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Spectral decomposition and Siegel–Veech transforms
for strata: the case of marked tori

Jayadev S. Athreya, Jean Lagacé, Martin Möller, and Martin Raum

Abstract. Generalizing the well-known construction of Eisenstein series on the modular curves,
Siegel–Veech transforms provide a natural construction of square-integrable functions on strata
of differentials on Riemann surfaces. This space carries actions of the foliated Laplacian derived
from the SL2.R/-action as well as various differential operators related to relative period trans-
lations.

In the paper we give spectral decompositions for the stratum of tori with two marked points.
This is a homogeneous space for a special affine group, which is not reductive and thus does not
fall into well-studied cases of the Langlands program, but still allows to employ techniques from
representation theory and global analysis. Even for this simple stratum, exhibiting all Siegel–
Veech transforms requires novel configurations of saddle connections. We also show that the
continuous spectrum of the foliated Laplacian is much larger than the space of Siegel–Veech
transforms, as opposed to the case of the modular curve. This defect can be remedied by using
instead a compound Laplacian involving relative period translations.
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1. Introduction

For the modular surface, or, more generally, for quotients of the upper-half plane by
a cofinite Fuchsian group � , the space L2.�nH/ is well known to decompose into
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the cuspidal part, the space of Eisenstein transforms, and the residual spectrum. The
Laplace operator acts with discrete spectrum on the cuspidal part, while Eisenstein
series provide the continuous spectrum. The fine structure of the cuspidal part, the
size of the spectral gap and the description of the residual spectrum is the context of
various open conjectures. There is a similar decomposition of L2.�n SL2.R//, after
first decomposing the space into K-types, where K D SO.2/ is the standard maximal
compact subgroup of SL2.R/.

There are two natural generalizations of this decomposition problem. First, we
may replace SL2.R/ by any Lie group G of higher rank or even p-adic and study the
decomposition of L2.�nG/. Second, we may replace �n SL2.R/ by a stratum H .˛/

of area one flat surfaces with zeros of order ˛ D .˛1; : : : ; ˛n/ with the Masur–Veech
measure �MV. For instance, the stratum H .0/ of area one tori with one marked point
can be identified with the unit tangent bundle SL2.Z/nSL2.R/ to the modular surface
SL2.Z/nH. The first generalization has been studied intensively for semi-simple Lie
groups, in particular in connection with the Langlands program, for example [2, 32,
33]. For the second generalization, that is for the spaces L2.H .˛//´L2.H .˛/I�MV/,
the existence of a spectral gap for the foliated Laplacian corresponding to the
SL2.R/-action has been established in work of Avila and Gouëzel [6]. (Their work
includes even more generally so-called linear submanifolds of H .˛/.) However, their
work explicitly avoids a decomposition of the spectrum as above (“since the geo-
metry at infinity is very complicated”). Given recent progress towards understanding
the boundary of strata [7], we aim to shed light on how the boundary relates with the
continuous spectrum for strata.

In this paper, we focus on the first non-classical case, namely the stratum H .0; 0/

of area one tori with two marked points. At the same time, this is an instance of a
space L2.�nG/ for a non-reductive groupG, namely the quotient of the special affine
group SAff2.R/ D SL2.R/ Ë R2 by its integral lattice SAff2.Z/ D SL2.Z/ Ë Z2

minus the zero section, which is identified with SL2.Z/n SL2.R/. Since the Masur–
Veech measure �MV extends over this locus, we may and will use the identification

L2.SAff2.Z/n SAff2.R// D L2.H .0; 0//

throughout. We will rely on tools from representation theory, explain why simple-
minded generalizations from the modular surface case might fail, and how these
failures can be bridged.

The perspective of Siegel–Veech transforms. The Siegel–Veech transform is a
method to construct functions in L2.H .˛/I�MV/ based on the analogy between lattice
vectors for homogeneous spaces and saddle connections on strata. It takes as input a
function f on R2, often supposed smooth and compactly supported, and a configur-
ation and returns the function SV.f / associating with the flat surface .X; !/ the sum
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over f .v/ for all saddle connections vectors v that stem from the given configuration
(see Section 6 for the precise definition). For the special case of the modular surface,
i.e., the case of H .0/, there is a unique configuration, which yields all primitive lattice
vectors and the Siegel–Veech transform of the spherical function f .v/ D jvj2s is just
the usual (non-holomorphic) Eisenstein series. In general, the range of Siegel–Veech
transforms on the modular surface yields the spectral projection on the continuous
spectrum of the Laplace operator. For general strata, examples of configurations are
given by all saddle connections joining a simple zero to a triple zero or by all core
curves of cylinders. The modular surface model case triggers the following questions.

(Q1) What is a complete set of configurations in the sense that their Siegel–Veech
transforms account for all possible Siegel–Veech transforms?

(Q2) Are Siegel–Veech transforms responsible for all of the continuous spectrum
of the foliated Laplacian ��fol (as defined below)?

(Q3) Is there a notion of cusp forms so that Siegel–Veech transforms are precisely
the orthogonal complement of cusp forms? Is this notion of cusp forms
related to boundary divisors in the multi-scale compactification from [7],
as they do in the case of the modular surface?

We will answer these questions for H .0; 0/ at the end of the introduction. For each of
the questions, the answer is not quite the one we expected initially. For general H .˛/,
all three of them seem completely open.

The perspective of differential operators. The action of SL2.R/ on strata H .˛/

gives rise to a Casimir element acting as a operator D fol on L2.H .˛//. It is this
operator or the corresponding Laplace operator ��fol

k
acting on weight-k modular

forms on the projectivised stratum H .˛/= SO2.R/ that we are mainly interested in.
See Section 2 for details.

Since we work in a homogeneous space for the group SAff2.R/, we have more
differential operators at our disposal, which will also be the case for strata H .0k/

of tori with more than just one marked point. Even though SAff2.R/ is not reduct-
ive, we show in Proposition 2.1 that the centre of the universal enveloping algebra
is a polynomial ring generated by a degree three ‘Casimir’ element, which acts as
an operator that we call the total Casimir D tot. Again, we define the corresponding
Laplace operators ��tot

k
on the projectivised strata.

Another option is to incorporate the translation along torus fibers, i.e., the relative
period foliation, into a degree two differential operator �vert. The compound oper-
ator �cmp."/

k
´ �fol

k
C "�vert operator is elliptic if and only if " > 0, invariant under

SAff2.R/-translations, but, contrary to �tot
k

, does not commute with most other cov-
ariant differential operators. We return to this operator at the end of the introduction
in connection with (Q2).
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The perspective of representation theory. Pullback via the map H .0; 0/! H .0/

forgetting the last point gives an inclusion L2.H .0// ,! L2.H .0; 0//. We call its
orthogonal complement the genuine part

L2.H .0; 0//gen
D L2.H .0//?:

From now on, we focus on this genuine part and discard the pullbacks of SL2.R/-rep-
resentations. The irreducible representations of SAff2.R/ are classified by Mackey
theory. As we recall in Theorem 3.7, they are pullbacks of SL2.R/-representations,
which we discarded, and representations �SAff

n;m induced from characters of a fixed
Heisenberg subgroup of SAff2.R/, with �SAff

n1;m1
and �SAff

n2;m2
isomorphic if and only

if n1m21 D n2m
2
2. As a first step towards answering our main questions, we exhibit

the decomposition of L2.H .0; 0//gen.

Theorem 1.1. The genuine part of the L2-space of the stratum H .0; 0/ admits a
decomposition

L2.H .0; 0//gen
D L2.SAff2.Z/n SAff2.R//gen

Š

1M
mD1

M
n2Z

�SAff
n;m :

Explicitly, the representation �SAff
n;m is the SAff2.R/-invariant subspace generated by

the lifts of Eisenstein series EkIm;ˇ for n D 0 and Poincaré series PkIn;m;ˇ for n ¤ 0
for any integrable function ˇWRC ! C, as defined in (4.7) and (4.6).

A main tool in the proof of Theorem 1.1 are Fourier expansions. The Fourier
expansions along the translation subgroup R2 of SAff2.R/ plays only a minor role.
More important is the Fourier expansion along a subgroup isomorphic to R2 inside a
Heisenberg subgroup but with non-trivial intersection with SL2.R/. We name these
the Fourier–Heisenberg coefficients cH. � ; n; r Iv;v=y/, since we decompose the coef-
ficient r D 0 even further, along a Heisenberg group, see Section 4. Here .�; z/ D
.x C iy; uC iv/ are the standard coordinates on the Jacobi half-space H �C, which
allow us to specify

cH
�
�In; r Iy;

v

y

�
D

Z
ZnR

Z
ZnR

�.x C iy; uC iv/e.�nx � ru/ dx du:

Next, we aim for the decomposition of the space L2.H .0; 0//gen into irreducible
SL2.R/-representations. In general, the problem of decomposing the restriction of
representations into irreducible ones is known as the branching problem and discussed
in many instances (e.g., [20,30] and the references therein). Our case might be known,
but since we were not able to locate a proof in the literature we give the details of the
following result, see Proposition 3.9 for the full statement including the case n D 0.
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Proposition 1.2. For any m 2 Z� and n 2 Z n ¹0º, one has that the restrictions of
the SAff2.R/-representations decompose as a direct integral

ResSAff2.R/
SL2.R/

�SAff
n;m Š

1M
kD2

DSL
sgn.n/k ˚

LZ
RC

.I SL
C;it ˚ I

SL
�;it / dt; (1.1)

where the discrete series DSL
sgn.n/k and the principal series representation I SL

˙;it are
defined along with Theorem 3.4.

In particular, the complementary series does not occur in the decompostion of
L2.H .0; 0//gen.

The decomposition into irreducible SAff2.R/-representations in Theorem 1.1 is
fully discrete. This corresponds to the fact that there are square-integrable Eisenstein
and Poincaré series that contribute to individual constituents �SAff

n;m . It contrasts, the
classical situation for SL2.R/ in which Eisenstein series contribute to the continuous
spectrum and cannot be square-integrable and eigenfunctions for the Laplacian sim-
ultaneously. Proposition 1.2 recovers the classical situation in parts: there are some
square-integrable Eisenstein series for SAff2.R/ that are eigenfunctions of the foli-
ated Laplacian, but there are also others that behave like Eisenstein series for SL2.R/.

In the next result, we clarify which Eisenstein and Poincaré series are generating
the discrete and continuous pieces in which the representation breaks up according
to Proposition 1.2. In the sequel, we thus consider �SAff

n;m as a subrepresentation of
L2.SAff2.Z/nSAff2.R//gen via the isomorphism of Theorem 1.1. The �-factor in the
next result and the Whittaker function W�;�.y/ are defined along with the complete
statement of this result in Theorem 5.6. It also includes the corresponding statement
for the representations �SAff

0;m .

Theorem 1.3. For k 2Z n ¹0;˙1º and n2Z with nk >0, the representationDSL
sgn.n/k

in (1.1) is generated by the Poincaré series for

• ˇ D e�2�jnjy if k > 1 and

• ˇ D y�ke�2�jnjy if k < �1.

Associating to n 2 Z n ¹0º and to a function  2 L2.RC; dt/ the lifts of the Poincaré
series PkIn;m;ˇW

k;n; 
of the Whittaker transform

ˇW
k;n; .y/´

1

4�jnj3=2

Z
t2RC

 .t/

.�W.t/�W.�t //1=2
y�k=2Wsgn.n/k=2;it .4�jnjy/ dt

gives rise to isometric embeddings

PW
CW

M
k22Z

L2.RC; dt /! �SAff
n;m ; PW

� W

M
k21C2Z

L2.RC; dt /! �SAff
n;m ;

whose images are
RL

RC
I SL
C;it dt and

RL
RC

I SL
�;it dt respectively, in (1.1).
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The proof has of course similarities with the way the Eisenstein transform identi-
fies the continuous spectrum of the modular surface, see, e.g., [10, Section 4.2.5] for a
textbook version. Note however that the principal series appear with infinite multipli-
city which we accomodate by first restricting to individual �SAff

n;m . Further, as opposed
to the classical case, Poincaré series associated with Whittaker functions contribute to
the continuous spectrum, which requires a more delicate estimate.

The main results. In view of the next theorem, we define the space of cusp forms
to be the subspace of modular-invariant functions on projectivised strata where the
Fourier coefficient cH. � ; 0; 0I v; v=y/ vanishes. In light of the definition of this Four-
ier coefficient as an integeral over a subgroup R2 in SAff2.R/, this notion of cusp
forms generalises the usual concept of cusp forms defined via integrals along cer-
tain unipotent groups. We use the same terminology for the lifts of these functions to
L2.SAff2.Z/nSAff2.R//gen. Similarly, we focus on this genuine subspace by consid-
ering only Siegel–Veech transforms of mean-zero functions from now on.

Theorem 1.4. Siegel–Veech transforms of smooth compactly supported mean-zero
functions are contained in the subspace of L2.SAff2.Z/nSAff2.R//gen which is anni-
hilated by D tot, which is the subspace

L1
mD1 �

SAff
0;m . This space is the orthogonal

complement of the space of cusp forms.

In the case H .0; 0/ there are two obvious configurations, using the ‘absolute peri-
ods’, i.e., lattice vectors, and using ‘relative periods’ joining one marked point to
the other. We denote the corresponding Siegel–Veech transforms by SVabs. � / and
SVrel. � / respectively. The absolute Siegel–Veech transforms only contribute to the
well-studied non-genuine part of the L2-space and will be disregarded in the sequel.

However, the above is not a complete list of configurations! In fact, for a point
.ƒ; z/ 2H .0; 0/ and anyM 2N the set zCƒ=M of translates of the relative period
by a 1=M -th lattice vector also satisfies all properties of a ‘configuration’, and The-
orem 1.4 also includes these. We denote the corresponding Siegel–Veech transform
by SVrel;M and let

�Vrel;M D span¹SVrel;M .f / W f 2 C1c;0.R
2/º;

where C1c;0 denotes smooth compactly supported mean zero functions. Together with
Theorem 1.4, the following result shows that we have found all configurations, thus
answering (Q1).

Theorem 1.5. There is an orthogonal decomposition

L2.H .0; 0//gen
D L2.H .0; 0//gen

cusp ˚ span
� 1[
MD1

�Vrel;M

�
:
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It also implies, together with Proposition 1.2 and Theorem 1.1, that Siegel–Veech
transforms do not account for the full continuous spectrum of D fol on H .0; 0/, since
every �SAff

n;m regardless of whether nD 0 or not contributes to its continuous spectrum.
This answers (Q2) negatively for this stratum. Finally, we observe that Theorem 1.5
is a positive answer to the first part of (Q3). Note, however, that vanishing of a single
Fourier coefficient of an R2-action is a codimension two condition rather than a
divisorial condition.

While (Q2) was answered negatively, it makes sense to modify it as follows.

(Q20) Is there an operator for which the Siegel–Veech transforms are responsible
for all its continuous spectrum, and if so what is it?

The answer to (Q20) is that there is such an operator, and it is the compound Laplacian
introduced earlier. With the given definition of cusp forms, the behaviour of this oper-
ator parallels the usual Laplacian on the modular surface, and as "& 0 its discrete
spectrum converges to the part of the continuous spectrum of the foliated Laplacian
missed by the Siegel–Veech transforms.

Theorem 1.6. The compound Laplacian��cmp."/
k

has discrete spectrum on the space
of genuine cusp forms of K-type k. As "& 0, the spectrum of ��fol

k
is comprised of

limit points from the spectra of ��cmp."/
k

. This remains true of the restriction of these
operators to cusp forms or their orthogonal complement.

All the differential operators considered here, �fol, �tot, and �cmp."/, also exist
for strata and linear manifolds therein provided they have a non-trivial relative period
foliation. Among those, linear manifolds of rank one are the natural scope to extend
the main results of this paper. We plan to explore this in a follow-up paper.

Notes and references. For a given hyperbolic surface �n SL2.R/=K, the interpreta-
tion of the Siegel–Veech transform as Eisenstein series has been used in a number of
papers, starting with [43]. See in particular [15] and the references there, for example
for applications to counting problems of lattice vectors in star-shaped regions.

The compound differential operator and its spectral decomposition for the spe-
cial case of Maass forms of weight zero appear in an unpublished manuscript of
Balslev [8] in the equivalent guise of Jacobi forms of weight and index 0. After adjust-
ing to his set of coordinates, one checks that his Laplacian equals our ��cmp.4/

0 . The
Fourier expansions (Section 4) are also discussed in [8] aiming to decompose the
L2-space into eigenspaces of his Laplacian. The first statement of Thereom 1.6 is also
claimed without proof in [8]. Balslev moreover computes explicitly a Weyl’s law for
the spectrum of his Laplacian (in weight 0) and briefly addresses the same question
for the covering space given by replacing SAff2.Z/ with a subgroup of small finite
index.
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The reader might also view this paper as a complement to the book of Berndt and
Schmidt [11], where representations of the Jacobi group are discussed from a per-
spective inspired by automorphic representation theory. They, however, restrict very
early in their treatment to central character zero, which rules out precisely the case
that we consider in the present work. The prominent role played by the Schrödinger–
Weil representation in their setting reduces them to representations of the metaplectic
group, which were intensively studied for instance by Waldspurger in prior work.
Plenty of representation theoretic subtleties in the present work can only occur
because of the lack of such a tight connection to any (covering of) a classical group.

