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Dispersive partial differential equations are evolution equations
whose solutions decay in large time due to the fact that various
frequencies propagate with distinct velocities. In some cases, there
exist special solutions called solitons, which do not change their
shape as time passes. The soliton resolution conjecture predicts
that solitons are the only obstruction to the decay of solutions.
More precisely, every solution eventually decomposes into a su-
perposition of solitons and a decaying term called radiation. We
discuss the conjecture in the context of the wave maps equa-
tion, which is the analog of the wave equation for sphere-valued
maps.1

1 The phenomenon of dispersion

This section is devoted to standard introductory material. For a com-
prehensive introduction to the topic, the reader can consult for
instance [27,44].

1.1 The wave equation
Consider the wave equation in dimension 1+ 2,

c−2∂2t ψ(t, x1, x2) = ∂2x1ψ(t, x1, x2) + ∂2x2ψ(t, x1, x2), (W)

where (t, x1, x2) ∈ ℝ1+2. The positive number c > 0 is the wave
speed. Let us assume for simplicity that ψ is real-valued, but it could
just as well be vector-valued. We will always write ℝ1+2 instead
of ℝ3 in order to stress that one deals with one time dimension
and two space dimensions. Equation (W) is equivalent to requiring
that ψ is a critical point of the Lagrangian

L (ψ) ≔ 1
2
∫
ℝ1+2

(c−2(∂tψ)2 − (∂x1ψ)2 − (∂x2ψ)2). (1)

The precise meaning of this assertion is the following. Let
ζ ∶ ℝ1+2 → ℝ be a smooth compactly supported function and
ψε ≔ ψ+ εζ , where ε is a small real number. We then have

1 This note is based on the talk given by the author at the 9th European
Congress of Mathematics.
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L (ψε) = ∫
ℝ1+2

(c−2∂tψ∂tζ− ∂x1ψ∂x1ζ− ∂x2ψ∂x2ζ )

= −∫
ℝ1+2

ζ(c−2∂2t ψ− ∂2x1ψ− ∂2x2ψ),
(2)

where the last step is integration by parts. The left-hand side can be
interpreted as the directional derivative of L at ψ in the direction ζ .
Hence, we see that all the directional derivatives vanish if and only
if ψ satisfies (W).

Equation (W) appears in many physical contexts, the most
familiar being the evolution in time of a small disturbance of the
membrane of a drum. It should be understood that the membrane
extends to infinity and occupies the whole horizontal plane, and
ψ(t, x1, x2) is the vertical displacement at time t of the element of
the membrane whose horizontal coordinates are (x1, x2).

Recalling that the Lagrangian density is the difference of the
kinetic and the potential energy densities, from the form of (1) we
find that the total energy is given by

E(ψ) ≔ Ekinetic + Epotential

= 1
2
∫
ℝ2
c−2(∂tψ)2 +

1
2
∫((∂x1ψ)2 + (∂x2ψ)2),

(3)

and is a conservation law (a quantity independent of time).

Remark 1.1. By an appropriate choice of units, one can assume
that c = −1, which we will always do in the sequel. We will also
write

x ≔ (x1, x2), ∇ ≔ (∂x1, ∂x2), (4)

Δ ≔ ∂2x1 + ∂2x2, dx ≔ dx1dx2. (5)

Mechanical intuition suggests that in order to determine the
evolution in time of the disturbance of the membrane we need
to specify the initial conditions consisting of the initial positions
ψ(0, x) and the initial velocities ∂tψ(0, x) of all the elements of the
drum. One can indeed prove that for any such initial conditions,
equation (W) has a unique solution for all time, which moreover
depends continuously on the initial conditions (in an appropriate
sense that we will not make precise here), which is referred to as
global well-posedness.
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Having once more recourse to the intuition from mechanics,
we can expect that, if the membrane is initially perturbed only in
a bounded region and flat elsewhere, then this disturbance will
propagate in various directions, resulting in a decay of its amplitude,
namely

lim
t→∞

sup
x∈ℝ2

|ψ(t, x)| = 0, (6)

which is referred to as radiative behavior.

1.2 A few generalities on linear dispersive PDEs
Since it is hard to give a rigorous definition of a linear dispersive
PDE which would cover all the interesting cases, we limit ourselves
to the following heuristic definition.

