readers to [1] for a detailed treatment of the same. A generalization of this
inequality, valid for a strictly larger class of matrices (and consequently, for a class of oper-
ators on Hilbert spaces), will be presented here by using the singular value decomposition.

The Kantorovich inequality was further generalized for certain classes of operators on
a Hilbert space, from which the matrix version of the inequality follows readily. The very
first proof of the Kantorovich inequality for self-adjoint operators appeared in [3], in the
following form.
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Theorem 1.1. Let A be a self-adjoint operator on a Hilbert space H. If the operator A
fulfills the condition

0 < mhx; xi � hAx; xi �M hx; xi; x 2 H n ¹0º; (1)

then

hx; xi2 � hAx; xihA�1x; xi �
.mCM/2

4mM
hx; xi2

for all x 2 H.

It should be noted here that the argument presented in [3] to prove the above result
consists of two major parts. In the first step, the authors have proved the Kantorovich
inequality for positive definite matrices, which is the finite-dimensional version of Theo-
rem 1.1. The finite-dimensional argument uses the compactness of the unit sphere SH of
a finite-dimensional Hilbert space H. The key point in this step is the observation that the
real-valued continuous function f on H defined by

f .x/ D
hAx; xihA�1x; xi

hx; xi

achieves its maximum whenever it is considered as a function on SH. The second step
is the conversion of the infinite-dimensional version to the three-dimensional case, which
essentially reduces to case I. This transition from finite to infinite-dimensional version is
discussed in Remark 2.5 of the present paper. Later, Strang [12] obtained a substantial gen-
eralization of the operator version of the Kantorovich inequality, by proving the following
result.

Theorem 1.2. Let A be an invertible operator on a Hilbert space H such that kAk DM
and kA�1k D m�1; then, for all x; y 2 H,

jhAx; yihx;A�1yij �
.mCM/2

4mM
hx; xihy; yi:

It is important to note that, in order to establish the above result, Strang applied the
well-known technique of polar decomposition of an operator to the previously obtained
inequality by Greub and Rheinboldt [3] for self-adjoint operators. In particular, it is clear
that the matrix version of the Kantorovich inequality lies at the heart of the arguments
presented in both [3] and [12].

The Kantorovich inequality, by virtue of its extensive applicability in various areas of
science, has been studied in detail in the context of matrices as well as operators [1–4, 6,
8, 11]. One of the notable applications of the Kantorovich inequality lies in the field of
numerical analysis, where it is used in establishing the rate of convergence of the method
of steepest descent. We refer the readers to [5, 9] for more information in this regard. On
the other hand, as mentioned in the survey article [10], generalizations of the Kantorovich
inequality have been considered from various perspectives, including the study of unital
positive linear maps on Banach algebras.

In this short article, we aim to further analyze the first part of the proof in [3] in light of
the well-known singular value decomposition (SVD) of matrices. Indeed, we obtain a sim-
ple proof of the Kantorovich inequality that is valid for a class of matrices which properly
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contains the class of invertible matrices. Consequently, our result immediately extends the
scope of the matrix Kantorovich inequality due to Strang [12] to a considerable extent.

All our notation and terminology is fairly standard. Let K denote the underlying field
of scalars, real or complex. Given anym� nmatrixB ,B� denotes the transpose conjugate
of B . A square matrix A is said to be Hermitian (self-adjoint in the real case) if A D A�.
The matrix A is called normal if AA� D A�A. For any n � n matrix A and any vector
x 2 Kn, the quantity .x�Ax/ is a complex number, defined by

.x�Ax/ D Œ Nb1; Nb2; : : : ; Nbn�

26664
a1

a2

:::

an

37775 D
nX

kD1

Nbkak ;

where

x WD

26664
b1

b2

:::
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37775 and Ax WD

26664
a1

a2

:::

an

37775 :
We say that a Hermitian matrix A is positive definite if .x�Ax/ > 0 for all non-zero vec-
tors x. For a finite-dimensional Hilbert space H, the space of all linear operators on H is
denoted by L.H/. We recall that, for any T 2 L.H/, a closed subspace H0 of H is said
to be a reducing subspace of T if H0 and H?0 remain invariant under T . In that case, we
simply say that H0 reduces T .

2 Main results

For a finite-dimensional Hilbert space H, consider the collection

AL.H/ WD ¹A 2 L.H/ W kerA reduces Aº:

The following result establishes the Kantorovich inequality for the class AL.H/, which
clearly includes the class of invertible operators properly.

