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Sharp semiclassical spectral asymptotics
for Schrödinger operators with non-smooth potentials

Søren Mikkelsen

Abstract. We consider semiclassical Schrödinger operators acting in L2.Rd / with d � 3. For
these operators, we establish sharp spectral asymptotics without full regularity. For the counting
function, we assume the potential is locally integrable and that the negative part of the potential
minus a constant is once differentiable, with its derivative being Hölder continuous with param-
eter�� 1=2. Moreover, we also consider sharp Riesz means of order  with  2 .0;1�. Here, we
assume the potential is locally integrable and that the negative part of the potential minus a con-
stant is twice differentiable, with its second derivative being Hölder continuous with parameter
� that depends on  .

1. Introduction

Consider a semiclassical Schrödinger operator H„ D �„2�C V acting in L2.Rd /,
where �� is the positive Laplacian and V is the potential. For the Schrödinger oper-
ator H„, the Weyl law states that

TrŒ1.�1;0�.H„/� D
1

.2�„/d

Z
R2d

1.�1;0�.p
2
C V.x// dpdx C o.„�d /; (1.1)

where 1�.t/ is the characteristic function of the set �. Recently, Frank [6] proved
that (1.1) holds under the conditions d � 3, V 2L1loc.R

d /, and V� 2Ld=2.Rd /, where
V� D max.0;�V /. These conditions are the minimal requirements ensuring that both
sides of the equality are well-defined and finite. For a brief historical overview of the
development of (1.1) under minimal assumptions, see the introduction of [6].

Under additional assumptions on the potential V , Helffer and Robert established
in [7] that

TrŒ1.�1;0�.H„/� D
1

.2�„/d

Z
R2d

1.�1;0�.p
2
C V.x// dpdx CO.„1�d /; (1.2)
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for all „ 2 .0; „0�, where „0 is sufficiently small. They proved this result under the
conditions that V 2 C1.Rd /, satisfies certain regularity conditions at infinity, and
V.x/ � c > 0 for all x 2 �c, where � � Rd is some open bounded set. Moreover,
they assumed a non-critical condition on the energy surface ¹.x; p/ 2 R2d j p2 C

V.x/ D 0º, which was later removed; see [22]. The error estimate in (1.2) is the
best generic error bound one can obtain. As an example, consider the operator H„ D
�„2�C x2 � �, for some � > 0. For this operator, all eigenvalues can be explicitly
computed, and one can verify by direct calculation that (1.2) holds with an explicit
error term of order „1�d .

When comparing the two results in dimensions d � 3, it does raise the question: is
formula (1.2) valid under less smoothness? Could it even be valid for all V satisfying
the assumptions of the result by Frank? The last part of the question currently seems
beyond reach for a positive answer, and to the author’s knowledge, no counterexample
exists yet. However, for the first part of the question we will give positive answers.

We will in fact not just consider the Weyl law but also Riesz means. That is, for
 2 Œ0; 1�, we will consider traces of the form

TrŒg .H„/�; (1.3)

where the function g is given by

g .t/ D

´
1.�1;0�.t/;  D 0;

.t/�;  2 .0; 1�:

Frank also considered traces of the form (1.3) in [6]. Helffer and Robert only consid-
ered Weyl asymptotics in [7], but proved the sharp estimate for Riesz means in [8]. For
future reference and comparison, we recall the exact statement of the results obtained
by Frank in [6].

Theorem 1.1. Let  � 1=2 if d D 1,  > 0 if d D 2, and  � 0 if d � 3. Let�� Rd

be an open set and let V 2 L1loc.�/ with V� 2 LCd=2.�/. Then,

TrŒg .H„/� D
1

.2�„/d

Z
R2d

g .p
2
C V.x// dx dp C o.„�d /

as „! 0, whereH„D�„2�CV.x/ is considered inL2.�/with Dirichlet boundary
conditions.

One thing to observe here is that this theorem is also valid when we are on bounded
domains. We will only discuss the case where the domain is the whole space Rd ,
d � 3. For results on sharp Weyl laws without full regularity and on bounded domains,
we refer the reader to the works by Ivrii [11–16].
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1.1. Sharp asymptotics

We will set up some notation and recall a definition before we give the assumptions
for our main theorem and state it.

Definition 1.2. Let f WRd 7! R be a measurable function. For each � 2 R, we define
the set

��;f WD ¹x 2 Rd j f .x/ < �º:

Definition 1.3. For k in N and � in Œ0; 1� and � � Rd open, we denote by C k;�.�/
the subspace of C k.�/ defined by

C k;�.�/ D ¹f 2 C k.�/ j there exists C > 0 such that

j@˛xf .x/ � @
˛
xf .y/j � C jx � yj

�

for all ˛ 2 Nd with j˛j D k and for all x; y 2 �º:

These definitions are here to clarify the notation. We are now ready to state our
assumptions on the potential V .

Assumption 1.4. Let V 2 L1loc.R
d / be a real function. Suppose that there exist

� > 0, k 2 N0, and � 2 Œ0; 1� such that the set �4�;V is open and bounded and
V 2 C k;�.�4�;V /.

With our assumptions on the potential V in place, we can now state the main
theorem.

Theorem 1.5. Let H„ D �„2� C V be a Schrödinger operator acting in L2.Rd /
and let  2 Œ0; 1�. If  D 0, we assume d � 3, and if  2 .0; 1�, we assume d � 4.
Suppose that V satisfies Assumption 1.4 with � > 0 and k D 1, � � 1=2 if  D 0, and
k D 2, � � max.3=2 � 1=2; 0/ if  > 0. Then, it holds thatˇ̌̌̌

TrŒg .H„/� �
1

.2�„/d

Z
R2d

g .p
2
C V.x// dx dp

ˇ̌̌̌
� C„1C�d (1.4)

for all „ sufficiently small. The constant C depends on � and the potential V .

When comparing the assumptions for our main theorem and Theorem 1.1, we
have that in both we assume the potential to be in L1loc.R

d /. But in Theorem 1.1 the
additional assumptions on the potential are on the negative part of V , whereas we need
to assume regularity for the negative part of V � 4� for some � > 0. One could have
hoped to only have an assumption on the negative part of V . However, this does not
seem obtainable with the methods we use here. Firstly, the way we prove the theorem
requires us to have control of the potential just outside the classical allowed region
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(¹x 2 Rd j V.x/ � 0º). Secondly, we have that the constant in (1.4) will diverge to
infinity as � tends to zero. Hence, we cannot hope to do an approximation argument.

The assumptions on dimensions are needed to ensure the integrability of some
integrals. In the case of Theorem 1.1, there are counter examples to the Weyl asymp-
totics for V 2 Ld=2.Rd / for d D 1; 2; for details see [1, 19].