The Siegel(–Veech) transform for affine lattices has been used for effective
equidistribution results in [21]; see also [42].

There is a long history using Ratner’s theory on the space H .0; 0/ to study saddle
connection, notably their gap distributions, see, e.g., [19, 38, 40].

The analog of Selberg’s conjecture (the size of the spectral gap or the non-exist-
ence of complementary series) for strata or its congruence covers is a question of
Yoccoz. See [36, 37] for progress in this direction.

Organization of the paper. Section 2 sets the table by defining the various Casimir
and Laplace differential operators relevant to our analysis from all perspectives.
Section 3 is dedicated to the representation theory, building a decomposition of
L2.G0.Z/nG0.R// via Mackey theory. In order to study the spectral decomposition
of L2.H .0; 0// or the role of the Siegel–Veech transforms, we introduce the Fourier
and Fourier–Heisenberg expansions in Section 4. We provide the spectral decompos-
ition in Section 5. There, we note that Theorems 5.1 and 5.6 are refinements rather
than restatements of Theorems 1.1 and 1.3 respectively. This is also where cusp forms
are introduced. While they do not correspond to the discrete part of the spectrum for
the foliated Laplacian, we show that they do for the compound Laplacian. Finally,
in Section 6 we introduce the Siegel–Veech transform and show that they cover the
complement of the cusp forms, giving a final decomposition and interpretation of
L2.H .0; 0//.

2. Differential operators for the special affine group

Each stratum H .˛/ admits an action by G.R/D SL2.R/. For an introduction to strata
and the dynamics of the SL2.R/-action, see for example, [5]. Up to measure zero, the
stratum H .0; 0/ agrees with SAff2.Z/n SAff2.R/ and is, contrary to other strata in
higher genus, a homogeneous space. There are several interesting differential oper-
ators acting on this space. First, the Casimir element C of SL2.R/ induces a second
order ‘foliated’ differential operator D fol that involves only the derivatives along the
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leaves of the foliation by SL2.R/-orbits. Second, we show in Proposition 2.1 that
the group G0.R/ D SAff2.R/, despite not being reductive, has a universal envelop-
ing algebra, whose centre is a polynomial ring in one variable. We call a generator
of this polynomial ring a Casimir element C 0. It induces an order three differential
operator D tot.

Just as in the classical case of the modular curve, we may pass between func-
tions on H .0; 0/ of a given K-type and modular-invariant functions on the quotient
H .0; 0/=K, which is the quotient of the Jacobi half plane H0 by SAff2.Z/. We state
this correspondence in Section 2.3. Under this correspondence, the total and foliated
differential operators D tot and D fol correspond to Laplace operators ��tot and ��fol.

To complete the picture, we observe that besides these two operators there is a
vertical Laplace operator ��vert which is G0.R/-invariant. We call any linear com-
bination ��cmp."/ D��fol � "�vert with " > 0 a compound Laplace operator, whose
basic properties we discuss in Section 2.4.

We will write elements in G0.R/ D SL2.R/ ËR2 as .g;w/, where w D .w1; w2/
is a row vector with composition law .g; w/ � . Qg; zw/ D .g Qg; w Qg C zw/. We need the
compact subgroup K´ SO2.R/ � G.R/ � G0.R/. The Poincaré upper-half plane
and its affine extension, called the Jacobi upper-half space in [18], are

H D ¹� 2 C W Im.�/ > 0º Š G.R/=K;

H0 D H �C D ¹.�; z/ 2 C2
W Im.�/ > 0º Š G0.R/=K:

Following the conventions for Jacobi forms, we use the coordinates

� D x C iy and z D uC iv D p� C q: (2.1)

The group G0.R/ acts on H0 by��
a b
c d

�
; w1; w2

�
� .�; z/ D

�a� C b
c� C d

;
z C w1� C w2

c� C d

�
;

extending the action of G.R/ on H by Möbius transformations. Let g and g0 be the
complexified Lie algebras of G.R/ and G0.R/ respectively. Given the elements of g

F D
�
0 1
0 0

�
; H D

�
1 0
0 �1

�
; and G D

�
0 0
1 0

�
;

we use as a basis of g

Z D �i.F �G/; and X˙ D
1

2
.H ˙ i.F CG//:

Considering additionally the elements of g0

P D
��
0 0
0 0

�
; 1; 0

�
and Q D

��
0 0
0 0

�
; 0; 1

�



J. S. Athreya, J. Lagacé, M. Möller, and M. Raum 10

we use as a basis for g0 the set

.Z; 0; 0/; .X˙; 0; 0/; and Y˙ D
1

2
.P ˙ iQ/: (2.2)

In the sequel, we abuse notation and denoteZ D .Z; 0; 0/ andX˙ D .X˙; 0; 0/ when
it is clear that we are considering them as elements of g0.

2.1. A Casimir element for the special linear group

By the general theory of reductive groups, a Casimir element C for g D sl2 is any
generator of the centre z of the universal enveloping algebra U.g/. Such an element is
given by C D

P
X XX

_, where X runs through a basis of the Lie algebra and X_ is
the dual of X with respect to the Killing form. Explicitly,

C D
1

4
XCX� C

1

8
Z2 C

1

4
X�XC

D
1

2
XCX� C

1

8
Z2 �

1

4
Z; (2.3)

and we define a foliated differential operator as the left action

D folf ´ 2Cf

of the Casimir element, matching normalization used e.g., in the theory of elliptic
modular forms.

2.2. A Casimir element for the special affine group

Since G0.R/ D SAff2.R/ is not reductive, we determine the centre of U.g0/ in an ad
hoc way. We nevertheless refer to C 0 below as a Casimir element. Similar computa-
tions of Casimir elements (that are also degree three) have appeared for the Jacobi
group in [12] and [16]. The following proposition complements these computations
(and also those in [11]) which were always restricted to representations of the Jacobi
group with non-trivial central character.

Proposition 2.1. The centre z0 of the universal enveloping algebra U.g0/ is a polyno-
mial ring

z0 D CŒC 0� with generator C 0 D ZYCY� �XCY 2� CX�Y
2
C: (2.4)

Before proving the proposition, we observe that it gives rise to a differential oper-
ator via the left action

D totf ´ 2C 0f:
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Proof. Let A D gr U.g0/ be the associated graded algebra and

� WA! U.g0/; m1 � � �mn 7!
X
�2Sn

m�.1/ � � �m�.n/; mi 2 g0 for 1 � i � n;

be the linear symmetrization map (which is not an algebra homomorphism).
The leading term of any element of z0 yields a central element of A. Conversely,

since commutators in the associative algebra U.g0/ strictly lower the degree filtration
and by induction on the degree (cf. [23, Theorem 10] and the lemmas used in its
proof), we see that the symmetrization map yields a bijection

ker.g0 ˚ A/! z0:

In particular, A is commutative, but carries a non-trivial, degree preserving represent-
ation of g0. To determine the kernel of the g0-action on A, we record that

ŒYC; Z
mX

nC
C Xn�� � D �mZm�1X

nC
C Xn�� C n�Z

mX
nC
C Xn��1� ;

ŒY�; Z
mX

nC
C Xn�� � D mZm�1X

nC
C Xn�� � nCZ

mX
nC�1

C Xn�� :

We conclude that any homogeneous element of A that vanishes under ŒYC; � � is of
the form X

m

.ZY� CX�YC/
mpCm.XC; YC; Y�/;

and any homogeneous element of A that vanishes under ŒY�; � � is of the formX
m

.ZYC �XCY�/
mp�m.X�; YC; Y�/;

for suitable polynomials p˙m . By induction on the degree in Z, we conclude that an
element that is annihilated by both ŒYC; � � and ŒY�; � � is of the formX

m

.ZYCY� �XCY
2
� CX�Y

2
C/
mqm.YC; Y�/

for suitable polynomials qm.
We next argue that every qm is constant. To this end, note that qm must vanish

under the Lie action of g0, since ZYCY� �XCY 2� CX�Y
2
C does. We have

ŒXC; Y
nC
C Y n�� � D �n�Y

nCC1

C Y n��1� and ŒX�; Y
nC
C Y n�� � D �nCY

nC�1

C Y n�C1� :

By induction on the degree in YC, we find that

ker.g0 ˚ A/ D CŒZYCY� �XCY
2
� CX�Y

2
C�:
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The image of the generator on the right-hand side under the symmetrization map
equals

.ZYCY� CZY�YC C YCZY� C Y�ZYC C YCY�Z C Y�YCZ/

� 2.XCY
2
� C Y�XCY� C Y

2
�XC/C 2.X�Y

2
C C YCX�YC C Y

2
CX�/:

Using the commutator of Z and Y˙, we calculate that the expression in the first pair
of parentheses simplifies to 6ZYCY�. For the two other expressions, we obtain

2.XCY
2
� C Y�XCY� C Y

2
�XC/ D 2.XCY

2
� C 2Y�XCY� C Y�YC/

D 2.3XCY
2
� C 2YCY� C Y�YC/

D 2.3XCY
2
� C 3YCY�/;

and similarly,

2.X�Y
2
C C YCX�YC C Y

2
CX�/ D 2.X�Y

2
C C 2YCX�YC C YCX�Y�/

D 2.3X�Y
2
C C 2Y�YC C YCY�/

D 2.3X�Y
2
C C 3YCY�/:

Since the contributions of YCY� for these terms cancel each other, we recover 6C 0

and finish the proof.

2.3. Affine modular-invariant functions

It will be convenient to pass back and forth between functions on G0.R/ and functions
on the Jacobi upper-half plane H0 D G0.R/= SO2.R/. For this, we define the slash
action on functions on H0 parameterised by k 2 Z by�

�j0k
��
a b
c d

�
; w1; w2

��
.�; z/ D .c� C d/�k�

�a� C b
c� C d

;
z C w1� C w2

c� C d

�
;

extending the usual slash action on the upper-half plane H. We say that �WH0! C is
an affine modular-invariant function of weight k if

�j0k.; w/ D � for all .; w/ 2 G0.Z/ D SAff2.Z/:

The first half of the correspondence is the lift of affine modular-invariant functions to
functions on G0.R/ by

Q�.g/´ .�j0kg/.i; 0/ D e
ik�yk=2�.�; z/ (2.5)

for forms of weight k, where for the second expression � D x C iy, z D u C iv,
and g D .x; y; u; v; �/ as in the Iwasawa decomposition in (3.6) below. Note that the
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notation Q� suppresses the weight k. We generalise the standard raising and lowering
operators and define the operators Lk , Rk , LH

k
, and RH

k
on affine modular invariant

functions via the lifts

eLk� ´ X� Q�; eRk� ´ XC Q�;
eLH
k� ´ Y� Q�;

eRH
k� ´ YC Q�: (2.6)

From

X˙ Q� D ˙
i

2
ei.k˙2/�yk=2

�
2y.@x�/C 2v.@u�/� 2iy.@y�/

� 2iv.@v�/� ik� � ik�
�
;

Y˙ Q� D ˙
i

2
ei.k˙1/�y.kC1/=2..@u�/� i.@v�//;

we read off that the weight of the functions Lk�, Rk�, LH
k
�, and RH

k
� in (2.6) is k � 2,

k C 2, k � 1, and k C 1 respectively. Explicit calculations show

Lk D �2iy2.@ N� C vy�1@ Nz/; Rk D 2i.@� C vy�1@z/C ky�1;

LH
k D �iy@ Nz; RH

k D i@z;

and yield the following lemma.

Lemma 2.2. There are differential operators, ��fol
k

and ��tot
k

which we call the
foliated Laplacian and total Laplacian of weight k, respectively, with the property that

A�fol
k � ´ D fol Q� and A�tot

k � ´ D tot Q� (2.7)

for any affine modular-invariant function � of weight k. In .x; y; u; v/ coordinates,

�tot
k D kRH

k�1LH
k � Rk�2LH

k�1LH
k C LkC2RH

kC1RH
k

D y.k@ Nz C 2iv@z@ Nz/.@ Nz C @z/C 2iy
2.@ N�@

2
z C @�@

2
Nz/

D
k

2
y@u.@u C i@v/C

i

2
y2@x.@

2
u � @

2
v/C iy

2@y@u@v C
i

2
yv@u.@

2
u C @

2
v/;

and

�fol
k D Rk�2Lk
D 4y2@�@ N� C 4yv.@�@ Nz C @ N�@z/C 4v

2@z@ Nz � 2ik.y@ N� C v@ Nz/

D y2.@2x C @
2
y/C 2yv.@x@u C @y@v/C v

2.@2u C @
2
v/

� iky.@x C i@y/ � ikv.@u C i@v/: (2.8)

Furthermore, in .x; y; p; q/ coordinates,

�fol
k D y

2.@2x C @
2
y/ � iky.@x C i@y/:
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Note that there is no dependence on p; q in the definition of �fol
k

. The converse of
the correspondence (2.5) is stated for fixed K-type. Here, a vector v in a representa-
tion � of K is said to be of K-type k 2 Z, if

�
��

cos � sin �
� sin � cos �

��
v D eik�v:

In particular, a function on G0.R/ transforming in this way under right shifts by K is
said to be of K-type k.

Lemma 2.3. Given an affine modular-invariant function �, the function Q� defined
in (2.5) is a G0.Z/-left-invariant function.

Conversely, if f is G0.Z/-left-invariant and of K-type k, then

�.x C iy; uC iv/ D f
�� y1=2 xy�1=2

0 y�1=2
�
; uy�1=2; vy�1=2

�
is an affine modular-invariant function of weight k with Q� D f .

Proof. The modular invariance of � implies that for  2 G0.Z/ and g 2 G0.R/,

Q�.g/ D .�j0kg/.i; 0/ D .�j
0
kg/.i; 0/ D

Q�.g/:

That is, we can view Q� as a function on G0.Z/nG0.R/.
To determine the action of K by right-shifts on Q� in (2.5) we consider

�
d �c
c d

�
2 K

with d D cos � , c D � sin � , and g 2 G0.R/ and compute

Q�
�
g
�
d �c
c d

��
D
�
�j0kg

�
d �c
c d

��
.i; 0/ D .ci C d/�k.�j0kg/.i; 0/

D .ci C d/�k Q�.g/ D eik� Q�.g/:

In particular, Q� is K-finite. The converse is a direct computation, see also the Iwasawa
decomposition in (3.6).

Under this correspondence, the usual L2-scalar product on G0.Z/nG0.R/ corres-
ponds to the scalar product

h 1;  2i ´

Z
�0nH0

 1.�; z/ 2.�; z/
dx dy du dv
y3�k

D

Z
�0nH0

 1.�; z/ 2.�; z/
dx dy dp dq
y2�k

: (2.9)

We write the corresponding norm as k � kH0;k or k � kH0 , suppressing the k-depend-
ence. It follows from the definition that the measure on G0.Z/nG0.R/=K induced by
this scalar product is the (push-forward to theK-quotient of the) Masur–Veech meas-
ure �MV.
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2.4. Invariant differential operators

We define the vertical Laplace operator in analogy with the formula �fol
k
D Rk�2Lk

in (2.8) for the foliated one as

�vert
´ RHLH

D y@z@ Nz :

Note that it does not depend on the weight. The vertical Laplace operator does not
play a distinguished role by itself, but it is the foundation to define a one parameter
family of compound Laplace operators perturbing the foliated one. For " > 0, we set

��
cmp."/
k

´ ��fol
k � "�

vert:

Lemma 2.4. The foliated Laplace operator, the vertical Laplace operator and con-
sequently the family of compound Laplace operators are equivariant with respect to
the action of the special affine group, i.e.,

.�fol
k �/j

0
kg D �

fol
k .�j

0
kg/; .�vert�/j0kg D �

vert.�j0kg/

.�
cmp."/
k

�/j0kg D �
cmp."/
k

.�j0kg/:

for all g 2 G0.R/.

Proof. One directly computes the covariance properties

.Lk�/j0k�2g D Lk.�j0kg/; .Rk�/j0kC2g D Rk.�j0kg/;

.LH
k�/j

0
k�1g D LH

k .�j
0
kg/; .RH

k�/j
0
kC1g D RH

k .�j
0
kg/;

for any �WH0 ! C, any k 2 Z, and any g 2 G0.R/, see also [13, Section 2.1] for the
first two equalities. (This goes back to the general setup considered by Helgason [23],
or also [16].) The claimed equivariance follows directly from this.

The following proposition tells us that it is the compound Laplacian that has better
chances to have a good spectral decomposition for L2.H0/.