Definition 1.2. A linear PDE is called dispersive if
(i) it is an evolution equation: it involves the time variable t and

the space variable x,
(ii) various frequencies propagate with distinct velocities.

Examples of linear dispersive PDEs include:
• the wave equation (W) and its analogs in higher space dimen-
sions,

• the Schrödinger equation,
• the Klein–Gordon equation,
but the list could be made longer. All these examples are time-
reversible and have a conserved energy, and yet smooth localized
initial conditions lead to radiative behavior as t → ∞.

Remark 1.3. Radiative behavior crucially depends on the fact that
the spatial domain is the whole Euclidean space (or in any case
that it is unbounded).

Remark 1.4. In some sense, for a linear dispersive PDE, the trivial
solution {ψ ≡ 0} is the global attractor of the flow.

2 The nonlinear setting: dispersion, solitons, soliton
resolution

For a comprehensive introduction to the topic of this section, the
reader can consult the monographs [42] and [36].

2.1 Wave maps
Wave maps are nonlinear, geometric analogs of linear waves
in the case of maps taking values in a Riemannian manifold,
rather than in a Euclidean space. We consider here wave maps
Ψ ∶ ℝ1+2 → 𝕊2 ⊂ ℝ3. In classical mechanics, a constrained me-
chanical system is obtained from the same Lagrangian as for the
ambient system, see [1, Chapter 4]. Following this principle and

recalling (1), we say that a map Ψ ∶ ℝ1+2 → 𝕊2 ⊂ ℝ3 is a wave
map if it is a critical point of the Lagrangian

L (Ψ) = 1
2
∫
ℝ1+2

(|∂tΨ|2 − |∂x1Ψ|2 − |∂x2Ψ|2), (7)

where | ⋅ | denotes the Euclidean norm in ℝ3. Similarly, as in Sec-
tion 1.1, we can consider Ψε = Ψ+ εZ, where Z ∶ ℝ1+2 → ℝ3 is
smooth and compactly supported. In order not to violate at main
order the condition that Ψε takes values in 𝕊2, it is necessary and
sufficient to require that

Z(t, x) ⟂ Ψ(t, x) for all (t, x). (8)

As in Section 1.1, we have

d
dε

|
ε=0

L (Ψε) = −∫
ℝ1+2

Z ⋅ (∂2tΨ− ΔΨ). (9)

This quantity vanishes for all Z satisfying (8) if and only if

∂2tΨ(t, x) − ΔΨ(t, x) = μ(t, x)Ψ(t, x) (10)

for some μ(t, x) ∈ ℝ. Differentiating twice the identity Ψ ⋅Ψ = 1,
we obtain

Ψ ⋅ (∂2tΨ− ΔΨ) = −|∂tΨ|2 + |∂x1Ψ|2 + |∂x2Ψ|2, (11)

so we can write the wave map equation ℝ1+2 → S2 as

∂2tΨ− ΔΨ = −(|∂tΨ|2 − |∂x1Ψ|2 − |∂x2Ψ|2)Ψ. (WM)

Similarly, as in the linear case, the total energy

E(Ψ) ≔ ∫
ℝ2
(1
2
|∂tΨ|2 +

1
2
|∂x1Ψ|2 +

1
2
|∂x2Ψ|2) (12)

is a conservation law for wave maps.
Equation (WM) has trivial constant in space-time solutions

Ψ(t,x) = ω0 ∈ 𝕊2. If we linearize around such a solution, that is, if
we write Ψ=ω0 + εΦ with ε≪ 1 and plug into (WM), at main or-
der we obtain ∂2tΦ−ΔΦ= 0; thus, each component of Φ satisfies
the wave equation (W), which indicates that small perturbations of
a constant solution should exhibit a radiative behavior, so that the
whole wave map should converge to a constant. It was proved in
the works of Tataru [43] and Tao [41] that, in an appropriate sense,
this is indeed the case.

For the study of the long-time behavior of solutions of (WM),
criticality is an important (and helpful) property. Let λ > 0 and
consider

Ψλ(t, x) ≔ Ψ(t/λ, x/λ). (13)

It is clear from (WM) (or from the Lagrangian) that Ψ is a wave
map if and only if Ψλ is a wave map. Moreover,

E(Ψλ) = E(Ψ). (14)

For this reason, equation (WM) is called energy critical, and its
solutions critical wave maps.
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Remark 2.1. In general, a problem is subcritical if it becomes
a “small data problem” when rescaling (zooming) to a small region.
It is called supercritical if such a zoom makes it large. It is called
critical if the size of the data remains unchanged.