This is not the first work considering sharp Weyl laws without full regularity.
The first results in a semiclassical setting were obtained by Ivrii in [10], where he
also considered higher order differential operators acting in L2.M/, where M is a
compact manifold without boundary. In this work, the coefficients are assumed to be
differentiable and with a Hölder continuous first derivative. This was a generalization
of works by Zielinski who previously had obtained sharp Weyl laws in high energy
asymptotics in [23–26]. The results by Ivrii were generalized by Bronstein and Ivrii
in [2], where they reduced the assumptions further by assuming the first derivative
to have a modulus of continuity O.j log.x � y/j�1/, and then again by Ivrii in [11]
to also include boundaries and removing the non-critical condition. The non-critical
condition, used in cases without full regularity, for a semiclassical pseudo-differential
operator Opw

„
.a/ is

jrpa.x; p/j � c > 0 for all .x; p/ 2 a�1.¹0º/: (1.5)

In [27], Zielinski considers the semiclassical setting with differential operators acting
in L2.Rd / and proves an optimal Weyl Law under the assumption that all coeffi-
cients are one-time differentiable with a Hölder continuous derivative. Moreover, it is
assumed that the coefficients and the derivatives are bounded. In [27], it is remarked
that it should be possible to consider unbounded coefficients in a framework of tem-
pered variation models. This was generalized by the author in [17] to allow for the
coefficients to be unbounded. Moreover, more general operators were also considered
in [17]. Both of these works assumed a non-critical condition (1.5). This assumption
makes the results of [17,27] not valid for Schrödinger operators. Since the assumption
is equivalent to assuming that

jV.x/j � c > 0 for all x 2 Rd ;

Zielinski managed to establish sharp Weyl laws without assuming a non-critical con-
dition in [28] for Schrödinger operators with a bounded potential of class C 2;�.Rd /
for � > 0 and d � 3. This result does not use the multiscale approach as we do
here, but requires an additional geometric condition. Zielinski’s approach seems to be
favorable if higher-order differential operators are considered.

The author recently established sharp spectral asymptotics for operators that
locally behave like a magnetic Schrödinger operators in [18]. The techniques used to
establish those will be crucial for the results obtained here. It should be remarked that
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the assumptions we make on regularity here are “lower” than the regularity assump-
tions made in [18].

The results obtained by Bronstein and Ivrii [2] and Ivrii [10, 11] do assume less
regularity than we do in the present work. However, the techniques used in these
works do not seem to translate well to a non-compact setting.

1.2. Non-sharp asymptotics

The methods we use to establish Theorem 1.5 can also be used in cases where we
have less regularity than we assume in the statement of the theorem. However, if we
assume less regularity, we cannot obtain sharp remainder estimates. The results we
can obtain are in the following two theorems.

Theorem 1.6. Let H„ D �„2� C V be a Schrödinger operator acting in L2.Rd /
with d � 3. Suppose that V satisfies Assumption 1.4 with � > 0, kD 1, and 0��� 1.
Then, it holds thatˇ̌̌̌

TrŒg0.H„/� �
1

.2�„/d

Z
R2d

g0.p
2
C V.x// dx dp

ˇ̌̌̌
� C„��d

for all „ sufficiently small, where � D minŒ2.1C �/=3; 1�. The constant C depends
on � and the potential V .

One can see that, for�� 1=2, we are in the setting of Theorem 1.5 and recover the
sharp estimate. For the cases�< 1=2, we cannot currently get the optimal error. How-
ever, the “worst” error we can obtain is „2=3�d . This is still a significant improvement
of the estimate „�d . Moreover, since a global Lipschitz function is almost everywhere
differentiable, with these methods we obtain the error „2=3�d when the potential V
satisfies Assumption 1.4 with � > 0, k D 0, and � D 1. The author believes that this
case should also have sharp estimates.

Theorem 1.7. Let H„ D �„2� C V be a Schrödinger operator acting in L2.Rd /
with d � 4 and let  2 .0; 1�. Suppose that V satisfies Assumption 1.4 with � > 0,
k D 2, and 0 � � � 1. Then, it holds thatˇ̌̌̌

TrŒg .H„/� �
1

.2�„/d

Z
R2d

g .p
2
C V.x// dx dp

ˇ̌̌̌
� C„��d

for all „ sufficiently small where �DminŒ2.2C�/=3;1C �. The constantC depends
on � and the potential V .

Again, we have that for � � min.3=2 � 1=2; 0/ we again recover the sharp esti-
mates from Theorem 1.5. Considering the result obtained here, we find that for the
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case  D 1 and � D 1, the error terms are sharp. Even under a C 2 assumption, we
obtain an error of the form „4=3�d .

We can also obtain results for d D 2 for the counting function and d D 2 and
d D 3 for the Riesz means. These will also not be sharp. The following two theorems
establish them.

Theorem 1.8. Let H„ D �„2�C V be a Schrödinger operator acting in L2.R2/.
Suppose that V satisfies Assumption 1.4 with � > 0, k D 1, and 0 � � � 1. Then, it
holds that ˇ̌̌̌

TrŒg0.H„/� �
1

.2�„/d

Z
R2d

g0.p
2
C V.x// dx dp

ˇ̌̌̌
� C„��2

for all „ sufficiently small, where � DminŒ.1C 2�/=3; 2=3�. The constant C depends
on � and the potential V .

Theorem 1.9. Let H„ D �„2� C V be a Schrödinger operator acting in L2.Rd /
with d D 2 or d D 3 and let  2 .0; 1�. Suppose that V satisfies Assumption 1.4 with
� > 0, k D 2, and 0 � � � 1. Then, it holds thatˇ̌̌̌

TrŒg .H„/� �
1

.2�„/d

Z
R2d

g .p
2
C V.x// dx dp

ˇ̌̌̌
� C„��d

for all „ sufficiently small, where � D minŒ.1C 2�C d � /=3; .d C 2/=3�. The
constant C depends on � and the potential V .

1.3. Organisation of the paper

This paper is structured as follows. In Section 2, we specify our notation and construct
approximating and framing operators. Inspired by these framing operators, we define
operators that locally behave like rough Schrödinger operators in Section 3. For these
operators, we establish a sharp Weyl law at the end of the section. This result relies
heavily on the findings of [18]. In Section 4, we first establish a result concerning trace
localizations and a comparison of phase-space integrals. We conclude the section with
a proof of the main theorems.

2. Preliminaries

For an operator A acting in a Hilbert space H, we denote the operator norm by kAkop

and the trace norm by kAk1. Moreover, in the following, we will use the convention
that N is the set of the strictly positive integers and N0 D N [ ¹0º.
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Next, we will describe the operators we are working with. Under Assumption 1.4,
we can define the operator

H„ D �„
2�C V

as the Friedrichs extension of the quadratic form is given by

hŒf; g� D

Z
Rd

„
2

dX
iD1

@xif .x/@xig.x/C V.x/f .x/g.x/ dx; f; g 2 D.h/;

where

D.h/ D

²
f 2 L2.Rd /

ˇ̌̌̌ Z
Rd

jpj2j Of .p/j2 dp <1 and
Z

Rd

jV.x/jjf .x/j2 dx <1

³
:

In this set up, the Friedrichs extension will be unique and self-adjoint; see e.g., [20].
In our analysis, we will use the Helffer–Sjöstrand formula. Before we state it, we will
recall a definition of an almost analytic extension.