Proposition 2.5. For every k 2 N and " > 0, the compound Laplace operator
��

cmp."/
k

is a self-adjoint elliptic operator on L2.H0/, and the foliated Laplacian
��fol

k
is hypoelliptic. Furthermore, the symmetric bilinear form on L2.H .0; 0/; �MV/

associated with the compound Laplacian ��cmp."/
k

is

Q
."/

k
.�;  / D

Z
�0nH0

ykrx;y� � rx;y dx dy dp dq

C

Z
�0nH0

ikyk�1@x� x dx dy dp dq

C "

Z
�0nH0

yk�2ru;v� � ru;v dx dy du dv:
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Remark 2.6. Note that the terms in the bilinear form are not all given in terms of the
same coordinates. While unconventional, this greatly simplifies the proof that�cmp."/

has compact resolvent when restricted to cusp forms.

Proof. We first observe that iky@x is self-adjoint as the product of commuting self-
adjoint operators, and that the second term in the bilinear form is simply hiky@x�; i.
We turn our attention to the rest of the foliated Laplacian, and use indices in differen-
tial operator to represent the variables they are acting on

h.�y2�x;y � ky@y/�;  i D

Z
�0nH0

y2..��x;y � ky
�1@y/�/ x 

dx dy dp dq
y2�k

D

Z
�0nH0

..��x;y � ky
�1@y/�/ x y

k dx dy dp dq

D

Z
�0nH0

rx;y� � rx;y.y
k x / dx dy dp dq

� k

Z
�0nH0

@y� �  y
k�1 dx dy dp dq

D

Z
�0nH0

ykrx;y� � rx;y dx dy dp dq;

which we recognise as the first term in the bilinear form. Finally, for the vertical
Laplacian we compute in .x; y; u; v/ coordinates:

h�"�vert�; i D "

Z
�0nH0

.��u;v�/ x y
k�2 dx dy du dv

D "

Z
�0nH0

yk�2ru;v� � ru;v dx dy du dv:

Self-adjointness is now a consequence of the fact that the Laplacian is represented by
a symmetric bilinear form.

For ellipticity, we express the vertical Laplacian also in .x; y; p; q/ coordinates as

�"�vert
D �

"

4
y.@2q C y

�2.@p � x@q/
2/:

Viewing derivatives as tangent vectors, consider the following local coordinates:

T �H0 D ¹.x; �; y; �; p; �; q; !/ W y > 0; h�; @xi D h�; @yi D h�; @pi D h!; @qi D 1º:
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for the cotangent bundle, where we use h�; �i to denote the pairing between the tan-
gent and cotangent bundle. We can now read off the expression of the foliated and
compound Laplacian in coordinates that their principal symbols are given by

symb.��fol
k / D y

2.�2 C �2/

and

symb.��vert/ D
y

4
.!2 C y�2.� � x!/2/:

Note that these principal symbols do not depend on k, and that an operator P is
hypoelliptic if symb.P / does not change sign and elliptic if symb.P /D 0 implies that
� D � D � D ! D 0. Hypoellipticity of the foliated Laplacian is directly observed.
Since symb.��cmp."/

k
/ D symb.��fol

k
/C symb.�"�vert/ and y > 0, it is easy to see

that symb.��cmp."/
k

/ > 0 whenever .�; �; !/ ¤ .0; 0; 0/. On the other hand, if ! D 0,
then any � ¤ 0 ensures the same thing, so that the operator is elliptic.

3. The special affine group and its representation theory

The first goal of this section, achieved in Theorem 3.7, is to recall an application of
Mackey theory and to classify the genuine representations of G0.R/ D SAff2.R/ up
to isomorphism. These are the representations �SAff

nm2
defined in (3.7). The second goal

of this section is to compute the restrictions of these representations as representations
of G.R/ D SL2.R/.

3.1. The goal: decomposing the L2-space

The Haar measure on G0.R/ gives rise to a right-invariant measure on G0.Z/nG0.R/.
We are interested in the space of square-integrable functions on this quotient,
L2.G0.Z/nG0.R//. This is the same as understanding the space L2.H .0; 0/; �MV/

of square-integrable functions on the space of tori with two marked points, equipped
with the Masur–Veech measure, as H .0; 0/ and G0.Z/nG0.R/ differ by a set of meas-
ure zero.

By [17, Théorème 1], the group G0.R/ is of type I. In particular, by [9, The-
orem 6.D.7], we have a direct integral decomposition

L2.G0.Z/nG0.R// Š

LZ
yG0

� d�G0.�/; (3.1)
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where yG0 is the unitary dual of G0.R/. Restricting to G.R/-representations gives us
another direct integral decomposition

ResG0.R/
G.R/ L2.G0.Z/nG0.R// Š

LZ
yG

� d�G.�/: (3.2)

There is an embedding

L2.G.Z/nG.R// ,! L2.G0.Z/nG0.R//:

Its range consists in functions invariant under the action of the translation subgroup R2

of G0.R/.

Definition 3.1. We call

L2.G0.Z/nG0.R//gen
´ L2.G.Z/nG.R//?

the genuine part of L2.G0.Z/nG0.R//, so that

L2.G0.Z/nG0.R// D L2.G.Z/nG.R//˚ L2.G0.Z/nG0.R//gen: (3.3)

Since our goal is an explicit determination of the right-hand side of the decom-
positions (3.1) and (3.2), we may of course restrict attention to the genuine subspace.
Integration along the torus fibers of the projection H .0; 0/! H .0/ defines an aver-
aging map avWL2.H .0; 0//! L2.H .0//. Disintegrating the Haar measure of G0.R/
along the torus fibers shows

L2.G0.Z/nG0.R//gen
D ker.av/: (3.4)

Standard subgroups of G0.R/ and coordinates. We fix notation for the standard
subgroups of SL2.R/ (left) and the special affine group (right), noting that we abuse
notation and write again g D .g; 0; 0/ for the image of an element of G in G0,

A.R/´ A0.R/´
®�
a 0
0 a�1

�
W a 2 R�

¯
;

N.R/´
®�
1 b
0 1

�
W b 2 R

¯
; N0.R/´

®��
1 b
0 1

�
; w1; w2

�
W b;w1; w2 2 R

¯
;

H0.R/´
®��

1 0
0 1

�
; w1; w2

�
W w1; w2 2 R

¯
;

which gives rise to the Iwasawa decomposition

G0.R/ D N0.R/A0.R/K; (3.5)

as well as two further decompositions

G0.R/ D G.R/H0.R/ D H0.R/G.R/:
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We denote the parabolic subgroups in the Iwasawa decomposition by

P.R/D N.R/A.R/ D A.R/N.R/;

P0.R/D N0.R/A0.R/D A0.R/N0.R/:

Given .�; z/ 2 H0 as in (2.1), we let a D
p
y, b D x, w1 D v=y, and w2 D u.

Then for all � 2 R, the Iwasawa decomposition corresponds to the identity

.�; z/ D
��
1 b
0 1

�
; w1; w2

��
a 0
0 a�1

��
cos � sin �
� sin � cos �

�
.i; 0/

D
��
a ba�1

0 a�1

�
; w1a;w2a

�1
�
.i; 0/: (3.6)

Alternatively, if we let a D
p
y, b D x, w1 D p and w2 D q, then emphasizing the

coordinates z D p� C q for all � 2 R, we have��
1 0
0 1

�
; w1; w2

��
1 b
0 1

��
a 0
0 a�1

��
cos � sin �
� sin � cos �

�
.i; 0/ D .�; z/:

The relation between these sets of coordinates is given by pDv=y and qDu� vx=y.
In the coordinates of (3.6), the Haar measures on the groups N0.R/, A0.R/, K,

and N0.R/A0.R/K are given respectively by

d b dw1 dw2;
d a
a
;

d �
2�
; and

d � d b dw1 dw2 d a
2�a3

:

Notation for L2-induction of representations. We only consider the case of a loc-
ally compact group G D HL for two subgroups H and L such that G=H is isomorphic
to L as a measure space. Our notation is consistent with [45, Sections 1.5 and 5.2]
and [11, Section 2.1], which in turn follows [27].

Given a representation � of H on a Hilbert space V.�/, its L2-induction to G is
given by right shifts on

V.IndG
H �/´

²
f WG! V.�/ W f measurable; f square integrable on L;

f .hg/ D

r
ıH.h/

ıG.h/
�.h/f .g/ for all h 2 H; g 2 G

³
;

where �G and �H are the modular functions on G and H.

3.2. Representation theory of the upper triangular subgroup P.R/

Consider the representations of P.R/ that factor through the quotient by N.R/

�P
C;sW

�
a b
0 a�1

�
7! jajs and �P

�;sW
�
a b
0 a�1

�
7! sgn.a/jajs; s 2 C;

and abbreviate

sgnP
´ �P

�;0:
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Further, through the paper, we set

e.x/´ e2�ix :

Proposition 3.2. The irreducible representations that are trivial on N.R/ are given
by �P

�;s and �P
Cs;. They are unitary if and only if s 2 iR.

The irreducible unitary representations which are not trivial on N.R/ are given,
up to unitary equivalence, by

�P
˙´ IndP.R/

N.R/

��
1 b
0 1

�
7! e.˙b/

�
and sgnP �P

˙:

Proof. For the first statement, we observe that those representations factor through
the quotient A.R/ Š R� and are thus characters. For the second statement, consider
the map �

a b
0 a�1

�
7!
�
a2 b
0 1

�
;

which is surjective with central kernel˙1 onto the connected component of the iden-
tity SAff1.R/0 of the one-dimensional affine group SAff1.R/; see [9, Remark 3.C.6].
We can thus apply the classification given there and append the central character sgnP

to obtain the desired statement.

Proposition 3.3. The regular representation of P.R/ decomposes as

L2.P.R// Š @0.�P
C ˚ �

P
� ˚ sgnP �P

C ˚ sgnP �P
�/;

where the right-hand side denotes a countably infinite direct sum of the representation
in the brackets.

Proof. Let P.R/0 � P.R/ be the connected component of the identity. We use induc-
tion by steps and first decompose the regular representation of N.R/:

L2.P.R// D IndP.R/
1 1 Š IndP.R/

P.R/0
IndP.R/0

N.R/ IndN.R/
1 1:

Now, by Fourier analysis, we have

L2.N.R// D IndN.R/
1 1 Š

LZ
R

��
1 b
0 1

�
7! e.nb/

�
dn:

Using Fubini and the definition of induced representations, we see that

IndP.R/0

N.R/

LZ
R

��
1 b
0 1

�
7! e.nb/

�
dn Š

LZ
R

IndP.R/0

N.R/

��
1 b
0 1

�
7! e.nb/

�
dn:



Spectral decomposition and Siegel–Veech transforms for strata: the case of marked tori 21

Proceeding as in the proof of Proposition 3.2, we recognise the inductions on the
right-hand side. They are isomorphic to the restriction of �P

sgn.n/ to P.R/0 if n ¤ 0,
while if n D 0 it is the regular representation of P.R/0=N.R/. Since ¹0º � R has
measure zero, we can discard its contribution to the direct integral. We conclude thatLZ

R

IndP.R/0

N.R/

��
1 b
0 1

�
7! e.nb/

�
dn

Š

LZ
RC

ResP.R/
P.R/0

�P
C dn˚

LZ
R�

ResP.R/
P.R/0

�P
� dn:

The direct integrals on the right-hand side have constant integrand. The direct integ-
ral over R˙ yields countably infinite multiplicity by the isomorphism of Hilbert
spaces L2.R/ Š L2.Z>0/, so that we arrive atLZ

R

IndP.R/0

N.R/

��
1 b
0 1

�
7! e.nb/

�
dn Š @0.ResP.R/

P.R/0
�P
C ˚ ResP.R/

P.R/0
�P
�/:

Finally, induction to P.R/ introduces the sign character sgnP confirming the proposi-
tion.

3.3. Representation theory of SL2.R/: a brief summary

The following results are standard and appear in many text books, e.g., [28, 45]. We
set

I SL
C;s ´ IndG.R/

P.R/ jaj
sC1; I SL

�;s ´ IndG.R/
P.R/ sgn.a/jajsC1:

Note that the shift s C 1 in the exponents is chosen in such a way that purely imagin-
ary s correspond to unitary representation. We have a duality between I SL

";s and I SL
";�s

via intertwining operators explained in [45, Section 5.3]. If k 2 Z>0, then I SL
�;k�1

is
reducible with two infinite-dimensional constituents DSL

˙k
, which are discrete series

if k > 1 and limits of discrete series if k D 1.

Theorem 3.4 (Bargmann). The irreducible unitary representations of SL2.R/ are
given up to unitary equivalence by

(a) the principal series I SL
";s Š I SL

";�s for " D C and s 2 iR or " D � and s 2
iR n ¹0º,

(b) the complementary series I SL
C;s for s 2 R, 0 < jsj < 1,

(c) the (limits of) discrete series representations DSL
k

for k 2 Z n ¹0º, and

(d) the trivial representation.
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[45, Section 5.6.4] also provides a list of which of these representations are square-
integrable or tempered, which allows us to deduce the Plancherel measure of regular
representations of SL2.R/.

Theorem 3.5. Among the representations in Theorem 3.4, the ones contained in the
regular representation L2.SL2.R// are

(a) the discrete series representations DSL
k

for k 2 Z n ¹0;˙1º .

Beyond those, the ones that are weakly contained in L2.SL2.R// are

(b) the principal series I SL
";s Š I SL

";�s for " D C and s 2 iR or " D � and s 2
iR n ¹0º,

(c) the limits of discrete series representations DSL
k

for k 2 ¹˙1º.

3.4. Representation theory of SAff2.R/: Mackey theory

We summarise the general Mackey theory for representations of semidirect products
in our special case of G0.R/ D SAff2.R/. As a prerequisite we need to understand
representations of N0.R/.

Proposition 3.6. The irreducible unitary representations with non-trivial central
character of N0.R/ are given up to unitary equivalence by

�N
r ´ IndN0.R/

H0.R/ ..w1; w2/ 7! e.rw2//; r 2 R�:

The unitary irreducible representations of N0.R/ with trivial central character are
the characters

�N
n;mW

��
1 b
0 1

�
; w1; w2

�
7! e.nb Cmw1/; n;m 2 R:

Proof. This is an instance of the Stone–von Neumann theorem, see for example [14,
Exercise 32.5] or [47, Example 7.3.3].

We can now state the result for the special affine group.

Theorem 3.7. The unitary dual of G0.R/ is exhausted by the pullback of SL2.R/-rep-
resentations and by, for any fixed m 2 R�, the representations

�SAff
n;m ´ IndG0.R/

N0.R/ �
N
n;m; n 2 R:

The two unitary representations �SAff
n1;m1

and �SAff
n2;m2

are isomorphic if and only
if n1m21 D n2m

2
2.

We fix representatives of the isomorphism classes as the representations

�SAff
s ´ �SAff

s;1 (3.7)
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with a single index. The proof of Theorem 3.7 requires the next statement, which we
will also need independently.

Proposition 3.8. The total Casimir operator acts on the representation �SAff
n;m with

eigenvalue �4�3nm2.

Proof. We observe that the correspondence in (2.5) allows us to view K-isotypical
elements of V.�SAff

n;m / as functions on H0, and then calculate with the total Laplace
operator via (2.7). The K-spherical element of V.�SAff

n;m / that is constant on A0.R/
corresponds to e.nx Cmv=y/. We have

��tot
k e
�
nx Cm

v

y

�
D 4�3nm2e

�
nx Cm

v

y

�
; (3.8)

by a straightforward calculation using the formula for the total Laplace operator in
Lemma 2.2, once we observe that the given expression is independent of u.

Proof of Theorem 3.7. The first statement is a reformulation of [11, Theorem 2.4.2].
More precisely, the representations in part i) of loc. cit. theorem are pullbacks from
SL2.R/. The representations in part ii) are the representations in our theorem. The
character  in the notation of [11] is non-trivial and thus corresponds to x 7! e.mx/

for an arbitrary but fixed m 2 R�. The character��
1 b
0 1

�
; w1; w2

�
7!  

�
b
n

m
C w1

�
D e.nb Cmw1/

is genuine for any n 2R. Conversely, every genuine character of N0.R/ is of this form
by Proposition 3.6. See also e.g., [47, Example 7.3.4].

By the first statement, if m1 ¤ m2 for each n1 there is exactly one n2 such that
the two inductions are isomorphic. To determine this value we employ the eigenvalue
under the total Casimir operator as given in Proposition 3.8.

3.5. Restrictions of SAff2.R/-representations

Our goal is to prove the following branching of �SAff
n;m to SL2.R/.

Proposition 3.9. For any m 2 R� and n 2 R, the restrictions of the SAff2.R/-rep-
resentations to SL2.R/ decompose as direct integrals

ResG0.R/
G.R/ �

SAff
0;m D

LZ
RC

2.I SL
C;it ˚ I

SL
�;it / dt;

ResG0.R/
G.R/ �

SAff
n;m D

1M
kD2

DSL
sgn.n/k ˚

LZ
RC

.I SL
C;it ˚ I

SL
�;it / dt; if n ¤ 0:
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We prove this proposition at the end of the section. The proof features various
intermediate inductions and restrctions, which we exhibit separately. It will depend
on Lemmas 3.10–3.13, that we state and prove first.