2.2 Harmonic maps
One might wonder if every, not necessarily small, solution of (WM)
has radiative behavior. The answer is “no” for a simple reason:
there exist non-trivial static (time-independent) solutions. Namely,
insertingΨ(t,x) =ω(x) into (WM), we obtain the critical harmonic
map equation:

−Δω = |∇ω|2ω, ω∶ ℝ2 → 𝕊2 ⊂ ℝ3. (HM)

Its solutions are called harmonic maps ℝ2 → 𝕊2. It was proved
by Eells and Wood [13], and Hélein [17] that harmonic maps of
finite energy correspond to rational functions 𝕊2 → 𝕊2 and their
complex conjugates (we identifyℝ2 with 𝕊2 using the stereographic
projection).

Remark 2.2. It was proved by Krieger, Schlag and Tataru [26],
Rodnianski and Sterbenz [32], and Raphaël and Rodnianski [31],
that solutions of large energy can even cease to exist in finite
time. Equation (WM) is thus locally well-posed, but not globally
well-posed.

2.3 A few generalities on nonlinear dispersive PDEs
A nonlinear PDE is called dispersive if it is related to a linear dis-
persive PDE. Most frequently, “related” means “obtained through
linearization around trivial solutions,” like in the case of wave maps
discussed above.

Nonlinear dispersive PDEs appear frequently in physics, for ex-
ample in the study of water waves and nonlinear optics, see [44,
Chapters 12, 13, 16, 17]. Typical examples are Hamiltonian sys-
tems, which, in particular are time-reversible and have a conserved
energy.

One is often interested in the dynamical behavior of solutions
of a given nonlinear PDE, by which we mean their asymptotic
description as time becomes large (for solutions defined for all
time; if they are not, one studies the limit as the time tends to
the maximal time of existence of the solution). Among the most
common questions of this type is the problem of stability, which
can be formulated as follows.

Problem. Do small solutions of a nonlinear dispersive PDE exhibit
radiative behavior? In other words, does the flow restricted to
small solutions have a trivial attractor, like in the linear case (see
Remark 1.4)?

The intuitive reasoning is that small solutions should behave
in the same way as the solutions of the linearized problem, which
have radiative behavior as we saw in Section 1.2.

2.4 Solitons and soliton resolution
The notion of a soliton is somewhat controversial, see [28, Sec-
tion 1.5]. We adopt the following definition.

Definition 2.3. A soliton is a solution of an evolution PDE which
does not change its shape in the course of time (it can, however,
change its position).

Harmonic maps from Section 2.2 are examples of solitons
for (WM). Solitons moving at constant velocity can be obtained
using the Lorentz invariance of (WM).

Solitons do not exhibit radiative behavior. The problem of soli-
ton resolution is to prove that they are the only obstruction to
radiative behavior. However, it would be too naive to expect that
every solution is either radiative or a soliton. Rather, one expects
that every solution eventually decomposes into a superposition
of solitons which interact sufficiently weakly (for example, they
could travel with distinct velocities). Such superpositions are called
multisoliton configurations.

Problem (Soliton resolution conjecture). For a given nonlinear
dispersive PDE, does every solution converge in large time to the
sum of a multisoliton and a radiative term? In other words, does
the flow have a simple global attractor related to multisoliton
configurations?

The soliton resolution is inspired by
• numerical simulations, see Fermi, Pasta and Ulam [14], Zabusky
and Kruskal [45],

• the theory of completely integrable systems, see Segur and
Ablowitz [34], Eckhaus and Schuur [12],

• analogous elliptic and parabolic problems (bubbling), see Sacks
and Uhlenbeck [33], Struwe [39].

Remark 2.4. Even with such a vague formulation, the soliton
resolution is not expected to hold for all nonlinear dispersive PDEs.
For example, the sine-Gordon equation has so-called breather
solutions, which do not fall into the regime of soliton resolution.