Definition 2.1 (Almost analytic exstension). For f 2 C10 .R/, we call a function
Qf 2 C10 .C/ an almost analytic extension if it has the properties

jN@ Qf .z/j � Cnj Im.z/jn for all n 2 N0,
Qf .t/ D f .t/ for all t 2 R;

where N@ D .@x C i@y/=2.

For a construct of the almost analytic extension of a given f 2 C10 .R/, see, e.g.,
[4, 29]. The following theorem is a simplified version of a theorem in [3].

Theorem 2.2 (Helffer–Sjöstrand formula). Let H be a self-adjoint operator acting
on a Hilbert space H and f be a function from C10 .R/. Then, the bounded operator
f .H/ is given by the equation

f .H/ D �
1

�

Z
C

N@ Qf .z/.z �H/�1L.dz/;

where L.dz/ D dx dy is the Lebesgue measure on C and Qf is an almost analytic
extension of f .

2.1. Construction of framing operators and auxiliary asymptotics

The crucial part in this construction is Proposition 2.3, for which a proof can be found
in either [2, Proposition 1.1] or [12, Proposition 4.A.2].
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Proposition 2.3. Let f be in C k;�.Rd / for a � in Œ0; 1�. Then, for every " > 0, there
exists a function f" in C1.Rd / such that

j@˛xf".x/ � @
˛
xf .x/j � C˛"

kC��j˛j
j˛j � k;

j@˛xf".x/j � C˛"
kC��j˛j

j˛j � k C 1;
(2.1)

where C˛ is independent of ", but depends on f for all ˛ 2 Nd
0 .

Lemma 2.4. LetH„ D �„2�C V be a Schrödinger operator acting in L2.Rd / and
suppose that V satisfies Assumption 1.4 with .�; k; �/. Then, for all " > 0, there exist
two framing operators H˙

„;"
such that

H�
„;" � H„ � H

C

„;"
(2.2)

in the sense of quadratic forms. The operators H˙
„;"

are explicitly given by

H˙
„;" D �„

2�C V ˙" ;

where
V ˙" .x/ D V

1
" .x/C V

2.x/˙ C"kC�;

where the function V 1" .x/ is the smooth function from Proposition 2.3 associated to
V 1 D V' and V 2 D V.1� '/. The function ' is chosen such that ' 2 C10 .R

d / with
'.x/D 1 for all x 2�3�;V and supp.'/ ��4�;V . Moreover, for all " > 0 sufficiently
small, there exists a Q� > 0 such that

�
4Q�;V

C
"
\ supp.V 2/ D ; and �4Q�;V�" \ supp.V 2/ D ;: (2.3)

Proof. Let ' be as in the statement of the lemma, and set

V 1 D V' and V 2 D V.1 � '/:

By assumption, we have that V 1 2 C k;�0 .Rd /. Hence, for all " > 0, we get from
Proposition 2.3 the existence of V 1" .x/ such that (2.1) is satisfied with f replaced
by V 1. We now let

H„;" D �„
2�C V 1" C V

2:

This operator is well defined and self-adjoint since both potentials are in L1loc.R
d /.

Moreover, we have that H„;" and H„ will have the same domains. Let f 2 D ŒH„�;
we then have that

jhH„f; f i � hH„;"f; f ij D jh.V
1
� V 1" /f; f ij

� kV 1 � V 1" kL1.Rd /kf k
2
L2.Rd /

� c"kC�kf k2
L2.Rd /

: (2.4)
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By choosing a sufficiently large constant C , we obtain from (2.4) that, by defining
H˙
„;"
D �„2� C V ˙" with V ˙" .x/ D V 1" .x/ C V

2.x/ ˙ C"kC�, equation (2.2) is
satisfied with this choice of operators.

What remains is to establish (2.3). By construction,

kV � V ˙" kL1.Rd / � C"
kC�:

Hence, if we choose Q� � �=2 and " is sufficiently small, we can ensure that�
4Q�;V

C
"
�

�3�;V and �4Q�;V�" � �3�;V . Since, by construction supp.V 2/ � �c
3�;V , it follows

that, with such a choice of Q� and for " sufficiently small, equation (2.3) holds true.
This concludes the proof.

Definition 2.5 (Rough Schrödinger operator). In what follows, for " > 0, we will call
a potential V" 2 C10 .R

d / a rough potential of regularity � � 0 if

sup
x2Rd

j@˛xV".x/j � C˛"
min.0;��j˛j/ for all ˛ 2 Nd

0 ;

where the constants C˛ are independent of ". Moreover, we call an operator H„;" a
rough Schrödinger operator of regularity � � 0 if it is an operator of the form

H„;" D �„
2�C V C V";

where V 2 L1loc.R
d / and V" is a rough potential of regularity � .

Remark 2.6. Assume we are in the setting of Lemma 2.2. It follows from Theo-
rem 1.1 that there exists a constant C > 0 such that

TrŒg .HC„;"/� � TrŒg .H„/� � TrŒg .H�„;"/� � C„
�d

for „> 0, " > 0 sufficiently small. The constant C depends only on the dimension, the
set �4�;V , and min.V /. The first two inequalities follow from the min-max principle.
For the third inequality, we can choose a potential V min such that

V min.x/ D

´
min.V / � 1 if x 2 �4�;V .

0 if x … �4�;V :

Then, when we consider the operator

Hmin
„
D �„

2�C V min;

defined as a Friedrichs extension of the associated form, we have that

Hmin
„
� H�

„;"
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in the sense of quadratic forms. Hence, using the min-max principle and Theorem 1.1,
we obtain that

TrŒg .H�„;"/� � TrŒg .Hmin
„
/�

�
1

.2�„/d

Z
R2d

g .p
2
C V min.x// dx dp C zC„�d � C„�d ;

where the constant C only depends on the dimension, the set �4�;V , and min.V /.

3. Auxiliary results and model problem

Inspired by the form of the framing operators, we make the following assumption,
which is essentially the same as the one in [22], but with a rough potential and no
magnetic field.

Assumption 3.1. Let H„;" be an operator acting in L2.Rd /, where „; " > 0. Suppose
that

(i) H„;" is self-adjoint and lower semi-bounded;

(ii) there exists an open set � � Rd and a rough potential V" 2 C10 .R
d / of

regularity � � 0 such that C10 .�/ � D.H / and

H„;"' D H„;"' for all ' 2 C10 .�/;

where H„;" D �„2�C V".

For these operators, we will establish our model problem. The first auxiliary result
we will need was established in [18, Lemma 4.6]. It is almost the full model problem,
except that we consider only the operator H„;" and not the general operator H„;".

Lemma 3.2. Let  2 Œ0; 1� andH„;" D �„2�C V" be a rough Schrödinger operator
acting in L2.Rd / of regularity � � 1 if  D 0, and regularity � � 2 if  > 0, with
„ 2 .0;„0�, „0 sufficiently small. Assume that V" 2 C10 .R

d / and there exists ı 2 .0; 1�
such that " � „1�ı . Suppose there is an open set� � supp.V"/ and a c > 0 such that

jV".x/j C „
2=3
� c for all x 2 �:

Then, for ' 2 C10 .�/, it holds thatˇ̌̌̌
TrŒ'g .H„;"/� �

1

.2�„/d

Z
R2d

g .p
2
C V".x//'.x/ dx dp

ˇ̌̌̌
� C„1C�d ;

where C is a constants that depends only on the dimension and  , k@˛'kL1.Rd /, and
"�min.0;��j˛j/k@˛V"kL1.�/, for all ˛ 2 N d

0 .
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In order to prove our model problem, it remains to establish that TrŒ'g .H„;"/�
and TrŒ'g .H„;"/� are close. To do this, we will need some additional notation and
results.