Lemma 3.10. Given any m 2 R�, we have the decomposition into characters

IndP.R/
N.R/ ResN0.R/

N.R/ �
N
0;m Š

LZ
R

.�P
C;it ˚ �

P
�;it / d t D

LZ
R

.1˚ sgnP/�P
C;it d t:

Proof. We write A.R/0 and P.R/0 for the connected components of the identity
of A.R/ and P.R/ respectively, that is, the subgroups whose elements have positive
diagonal entries. Transitivity of induction yields

IndP.R/
N.R/ ResN0.R/

N.R/ �
N
0;m Š IndP.R/

P.R/0
IndP.R/0

N.R/ ResN0.R/
N.R/ �

N
0;m:

Functions in the representation space of the inner induction are left invariant under
N.R/. Since N.R/ � P.R/0 is normal, we can identify them with square-integrable
functions on

N.R/nP.R/0 Š A.R/0 Š RC:

That is, we have to determine the decomposition of L2.RC/ as a representation of RC.
We use the map RC ! R, a 7! log.a/ and classical Fourier analysis to find

IndP.R/
P.R/0

IndP.R/0

N.R/ ResN0.R/
N.R/ �

N
0;m Š IndP.R/

P.R/0

LZ
R

�P
C;it d t

Š

LZ
R

IndP.R/
P.R/0

�P
C;it d t;

where for simplicity we identify �P
C;it with its restrction to P.R/0. The remaining

induction is central, contributing one copy of �P
C;it and one of �P

�;it D sgnP �P
C;it as

desired.

We now turn to the case n ¤ 0.

Lemma 3.11. Given anym 2 R� and n¤ 0, we have the decomposition into irredu-
cible representations

IndP.R/
N.R/ ResN0.R/

N.R/ �
N
n;m Š �

P
sgn.n/ ˚ sgnP �P

sgn.n/:
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Proof. Inducing in steps to P.R/0 as in the proof of Lemma 3.10, we can apply
Mackey’s irreducibility criterion ([9, Corollary 1.F.5]; compare also Remark 3.C.6 of
op. cit.) to obtain the restriction of �P

sgn.n/ to P.R/0. The central induction from P.R/0

to P.R/ then yields two copies of it, one of which is twisted by the sign character.

The proof of Lemma 3.13, the last auxiliary statement for the proof of Propos-
ition 3.9, requires us to determine the restrictions of principal and discrete series
of SL2.R/ to N.R/. The statements of the next lemma are given, for instance, in
Kobayashi’s notes [29, Proposition 3.3.2 and 3.3.3].

Lemma 3.12. For all t 2 R, we have the decomposition

ResG.R/
N.R/ I

SL
˙;it Š

LZ
R

��
1 b
0 1

�
7! e.nb/

�
dn:

For all k 2 Z n ¹0º, we have the decomposition

ResG.R/
N.R/D

SL
k Š

LZ
Rsgn.k/

��
1 b
0 1

�
7! e.nb/

�
dn:

Lemma 3.13. The inductions from the upper triangular subgroup P.R/ to G.R/
decompose as follows:

IndG.R/
P.R/ �

P
˙ Š

1M
kD2
k even

DSL
˙k ˚

LZ
RC

I SL
C;it d t;

IndG.R/
P.R/ sgnP �P

˙ Š

1M
kD3
k odd

DSL
˙k ˚

LZ
RC

I SL
�;it d t:

Proof. The strategy is to spell out Mackey’s version of Frobenius reciprocity [35] for
the inclusion of groups P.R/ and G.R/ and then apply the same technique as in Sec-
tion 7(b) of loc. cit. Namely, we determine the isomorphism class of all restrictions on
the right-hand side of equality (3.9) below, and consider this equation as representa-
tion of P.R/ � 1 � P.R/ �G.R/. Since only finitely many, four in fact, isomorphism
classes of P.R/� 1-representations contribute, we thus derive an isomorphism of iso-
typical components for P.R/ � 1 on the left and right-hand side as representations
of the commutator of P.R/ � 1, thus of representations of the group 1 � G.R/, as
desired.

The Frobenius reciprocity formula involves all the representations weakly con-
tained in the regular representations, which have been listed in Proposition 3.3 and
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Theorem 3.5 for the two groups under consideration. We deduce from Mackey’s the-
orem that

. N�P
C ˝ IndP.R/ �

P
C/˚ . N�

P
� ˝ IndP.R/ �

P
�/

˚ .sgnP
N�P
C ˝ IndP.R/ sgnP�P

C/˚ .sgnP
N�P
� ˝ IndP.R/ sgnP�P

�/

Š

M
k2Zn¹0;˙1º

ResG.R/
P.R/ .

xDSL
k ˝D

SL
k /˚

Z
R

ResG.R/
P.R/ .

NI SL
C;it ˝ I

SL
C;it / d t

˚

Z
R

ResG.R/
P.R/ .

NI SL
�;it ˝ I

SL
�;it / d t; (3.9)

where the overline denotes the contragredient representation. These are easily com-
puted to be sgnP D sgnP and N�N

n D �
N
�n, hence the induction satisfies N�P

˙
Š �P

�. By a
similar argument, we find that for t 2 R

NI SL
˙;it Š I

SL
˙;it
D I SL
˙;�it Š I

SL
˙;it and xDSL

k D D
SL
k ;

by inspection of K-types.
We next determine the multiplicities of �P

˙
and sgnP �P

˙
in the restrictions on

the right-hand side. Since central characters are preserved by restriction, there are
multiplicities mD;kI˙ and mI;˙;it I˙, which are possibly infinite, such that

ResG.R/
P.R/ D

SL
k
Š .sgnP/k.mD;kIC�

P
C ˚mD;kI��

P
�/;

ResG.R/
P.R/ I

SL
C;it Š .mI;C;it IC�

P
C ˚mI;C;it I��

P
�/;

ResG.R/
P.R/ I

SL
�;it Š sgnP .mI;�;it IC�

P
C ˚mI;�;it I��

P
�/:

To find these multiplicities, we restrict both sides to N.R/ and note that

ResG.R/
N.R/ �

P
˙ Š ResG.R/

N.R/ sgnP �P
˙ Š

LZ
R˙

��
1 b
0 1

�
7! e.nb/

�
dn:

Comparing this with Lemma 3.12 below implies that

mD;k;sgn.k/ D 1; mD;k;sgn.�k/ D 0; and mI;˙;it IC D mI;˙;it I� D 1: (3.10)

Coming back to (3.9), viewed as a representation of P.R/ � 1, and using the multipli-
cities in (3.10), we deduce our statement.

Proof of Proposition 3.9. Comparing the decompositions

G0.R/ D N0.R/A.R/K; G.R/ D N.R/A.R/K; and N0.R/ D H0.R/N.R/;
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we claim that there is an isomorphism

ResG0.R/
G.R/ �

SAff
n;m D ResG0.R/

G.R/ IndG0.R/
N0.R/ �

N
n;m Š IndG.R/

N.R/ ResN0.R/
N.R/ �

N
n;m: (3.11)

In fact, the left-hand side of (3.11) consists of functions that transform like

f . Qng/ D �N
n;m. Qn/f .g/ for all Qn 2 N0.R/ D N.R/H0.R/ and g 2 G0.R/: (3.12)

In particular, such f is uniquely defined by its restriction to G.R/ Š G0.R/=H0.R/,
and this restriction satisfies again (3.12), now for all Qn 2 N.R/ and g 2 G.R/.
Moreover, by the left covariance with respect to H0.R/, the function f is measurable
if and only if its restriction to G.R/ is so. Square integrability on A.R/K � G.R/ is
preserved by the restriction to G.R/.

We can perform the induction on the right hand of (3.11) side in steps, that is,

IndG.R/
N.R/ ResN0.R/

N.R/ �
N
n;m Š IndG.R/

P.R/ IndP.R/
N.R/ ResN0.R/

N.R/ �
N
n;m:

In the case of n D 0, Lemma 3.10 implies that

IndG.R/
N.R/ ResN0.R/

N.R/ �
N
0;m Š IndG.R/

P.R/

LZ
iR

.�P
C;s ˚ �

P
�;s/ d s:

To obtain the result, it suffices to note that induction and direct integral decomposition
intertwine by Fubini’s theorem, and to use that I SL

˙;it Š I
SL
˙;�it .

In the case n ¤ 0, the statement now follows directly by combining Lemma 3.11
and Lemma 3.13.

4. Fourier expansions and Poincaré series

The first goal of this section is to examine and relate to each other two Fourier expan-
sions of affine modular forms. One of them along the torus fiber is merely compatible
with the action of SL2.R/, but exhibits better compatibility with the action of the foli-
ated Laplace operator and with the corresponding notion of Eisenstein and Poincaré
series. The other one arises from the Heisenberg subgroup N0.R/�G0.R/ and is com-
patible with the description of G0.R/-representations that appears in Theorem 3.7. In
particular, we give in Proposition 4.4 a criterion in terms of Fourier coefficients that
ensures that some representation �SAff

nm2
appears in the L2-representation �L2.�/ gen-

erated by a modular form �.
In Section 4.4, we construct affine group versions of Eisenstein and Poincaré

series. We compute their Fourier coefficients and show in Proposition 4.13 that they
generate the representation �SAff

n for all values n 2 Z.
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Parts of the Fourier expansion along the torus fiber for affine modular-invariant
functions of K-type 0 and, expressed differently, the related construction of Eisenstein
and Poincaré series has appeared in unpublished work of Balslev [8].

4.1. Fourier expansions on the torus fibers

The subgroup of translations is an abelian subgroup isomorphic to R2 in SAff2.R/,
whose dual yields a Fourier expansion of continuous affine modular-invariant func-
tion � of weight k:

�.�; z/ D
X
r;m2Z

cT.�Im; r I �/e.mp C rq/ .z D p� C q/: (4.1)

The Fourier coefficients are of course given by

cT.�Im; r I �/ D

Z
ZnR

Z
ZnR

�.�; p� C q/e.�mp � rq/ dp dq: (4.2)

The superscript T indicates that this is the Fourier expansion along the torus fibers
of the projection H .0; 0/! H .0/.

Lemma 4.1. The Fourier coefficients have the equivariance property

cT.�j0k Im; r I �/ D c
T.�I zm; Qr I �/jk; . zm; Qr/ D .m; r/ T;

for a continous affine modular-invariant function � of weight k and  2 SL2.Z/.

Proof. We apply  to � and eventually compare coefficients, using the uniqueness of
the Fourier series. We getX

r;m2Z

cT.�Im; r I �/e.mp C rq/ D �.�; z/ D .�j0k/.�; z/

D

X
zm;Qr2Z

.c� C d/�kcT.�I zm; Qr I �/e. zm Qp C Qr Qq/;

where . Qp; Qq/ D .p; q/�1 and  D
�
a b
c d

�
, since

z

c� C d
D Qp.�/C Qq with . Qp; Qq/ D .p; q/�1:

Now, to compare coefficients, we need to determine the . zm; Qr/ for which mp C rq D
zm Qp C Qr Qq. This yields the equality

.p; q/ T.m; r/ D mp C rq D zm Qp C Qr Qq

D . Qp; Qq/ T. zm; Qr/ D .p; q/�1 T. zm; Qr/

D .p; q/ T.. zm; Qr/ T�1/;

which yields desired relation between .m; r/ and . zm; Qr/.
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Proposition 4.2. Let � be an affine modular-invariant function of weight k such that
the Fourier coefficients cT.�Im; 0I �/ vanish for all m 2 Z. Then, � D 0.

Proof. By modular invariance under SL2.Z/ and Lemma 4.1, every cT with index
.m; 0/ for some  and some m vanishes. This exhausts all terms in the Fourier
expansion (4.1), implying � D 0.

4.2. Fourier series along the Heisenberg group

We now study a Fourier expansion of affine modular function that is compatible with
the induction of characters that appear in Theorem 3.7. Specifically, for given m 2
Z n ¹0º; n 2 Z we show that the non-vanishing of specific Fourier coefficients implies
that the SAff2.R/-representation of the representation generated by an affine modular-
invariant function contains �SAff

nm2
.

The dual of the abelian group®��
1 b
0 1

�
; 0; w2

�
2 G0.R/

¯
Š R2 � Z0.R/´

®��
1 0
0 1

�
; 0; w2

�
; w2 2 R

¯
yields the second Fourier expansion.

On the constant term with respect to the w2-action, i.e., on functions that are
Z0.R/-invariant, the factor group

N0.R/=Z0.R/ Š
®��

1 b
0 1

�
; w1;R

�¯
Š R2

acts. Using this time the coordinates � D x C iy and z D uC iv, this yields another
two-variable expansion, that we call Fourier–Heisenberg expansion

�.�; z/ D
X
n;r2Z

cH
�
�In; r Iy;

v

y

�
e.nx C ru/; (4.3)

and we refine this further by writing for any n 2 Z

cH
�
�In; 0Iy;

v

y

�
D

X
m2Z

cH0.�In;mIy/e
�
m
v

y

�
:

The Fourier–Heisenberg coefficients are again given by

cH
�
�In; r Iy;

v

y

�
D

Z
ZnR

Z
ZnR

�.x C iy; uC iv/e.�nx � ru/ dx du (4.4)

and

cH0.�In;mIy/ D
1

y

Z
yZnR

cH
�
�In; 0Iy;

v

y

�
e
�
�m

v

y

�
dv: (4.5)
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Lemma 4.3. The r D 0-part of the torus Fourier expansions coincides with the
r D 0-part in the Fourier–Heisenberg expansion. That is, for any continuous affine
modular-invariant function �,

cT.�Im; 0I �/ D
X
n2Z

cH0.�In;mIy/e.nx/:

In particular, if for an affine modular-invariant function � all the Fourier–Heisenberg
coefficients cH0.�In;mIy/ vanish for n;m 2 Z, then � D 0.

Proof. Comparing the coefficient expressions (4.2), (4.4), and (4.5), we see

cT.�Im; 0I �/ D

Z
ZnR

Z
ZnR

�.�; q� C p/e.�mp/ dp d q;

X
n2Z

cH0.�In;mIy/e.nx/ D
1

y

Z
yZnR

Z
ZnR

�.�; uC iv/e
�
�m

v

y

�
du d v:

The claim then follows from the change of variables uC iv D p� C q, which gives
duC i dv D � dp C dq, that is, du D x dp C dq and dv D y dp.

The following proposition gives us a criterion in terms of Fourier–Heisenberg
expansions to show that the representations �SAff

nm2
occur in L2.H .0;0//. It will be used

in the proof of Theorem 5.1. Recall that �L2.�/ denotes the smallest G0.R/-invariant
subspace of L2.H .0; 0// that contains �.

Proposition 4.4. Given a continuous square-integrable affine modular function �,
assume that the Fourier coefficient cH0.�I n;mI y/ in (4.3) does not vanish for some
n;m 2Z,m¤ 0. Then, averaging over the subgroup N0.R/ defines a surjective homo-
morphism

�L2.�/! �SAff
nm2

; f 7!

�
g 7!

Z
N0.Z/nN0.R/

f .hg/ N�N
n;m.h/ dh

�
:

Proof. Since �L2.�/ consists of functions that are left invariant with respect to G0.Z/,
hence with respect to N0.Z/, and since N0.Z/nN0.R/ is compact, the integral is well
defined. Given Qh 2 N0.R/, we haveZ

N0.Z/nN0.R/

f .h Qhg/ N�N
n;m.h/ dh D �N

n;m.
Qh/

Z
N0.Z/nN0.R/

f .h Qhg/ N�N
n;m.h

Qh/ dh:

Since the integral is taken with respect to the right Haar measure, we can replace h Qh
in the integrand by h. Thus, the image of the map in Proposition 4.4 is contained
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in the representation space V.�SAff
n;m /. Since �SAff

n;m is irreducible by Theorem 3.7, the
statement follows once we establish that the integral does not vanish for some f 2
V.�L2.�//.