Remark 2.5. Strictly speaking, soliton resolution only provides an
“upper bound” on the global attractor, in the sense that it does
not say anything on the types of multisoliton configurations which
can be realized by the evolution.

Our main goal is to provide an example of “natural” nonlinear
dispersive PDEs for which we can prove soliton resolution. Even
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though we cannot provide a full description of the global attractor,
we will see that it contains configurations consisting of more than
one soliton.

3 Soliton resolution for equivariant energy-critical wave
maps

3.1 Equivariant maps
The governing PDE will be obtained from (WM) by restricting the
flow to a certain subclass of all the maps ℝ2 → 𝕊2 which is pre-
served by the flow. They are called equivariant maps and are
defined in the following way. We fix k ∈ {1, 2,…} and consider
maps of the form

Ψ(t, r cosθ, r sinθ)

= (sin(ψ(t, r)) cos(kθ), sin(ψ(t, r)) sin(kθ), cos(ψ(t, r))),
(15)

where r > 0 and ψ(t, r) ∈ ℝ. Plugging this expression into (WM),
we find the scalar equation

∂2t ψ(t, r)− ∂2rψ(t, r)−
1
r
∂rψ(t, r)+

k2

2r2
sin(2ψ(t, r))= 0, (WMk)

where r > 0 is the radial coordinate. Note that ψ and ψ + 2πℓ
represent the same map Ψ for any ℓ ∈ ℤ.

Remark 3.1. In the non-geometric context, it is common to con-
sider spherically symmetric solutions. Equivariant solutions are
analogous objects in the geometric setting of (WM). More gener-
ally, whenever symmetries of a given equation lead to invariance
of a certain class of states, it is a well-known technique to study
the restriction of the system to this subclass.

One can check that under the substitution (15), the Lagrangian
(7) becomes

L ≔ π∬((∂tψ)2 − (∂rψ)2 −
k2 sin(ψ)2

r2
) rdrdt. (16)

Its critical points are thus k-equivariant wave maps, a fact that can
easily be checked directly. The kinetic energy and the potential
energy are

Ekinetic ≔ π∫
∞

0
(∂tψ)2 rdr, (17)

Epotential ≔ π∫
∞

0
((∂rψ)2 +

k2 sin(ψ)2

r2
) rdr. (18)

Their sum is the total energy, and it is a conserved quantity.
We always consider strong solutions of finite energy (that is,

strong limits of sequences of smooth solutions in the topology
induced by the energy, locally uniformly in time). Their existence
and uniqueness for any finite-energy initial conditions was obtained
in [15,35]. It can be deduced from Strichartz estimates for the wave

equation, see for example [5, Section 2] in the case k ∈ {1, 2}. If
k≥ 3 is large, Strichartz estimates from [30] can be applied, see [19,
Section 2]. Finite-energy solutions of (WMk) are not guaranteed
to exist for all time. We denote (T−, T+) ⊂ ℝ the maximal time
interval on which the solution exists.

3.2 Multibubble (multisoliton) configurations
Recalling the discussion from Section 2.2, the only k-equivariant
harmonic maps correspond to rational functions az k,az−k,azk and
az−k, with a > 0. In order to represent these maps in the context
of the scalar equation (WMk), it is convenient to denote

Qλ(r) ≔ 2 arctan( r
k

λk
), λ > 0. (19)

Then the stationary solutions of (WMk) are

Qλ + 2πℓ, −Qλ + 2πℓ,

π+ Qλ + 2πℓ, π− Qλ + 2πℓ,
(20)

for any λ> 0 and ℓ∈ℤ. In this context of equation (WMk), solitons
are also called bubbles. Note that, with our notational conventions,
λ is the spatial scale of the bubble Qλ. For a given number of
bubbles M, an integer m, and scales 0 < λ1 ≤ λ2 ≤ ⋯ ≤ λM, we
define a multibubble configuration by

Q(λ1,…,λM) ≔ mπ+
M

∑
j=1

±Qλj (21)

(in the notation, we skip the dependence on m, which is not going
to be essential here). One should think of the scales as satisfying
λ1 ≪ ⋯ ≪ λM, so that each bubble is separated in scale from
all the others. Figure 1 shows a multibubble configuration with
(λ1,λ2,λ3) = ( 1

10 ,
1
2 , 5).