Remark 3.3. In order to prove Lemma 3.2 as done in [18], one needs to understand
the Schrödinger propagator ei„

�1tH„;" associated to H„;". Under the assumptions of
the lemma, we can find an operator with an explicit kernel that locally approximates
ei„
�1tH„;" in a suitable sense. This local construction is only valid for times of order

„1�ı=2. But if we locally have a non-critical condition, the approximation can be
extended to a small time interval Œ�T0; T0�, where T0 is independent of „. For further
details, see [17]. In the following, we will reference back to this remark and T0.

Remark 3.4. Let T0 be defined as in Remark 3.3 and T1 as in Lemma 3.9. Let T 2
.0;min.T0; T1/� and O� 2 C10 ..�T; T // be a real valued function such that O�.s/ D
O�.�s/ and O�.s/ D 1 for all t 2 .�T=2; T=2/. Define

�1.t/ D
1

2�

Z
R

O�.s/eist ds:

We assume that �1.t/ � 0 for all t 2 R and there exist T2 2 .0; T / and c > 0 such
that �1.t/ � c for all t 2 Œ�T2; T2�. We can guarantee these assumptions by replacing
O� with O� � O� if necessary. We will denote by �„.t/ the function

�„.t/ D
1

„
�1

� t
„

�
:

Moreover, for any function g 2 L1loc.R/, we will use the notation

g.„/.t/ D g � �„.t/ D

Z
R

g.s/�„.t � s/:

Before we proceed, we recall the following classes of functions. These were first
introduced in [21].

Definition 3.5. A function g 2 C1.R n ¹0º/ is said to belong to the class C1; .R/,
 2 Œ0; 1�, if g 2 C.R/ for  > 0 and if there exist constants C > 0 and r > 0 such
that the following holds:

g.t/ D 0 for all t � C ,

j@mt g.t/j � Cmjt j
r for all m 2 N0 and t � �C ,

j@mt g.t/j �

´
Cm if  D 0; 1,

Cmjt j
�m if  2 .0; 1/,

for all m 2 N and t 2 Œ�C;C � n ¹0º:

A function g is said to belong toC1;0 .R/ if g 2C1; .R/ and g has compact support.
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With this notation established, we recall the following Tauberian-type result. This
result can be found in [22, Proposition 2.8].

Proposition 3.6. LetA be a self-adjoint operator acting in a Hilbert space H and g 2
C
1;
0 .R/. Let �1 be defined as in Remark 3.4. If for a Hilbert–Schmidt operator B ,

sup
t2D.ı/

kB��„.A � t /Bk1 � Z.„/;

(where D.ı/ D ¹t 2 R j dist.supp.g//; t/ � ıº, Z.ˇ/ is some positive function, and
ı is strictly positive), then it holds that

kB�.g.A/ � g.„/.A//Bk1 � C„
1CZ.„/C C 0N„

N
kB�Bk1 for all N 2 N;

where the constants C and C 0 only depend on ı and the functions g and �1.

Lemma 3.7. Let H„;" be an operator acting in L2.Rd / which satisfies Assump-
tion 3.1 with the open set � and let H„;" D �„2� C V" be the associated rough
Schrödinger operator of regularity � � 1. Assume that „ 2 .0;„0�, with „0 sufficiently
small. Then, for f 2 C10 .R/ and ' 2 C10 .�/, we have for any N 2 N0 that

k'Œf .H„;"/ � f .H„;"/�k1 � CN„
N ; (3.1)

k'Œ.z �H„;"/
�1
� .z �H„;"/

�1�k1 � CN
hziNC

dC1
2 „2N�d

j Im.z/j2NC2
; z 2 C nR (3.2)

and

k'f .H„;"/k1 � C„
�d ; (3.3)

The constant CN depends on supp.f /, N , and k@˛f kL1.R/ and k@˛'kL1.Rd /, for
all ˛ 2 Nd

0 .

Proof. Estimates (3.1) and (3.2) follow as in the proof of [18, Lemma 4.3], while
estimate (3.3) follows similarly to [18, (4.8)].

Lemma 3.8. Let H„;" D �„2� C V" be a rough Schrödinger operator acting in
L2.Rd / of regularity � � 1 with „ 2 .0; „0�, „0 sufficiently small. Assume that V" 2
C10 .R

d / and there exists ı 2 .0; 1� such that " � „1�ı . Suppose there is an open set
� � supp.V"/ and c > 0 such that

jV".x/j C „
2=3
� c for all x 2 �:

Let �„.t/ be the function from Remark 3.4, f 2 C10 .R/ and ' 2 C10 .�/, then it
holds for s 2 R that

k'f .H„;"/�„.H„;" � s/f .H„;"/'k1 � C„
�d :
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The constant C depends only on the dimension, supp.f /, kf kL1.R/, k@˛'kL1.R/
for all ˛ 2 Nd

0 , and "�min.0;��j˛j/k@˛V"kL1.�/ for all ˛ 2 Nd
0 .

Proof. The proof is analogous to that of [18, Lemma 4.5]. Note that in the proof
of [18, Lemma 4.5] it is assumed the operator is of regularity � � 2. However, it
suffices to assume that the operator is of regularity � � 1, without changing the proof.

The next lemma is a result on the propagation of singularities, which we will need
to obtain certain estimates later. We will not give the full proof of the lemma here as
it is almost identical to the proof of [18, Lemma 4.7]. There is also a version of this
result in [21, Lemma 5.1]. This result is stated and proven for semiclassical pseudo-
differential operators.

Lemma 3.9. Let H„;" D �„2�C V" be a rough Schrödinger operator of regularity
� � 1 acting in L2.Rd /. Let �1 2 C10 .R

2d / and �2 2 B1.R2d / such that

dist¹supp.�1/; supp.�2/º � c > 0;

and let f 2 C10 .R/. Then, there exists T1 > 0 sufficiently small such that, for any
N 2 N, it holds that

kOpw
„
.�2/e

it„�1H„;�f .H„;�/Opw
„
.�1/kop � C„

N ;

uniformly for t 2 Œ�T1; T1�. The constant C depends on supp.f /, the dimension, N ,
k@˛f kL1.Rd /, k@

˛�1kL1.Rd /, k@
˛�2kL1.Rd / for all ˛ 2 Nd

0 , and the constant c.

Proof. The proof follows the argument in [18, Lemma 4.7]. The main difference
between the two cases is that here we consider an operator that is already a rough
pseudo-differential operator. Hence, the step where we exchange operators in the
proof of [18, Lemma 4.7] can be omitted. This omission applies from [18, equation
(4.27)] up to the first full stop after [18, equation (4.28)]. Once this step is removed,
the remaining changes involve choosing the constants large enough to ensure that an
error of order „N is obtained, rather than just „3C .