Recall that the function in V.�L2.�// corresponding to � is given by

f .hg/ D .�j0khg/.i; 0/:

We apply the Iwasawa decomposition to g and h, that is,

g D
��
1 b
0 1

�
; w1; w2

�� a
a�1

�� cos � sin �
� sin � cos �

�
; h D

��
1 Qb
0 1

�
; zw1; zw2

�
and when inserting this into f , we obtain

f .hg/ D eik�ak�.a2i C b C Qb; .w1 C zw1/a
2i C .w2 C zw2 C b zw1//

D eik�ak
� X
n;m2Z

cH0.�In;mI a2/e.n.b C Qb/Cm.w1 C zw1//

C

X
n;r2Z
r¤0

cH.�In; r I a2; w1 C zw1/

� e.n.b C Qb/C r.w2 C zw2 C b zw1//
�
:

We next insert this into the expression defining the map in the proposition. We replace
n and m in the character �N

n;m to distinguish them from the indices of the Fourier–
Heisenberg expansion. Using the expression

N�N
Qn; zm.h/ D e. Qn

Qb C zm zw1/
�1;

we obtainZ
N0.Z/nN0.R/

f .hg/ N�N
Qn; zm.h/dh

D eik�ak
Z

.R=Z/3

� X
n;m2Z

cH0.�In;mI a2/
e.n.b C Qb/Cm.w1 C zw1//

e. Qn Qb C zm zw1/

C

X
n;r2Z
r¤0

cH.�In; r I a2; w1 C zw1/

�
e.n.b C Qb/C r.w2 C zw2 C b zw1//

e. Qn Qb C zm zw1/

�
d zw2 d Qb d zw1:

We can interchange the summation over n; m; r and the integral over the compact
set Z0.R/=Z0.Z/, which is parameterised by zw2. This allows us to discard all contri-
butions from the second part of the Fourier–Heisenberg series. We are then left with
the integral

eik�ak
X
n;m2Z

cH0.�In;mI a2/

Z
.R=Z/2

e
�
nb C .n � Qn/ Qb Cmw1 C .m � zm/ zw1

�
d Qb d zw1

D eik�akcH0.�I Qn; zmI a2/e. Qnb C zmw1/:
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By the assumptions of the proposition, the right-hand side does not vanish for some
choice of Qn; zm; a.

4.3. Towards an L2-isometry

In this section we give an expression of the scalar product of affine modular-invariant
functions in terms of Fourier–Heisenberg coefficients. It will be used for several
orthogonality statements. It generalises the classical ‘unfolding’ construction on the
modular surface. To generalise the content of this paper to general strata one of the
main challenges will be to find a replacement of this lemma.

Lemma 4.5. The scalar product of two continuous affine modular-invariant functions
�i can be expressed in Fourier–Heisenberg coefficients as

h�1; �2i D
X
n;m2Z

Z
RC

cH0.�1In;mIy/cH0.�2In;mIy/
dy
y2�k

:

Proof. Starting with (2.9) and abbreviating X D G.Z/nG.R/=K, we find

h�1; �2i D

Z
G0.Z/nG0.R/=K

�1.�; p� C q/�2.�; p� C q/
dx dy dp dq
y2�k

D

Z
X

X
m�0

X
c;d2Z

gcd.c;d/D1

cT.�1Im � .d;�c/I �/ � cT.�2Im � .d;�c/I �/
dx dy
y2�k

D

Z
X

X
m�0

X
2�
C
1nG.Z/

cT.�1I .m; 0/I �/jk � cT.�2I .m; 0/I �/jk
dx dy
y2�k

D

X
m�0

Z
�
C
1nG.R/=K

cT.�1Im; 0I �/cT.�2Im; 0I �/
dx dy
y2�k

:

Here we used the orthogonality of the exponential terms e.`p C rq/ on L2.Z2nR2/,
and writing m D gcd.r; `/, we used Lemma 4.3. We then combined the X -integral
and the summation over �C1nG.Z/ to the integral over the strip �C1nG.R/=K. The
identity is then obtained by rewriting the cT-coefficients in terms of cH0-coefficients
using Lemma 4.3 and performing the x-integration. Using orthogonality of exponen-
tial terms, only the diagonal terms remain, which gives the claimed formula.

The following statement will help to prove injectivity in Theorem 5.1, compare
with the disintegration of the Haar measure along the torus fibers in (3.4). It comple-
ments the vanishing statements in Proposition 4.2 and Lemma 4.3.
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Lemma 4.6. For a non-genuine affine-invariant modular function � of weight k, we
have

cT.�Im; r I �/ D 0 for all .m; r/ ¤ .0; 0/:

An affine-invariant modular function � is genuine if and only if cT.�I 0; 0I �/ D 0.

Proof. Non-genuine modular functions are pullbacks from H to H0, i.e., they are
constant in z. In particular, the only Fourier coefficient with respect to p and q that
appears in (4.1) is the one of index .0; 0/.

A genuine modular function � of weight k by (3.3) is orthogonal with respect
to the inner product (2.9) to all non-genuine ones of the same weight. The second
statement thus follows from the first and Lemma 4.5.

We get an immediate corollary, useful in proving discreteness of the spectrum of
the compound Laplacian on cusp forms.

Proposition 4.7. Let f be a genuine affine-invariant modular form of weight k. For
all n 2 Z, the Fourier–Heisenberg coefficients

cH0.f In; 0Iy/ D 0:

Proof. Genuine affine-invariant modular forms have cT.f I 0; 0I �/ D 0. It follows
from Lemma 4.3 that

0 D jcT.f I 0; 0I �/j2 D
X
n2Z

jcH0.f In; 0Iy/j2;

which is only possible if every term in this sum vanishes.

4.4. Eisenstein and Poincaré series

We now define the series that provides generators for the constituents of the space
L2.SAff2.Z/nSAff2.R//. Given n;m 2 Z n ¹0º and moreover a function ˇWRC!C

with jˇ.y/j � y1�k=2C" as y ! 0, we define the affine Poincaré series

PkIn;m;ˇ .�; z/´ 2�1=2
X

2�
C
1n SL2.Z/

ˇ.y/e
�
nx Cm

v

y

�ˇ̌̌0
k
; (4.6)

where �C1 D
˝�
1 1
0 1

�˛
. The case n D 0 in this description is what we call the affine

Eisenstein series

EkIm;ˇ .�; z/´ 2�1=2
X

2�
C
1n SL2.Z/

ˇ.y/e
�
m
v

y

�ˇ̌̌0
k
: (4.7)
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Lemma 4.8. The right-hand sides of (4.6) and (4.7) are absolutely and locally uni-
formly convergent.

Proof. The summations in (4.6) and (4.7) are well defined thanks to the periodicity
of e.�/.

We identify a coset  2 �C1n SL2.Z/ with the entries c; d 2 Z, gcd.c; d/ D 1

in the bottom row of the matrix. To show convergence, we need an estimate for the
right-hand side ofˇ̌̌ X

2�
C
1n SL2.Z/

ˇ.y/e
�
nx Cm

v

y

�
j
0
k
ˇ̌̌
�

X
c;d2Z

gcd.c;d/D1

jc� C d j�kjˇ.Im.�//j

both for n D 0 and n ¤ 0. Using the bound ˇ.y/� y1�k=2C" as y ! 0, we obtain
the estimateX

c;d2Z
gcd.c;d/D1

jc� C d j�kjˇ.Im.�//j D y�k=2
X
c;d2Z

gcd.c;d/D1

Im.�/k=2jˇ.Im.�//j

� y�k=2
X
c;d2Z

gcd.c;d/D1

Im.�/1C";

which converges absolutely and locally uniformly as required.

We determine the Fourier–Heisenberg expansions of affine Eisenstein and Poin-
caré series. This allows us to examine the SAff2.R/ representations that those series
generate. It is also an important ingredient in the proof of the SAff2.R/ decomposition
in Theorem 5.1.

Lemma 4.9. The Fourier–Heisenberg coefficients of the affine Eisenstein and Poin-
caré series at r D 0 are

cH0.EkIm;ˇ .�; z/I Qn; zmIy/ D

´
2�1=2ˇ.y/ if Qn D 0 and zm D ˙m,

0 otherwise;

cH0.PkIn;m;ˇ .�; z/I Qn; zmIy/ D

´
2�1=2ˇ.y/ if Qn D n and zm D ˙m,

0 otherwise.

In particular, if y.k�1/=2ˇ.y/ in (4.6) and (4.7) is square-integrable, then

kEk;ˇ;mk
2
H0 D kPk;ˇ;m;nk

2
H0 D ky

.k�1/=2ˇk2;

where on the right-hand side the L2-norm is with respect to the Haar measure on RC.

Note that these Fourier coefficients are independent of k.
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Proof. By definition, the coefficients cH0 are the 0-th Fourier coefficient with respect
to u. We observe that e.nRe.�// will not contribute any dependency on u and neither
will .c� C d/�k . We thus have to examine only the contribution of e.mv=y/. We have

v

y

ˇ̌̌0
0

�
a b
c d

�
D
z.c N� C d/ � Nz.c� C d/

jc� C d j2
jc� C d j2

y
D
v

y
.cx C d/ � cu:

In particular, the only contributions to the 0-th Fourier coefficient with respect to u
arise from c D 0, which is the term of the identity matrix.

The second statement follows from the first and Lemma 4.5.

The Fourier–Heisenberg expansion also allows us to determine the L2-norm of
Eisenstein and Poincaré series. We will show in Proposition 4.13 that they also cor-
respond to irreducible representations of the special affine group. This stands in stark
contrast to the case of Maaß forms for SL2.Z/, where Maaß Eisenstein series are
not square-integrable in general, Maaß Poincaré series have comparably inaccessible
formulae for their Fourier expansion, and incomplete Eisenstein series correspond to
reducible representations of SL2.R/.

4.5. Representations generated by Eisenstein and Poincaré series

The main concern of this section is to determine the isomorphism class of the rep-
resentations generated by lifts of the Eisenstein and Poincaré series, which we will
achieve in Proposition 4.13. To prepare its proof, we first identify the pullback of
Eisenstein and Poincaré series to G0.R/ as the images of partially defined maps from
�SAff
nm2
Š �SAff

n;m (allowing n D 0 to include the case of Eisenstein series) to the space
L2.G0.Z/nG0.R//. Second, we show that these maps are isometries on their range and
equivariant with respect to SAff2.R/. In the proof of Proposition 4.13, this allows us
to extend them to all of �SAff

n;m .
Recall that �SAff

n;m is an induction from N0.R/ to G0.R/. The Iwasawa decompos-
ition in (3.5) shows that f 2 V.�SAff

n;m / of K-type k is uniquely defined by its values
on A0.R/=.A0.R/ \ K/. To make the connection to the function ˇ in (4.7) and (4.6),
we identify this quotient with RC via the section

RC ! A0.R/=.A0.R/ \ K/; a 7! ˙
�
a
a�1

�
:

The functions ˛.a/ in this section correspond to ˇ.y/ D ˛.
p
y/ in (4.7) and (4.6).

Given a function ˛WRC!C and k 2Z, we use the pullback construction in (2.5),
which implicitly depends on k, to define the function

Ǫk.g/´
��
˛.
p
y/e

�
nx Cm

v

y

��ˇ̌̌0
k
g
�
.i; 0/; (4.8)

where we suppress n and m from our notation.
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Lemma 4.10. If ˛ 2 L2.RC; a2k�3 da/, then Ǫk 2 V.�SAff
n;m /. More precisely, given

the K-type decomposition

V.�SAff
n;m / D

M
k2Z

V.�SAff
n;m /k;

we have

V.�SAff
n;m /k D span¹ Ǫk W ˛ 2 L2.RC; a2k�3 da/º: (4.9)

This provides an L2 norm on �SAff
n;m .

Proof. The coordinates for the decomposition G0.R/ D N0.R/A0.R/K given in (3.6)
yield

Ǫk

���
1 b
1

�
; w1; w2

��
a
a�1

��
cos � sin �
� sin � cos �

��
D eik�ak˛.a/e.nb Cmw1/:

From this, we directly read off that Ǫk satisfies the transformation properties required
for elements of V.�SAff

n;m /, namely

Ǫk.hg/ D �
N
n;m.h/ Ǫk.g/ for all h 2 N0.R/:

To verify that Ǫk 2 V.�SAff
n;m / it remains to verify that it is square integrable on A0.R/K,

which follows fromZ
A0.R/K

ˇ̌
Ǫk

��
a
a�1

��
cos � sin �
� sin � cos �

��ˇ̌2 d� da
2�a3

D

Z
RC

a2k�2j˛.a/j2
da
a
:

Notice that the correspondence between ˛ and Ǫk is one-to-one.
In order to confirm the given K-type decomposition, note that by the Peter–Weyl

theorem for the compact group K, any f 2 V.�SAff
n;m / can be decomposed as a square-

summable series
P
k fk , where fk is square-integrable and of K-type k. By the

previous argument and for fixed k, we find fk D Ǫk for some ˛ 2 L2.RC; a2k�3 da/
as desired.

Consider f 2 V.�SAff
n;m /. We associate to f a SAff2.Z/-left-invariant function

on SAff2.R/ via

E.f; �/´
�
g 7!

X
2�
C
1n SL2.Z/

f .g/
�
; g 2 SAff2.R/; (4.10)

provided absolute convergence of the series.
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Lemma 4.11. Suppose f 2 V.�SAff
n;m / has a finite decomposition

P
Ǫk for func-

tions ˛k 2 L2.RC; a2k�3 da/, k 2 Z according to (4.9). Assume thatˇ̌
Ǫk

��
1 b
1

�
; w1; w2

��
a
a�1

��
cos � sin �
� sin � cos �

�ˇ̌
� a2�kC" as a! 0:

Then, E.f; �/ converges absolutely and locally uniformly and kf k2 D 2kE.f; � /k2.

Proof. Since K is compact, every Ǫk in the decomposition f D
P
Ǫk satisfies the

same growth condition as f . Therefore, it suffices to demonstrate convergence of
E. Ǫk; g/ with Ǫk as in (4.8). Further, since we average over �C1n SL2.Z/ from the
left and K-types are defined via right-shifts, the K-type of each summand in the defin-
ition (4.10) of E. Ǫk; g/ is k as well. It thus suffices to consider g 2 N0.R/A0.R/.
Using (2.5), this allows us to perform the proof for functions on H0 instead of G0.R/.

Recall the expression eik�ak˛k.a/e.nb Cmw1/ from the proof of Lemma 4.10.
Under the map in (2.5), using the coordinates of (3.6) (so in particular a D

p
y), we

have to show the absolute and locally uniform convergence ofX
2�
C
1n SL2.Z/

e�ik�y�k=2eik�
p
y
k
˛k.
p
y /e

�
nx Cm

v

y

�ˇ̌̌0
k


D

X
2�
C
1n SL2.Z/

˛k.
p
y /e

�
nx Cm

v

y

�ˇ̌̌0
k
:

Since by assumption ˇk.y/´ ˛k.
p
y / <

p
y2�kC" D y1�k=2C"=2, we can apply

Lemma 4.8 to finish the proof of convergence.
To show the isometry property, we notice that we have the K-type decomposition

E.f; � / D
X
k2Z

E. Ǫk; � /;

and that the summands on the right-hand side are mutually orthogonal,

kE.f; � /k2 D
X
k2Z

kE. Ǫk; � /k
2
D

X
k2Z

ky.k�1/=2ˇk.y/k
2

D

X
k2Z

kak�1˛k.a/k
2
D kf k2:

We employed the identification in (4.11) and then Lemma 4.9 to express the resulting
norms in terms of the norms of first ˇk and then ˛k . In particular, we have shown that
if we let ˛.a/ D ˇ.a2/, then

E. Ǫk; � / DBEkIm;ˇ ; if n D 0; and E. Ǫk; � / DCPkIn;m;ˇ ; otherwise.
(4.11)
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Lemma 4.12. Given a function f subject to the conditions of Lemma 4.11, the func-
tion fh.g/´ f .gh/ for h 2 SAff2.R/ also satisfies the conditions of Lemma 4.11
and E.f; gh/ D E.fh; g/.

Proof. The first statement is clear when applying the N0.R/A0.R/K-decomposition
to g D nak and khk�1 D Qn Qa Qk and multiplying out the result as ghD na Qn Qa Qkk. Now,
the second claim follows from the observation that E.fh; g/ is defined by a sum over
left-shifts, while h acts via right-shifts.

We can now state the first main result of this section.

Proposition 4.13. The Eisenstein series and Poincaré series generate all the genuine
unitary irreducible representations of G0.R/ in the following sense. For k 2 Z, and
ˇWRC ! C with jˇ.y/j � y1�k=2C" as y ! 0,

�L2.BEkIm;ˇ / Š �SAff
0;m D �

SAff
0 and �L2.CPkIn;m;ˇ / Š �SAff

n;m D �
SAff
nm2

:

Proof. We recall from the proof of Lemma 4.11 that if we let ˛.a/ D ˇ.a2/, then

E. Ǫk; � / DBEkIm;ˇ ; if n D 0; and E. Ǫk; � / DCPkIn;m;ˇ ; otherwise.

The automorphic Eisenstein series E. � ; � / in (4.10) yields by Lemma 4.11 and
Lemma 4.12 a map from a dense subspace of V.�SAff

n;m / to L2.SAff2.Z/n SAff2.R//
which is SAff2.R/-equivariant. As it is an isometry by Lemma 4.11, this map does
not vanish and is a homomorphism of Hilbert space representations from �SAff

n;m to
L2.SAff2.Z/n SAff2.R//. Since �SAff

n;m Š �
SAff
nm2

is irreducible by the classification in
Theorem 3.7, the image of the map E. � ; � / in (4.11) is equal to the image of

EW�SAff
n;m ! L2.SAff2.Z/n SAff2.R//

as claimed in the proposition.