Theorem 2.1. Let H be an n-dimensional Hilbert space and let A 2 AL.H/, kerA D H0.
Let A0 WD AjH0

? WH0
?
!H0

? and let 0 < �1 � �2 � � � � � �m be the non-zero singular
values of A. Then

jhA0x; yihx;A
�1
0 yij �

.�1 C �m/
2

4�1�m

hx; xihy; yi; x; y 2 H?0 : (2)

Proof. We first assume that H0 D ¹0º, in which case A D A0 is invertible and m D n.
Consider the singular value decomposition UDV � of A, where U; V are unitary operators
on H and D is the diagonal operator diag.�1; �2; : : : ; �n/. For any x; y 2 H, let V �x D
Œa1; a2; : : : ; an� and U �y D Œb1; b2; : : : ; bn�. Let W D

Pn
kD1jakjjbkj. If W D 0, then
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x D y D 0, and inequality (2) is trivially satisfied. Otherwise, forW ¤ 0, by the Cauchy–
Schwarz inequality, we have

W 2
�

� nX
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jakj
2

�� nX
kD1

jbkj
2

�
D hx; xihy; yi:

Now,

jhAx; yihx;A�1yij D jhDV �x; U �yihV �x;D�1U �yij
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hx; xihy; yi;

where the last step follows from the Kantorovich inequality for real numbers.
Whenever A is not invertible, it is trivial to see that A0 WD AjH0

? WH0
?
! H0

? is
invertible. Therefore, once again, we obtain the desired inequality, since A and A0 have
the same set of non-zero singular values. This completes the proof.

For an n-dimensional Hilbert space H, L.H/ can be thought of as the collection of
n � n matrices acting on H in the usual way. Thus, we have an identical matrix version of
the above result.

Corollary 2.2. Let H be an n-dimensional Hilbert space and letA be an n� nmatrix such
that kerADH0 reducesA. LetA0 WDAjH0

? WH0
?
!H0

? and let 0<�1��2� � � � ��m

be the non-zero singular values of A. Then

j.y�A0x/..A
�1
0 y/�x/j �

.�1 C �m/
2

4�1�m

.x�x/.y�y/; x; y 2 H0
?:

Motivated by the above corollary, we draw the following remark.

Remark 2.3. The class of matrices that satisfies the hypothesis of Corollary 2.2 is strictly
bigger than that of the invertible matrices. For example, the matrix

A D

242 1 0

0 2 0

0 0 0

35
is a non-invertible matrix with kerA reduces A. Therefore, Theorem 2.1 is a refinement
of the finite-dimensional version of Kantorovich inequality for invertible linear operators
due to Strang [12]. In fact, for an operator A on an infinite-dimensional Hilbert space H
such that kerADH0 reduces A, the inequality due to Strang itself applies to the invertible
operator A0 WD AjH0

? WH0
?
! H0

?.
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Theorem 1.1 can be obtained from Theorem 2.1 by following almost the same line of
arguments as presented in [3]. Before discussing that, we make note of the following result
on invertible normal matrices.

Corollary 2.4. Let A be an n � n invertible normal matrix and let �1; �2; : : : ; �n be the
eigenvalues of A with 0 < j�1j � j�2j � � � � � j�nj. Then

j.x�Ax/.x�A�1x/j �
.j�1j C j�nj/

2

4j�1jj�nj
.x�x/2; x 2 Kn:

Proof. Note that the singular values of A are 0 < j�1j � j�2j � � � � � j�nj. Thus, the proof
follows directly from Corollary 2.2.

Remark 2.5. Suppose that A is a self-adjoint operator on H satisfying (1). For any non-
zero x0 2 H, consider QH D span¹x0; Ax0; A

�1x0º. Define BW QH! QH by B D P QHA� QH,
where P QH and � QH denote the orthogonal projections on QH and inclusion of QH, respectively.
Then, for any non-zero x 2 QH, B satisfies

0 < mhx; xi � hAx; xi D hP QHA� QHx; xi D hBx; xi �M hx; xi:

Thus, B is invertible and self-adjoint. Let �max and �min be the maximum and minimum
eigenvalues of B , respectively. Then, by Corollary 2.4, we have

hBx0; x0ihB
�1x0; x0i �

.�min C �max/
2

4�min�max
hx0; x0i

2
�
.mCM/2

4mM
hx0; x0i

2;

where the last inequality follows from the fact that �max=�min � M=m and that the real-
valued function f .u/D uC 1=u is monotonically increasing for u� 1. Observe that x0 D

P QHA� QHA
�1x0 D BA

�1x0, and Bx0 D P QHA� QHx0 D Ax0. Thus, replacing Bx0 D Ax0

and B�1x0 D A
�1x0 in the above expression, we obtain Theorem 1.1.

Remark 2.6. Corollary 2.4 is trivially valid for invertible Hermitian matrices. In particu-
lar, it also extends the Kantorovich inequality for positive definite matrices due to Greub
and Rheinboldt [3, Theorem 1]. Indeed, in case of a positive definite matrix A, the best
possible values of m;M in Theorem 1.1 are precisely the lowest and the highest singular
values of A, respectively. The important thing to notice here is that, in our treatment, we
do not require the matrix A to be positive definite.

We end the present article with the following closing remark.

Remark 2.7. Due to the importance of the Kantorovich inequality, various generalizations
of it have been studied by several authors. We refer the readers to [2,6], and the references
therein, for more information in this regard. However, despite our best efforts, we could
not find any application of the SVD of matrices to obtain such inequalities in the liter-
ature. Moreover, Corollary 2.2 immediately extends the classical Kantorovich inequality
for matrices, as obtained in [3,12]. It should also be noted that the proof of Theorem 2.1 is
based on the SVD of matrices (identified as operators), and therefore differs from the proof
of [12], in the finite-dimensional context. In particular, the importance of SVD in obtaining
such matrix inequalities becomes evident in light of the results obtained in this note.
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