Lemma 3.10. Let H„;" be an operator acting in L2.Rd / satisfying Assumption 3.1
with the open set � and let H„;" D �„2�C V" be the associated rough Schrödinger
operator of regularity � � 1. Assume that „ 2 .0; „0�, with „0 sufficiently small,
and that there exists ı 2 .0; 1� such that " � „1�ı Let �„.t/ be the function from
Remark 3.4, f 2 C10 .R/, and ' 2 C10 .�/. For s 2 R and N 2 N, it holds that

k'f .H„;"/�„.H„;" � s/f .H„;"/' � 'f .H„;"/�„.H„;" � s/f .H„;"/'k1 � CN„
N :

(3.4)
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Moreover, suppose there exists c > 0 such that

jV".x/j C „
2=3
� c for all x 2 �:

Then,
k'f .H„;"/�„.H„;" � s/f .H„;"/'k1 � C„

�d : (3.5)

The constants CN and C depend on the dimension and k@˛f kL1.R/, k@˛'kL1.R/,
and "�min.0;��j˛j/k@˛V"kL1.�/ for all ˛ 2 Nd

0 .

Proof. We start by considering the left-hand side of (3.4). We have that

k'f .H„;"/�„.H„;" � s/f .H„;"/' � 'f .H„;"/�„.H„;" � s/f .H„;"/'k1

� k'f .H„;"/�„.H„;" � s/f .H„;"/' � 'f .H„;"/�„.H„;" � s/f .H„;"/'k1

C C„�1k'f .H„;"/ � 'f .H„;"/k1 C C„
�1
kf .H„;"/' � f .H„;"/'k1

� k'f .H„;"/�„.H„;" � s/f .H„;"/' � 'f .H„;"/�„.H„;" � s/f .H„;"/'k1

C C„N ; (3.6)

where in the first inequality we have added and subtracted the two terms

'f .H„;"/�„.H„;" � s/f .H„;"/' and 'f .H„;"/�„.H„;" � s/f .H„;"/';

used the triangle inequality and that the function �„.t/ is bounded by C„�1 uniformly
in t . In the second inequality, we have used Lemma 3.7. We observe that, using how
we defined the function �„.z � s/, we have that

�„.z � s/ D F �1
„
Œ��.z � s/ D

1

2�„

Z
R

ei„
�1t.z�s/�.t/ dt:

Using this expression and the fundamental theorem of calculus, we get that

�„.H„;" � s/ � �„.H„;" � s/

D
1

2�„

Z
R

.ei„
�1t.H„;"�s/ � ei„

�1t.H„;"�s//�.t/ dt

D
i

2�„2

Z
R

e�i„
�1ts�.t/

tZ
0

ei„
�1�H„;".H„;" �H„;"/e

i„�1.t��/H„;" d�dt:

(3.7)
Letting Qf 2 C10 .R/ such that

Qf .t/f .t/ D f .t/ for all t 2 R
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and using the identity obtained in (3.7), we get that

k'f .H„;"/�„.H„;" � s/f .H„;"/' � 'f .H„;"/�„.H„;" � s/f .H„;"/'k1

�
1

2�„2

Z
R

�.t/

tZ
0

k'f .H„;"/e
i„�1tH„;" Qf1.H„;"/.H„;" �H„;"/

� Qf .H„;"/e
i„�1.t��/H„;"f .H„;"/'k1 d�dt: (3.8)

We let �; Q� 2 C10 .� � B.0;K C 1// such that

supp.'/ \ supp.1 � �/ \ supp.f .af";0// D ;

and
dist.supp.�/; supp.1 � Q�// � c;

where c > 0 is some positive constant. With these functions and by using standard
pseudo-differential techniques, we have for any N 2 N that

k'f .H„;"/e
i„�1tH„;" Qf1.H„;"/.H„;" �H„;"/ Qf .H„;"/e

i„�1.t��/H„;"f .H„;"/'k1

� C„�d Œk Qf1.H„;"/.H„;" �H„;"/ Qf .H„;"/Opw
„
. Q�/kop

C kOpw
„
.1 � Q�/ei„

�1.t��/H„;"f .H„;"/Opw
„
.�/'kop�C CN„

N ; (3.9)

where the constants C and CN depend on the variables as stated in the Lemma. Using
the assumptions on our operators and standard pseudo-differential techniques, we
have for any N 2 N that

k Qf1.H„;"/.H„;" �H„;"/ Qf .H„;"/Opw
„
. Q�/kop � CN„

N ;

where again the constant CN depends on the variables as stated in the Lemma. We can
also bound the last term on the right-hand side of (3.9). This follows from Lemma 3.9.
Hence, we have for any N 2 N that

k'f .H„;"/e
i„�1tH„;" Qf1.H„;"/.H„;" �H„;"/ Qf .H„;"/e

i„�1.t��/H„;"f .H„;"/'k1

� CN„
N ; (3.10)

where again the constant CN depends on the variables as stated in the lemma. Com-
bining estimates (3.6), (3.8), and (3.10), we have established estimate (3.4). Combin-
ing this estimate with Lemma 3.8 gives us (3.5). This concludes the proof.

Lemma 3.11. Let  2 Œ0; 1� and H„;" be an operator acting in L2.Rd /. Suppose
H„;" satisfies Assumption 3.1 with the open set � and let H„;" D �„2�C V" be the
associated rough Schrödinger operator of regularity � � 1 if  D 0 and � � 2 if  > 0.
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Assume that „ 2 .0;„0�, with „0 sufficiently small, and that there exists ı 2 .0; 1� such
that " � „1�ı . Suppose that there exists c > 0 such that

jV".x/j C „
2=3
� c for all x 2 �

Then, for ' 2 C10 .�/, it holds that

jTrŒ'g .H„;"/� � TrŒ'g .H„;"/�j � C„1C�d C C 0N„
N :

The constants C and C 0N depend on the dimension, as well as on the parameters  ,
k@˛'kL1.R/, and "�min.0;��j˛j/k@˛V"kL1.�/ for all ˛ 2 Nd

0 .