5. Decomposition of the L2-space

5.1. Decomposition as G0.R/-representations

We restate and refine Theorem 1.1 from the introduction.

Theorem 5.1. The genuine part of the L2-space of the stratum H .0; 0/ admits the
abstract decomposition

L2.G0.Z/nG0.R//gen
Š

1M
mD1

M
n2Z

�SAff
n;m (5.1)
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into irreducible G0.R/-representations. More precisely, it can be decomposed as

L2.G0.Z/nG0.R//gen
D

1M
mD1

�
�L2.BEkIm;ˇ /˚

M
n2Zn¹0º

�L2.CPkIn;m;ˇ /
�
;

and the map E from (4.10) defines an isometry of G0.R/-representations

�SAff
0;m Š �L2.BEkIm;ˇ / and �SAff

n;m Š �L2.CPkIn;m;ˇ /

for any k 2 Z and 0 ¤ ˇ 2 L2.RC; yk�2 dy/, if the left-hand side is provided with
the L2-norms from Lemma 4.10. Furthermore, for ˇi 2 L2.RC; yki�2 dy/; i D 1; 2,

�L2.CEk1Im1;ˇ1/ Š �L2.CEk2Im2;ˇ2/ for all m1 and m2

and

�L2.EPk1In1;m1;ˇ1/ Š �L2.EPk2In2;m2;ˇ2/ if and only if n1m21 D n2m
2
2:

Proof. The isomorphisms stated in the second part are a consequence of Theorem 3.7.
Note that the weights k1 and k2 do not appear in these statements and hence do not
distinguish representations.

By Proposition 4.13, Eisenstein and Poincaré series yield isomorphisms

�SAff
0;m ! �L2.BEkIm;ˇ / � L2.G0.Z/nG0.R//gen

and

�SAff
n;m ! �L2.CPkIn;m;ˇ / � L2.G0.Z/nG0.R//gen for n ¤ 0:

Taking the direct sum, we obtain a map

1M
mD1

M
n2Z

�SAff
n;m D

1M
mD1

�SAff
0;m ˚

1M
mD1

M
n2Zn¹0º

�SAff
n;m ! L2.G0.Z/nG0.R//gen: (5.2)

The Fourier–Heisenberg expansions provide us by Proposition 4.4 with a map

L2.G0.Z/nG0.R//gen
\ C.G0.Z/nG0.R//!

1M
mD1

M
n2Z

�SAff
n;m : (5.3)

By Lemma 4.8, Eisenstein and Poincaré series associated with continuous functions ˇ
that satsify the growth condition ˇ.y/� y1�k=2C" as y ! 0 are continuous.

Let V �
L
m�0

L
n2Z �

SAff
n;m be the dense subspace consisting in finite sums of

continuous functions that satisfy the assumptions given in Lemma 4.11. We notice
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that, by Lemma 4.9, the composition of the restriction of (5.2) to V and (5.3) is the
multiplication by 2�1=2 map. Since V is a dense subspace, this shows that there is an
injection

1M
mD1

M
n2Z

�SAff
n;m D

1M
mD1

M
n2Z

�SAff
nm2

,! L2.G0.Z/nG0.R//gen: (5.4)

We next investigate the kernel of (5.3). Lemma 4.3 shows that it consists of
functions whose K-isotypical components, say �k , satisfy cT.�kIm; 0I �/ D 0 for
all positive m. By Lemma 4.1 with  equal the negative identity, this implies that
we have cT.�kIm; 0I �/ D 0 for all m ¤ 0. Since �k is genuine, we also have that
cT.�kI 0; 0I �/ D 0 by Lemma 4.6. This allows us to apply Proposition 4.2 to deduce
that the kernel of (5.3) is trivial. Hence, (5.4) is an isomorphism, finishing the proof.

5.2. Cusp forms

Consider an affine modular-invariant function f of weight k. We call f a cusp form
if the r D nD 0 Fourier–Heisenberg coefficients vanish, i.e., cH.f I0; 0Iy; v=y/D 0.
By definition of the Fourier–Heisenberg expansion, this is equivalent to

cH0.f I 0;mIy/ D 0 for all m 2 Z.

We denote by L2.H .0; 0//
gen
cusp the closure of the space of the lifts of genuine cusp

forms. (Recall Lemma 4.6 for a characterization of these in terms of Fourier coeffi-
cients.)

Proposition 5.2. In terms of the decomposition (5.1), the space of cusp forms in the
genuine part coincides with

L1
mD1

L
n¤0 �

SAff
n;m . In particular, genuine cusp forms

for SAff2.Z/ exist.

Proof. Proposition 3.8 implies that
L1
mD1 �

SAff
0;m is precisely the subspace where the

total Casimir acts with eigenvalue zero. Combining (3.8) with (4.4) and (4.5), this is
equivalent to the vanishing of cH0.f I n; mI y/ whenever n ¤ 0, and by Lemma 4.5
we see that this is precisely the Fourier coefficients involved in the orthocomplement
of the space of cusp forms.

5.3. Spectral decomposition of the foliated Laplacian

This section prepares for the explicit description of �SAff
n;m in Theorem 5.6 below.

The idea is that the spectral data of the foliated Laplacian ��fol
k

suffices to distin-
guish almost all unitary representations of SL2.R/, in particular, those that appear
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in the continuous and discrete part of �SAff
n;m per Proposition 3.9. We thus compute

here the solutions of the differential equations for functions of the form (4.8) that are
generalised eigenfunctions of ��fol

k
. Since we already know the abstract decompos-

ition of these representations thanks to Proposition 3.9, we only solve the general-
ised eigenvalue equation for the Casimir eigenvalues of the representations appear-
ing there. Recall that the Casimir eigenvalue of the discrete series DSL

k
is equal to

.jkj=2/.jkj=2 � 1/ and for the complementary series I SL
C;s it is equal to s2 � 1=4.

Recall, e.g., from [39, Section 13.14], that the Whittaker differential equation

d2 f
dy2

C

�
�
1

4
C
�

y
C

1
4
� �2

y2

�
f D 0

has two solutions, traditionally called the Whittaker functions M�;� and W�;�, except
if 2� 2 Z<0.

We have computed in (3.8) the action of �tot on the summands of the Poincaré
series aiming for the computation of�tot-eigenvalues. Using Lemma 2.7, we similarly
find (with an auxiliary factor y�k=2 that simplifies the equation) the following.

Lemma 5.3. A smooth function ˇ.y/WR�! C is mapped under the foliated Laplace
operator to

��fol
k

�
y�k=2ˇ.y/e

�
nx Cm

v

y

��
D y�k=2

�
�y2ˇ00.y/C 4�2n2y2ˇ.y/ � 2�knyˇ.y/

�
e
�
nx Cm

v

y

�
:

We apply the preceding lemma to search for the eigenfunctions and generalised
eigenfunctions we expect according to Proposition 3.9.

Lemma 5.4. For fixed k 2 Z n ¹0;˙1º and n ¤ 0, consider the differential equation

��fol
k ˇ.y/e

�
nx Cm

v

y

�
D � � ˇ.y/e

�
nx Cm

v

y

�
: (5.5)

For � D .jkj=2/.1 � jkj=2/, it has a basis of solutions consisting of

e�2�jnjy and y�k=2Mjkj=2;jkj�1=2.4�jnjy/

if k; n > 0, and

y�ke�2�jnjy and y�k=2Mjkj=2;jkj�1=2.4�jnjy/

if k; n < 0.
For fixed k 2 Z, n ¤ 0 and � D t2 C 1=4, the differential equation (5.5) has a

basis of solutions consisting of

y�k=2Wsgn.n/k=2;it .4�jnjy/ and y�k=2Msgn.n/k=2;it .4�jnjy/: (5.6)
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Finally, for n D 0 and � D t2 C 1=4, the differential equation (5.5) has a basis of
solutions

y.1�k/=2Cit and y.1�k/=2�it : (5.7)

Proof. For nD 0, the function Q̌.y/D yk=2ˇ.y/ is a solution of the differential equa-
tion Q̌00.y/ D �y�2 Q̌.y/, whose solutions are directly seen to yield (5.7).

For n¤ 0, the solutions in (5.6) follow from the observation that yk=2ˇ.y=.4�jnj//
satisfies the Whittaker differential equation with parameters sgn.n/k=2 and i t .

In the special case that jkj>1 is an integer with the same sign as n, the exponential
solutions are equal to the W-Whittaker solutions in (5.6) by [39, equation 13.14.9].

We will need the following asyptotics estimates in the next section to verify integ-
rability. We define

�W.t/´
�.2it/

�
�1�sgn.n/k

2
C i t

� :
Lemma 5.5. The Whittaker functions W�;�.y/ decay exponentially as y!1. More-
over, the asymptotics of y ! 0 is

.4�jnjy/�k=2Wsgn.n/k=2;it .4�jnjy/

D �W.t/.4�jnjy/.1�k/=2�it C �W.�t /.4�jnjy/.1�k/=2Cit CO.y.3�k/=2/:

(5.8)

Proof. This follows from [39, equations 13.14.21 and 13.14.16].

5.4. Decomposition as SL2.R/-representations

We now state and prove Theorem 1.3 in the complete version, including the case
n D 0. Recall that we gave in Lemma 4.10 an explicit L2-structure on the representa-
tions �SAff

n;m .

Theorem 5.6. For k 2 Z n ¹0;˙1º and n 2 Z with sgn.nk/ D 1, the representa-
tion DSL

sgn.n/k in Proposition 3.9 is generated by the Poincaré series for ˇ D e�2�jnjy

if k > 1 and ˇ D y�ke�2�jnjy if k < �1.
Associating for fixed n 2 Z n ¹0º with  2 L2.RC; dt/, the lifts of the Poincaré

series PkIn;m;ˇW
k;n; 

of the Whittaker transform

ˇW
k;n; .y/´

1

4�jnj3=2

Z
t2RC

 .t/

.�W.t/�W.�t //1=2
y�k=2Wsgn.n/k=2;it .4�jnjy/ dt
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gives isometric embeddings

PW
CW

M
k22Z

L2.RC; dt /! �SAff
n;m ; PW

� W

M
k21C2Z

L2.RC; dt /! �SAff
n;m

whose images are
RL

RC
I SL
C;it dt and

RL
RC

I SL
�;it dt respectively, in the decomposition of

Proposition 3.9.
Associating with  2 L2.RC; dt/, the lifts of the Eisenstein series E

kIm;ˇ c˙
k;n; 

of

the y-power transform

ˇc˙
k; .y/´

Z
t2RC

 .t/.y.1�k/=2Cit ˙ y.1�k/=2�it / dt

gives isometric embeddings

Ec˙
C W

M
k22Z

L2.RC; dt /! �SAff
0;m ; Ec˙

� W

M
k21C2Z

L2.RC; dt /! �SAff
0;m

whose images are one of the two summands
RL

RC
I SL
C;it dt and

RL
RC
I SL
�;it dt respectively,

in the decomposition of Proposition 3.9. Moreover, the images of EcC
˙

and Ec�
˙

are
orthogonal.

Proof. We start with the discrete series and observe that we have y.k�1/=2ˇ.y/ 2
L2.RC; dy=y/. Therefore, the Poincaré series in the first statement is defined as
an L2-limit of the series in Lemma 4.8. Recall that the representation generated
byPkIn;m;ˇ is isomorphic by Theorem 5.1 to the one generated by Ǒ, defined as the lift
of ˇ.y/e.nx Cmv=y/. This function is smooth and square-integrable on SAff2.R/.
In particular, we can compute the action D fol pointwise. Furthermore, the definition
of D fol via �fol in Lemma 2.2 allows us to compute it on H0. Now, the first statement
of Lemma 5.4 confirms the existence of the eigenspaces. (Note that the M-Whittaker
function given as the second solution in that lemma has exponential growth as y!1
and will not give an L2-function.)

Our argument for the principal series follows the argument for the modular surface
(e.g., [10, Section 4.2.5]) with one major difference in Lemma 5.7. Because we cannot
evaluate exactly the inner products of truncated W-Whittaker functions that we define
in the proof, we need to estimate some of their contribution via asymptotic remainder
terms.

Suppose n ¤ 0. Thanks to Lemma 5.5, partial integration with respect to t in the
defining equation for ˇW

k;n; 
shows that y.k�1/=2ˇW

k;n; 
.y/ is square-integrable with

respect to the Haar measure on RC. Using Lemma 5.7 below and Lemma 4.11, we
conclude that assigning with the Poincaré series is an isometry as claimed. To finish
the proof in this case, we apply Weyl’s criterion for essential spectrum membership
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to any t0 2 R. Let D D ��fol
k
� .t20 C 1=4/ and  n.t/ a sequence of bump functions

limiting to t0 with k nk D 1. Then, G.R/-invariance of the Laplacian, abolute con-
vergence and isometry of the E-operator (by Lemma 4.8 and Lemma 4.9), and the
eigenvalue property of the Whittaker function from Lemma 5.4 imply

kD.Pk;n;m;ˇW
k;n; n

/k

D kE.D.ˇWk;n; n exp.n � Cm�//; �/k D kD.ˇWk;n; n exp.n � Cm�//k

D

ˇ̌̌̌
1

4�jnj3=2

Z
t2RC

 n.t/.t
2 � t20 /

.�W.t/�W.�t //1=2
y�k=2Wsgn.n/k=2;it .4�jnjy/ dt

ˇ̌̌̌
! 0;

since on the support of  n the factor .t2 � t20 / becomes small. This shows that
t20 C 1=4 is an approximative eigenvalue and since the discrete spectrum is associ-
ate with positive eigenvalues, our knowledge about the total spectral decomposition
from Proposition 3.9 shows that we have covered everything.

The case n D 0 is similar. By partial integration, we see that y.k�1/=2ˇc˙
k; 
.y/ is

square-integrable. Now, Lemma 5.8 below and Lemma 4.11 show the isometry claim.
To show the orthogonality one proceeds as in Lemma 5.8, but now the first and last
term cancel and we get zero as "! 0. The spectral conclusion is similar to the above
using Weyl’s criterion, Lemma 5.4, and Proposition 3.9, arguing separately for each
of the two orthogonal summands.

Lemma 5.7. The Whittaker transform  7! ˇW
k;n; 

is an isometry

L2.RC; dt /! L2.RC; yk�2 dy/:

Proof. We first verify the claim for smooth compactly supported functions. To this
end, we introduce for " > 0 the truncated W-Whittaker functions

W"
sgn.n/k=2;it .4�jnjy/´Wsgn.n/k=2;it .4�jnjy/

� 1.0;"/.y/.�
W.t/.4�jnjy/1=2�it

C �W.�t /.4�jnjy/1=2Cit /

and denote by ˇW"
k;n; 

.y/ the Whittaker transform with respect to the truncated Whit-
taker functions. Using partial integration with respect to t , we see that

ky.k�1/=2.ˇW
k;n; .y/ � ˇ

W"
k;n; .y//k

2
�

"Z
0

1

y log.y/2
dy � log."/�1:

Combining this estimate with the Cauchy–Schwarz inequality, we conclude that

ky.k�1/=2ˇW
k;n; .y/k

2
D ky.k�1/=2ˇW"

k;n; .y/k
2
CO.log."/�1=2/:
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We next expand the defining integral for the L2-norm and interchange the integ-
ration with respect to y, t1, and t2, which is justified because all integrands are
non-negative:

ky.k�1/=2ˇW"
k;n; .y/k

2

D .4�jnj/�k
Z

t1;t22RC

 .t1/ .t2/.�
W.t1/�

W.�t1/�
W.t2/�

W.�t2//
�1=2

�

Z
RC

W"
sgn.n/k=2;it1

.4�jnjy/W"
sgn.n/k=2;�it2

.4�jnjy/y�2 dy dt1 dt2:

Using the asymptotic expansion of the Whittaker function in (5.8), we can determine
the leading asymptotic with respect to " of the inner integral. For "1 > "2 > 0, we
haveZ

RC

W"2
sgn.n/k=2;it1

.4�jnjy/W"2
sgn.n/k=2;�it2

.4�jnjy/y�2 dy

�

Z
RC

W"1
sgn.n/k=2;it1

.4�jnjy/W"1
sgn.n/k=2;�it2

.4�jnjy/y�2 dy

D

"1Z
"2

.�W.t1/.4�jnjy/
1=2�it1 C �W.�t1/.4�jnjy/

1=2Cit1/

� .�W.�t2/.4�jnjy/
1=2Cit2 C �W.t2/.4�jnjy/

1=2�it2/y�2 dy

CO."1 � "2/

D �W.t1/�
W.�t2/.4�jnj/

1�it1Cit2
"
�it1Cit2
1 � "

�it1Cit2
2

�i t1 C i t2

C �W.�t1/�
W.�t2/.4�jnj/

1Cit1Cit2
"
Cit1Cit2
1 � "

it1Cis2
2

i t1 C i t2

C �W.t1/�
W.t2/.4�jnj/

1�it1�it2
"
�it1�it2
1 � "

�it1�it2
2

�i t1 � i t2

C �W.�t1/�
W.t2/.4�jnj/

1Cit1�it2
"
Cit1�it2
1 � "

it1�it2
2

i t1 � i t2

CO."1 � "2/:

To evaluate the integral with respect to t2, we can perform the same steps as in
[10, Proposition 4.15] towards the end of his proof. Since t1; t2 2 RC, the second and
third term in the inner integral are regular with respect to t1 and t2 and thus yield
contributions of order log."/�1 after partial integration with respect to either of them.
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It remains to consider the first and fourth term, which yield

ky.k�1/=2ˇW"
k;n; .y/k

2
D 4�.4�jnj/1�k

Z
t12iR

C

 .t1/ .t1/ dt1 CO.log."/�1/:

This establishes the claimed isometry, when letting " tend to 0. It also guarantees that
the assigment from  to ˇ extends to a map on the L2-spaces as claimed.