3.3 Soliton resolution
Our main result can be formulated as follows.

Theorem 3.2 (Jendrej–Lawrie [21]). Let ψ be a solution of (WMk)
defined for all t ∈ (0,∞). As t → ∞, (ψ(t, ⋅), ∂tψ(t, ⋅)) decom-
poses into a superposition of
• multibubble configuration,
• radiation, corresponding to a solution of the linear wave

equation (W),
• remainder whose energy converges to 0.

Remark 3.3. We also prove a similar result in the case of a finite
maximal time of existence of the solution.

Remark 3.4. The case k = 1 was settled by Duyckaerts, Kenig,
Martel and Merle [8] using a different approach (so-called channels
of energy, see below).
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Figure 1. A multibubble configuration with three bubbles.

Remark 3.5. It was proved in [18] that for all k ≥ 2, there exists
a solution containing two bubbles. For these solutions, the radiation
component vanishes. It was proved in [21] that for k = 1 multi-
bubble solutions with vanishing radiation component do not exist.
Existence of multibubble solutions with a non-vanishing radiation
component is an open problem for all k.

The history of the progress on understanding the dynamical
behavior of large solutions of (WMk) is quite long. Fundamental
results were obtained in [2, 3, 37, 38], see also [36, Chapter 8],
the main conclusion being the decay of energy at the self-similar
scale, which in particular excludes self-similar blow-up, but also,
as proved by Struwe [40], leads to bubbling: if ψ is a solution of
(WMk) which blows up in finite time T+, then there exist sequences
tn → T+ and 0 < λn ≪ T+ − tn such that

(ψ(tn,λn⋅),λn∂tψ(tn,λn⋅)) → mπ± Q, (22)

the convergence being understood in the topology induced by the
energy locally (on bounded sets).

The bubbling also implies that a solution whose energy is
smaller than the energy of Q cannot blow up. It was proved by
Côte, Kenig, Lawrie and Schlag [5] that such a solution actually
has radiative behavior. Above this threshold energy, finite time
blow-up can occur, as was proved in the works [26,31,32] already
mentioned above. Important progress toward the soliton resolu-
tion conjecture was made in [6]. Sequential soliton resolution, that
is convergence to a superposition of solitons for a sequence of
times, was proved by Côte [4] for k∈ {1,2}, and Jia and Kenig [22]
for k ≥ 3. Similar results without imposing equivariant symmetry
assumptions, but with a less precise description of the radiation,
were obtained by Grinis [16].

In [19], continuous in time resolution was proved at the minimal
possible energy level allowing for existence of a two-bubble. As
a relatively simple consequence, continuous in time resolution was
proved in [20] under the assumption that the solution contains at
most two bubbles.

For the closely related energy-critical wave equation, scat-
tering below the ground state energy threshold was proved by
Kenig and Merle [24], establishing together with [23] the so-

called Kenig–Merle route map. In the radially symmetric case, the
soliton resolution conjecture was proved by Duyckaerts, Kenig
and Merle in space dimension 3 in [9], in any odd space dimen-
sion in [10], and in dimension 4 in [8] (in collaboration with
Martel). All these works used the channels of energy introduced
in [9].

In the non-radial case, sequential soliton resolution was proved
by Duyckaerts, Jia, Kenig and Merle [7].

3.4 Main ideas of the proof
Let ψ be a solution of (WMk) defined for all t ∈ (0,∞). Thanks
to the sequential soliton resolution results [4,22], we know that
there exists a sequence tn → ∞ such that (ψ(tn, ⋅), ∂tψ(tn, ⋅))
decomposes into a superposition of a multibubble configuration,
radiation and a small remainder. It thus suffices to prove a no-
return lemma: if a multibubble configuration is destroyed (we
say that a collision takes place), it cannot recover its shape (note
the analogy with non-existence of homoclinic/heteroclinic orbits).
A similar idea is present in the works of Duyckaerts and Merle [11],
Nakanishi and Schlag [29], Krieger, Nakanishi and Schlag [25] for
a single soliton which is linearly unstable. In our case, interactions
between solitons play a similar role as the linear instability in those
works. This idea has already been used in [19] in the special case
where there are only two bubbles and the radiative component
vanishes.

Funding. The author is supported by the ERC Starting Grant “IN-
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