Proof. Since both operators are lower semi-bounded, we may assume that g is com-
pactly supported. Let f 2 C10 .R/ such that f .t/g .t/ D g .t/ for all t 2 R and let
'1 2 C

1
0 .�/ such that '.x/'1.x/ D '.x/ for all x 2 Rd . Moreover, let �„.t/ be the

function from Remark 3.4 and set g.„/ .t/ D g � �„.t/. With this notation, we have
that

jTrŒ'g .H„;"/� � TrŒ'g .H„;"/�j

� k''1f .H„;"/.g .H„;"/ � g
.„/
 .H„;"//f .H„;"/'1k1

C k''1f .H„;"/.g .H„;"/ � g
.„/
 .H„;"//f .H„;"/'1k1

C k'kL1.Rd /

Z
R

g .s/ ds sup
s2R
k''1f .H„;"/�„.H„;" � s/f .H„;"/'1

� '1f .H„;"/�„.H„;" � s/f .H„;"/'1k1:

(3.11)
Lemma 3.8 and Lemma 3.10 give us that the assumptions of Proposition 3.6 are ful-
filled with B equal to '1f .H„/ and '1f .H„;"/ respectively. Hence, we have that

k''1f .H„;"/.g .H„;"/ � g
.„/
 .H„;"//f .H„;"/'1k1 � C„

1C�d (3.12)

and

k''1f .H„;"/.g .H„;"/ � g
.„/
 .H„;"//f .H„;"/'1k1 � C„

1C�d : (3.13)

By applying Lemma 3.10, we get for all N 2 N that

sup
s2R
k''1f .H„/�„.H„ � s/f .H„/'1 � '1f .H„;"/�„.H„;" � s/f .H„;"/'1k1

� CN„
N : (3.14)

Finally, by combining estimates (3.11)–(3.14), we obtain the desired estimate.

For operators that satisfy Assumption 3.1, we can establish the following model
theorem. The proof of the theorem is similar to the proof of [18, Theorem 5.2].
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Theorem 3.12. Let  2 Œ0; 1� and H„;" be an operator acting in L2.Rd /. Suppose
that H„;" satisfies Assumption 3.1 with the open set � and let H„;" D �„2�C V" be
the associated rough Schrödinger operator of regularity � � 1 if  D 0, and � � 2 if
 > 0. Assume that „ 2 .0; „0�, with „0 sufficiently small and there exists ı 2 .0; 1�
such that " � „1�ı . Suppose there exists c > 0 such that

jV".x/j C „
2=3
� c for all x 2 �: (3.15)

Then, for any ' 2 C10 .�/, it holds thatˇ̌̌̌
TrŒ'g .H„;"/� �

1

.2�„/d

Z
R2d

g .p
2
C V".x//'.x/ dx dp

ˇ̌̌̌
� C„1C�d ;

where the constant C depends only on the dimension, as well as on k@˛'kL1.Rd /
and "�min.0;��j˛j/k@˛V"kL1.�/ for all ˛ 2 Nd

0 .

Proof. Firstly, observe that, under the assumptions of this theorem, H„;" and H„;"
satisfy the assumptions of Lemma 3.11. Furthermore, H„;" satisfies the assumptions
of Lemma 3.2. Thus, applying Lemma 3.11 and Lemma 3.2, we conclude thatˇ̌̌̌

TrŒ'g .H„;"/� �
1

.2�„/d

Z
R2d

g .p
2
C V".x//'.x/ dx dp

ˇ̌̌̌
� jTrŒ'g .H„;"/� � 'g .H„;"/j

C

ˇ̌̌̌
TrŒ'g .H„;"/� �

1

.2�„/d

Z
R2d

g .p
2
C V".x//'.x/ dx dp

ˇ̌̌̌
� C„1C�d :

This concludes the proof.

4. Towards a proof of the main theorem

At the end of this section, we will prove our main theorem. Before that, we introduce
some lemmas needed for the proof. The first lemma allows us to localize the trace we
consider, while the second provides a comparison of phase space integrals.

4.1. Localization of traces and comparison of phase-space integrals

Before we state the lemma on localization of the trace, we recall the following Agmon-
type estimate from [5, Lemma A.1].
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Lemma 4.1. Let H„ D �„2� C V be a Schrödinger operator acting in L2.Rd /,
where V is in L1loc.R

d / and suppose that there exist � > 0 and an open bounded set
U such that

V.x/ � � when x 2 U c: (4.1)

Let d.x/ D dist.x; Ua/, where

Ua D ¹x 2 Rd j dist.x; U / < aº

and let  be a normalized solution to the equation

H„ D E ;

with E < �=4. Then, there exists C > 0 such that

keı„
�1d kL2.Rd / � C;

for ı D
p
�=8. The constant C depends on a and is uniform in V , �, and U satisfy-

ing (4.1).

In the formulation of the lemma presented here, we consider Ua for a > 0, rather
than just U1 as in [5]. There are no differences in the proof. However, one point to
remark is that the constant C diverges to infinity as a tends to 0. Moreover, in the
statement, we highlight the uniformity of the constant with respect to the potential
V , �, and the set U . That this constant is indeed uniform in these parameters follows
directly from the proof given in [5].

Lemma 4.2. Let  2 Œ0; 1� and H„ D �„2�C V be a Schrödinger operator acting
in L2.Rd /, where V is in L1loc.R

d / and suppose that there exist an � > 0 and a open
bounded sets U such that V.x/1U .x/ 2 LCd=2.Rd / and

V.x/ � � when x 2 U c: (4.2)

Fix a > 0 and let ' 2 C10 .R
d / such that '.x/ D 1 for all x 2 Ua, where

Ua D ¹x 2 Rd j dist.x; U / < aº:

Then for every N 2 N, it holds that

TrŒg .H„/� D TrŒg .H„/'�C CN„N ;

where the constant is CN depends on a and is uniform in V , �, and U satisfying (4.2).

Proof. Using the linearity of the trace, we have that

TrŒg .H„/� D TrŒg .H„/'�C TrŒg .H„/.1 � '/�: (4.3)
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For the second term on the right-hand side of (4.3), we calculate the trace in a nor-
malized basis of eigenfunctions for H„, denoted  n, with eigenvalue En:

TrŒg .H„/.1 � '/� D
X
En�0

hg .H„/.1 � '/ n;  ni

D

X
En�0

g .En/k
p
1 � ' nk

2
L2.Rd /

: (4.4)

To estimate the L2-norms, we let d.x/ D dist.x; Ua=2/. For all x 2 supp.1 � '/, we
have that d.x/ > 0, since '.x/ D 1 for all x 2 Ua. By Lemma 4.1, there exists a
constant C , depending on a, such that, for all normalised eigenfunctions  n with
eigenvalue less than �=4, we have the estimate

ke
Qı„�1d nkL2.Rd / � C;

where QıD
p
�=8 and C is uniform in V , �, andU satisfying (4.2). Using this estimate

and the observations made for d.x/, we get, for all norms in (4.4) and all N 2 N, the
estimate

k
p
1 � ' nk

2
L2.Rd /

� k
p
1 � 'e�

Qı„�1d
k
2
L1.Rd /

ke
Qı„�1d nk

2
L2.Rd /

� C
p1 � '� „

Qıd

�N� Qıd
„

�N
e�
Qı„�1d

2
L1.Rd /

� CN„
2N : (4.5)

Combining (4.4) with the estimate obtained in (4.5), we get, for all N 2 N, that

TrŒg .H„/.1 � '/� � CN„2N
X
En�0

g .En/ D CN„
2N TrŒg .H„/�

� zCN„
2N�d ; (4.6)

where, in the last estimate, we have used Theorem 1.1. Combining (4.3) and (4.6), we
obtain the desired estimate.

Remark 4.3. When applying the above lemma, we must ensure that the constant
remains the same for both cases under consideration. To achieve this, we use Theo-
rem 1.1, as explained in Remark 2.6 at the end of the proof.