By similar arguments, we show the following result.

Lemma 5.8. The y-power transform  7! ˇc˙
k;n; 

is an isometry

L2.RC; dt /! L2.RC; yk�2 dy/:

Proof. The main difference to the previous lemma is that we need to truncate both
towards 0 and1. We thus define

ˇc˙"
k; .y/´

Z
t2RC

 .t/1.";1="/.y
.1�k/=2Cit

˙ y.1�k/=2�it / dt:

Similar calculations to the above yield

ky.k�1/=2ˇc˙"
k; .y/k

2

D

Z
t1;t22RC

 .t1/ .t2/

1="Z
"

.yCit1 ˙ y�it1/.y�it2 ˙ yCit2/y�1 dy dt1 dt2:

The inner integral equals

1="Z
"

.yCit1 ˙ y�it1/.y�it2 ˙ yCit2/y�1 dy

D

1="Z
"

.yCit1�it2 ˙ y�it1�it2 ˙ yCit1Cit2 C y�it1Cit2/y�1 dy

D
"it2�it1 � "it1�it2

i t1 � i t2
˙
"it1Cit2 � "�it1�it2

�i t1 � i t2

˙
"�it1�it2 � "it1Cit2

i t1 C i t2
C
"it1�it2 � "it2�it1

�i t1 C i t2
:

The second and third term, which agree, contribute O.log."/�1/ to the final expres-
sion. From the first and fourth term, which are also equal, we obtain

ky.k�1/=2ˇc˙"
k; .y/k

2
D 4�

Z
t12RC

 .t1/ .t1/ dt1 C O.log."/�1/

and the claim follows taking the limit "! 0.
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5.5. The compound operator

The goal of this section is to understand the spectral decomposition of ��cmp."/
k

and
prove Theorem 1.6. This decomposition is closer in nature to that of the Laplacian on
the modular surface. The following theorem is claimed without proof for k D 0 and
" D 4 in [8].

Theorem 5.9. For every k 2 N and " > 0, the K-type k cusp forms are an invariant
subspace of the compound Laplacian ��cmp."/

k
on which it has discrete spectrum.

Proof. That cusp forms are an invariant subspace can be seen by computing the com-
pound Laplacian term by term in the Fourier expansion. We first consider the principal
self-adjoint part of the compound Laplacian, that is the operator L D ��cmp."/

k
�

iky@x and prove that L has compact resolvent. We can read from Proposition 2.5 that
the quadratic form associated with L is

QL.�/ D

Z
�0nH0

ykjrx;y�j
2 dx dy dp dq C "

Z
�0nH0

yk�2jru;v�j
2 dx dy du dv

D

X
n;m2Zn¹0º

� Z
RC

jcH0.y@x�In;mIy/j
2
C jcH0.y@y�In;mIy/j

2 dy
y2�k

C "

Z
RC

jcH0.@u�In;mIy/j
2
C jcH0.@v�In;mIy/j

2 dy
y2�k

�
;

where the second equality follows from the Parseval identity for the Fourier–Heisen-
berg series, Lemma 4.5. To prove discreteness of the spectrum, we need to prove that
the set

A D ¹� 2 L2.H .0; 0//gen
cusp W QL.�/ � 1º

is compact in the L2 topology. We adapt the proof strategy in [34, Lemma 8.7]. Note
that for any a; b > 0, in the compact region of � 0nH0 where a < y < b, the quadratic
form defines a norm equivalent to the standard Sobolev norm on W1;2.� 0nH0/; since
genuine affine-invariant modular form have mean zero, the Rellich–Kondrachov the-
orem [1, Theorem 6.3] tells us that the set of genuine cusp forms in A supported on
a < y < b is compact in the L2 topology (note that the theorem is usually stated in
Euclidean space, but is a purely local statement and so holds in the bulk of � 0nH0).
Using Lemma 4.5, to prove compactness it suffices to prove that cusp forms in A
satisfy uniformly

0 D lim
a!0

aZ
0

X
m;n2Zn¹0º

jcH0.�In;mIy/j2
dy
y2�k

(5.9)
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and

0 D lim
b!1

1Z
b

X
m;n2Zn¹0º

jcH0.�In;mIy/j2
dy
y2�k

: (5.10)

By definition of cusp forms, they have no n D 0 terms in their Fourier–Heisenberg
series. As such, we can study (5.10) as in the case of the modular surface; using that

jcH0.�In;mIy/j2 � 4�n2jcH0.�In;mIy/j2 D y�2jcH0.y@x�In;mIy/j
2;

we deduce
1Z
b

X
m;n¤0

jcH0.�In;mIy/j2
dy
y2�k

� b�2
1Z
b

X
m;n¤0

jcH0.y@x�In;mIy/j
2 dy
y2�k

�
QL.�/

b2
:

For (5.9), we use this time the derivative in the v direction. It follows from Corol-
lary 4.7 that there are no m D 0 terms in the Fourier expansion of a genuine cusp
form; we can use

y�2jcH0.�In;mIy/j2 � 4�m2y�2jcH0.�In;mIy/j2

D jcH0.@v�In;mIy/j
2

to deduce
aZ
0

X
m;n¤0

jcH0.�In;mIy/j2
dy
y2�k

� a2
aZ
0

yk�2
X
m;n¤0

jcH0.@v�In;mIy/j
2 dy

�
a2

"
QL.�/:

All in all, this implies that A is compact, so that the L restricted to cusp forms has
compact resolvent and therefore discrete spectrum with finite multiplicity.

Recall now that we defined ��cmp."/
k

D LC iky@x , and we now aim to show that
iky@x is relatively compact with respect to L. From [26, Theorem IV.5.35], we know
that a relatively compact perturbation does not change the essential spectrum, and
the essential spectrum of L is empty. To show that iky@x is relatively compact with
respect to L, it is sufficient to show that for some � 2C, iky@x.L� �/�1 is compact.
We just proved that if z is not an eigenvalue of L then .L � �/�1 is compact, so
that by the functional calculus .L � �/�1=2 also is. It also follows from its definition
that L has the same principal symbol as ��cmp."/

k
and as such is also a second order
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elliptic operator, therefore .L � �/�1=2 is a pseudodifferential operator of order �1
[41, Theorem 2], so that iky@x.L� �/�1=2 is a pseudodifferential operator of order 0,
and therefore bounded by the Calderón–Vaillancourt theorem [25, Theorem 18.1.11].
Through this discussion, we obtain that

iky@x.L � �/
�1
D .iky@x.L � �/

�1=2/.L � �/�1=2

is the composition of a bounded and compact operator, and as such compact. There-
fore, ��cmp."/

k
also has compact resolvent when restricted to cusp forms, and as such

discrete spectrum.

Proposition 5.10. For every �2C nR, one has that .�cmp."/
k

C�/�1! .�fol
k
C�/�1

in the strong operator topology as "! 0.

Remark 5.11. Because cusp forms are an invariant subspace for both �cmp."/
k

and
�fol
k

, it also means that the restriction of the resolvents to cusp forms or to their ortho-
gonal complement also converge appropriately in the strong operator topology.

Proof. Recall that the strong operator topology is induced by pointwise convergence.
Let f 2 L2.H .0; 0//; we need to show .�

cmp."/
k

C �/�1f ! .�fol
k
C �/�1f . Since

k.��
cmp."/
k

C �/�1k � dist.�; spec.��cmp."/
k

//�1 � j Im.�/j�1;

the family .��cmp."/
k

C �/�1 is uniformly bounded; therefore it is sufficient to verify
this pointwise convergence of .��cmp."/

k
C �/�1! .��fol

k
C �/�1 on a dense subset

of L2.H .0; 0//, and in particular to verify it on functions of Schwartz class in y,
which we now assume f to be. From the second resolvent identity, we have that

.��
cmp."/
k

C �/�1f � .��fol
k C �/

�1f

D ".��
cmp."/
k

C �/�1�vert.��fol
k C �/

�1f:

Since ��fol
k
C � is hypoelliptic, its inverse is a pseudodifferential operator [24], in

particular the Schwartz class of functions is stable under�vert.��fol
k
C �/�1. Further-

more, the Schwartz class embeds boundedly in L2.H .0; 0//, and we have previously
indicated that the family .��cmp."/

k
C �/�1 is uniformly bounded as operators on L2.

Consequently, for any Schwartz function f ,

k".��
cmp."/
k

C �/�1�vert.��fol
k C �/

�1f kL2 D O."/;

and we deduce the strong convergence of the resolvents.

As a corollary, we get that the family ¹��cmp."/
k

º is spectrally inclusive, mean-
ing that the spectrum of ¹��fol

k
º is comprised of limit points from the spectra of

¹��
cmp."/
k

º.
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Corollary 5.12. For every � 2 spec.��fol
k
/, there is a family ¹�" 2 spec.��cmp."/

k
/º

such that �" ! �. Furthermore, for every bounded continuous function f WR! R,
f .��

cmp."/
k

/! f .��fol
k
/ in the strong operator topology.

Proof. The second statement is a consequence of strong convergence of the resolvent
and [46, Theorem 9.17]. Suppose that � 2 spec.��fol

k
/ is not a limit point of the spec-

tra of ��cmp."/
k

, and take f to be a function supported near � and so that supp.f / \
spec.��cmp."/

k
/ D ¿ for all sufficiently small ". Then, it would be impossible for

f .��
cmp."/
k

/ to converge to f .��fol
k
/, in the strong topology, proving the corol-

lary.

Remark 5.13. Let us make a few remarks about Proposition 5.10 and Corollary 5.12.
First, since cusp forms are an invariant subspace of �fol

k
and �cmp."/

k
, the statements

apply mutatis mutandis to the restriction of those operators to cusp forms or their
orthogonal complement. Second, the resolvents do not converge in the operator norm
topology, to see this it suffices to compare their action on a sequence f .�/e.b"�1cq/
for a fixed f . Finally, the convergence of f .��cmp."/

k
/ ! f .��fol

k
/ in the strong

operator topology is a bit weaker than convergence of the spectral projections, but for
most intents and purposes can be used the same way. Note that by monotonicity of the
involved operators (��fol

k
� ��

cmp."/
k

for all " > 0), the condition on the continuity
of f can be relaxed to right-continuity.

6. Siegel–Veech transforms

In this section we briefly recall basic properties of the Siegel–Veech transforms for any
configuration on any stratum. We then specialise to our case of the stratum H .0; 0/

and prove the main results, Theorem 1.4 and Theorem 1.5, in particular showing that
Siegel–Veech transforms exhaust the complement of cusp forms. The main technical
step is the computation of Fourier coefficients of Siegel–Veech transforms in Propos-
ition 6.8. We complement this in Section 6.6 by computing adjoints and kernels of
Siegel–Veech transforms.

6.1. Basic properties

A flat surface .X; !/ 2 H .˛/, where X is a compact Riemann surface and ! a holo-
morphic one-form on X , determines a singular flat metric, with cone points of angle
2�.˛i C 1/ where ! has a zero of order ˛i . A saddle connection  is a geodesic in the
flat metric connecting two zeros, with none in its interior. We denote the set of saddle
connections by SC.!/. To each saddle connection  , we associate the holonomy vec-
tor hol./ D

R

! 2 C.



Spectral decomposition and Siegel–Veech transforms for strata: the case of marked tori 51

A configuration C is a choice of subset C.!/ � SC.!/ such that if we set

ƒC
! D ¹hol./ W  2 C.!/º;

then the assignment
! 7! ƒC

!

is SL2.R/-equivariant. Examples of configurations include the set of saddle connec-
tions joining two specified zeros, two zeros of specified orders, saddle connections
that sit at the boundary of cylinders in a fixed homotopy class, etc. Given any con-
figuration C and a function f WR2 ! C, we define the Siegel–Veech transform with
respect to C as

SVC .f /WH .˛/! C; .X; !/ 7!
X
v2ƒC

!

f .v/:

By definition, SVC .g � f / D g � SVC .f / for any g 2 SL2.R/.
If the function f is of K-type k, then the Siegel–Veech transform is the lift (in

the sense of (2.5)) of an affine modular-invariant function of weight k on H0. We
indicate that we work with this function by writing a pair of variable SVC .f /.�; z/

with .�; z/ 2 H0 as the argument of the Siegel–Veech transform.
We now specialise to the stratum H .0; 0/ we are mainly interested in. In this

case, there are two obvious configurations. The first consists of absolute periods, the
configurations of saddle connections joining (say) the first marked point to itself. If
the second marked point is not a rational point with respect to the period lattice based
at the first marked point, then ƒabs

! D ƒ
prim
! consists of the primitive lattice vectors

in the period lattice underlying .X; !/. Since we consider Siegel–Veech transforms
as L2-functions, we may ignore the measure zero complementary set. By definition,
SVabs.f / factors through the projection to H .0/, i.e., contributes to the non-genuine
part of L2.H .0; 0//. It in fact orthogonal to cusp forms and covers their orthogonal
complement, i.e., the space of Eisenstein transforms in any weight k, since

Ek.� j / D
X

.c;d/2Z2

gcd.c;d/D1

.c� C d/k

jc� C d jk
 
� Im.�/
jc� C d j2

�
D SVabs.f /.ƒ� / (6.1)

for f .�/D .�k=j�jk/ .1=j�j2/ andƒ.�/D h�=
p
y; 1=
p
yi. Here, we considerƒ�

R2 Š C when taking powers of elements in ƒ.
The second case consists of relative periods, the configurations of saddle connec-

tions ƒrel
! joining (say) the first zero to the second zero. We denote the corresponding

Siegel–Veech transform by SVrel.f /. Having decompositions of L2-spaces in mind,
we may ignore the flat surfaces where the relative period is a real multiple of an abso-
lute period, since this is a measure zero set. Consequently, the definition of ƒrel

! does
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not involve any primitivity condition on lattice vectors. However, these two cases do
not exhaust all configurations.

Lemma 6.1. For anyM 2N assigning to .ƒ; z/ 2H .0; 0/, the set CM D zCƒ=M

of translates of the relative period by a 1=M -th lattice vector is a configuration.

Proof. Both independence of the choice of the relative period and G.R/-equivariance
are obvious.

We let SVrel;M ´ SVCM be the corresponding Siegel–Veech transformation. That
is,

SVrel;M .f /.ƒ; z/ D
X
w2CM

f .w/:

Remark 6.2. In this homogeneous space setting, the relative Siegel–Veech transform
can also be stated as follows. Let S0.R/�G0.R/ be the stabiliser of .1; 0/with respect
to the right action and S0.Z/ D S0.R/ \ G0.Z/. Then, S0.R/nG0.R/ Š R2 n ¹0º as
G0.R/ spaces, and we may set, for any f WR2 ! R,

OfM .g; w1; w2/ D f
�� 1
M
; 0
�
� .g; w1; w2/

�
D f

�� 1
M
; 0
�
g C .w1; w2/

�
:

This function is left-invariant under S0.R/, which contains the lower triangular
subgoup L.R/ � G.R/. Since the G0.Z/-orbit of .1=M; 0/ is obviously Z2=M , we
conclude that

SVrel;M .f /.g;w1; w2/ D
X
m;n2Z

f
�
.w1; w2/C

1

M
.m.a; b/C n.c; d//

�
D

X
2S0.Z/nG0.Z/

OfM . � .g; w1; w2//; g D
�
a b
c d

�
:

Proposition 6.3. For any configuration C and any compactly supported function f ,
the Siegel–Veech transform SVC .f / 2 L2.H .˛//.

For any non-empty configuration C there is a non-zero constant, the Siegel–Veech
constant cC , depending on the stratum H .˛/, such thatZ

H.˛/

SVC .f / d� D cC

Z
R2

f .x; y/ dx dy

for any compactly supported f . In particular, SVC is a bounded linear operator.
For the stratum H .0; 0/, the equivariance

SVrel.g
0
� f / D g0 � SVrel.f / (6.2)

holds for any g0 2 G0.R/, where g0 acts on R2 affine-linearly.
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Proof. The first statement is the main result of [4], but can be proven for H .0; 0/

directly. The second result is the main result of Veech in [44]. The third follows from
direct computation or from Remark 6.2, observing that the Siegel–Veech transform is
a sum over left cosets and that g0 2 G0.R/ acts on function on the left by acting on the
variable on the right.