The next lemma is a result on comparing phase-space integrals. Similar estimates
are obtained with different methods in [17]. These are parts of larger proofs and not
an independent lemma. The following lemma is taken from [18, Lemma 5.1].

Lemma 4.4. Suppose that � � Rd is an open set and let ' 2 C10 .�/. Let " > 0,
„ 2 .0; „0� and V; V" 2 L1loc.R

d / \ C.�/. Suppose that

kV � V"kL1.�/ � c"
kC�: (4.7)



S. Mikkelsen 20

Then, for  2 Œ0; 1� and " sufficiently small, it holds thatˇ̌̌̌ Z
R2d

Œg .p
2
C V".x// � g .p

2
C V.x//�'.x/ dx dp

ˇ̌̌̌
� C"kC�;

where the constant C depends on the dimension and  and c in (4.7).

4.2. Proof of main theorem

The proof of the main theorem relies on a multi-scale argument. Before using this
technique to establish the theorem, we first recall the following crucial lemma.

Lemma 4.5. Let � � Rd be an open set and let l be a function in C 1.x�/ such that
l > 0 on x�, and assume that there exists � in .0; 1/ such that

jrxl.x/j � � for all x in �.

The following statements hold true.

(i) There exists a sequence ¹xkº1kD0 in� such that the open balls B.xk; l.xk//
form a covering of �. Furthermore, there exists a constant N�, depending
only on the constant �, such that the intersection of more than N� balls are
empty.

(ii) One can choose a sequence ¹'kº1kD0 such that 'k 2 C10 .B.xk; l.xk/// for
all k in N. Moreover, for all multiindices ˛ and all k in N,

j@˛x'k.x/j � C˛l.xk/
�j˛j;

and
1X
kD1

'k.x/ D 1;

for all x in �.

This lemma is taken from [22, Lemma 5.4]. The proof is analogous to the proof
of [9, Theorem 1.4.10]. We are now ready to prove the main theorem.

Proof of Theorem 1.5. LetH�
„;"

andHC
„;"

be the two framing operators constructed in
Lemma 2.4, where we choose " D „1�ı . For  D 0, we choose ı D �=.1C �/ and
if  > 0 we choose ı D .1C � � /=.2C �/. Note that our assumptions on � will
in all cases ensure that ı � 1=3. Moreover, we get that

"1C� D „;  D 0;

"2C� D „1C ;  > 0:
(4.8)
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Since we have thatH�
„;"
�H„ �H

C

„;"
in the sense of quadratic forms, it follows from

the min-max theorem that

TrŒg .HC„;"/� � TrŒg .H„/� � TrŒg .H�„;"/�: (4.9)

Our aim is now to obtain spectral asymptotics for TrŒg .HC„;"/� and TrŒg .H�„;"/�.
Since the arguments will be analogous, we drop the superscript ˙ for the operator
H˙
„;"

in what follows. Let ' 2C10 .R
d /with '.x/D 1 for all x 2�Q�;V" and supp.'/�

�2Q�;V" . Then, applying Lemma 4.2, we obtain for all N 2 N that

TrŒg .H„;"/� D TrŒg .H„;"/'�C CN„N : (4.10)

For the terms TrŒg .H„;"/'�, we use a multiscale argument such that we can locally
apply Theorem 3.12. Recall that, by Lemma 2.4, we have

V".x/ D V
1
" .x/C V

2.x/˙ C"�C�;

where supp.V 2/ \�c
4Q�;V"

D ; and V 1" 2 C
1
0 .R

d /. We define '1 2 C10 .R
d / such

that '1.x/ D 1 for all x 2 �2Q�;V" and supp.'1/ � �4Q�;V" . With this function, we
obtain

'1.x/V
˙
" .x/ D '1.x/.V

1
" .x/˙ C"

�C�/:

Note that, under these assumptions on '1.x/, we have '1.x/'.x/ D '.x/ for all
x 2 Rd . This observation ensures that when we define our localization function l.x/
below, it remains positive on the set supp.'/.

Before defining our localization functions, we remark that due to the continuity of
V" on �4Q�;V" , there exists � > 0 such that

dist.supp.'/;�c2Q�;V"/ > �:

The parameter � is important for our localization functions. As we need to ensure the
supports are contained in the set �2Q�;V" , we let

l.x/ D A�1
p
j'1.x/V".x/j2 C „

4=3 and f .x/ D
p
l.x/;

Where we choose A > 0 sufficiently large that

l.x/ �
�

9
and jrl.x/j � � <

1

8
(4.11)

for all x 2 supp.'/. Note that, due to our assumptions on V", we can choose A inde-
pendent of „ and uniformly for „ 2 .0; „0�. Moreover, we have that

j'1.x/V".x/j � Al.x/; for all x 2 Rd . (4.12)
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By Lemma 4.5, with the set supp.'/ and the function l.x/ there exists a sequence
¹xkº

1
kD1

in supp.'/ such that supp.'/ �
S
k2N B.xk; l.xk// and there exists a con-

stantN1=8 such that at mostN1=8 of the sets B.xk; l.xk// can have a non-empty inter-
section. Moreover, there exists a sequence ¹'kº1kD1 such that 'k 2C10 .B.xk; l.xk///,

j@˛x'k.x/j � C˛l.xk/
�j˛j for all ˛ 2 N0; (4.13)

and
1X
kD1

'k.x/ D 1 for all supp.'/:

We have that
S
k2N B.xk; l.xk// is an open covering of supp.'/ and since this set is

compact, there exists a finite subset 	0 � N such that

supp.'/ �
[
k2	0

B.xk; l.xk//:

In order to ensure that we have a finite partition of unity over the set supp.'/, we
define the set

	 D
[
j2	0

¹k 2 N j B.xk; l.xk// \ B.xj ; l.xj // ¤ ;º:

We observe that 	 is still finite since at most N1=8 balls can have a non-empty inter-
section. Moreover, we have thatX

k2	

'k.x/ D 1 for all supp.'/:

From this, we get the identity

TrŒ'1.�1;0�.H„;"/� D
X
k2	

TrŒ'k'1.�1;0�.H„;"/�;

where we have used the linearity of the trace. For the remaining part of the proof, we
will use the following notation:

lk D l.xk/; fk D f .xk/; hk D
„

lkfk
; "k D „

1�ı
k :

We notice that hk is uniformly bounded from above, since

l.x/f .x/ D A�3=2.j'1.x/V".x/j
2
C „

4=3/3=4 � A�3=2„ for all x.

By assumption, ı � 1=3 and lk D f 2k ; therefore we obtain that

lk"
�1
� "�1k : (4.14)
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We define the two unitary operators Ul and Tz by

Ulf .x/ D l
d=2f .lx/ and Tzf .x/ D f .x C z/ for f 2 L2.Rd /:

Moreover, we set

zH";hk D f
�2
k .TxkUlk /H„.TxkUlk /

�
D �h2k�C

zV".x/;

where zV".x/ D f �2k V".lkx C xk/. We need to check that this rescaled operator sat-
isfies the assumptions of Theorem 3.12 with „k , "k , and the set B.0; 8/. To establish
this, we first observe that, by (4.11), we have

.1 � 8�/lk � l.x/ � .1C 8�/lk for all x 2 B.xk; 8lk/: (4.15)

We start by verifying that the operator zH";hk satisfies Assumption 3.1. It follows from
Lemma 2.4 that zH";hk is lower semi-bounded and self-adjoint. By our choice of '1,
we have that zH";hk satisfies Assumption 3.1 (ii) with the set B.0; 8/ and the potential

e'1V ".x/ D '1.lkx C xk/f �2k V".lkx C xk/; (4.16)

where, by (4.16), we have that e'1V ".x/ 2 C10 .Rd /. What remains to verify is that
we have obtained a non-critical condition (3.15). Using (4.12), for x 2 B.0; 8/, we
have that

je'1V ".x/j C h2=3k D f �2k j'1V".lkx C xk/j C
�
„

fklk

�2=3
D l�1k .j'1V".lkx C xk/j C „

2=3/

� l�1k Al.lkx C xk/ � .1 � 8�/A:

Hence, we have obtained the non-critical condition on B.0; 8/. So all assumptions of
Theorem 3.12 are fulfilled. But before applying it, we verify that the constant from
Theorem 3.12 are independent of k and „. Firstly, we have the norm estimate for the
potential

ke'1V "kL1.B.0;8// D sup
x2B.0;8/

j'1.lkx C xk/f
�2
k V".lkx C xk/j � .1C 8�/A;

where we have used (4.12) and (4.15). When we consider the derivatives, for ˛ 2 Nd
0

with j˛j � 1, we have that

"
�min.0;��j˛j/
k

k@˛e'1V "kL1.Rd /
� "
�min.0;��j˛j/
k

f �2k l
j˛j

k
"min.0;��j˛j/ sup

x2Rd

X
ˇ�˛

�
˛

ˇ

�
j.@˛�ˇ'1/.@

ˇV"/.lkx C xk/j

� C˛;
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where C˛ is independent of k and „. In the estimate, we have used the definition
of "k , fk , (4.14) and Proposition 2.3. Hence, all these estimates are independent of
„ and k. The last quantities we check are k@˛xe'k'kL1.Rd / for all ˛ 2 Nd

0 , where
e'k' D .TxkUlk /'k'.TxkUlk /�. Here, by construction of 'k (4.13), for all ˛ 2 Nd

0 ,
we have

k@˛xe'k'kL1.Rd / D sup
x2Rd

ˇ̌̌̌
l
j˛j

k

X
ˇ�˛

�
˛

ˇ

�
.@ˇx'k/.lkx C xk/.@

˛�ˇ
x '/.lkx C xk/

ˇ̌̌̌
� C˛ sup

x2Rd

X
ˇ�˛

�
˛

ˇ

�
l
j˛�ˇ j

k
j.@˛�ˇx '/.lkx C xk/j � zC˛:

With this, we have established that all the constant from Theorem 3.12 are indepen-
dent of „ and k. By applying Theorem 3.12, we get thatˇ̌̌̌

TrŒ'g .H";„/� �
1

.2�„/d

Z
R2d

g .p
2
C V.x//'.x/ dx dp

ˇ̌̌̌

�

X
k2	

ˇ̌̌̌
TrŒ'k'g .H";„/� �

1

.2�„/d

Z
R2d

g .p
2
C V.x//'k'.x/ dx dp

ˇ̌̌̌

�

X
k2	

f
2

k

ˇ̌̌̌
TrŒg . zH";hk /e'k'� �

1

.2�hk/d

Z
R2d

g .p
2
C zV.x//e'k'.x/ dx dp

ˇ̌̌̌

�

X
k2	

f
2

k

ˇ̌̌̌
TrŒg . zH";hk /e'k'�

�
1

.2�hk/d

Z
R2d

g .p
2
C e'1V".x//e'k'.x/ dx dp

ˇ̌̌̌

C

X
k2	

f
2

k

.2�hk/d

ˇ̌̌̌ Z
R2d

Œg .p
2
C e'1V".x// � g .p2 C zV.x//�e'k'.x/ dx dp

ˇ̌̌̌

� C
X
k2	

f
2

k

hd
k

�
h
1C

k
C

ˇ̌̌̌ Z
R2d

Œg .p
2
C e'1V".x// � g .p2 C zV.x//�

�e'k'.x/ dx dp
ˇ̌̌̌�
: (4.17)

To estimate the remaining integrals, we use Lemma 4.4. Combining this lemma with
(4.8), we obtain thatˇ̌̌̌ Z

R2d

Œg .p
2
C e'1V".x//e'k'.x/ � g .p2 C zV.x//�e'k'.x/ dx dp

ˇ̌̌̌
� C„1C � Ch

1C

k
: (4.18)
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Hence, by combining (4.17) and (4.18), we obtain thatˇ̌̌̌
TrŒ'g .H";„/� �

1

.2�„/d

Z
R2d

g .p
2
C V.x//'.x/ dx dp

ˇ̌̌̌
� C

X
k2	

f
2

k
h
1C�d

k
: (4.19)

By considering the sum over k on the right-hand side of (4.19) and by using (4.15),
we getX

k2	

Ch
1C�d

k
f
2

k
D

X
k2	

zC„1C�d
Z

B.xk ;lk/

l�dk f
2

k
.lkfk/

d�1� dx

D

X
k2	

zC„1C�d
Z

B.xk ;lk/

l
�d

k
l
.3d�3�3/=2

k
dx

�

X
k2	

yC„1C�d
Z

B.xk ;lk/

l.x/.d�3�/=2 dx � C„1C�d ; (4.20)

where in the last inequality we have used that supp.'/ � �2Q�;V" and that �2Q�;V" is
assumed to be compact. This ensures that the constant obtained in the last inequality
is finite. By combining the estimates and identities in (4.9), (4.10), (4.19), and (4.20),
we obtain thatˇ̌̌̌

TrŒ1.�1;0�.H„;"/� �
1

.2�„/d

Z
R2d

1.�1;0�.p
2
C V".x// dx dp

ˇ̌̌̌
� C„1�d

for all „ 2 .0; „0�. This concludes the proof.

Proof of Theorem 1.6 and Theorem 1.7. The proofs are almost analogous to the one
just given for Theorem 1.5. The key difference here is that ı is always chosen to be
1=3 when determining the scaling of the framing operatorsH˙

„;"
with "D „1�ı . After

this choice, the remainder of the proof remains identical.

Proof of Theorem 1.8 and Theorem 1.9. The proofs are again almost analogous to the
one just given for Theorem 1.5, with the same differences as before. Specifically, we
always choose ı D 1=3 when determining the scaling of the framing operators H˙

„;"

with " D „1�ı . After this choice, the remainder of the proof is identical up to (4.20).
For the cases considered here, we have d � 3 �  < 0. Consequently, we obtain

a negative power of l.x/ and must use the lower bound l.x/ � C„2=3, rather than
relying on an upper bound for l.x/. Using this bound and calculating the resulting
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power of the semiclassical parameter, we derive the errors stated in the theorems.
This concludes the proof.
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