6.2. Casimir elements acting on the Euclidean plane

The continuity and G0.R/-equivariance (6.2) imply that for any X 2 g0 the Lie deriv-
ative of the action functions f on R2

Xf ´ lim
t!0

1

t
.etXf � f /

has the property that X SVC .f / D SVC .Xf /. We compute this action explicity for
the Casimir operators. We work on R2 with coordinates .w1; w2/ and use the differ-
ential operators Dwi D wi@=@wi .

Lemma 6.4. The differential operators

8D fol
eucl D D

2
w1
CDw1Dw2 CDw2Dw1 CD

2
w2
C 2Dw1 C 2Dw2 and D tot

eucl D 0

on R2 have the property that

SVC .D
fol
euclf / D D fol SVC f and SVC .D

tot
euclf / D D tot SVC f

for any smooth compactly supported f WR2 ! C and any configuration C .

Proof. Direct computations give the Lie derivative action of the standard generators
(see Section 2) on such functions, namely

Pf D
@

@w1
f; Qf D

@

@w2
f; Hf D

�
w1

@
@w1
C w2

@
@w2

�
f;

.F CG/f D
�
w2

@

@w1
C w1

@

@w2

�
f; .F �G/f D

�
�w2

@

@w1
C w1

@

@w2

�
f :

The claim follows by combining (2.2), (2.3), and (2.4) for C and C 0 in these generat-
ors.

6.3. The representation generated by Siegel–Veech transforms

Theorem 1.4 is a consequence of the following proposition together with Proposi-
tion 5.2.
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Proposition 6.5. For the relative period Siegel–Veech transforms of a mean-zero
compactly supported function f ¤ 0, there is a multiplicitym 2Z�0 [ ¹@0º (depend-
ing on M ) such that the representation it generates is

�L2.SVrel;M .f // Š m�
SAff
0 2 L2.H .0; 0//;

where �SAff
0 is the representation from (3.7) with index n D 0.

Proof. By Lemma 6.4, the Casimir element of G0.R/ acts trivially on the represent-
ation �L2.SVrel;M .f //. The classification of representations of G0.R/ shows that we
have a direct sum decomposition

�L2.SVrel;M .f // Š m�
SAff
0 ˚ �G

for a non-negative integer m and the pullback �G of a G.R/ representation. Consider
the averaging map avW L2.G0.Z/nG0.R//! L2.G.Z/nG.R//, given by the integral
along the torus H0.Z/nH0.R/. When applied to the right-hand side, the averaging
yields �G. When applied to a Siegel–Veech transform, we combine the summation
over the period lattice with the integral over a fundamental parallelogram to obtain
the R2-integral of f , which is zero by hypothesis. Hence �G is zero.

6.4. Fourier–Heisenberg coefficients

We determine some Fourier–Heisenberg coefficients of Siegel–Veech transforms as
preparation for Theorem 1.5. Suppose f D f0.r/ exp.ik�/ is of K-type k. Then
using Lemma 2.3, we may view the Siegel–Veech transform as a function on H0,
writing abusively SVrel;M .f /.�; z/ to indicate this, which is affine modular-invariant
of weight k and whose lift (2.5) is the honest Siegel–Veech transform SVrel;M .f /

on H .0; 0/.
The first statement will be used to conclude that they are orthogonal to cusp forms.

Proposition 6.6. Let f WR2 ! C be a K-isotypical Schwartz function of K-type k.
Then, for any M 2 N, the cH0-Fourier coefficients of the M -relative Siegel–Veech
transforms vanish, i.e.,

cH0.SVrel;M .f /In;mIy/ D 0

for any m 2 Z and any n 2 Z n ¹0º, where � D x C iy as usual.

Proof. From Lemma 4.3, we want to show that the constant term in the Fourier expan-
sion with respect to u (which gives the sum of the cH0-terms) is independent of x, so
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that only the constant term remains. We may view the Siegel–Veech transform of a
function as an affine modular-invariant function of weight k on H0. Explicitly,

SVrel;M .f /.�; z/ D
X
a;b2Z

f l
� 1
p
y

�
uC iv C

a.x C iy/C b

M

��
so that, unfolding in b,

1Z
0

SVrel;M .f /.�; z/duD
Z
R

X
a2Z

MX
bD1

f
� 1
p
y

�
uC ivC

a.x C iy/C b

M

��
du: (6.3)

Now, it is clear that for any fixed v and y translating x does not change this integral.

The second proposition will later help us to show that enough Fourier–Heisenberg
coefficients can be controlled by Siegel–Veech transforms, and that they thus span the
space of Eisenstein series. Before stating the proposition, we require a few definitions.
One of the many ways to define Bessel functions for integer index k is via the Hansen–
Bessel integral formula [22, formula 8.411.1]:

Jk.z/´
1

2�

�Z
��

exp.�ik� C iz sin �/ d �:

Definition 6.7. The Hankel transform of order k 2 Z is the integral operator defined
on functions f0WRC ! C as

.Hkf0/.s/´

1Z
0

f0.r/Jk.sr/r dr; s � 0:

While we would denote Hk any realisation of the Hankel transform from one
function space to another, we make the observation that Hk is an isometric involution
on L2.RC; r d r/, in the sense that it is norm preserving and that H�1

k
DHk . This can

be deduced immediately from the orthogonality relation enjoyed by Bessel functions
[22, formula 6.512.8]:

1Z
0

Jk.sr/Jk.t r/r d r D s�1ı.s � t /;

where ı is the Dirac delta distribution.
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For j 2 Z n ¹0º, define the isometry Tj W L2.RC; r d r/! L2.RC; y�3 d y/ and
its inverse Sj by

Tjh.y/ D yh
�2�j
p
y

�
and Sjh.r/ D

r2

.2�j /2
h
� .2�j /2

r2

�
:

Proposition 6.8. For everym 2 Z n ¹0º, k 2 Z,M 2 N, and f0 2 L2.RC; r d r/, the
function f D f0.r/ exp.ik�/ of K-type k has Fourier coefficients

cH0.SVrel;M .f /I 0;mM Iy/ D .mM/2.TMHkf0/
� y
m2

�
2 L2.RC; y�3 dy/;

and every other Fourier coefficient vanishes.
Conversely, given h 2 L2.RC; y�3 d y/, the M -relative Siegel–Veech transform

of the function Qf DM�2.HkSMh/ exp.ik�/ of K-type k has h as its Fourier coeffi-
cients, that is

cH0.SVrel;M . Qf /I 0;mM Iy/ D m
2h.m�2y/:

Proof. Let zm 2 Z n ¹0º. We compute, starting with (6.3), that the coefficient c zm D
cH0.SVrel;M .f /I 0; zmIy/ equals

c zm D

yZ
0

1Z
0

Z
R

X
a2Z

MX
bD1

f
�uC iv
y1=2

C
a.x C iy/C b

y1=2M

�
du dx

� e
�
�zm

v

y

�
dv

(x-invariance) D

yZ
0

Z
R

X
a2Z

MX
bD1

f
� i.Mv C ay/

y1=2M
C
uM C b

y1=2M

�
du

� exp
�
�2�i zm

v

y

�
dv

(unfolding in a) D
MX

a;bD1

Z
R

Z
R

f
�
y�1=2

�
uC i.v C

ay

M
/C

b

M

��
e
�
�zm

v

y

�
du dv

DM

MX
aD1

e
�
�
a zm

M

� Z
R

Z
R

f . QuC i Qv/e
�
�zm

Qv
p
y

�
y d Qu d Qv;

where we set Qu D .u C b=M/=
p
y and Qv D .v C ay=M/=

p
y. At this point, we

see that the integrals are independent of a and the sum vanishes whenever zm 62MZ,
otherwise the sum is equal to M . We therefore continue, assuming that zm D mM 2
MZ and changing to polar coordinates to obtain

cH0.SVrel;M .f /I 0;mM Iy/

D yM 2

1Z
0

�Z
��

f0.r/ exp
�
ik� � 2�imM

r sin �
p
y

�
d� r dr
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(Hansen–Bessel formula) D yM 2

1Z
0

f0.r/Jk.2�mMy
�1=2r/r d r

D .mM/2.TMHkf0/.m
�2y/ 2 L2.RC; y�3 dy/:

For the converse statement, given h 2 L2.RC; s�3 d s/ apply the previous reasoning
to f0 D M�2HkSMh 2 L2.RC; r d r/ and f D f0 exp.ik�/ to obtain the desired
identity in the end.

6.5. Orthogonality to cusp forms

Recall from the introduction that we want to prove that the closure

�Vrel;1 D span
� 1[
MD1

�Vrel;M

�
of the union of the spaces

�Vrel;M D span¹SVrel;M .f / W f 2 C1c;0.R
2/º

fills the orthogonal complement of cusp forms.

Proof of Theorem 1.5. To show orthogonality, it suffices to show orthogonality to all
Siegel–Veech transforms of fixed K-type k. We may thus decompose the cusp form
also in K-types and it suffices to show orthogonality of the component of type k. We
may thus work on � 0nH0 by the correspondence in Lemma 2.3. There we use the
expression for the scalar product in Lemma 4.5. Each of these summands under the
integral vanishes, either by Proposition 6.6 or by definition of a cusp form.

Let now ' ? L2.H .0; 0//
gen
cusp ˚ �Vrel;1; we need to show that ' D 0. Without

loss of generality, we assume by density that ' is smooth and has compact support in
the y variable. Then again, Lemma 4.5 shows by Proposition 6.6 that, for every M
and every f 2 C1c;0.R

2/ of K-type k,

0 D

Z
RC

X
`�1

cH0.SVrel;M .f /I 0; `Iy/c
H0.'I 0; `Iy/

dy
y2�k

By Proposition 6.8, this implies that, for everyM 2N and any hW .0;1/!C smooth
and compactly supported,

0 D

Z
RC

X
`�1

`2h.`�2y/cH0.'I 0; `M Iy/
dy
y2�k

: (6.4)
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In particular, since ' and h are compactly supported in the y variable, this is a finite
sum and we do not have to worry about convergence, let L be the largest index in the
sum.

Towards a contradiction, suppose there were someM 2 N and some h 2 L2.RC;
s�3 d s/ so that

0 ¤

Z
RC

h.y/cH0.'I 0;M Iy/
dy
y2�k

I

without loss of generality assume that it is equal to 1. But then, it follows from (6.4)
that

�1 D

Z
RC

LX
`D2

`2h.`�2y/cH0.'I 0; `M Iy/
dy
y2�k

: (6.5)

However, using again (6.4) with 2M replacing M , and h replaced with Qh.y/ D
4h.y=4/, we have that

0 D

Z
RC

bL=2cX
`D1

`2 Qh.`�2y/cH0.'I 0; 2`M Iy/
dy
y2�k

D

Z
RC

X
2�`�L
2j`

`2h.`�2y/cH0.'I 0; `M Iy/
dy
y2�k

;

so that (6.5) can be rewritten as

�1 D

Z
RC

X
2�`�L
2−`

`2h.`�2y/cH0.'I 0; `M Iy/
dy
y2�k

;

and the other, finitely many, arithmetic progressions can all be sieved out in the same
way so that the right-hand side in (6.5) is necessarily 0, a contradiction.

By density, we therefore have that necessarily cH0.'I0;M Iy/D 0 for allM 2N,
making ' a cusp form; yet, we also supposed that ' was orthogonal to cusp forms so
that ' D 0.

6.6. Kernels, adjoints, and norms of Siegel–Veech transforms

Understanding the Siegel–Veech transform as a linear operator between L2-spaces
comprises determining its range (as we did in the previous section), its adjoint, and its
kernel. We address the last two items here. The type of answers differs even between
the cases H .0/ and H .0; 0/, leaving a coherent picture for general strata as an inter-
esting future problem.
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Adjoints. Formal adjoints to the Siegel–Veech transform can be computed using a
standard integration trick based on Fubini’s theorem. This is classical for H .0/, see
e.g., [31, p. 242], and can be adapted to H .0; 0/ as follows.

Proposition 6.9. The formal adjoint of the relative Siegel–Veech transform is given
by assigning with h 2 L2.G0.Z/nG0.R// the function

SV�rel.h/.g
0/ D

Z
S0.Z/nS0.R/

h.sg0/ d�.s/:

on S0.R/nG0.R/ Š R2 n ¹0º.

Proof. We abbreviate � 0 D G0.Z/ and disintegrate the Haar measure of G0.R/ as

d� D d�.s/ d N�.g0/

into the Haar measure on S0.R/ and the measure N� on S0.R/nG0.R/. Now,

hSVrel.f /; hi�0nG0.R/ D

Z
�0nG0.R/

X
2S0.Z/n�0

Of .g0/ Nh.g0/ d�.g0/

.� 0-invariance of h/ D
Z

S0.Z/nG0.R/

Of .g0/ Nh.g0/ d�.g0/

.S0.R/-invariance of Of / D
Z

S0.R/nG0.R/

Of .g0/

Z
S0.Z/nS0.R/

Nh.sg0/ d�.s/ d N�.g0/

D hf;SV�rel.h/iL2.R2/

verifies the claim.

Kernels and norms. On H .0/ D G.Z2/nG.R2/, the Siegel–Veech transform is not
an L2-isometry, since it has obviously a non-trivial kernel consisting of odd functions.
However, the functional equation for Eisenstein series provides more.

Proposition 6.10. The kernel of the absolute Siegel–Veech transform on H .0/ strictly
contains the odd functions.

Proof. Working formally, putting k D 0,  .u/ D us in (6.1), we obtain the classical
Eisenstein series

E.�; s/ D SVabs.hs/.ƒ� /;

where hs.x/ D kxk�2s . Following, for example, Bergeron [10, Section 4.1], we put

E�.�; s/ D ��s�.s/�.2s/E.�; s/:
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Then, the functional equation states

E�.�; s/ D E�.�; 1 � s/:

Formally, then, putting h�s .x/ D �
�s�.s/�.2s/kxk�2s , this implies

SVabs.h
�
s � h

�
1�s/D0:

To resolve the obvious integrability and convergence issues, we perform a standard
trick. We define �2s D �1C i t , so that s D 1=2 � i t=2 and 1 � s D 1=2C i t=2.
For a smooth function � of compact support on RC, we write x in polar coordinates
as .r; �/ and obtain the desired kernel elements as

f�.x/ D

Z
RC

�.t/.hs.x/ � h1�s.x// dt D
Z

RC

�.t/.r�1Cit � r�1�it / dt :

(This construction can be generalised to functions of other K-types by defining

fk;�.r; �/ D e
ik�

Z
RC

�.t/.r�1Cit � r�1�it / dt

for non-zero integers k.)

This is in contrast to the stratum H .0; 0/:

Proposition 6.11. TheM -relative Siegel–Veech transform isM times an isometry on
the space of mean zero functions, i.e.,

k SVrel;M .f /k2 DMkf k2

for f 2 Cc.R2/ of mean zero. More precisely, for f 2 Cc.R2/, we haveZ
H.0;0/

SVrel;M .f / d� DM 2

Z
R2

f .x/ dx

and Z
H.0;0/

SVrel;M .f /
2 d� DM 4

�Z
R2

f .x/ dx
�2
CM 2

Z
R2

f .x/2 dx:

Proof. By the equivariance (6.2), the map

f 7!

Z
H.0;0/

SVrel;M .f / d�
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is a G0.R2/-invariant functional on Cc.R2/, and so we must haveZ
H.0;0/

SVrel;M .f / d� D cM

Z
R2

f .x/ dx;

since the only G0.R2/-invariant measure on R2 is Lebesgue measure. To find the con-
stant cM , note that if we take f D �B.0;R/ to be the indicator function of the ball of
radius R, with R sufficiently large, the Siegel–Veech transform SVrel;M .f / will be
approximately constant, with value M 2�R2, so cM D M 2. For the L2 computation,
we consider the configuration C2M � R2 � R2, and for h 2 Cc.R2 � R2/, we define
(by abuse of notation) SVrel;M .h/ as the sum over C2M . By the same proof as forM D1
(see [3] for further details), SVrel;M .h/ 2 L1.H .0; 0//. Consequently, by the equivari-
ance (6.2), the map

h 7!

Z
H.0;0/

SVrel;M .h/ d�

is a G0.R2/-invariant functional on Cc.R2 �R2/, and so we must haveZ
H.0;0/

SVrel;M .h/ d� D aM

Z
R2�R2

h.x; y/ dx dy C bM

Z
R2

h.x; x/ dx;

since the only G0.R2/-invariant measures on R2 � R2 are Lebesgue measure and
the measure supported on the diagonal �. A similar argument to the above shows
that with h.x; y/ D �B.0;R/.x/�B.0;R/.y/, for R � 1, that aM D M 4, and that
bM DM

2.
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