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Every visitor to the Alhambra of Granada is captivated by the
beauty of the geometric decoration in the Nasrid Palaces, which
are spread across floors, ceilings, windows, doors and walls. In this
text, we aim to provide a brief introduction to the mathematical
secrets that the artisans and artists likely employed, under modern
point of views. We will review some Nasrid decorative elements,
rosettes and realizations of plane crystallographic groups.

1 Introduction

Muhammad I ibn al-Ahmar (1195–1273), also known as Alhamar,
founded the Nasrid dynasty in 1238, establishing the Emirate of
Granada in the south of present-day Spain. It became the only
surviving Islamic kingdom in the Iberian Peninsula, while others
like Jaén, Córdoba and Seville were defeated by the army led by
Ferdinand III of Castile. In fact, Alhamar became a vassal of Ferdi-
nand III, ensuring the survival of the Emirate of Granada for another
250 years. Naturally, everything related to these years in Granada
is called Nasrid. King Alhamar first ordered the construction of
a fortress on top of a hill. Along the next two centuries, the Nasrid
dynasty expanded this original castle into a complex of towers,
walls, gardens and palaces, known as the Alhambra. Nasrid arti-
sans and artists brilliantly decorated plenty of places, achieving
breathtaking results. In fact, some offices of the Museum of the
Alhambra contain several thousand pieces, ranging from single
tiles to complete decorative tilings.

Nasrid artisans and artists used basic tools, compared to our
modern technology, and a lot of inventiveness to make extremely
beautiful decorative creations out of plaster and tiles. From a math-
ematical point of view, they used a deep knowledge of Euclidean
geometry, and intuitive ideas of the four rigid movements of the
plane, namely, translations, rotations, reflections and glides (or
glide reflections).

We will pay attention to Nasrid decorative elements, rosettes
and examples of crystallographic groups. Also, we will provide
some hints of how to construct them. However, the reader should
be aware that we cannot go into much detail. Instead, one can
consult various books that summarize endless hours of work by

Figure 1. Walls in the Court of the Myrtles, full of pajaritas.

many authors. We just cite a few. The contributions of Rafael Pérez-
Gómez are important, see for example [7] and [1]. Also, the three
secondary school teachers Francisco Fernández, Joaquín Valder-
rama and Antonio Fernández wrote the book [3] to summarize
a life-long task of showing the many mathematical secrets of the
Alhambra to their students, in just 471 pages. In addition, Manuel
Martínez Vela’s book [5] can be seen as an introductory textbook
of the drawings in the Alhambra, with 226 pages, in which the
author explains step by step how to draw the most famous tilings
found there. By the same author, the book [4] is a second and
much bigger project with the same aim, but 608 pages. Most of
the drawings in the present paper are based on Manuel Martínez
Vela’s books.

2 Nasrid decorative elements

One can reasonably assert that all geometric, decorative construc-
tions in the Alhambra are based on lattices of squares, equilateral
triangles, or a mixture of squares and rectangles. In the following
subsections, we select just three of the typical Nasrid decorative
elements, among many.
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Figure 2. Steps to draw one pajarita.

2.1 The Nasrid pajarita (bow-tie)
This is the very symbol of the Alhambra. In fact, when entering
some villages close to Granada, the typical advertisement ‘Welcome
to…’ is illustrated with three or more Nasrid pajaritas. For example,
there are a few walls in the Court of the Myrtles full of pajaritas. See
Figure 1. In order to draw them, we make a lattice of circles with
the same radius. Finally, we choose the suitable arcs. See Figure 2.

2.2 The bone
This pattern can be found in the Chamber of Ambassadors, which
is one of the main rooms of the Nasrid Palaces. One way to draw
it is to make a lattice of squares, and then choose the right sides.
The heads are just made by drawing the diagonals of the correct
squares. See Figures 3 and 4.

Figure 3. Wall in the Chamber of Ambassadors.

2.3 The airplane
At the entrance to the Chamber of Ambassadors, on both walls,
there are two nicely decorated alcoves called tacas. Inside, you
can see a tiling of black and white figures called airplanes, see
Figure 5.

Figure 4. Steps to construct the Nasrid bone.

Figure 5. A tiling of black and white airplanes, Chamber of Ambassadors.

We start with a regular octagon. Then, we expand the sides
until they meet, and draw some diagonals. Next, we remark the
desired sides. We will return to this example later. See Figure 6.

Figure 6. A regular octagon with expanded sides and some diagonals, and
a black airplane.

3 Rosettes

The main idea is to draw a figure which rotates around a fixed
point (the center) a finite number of times, returning to the original
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position. A reflection axis containing the center is also possible.
In the Alhambra, there are rosettes almost everywhere, which
were used to decorate walls, windows, false windows, ceilings,
doors, etc.

Definition 3.1. Let Iso(ℝ2) be the group of (affine) isometries of
the Euclidean plane. A rosette is a plane figure F whose symmetry
group

G = { f ∈ Iso(ℝ2) ∶ f(F) = F}

is finite, with at least two elements. A group of Leonardo is a finite
subgroup of Iso(ℝ2) with at least two elements.

Note that the identity map is an isometry of any plane figure,
regardless of its shape. This is why we assume that there exists at
least another isometry.

Figure 7. Ceiling of the Room of Abencerrajes.

Theorem 3.2. The only possible groups of Leonardo are (isomor-
phic to) either:
1. A cyclic group generated by a rotation of center O and angle

2π/n, where n ∈ ℕ, n ≥ 2.
2. A dihedral group generated by a rotation of center O and

angle 2π/n, where n ∈ ℕ, n ≥ 2, and a reflection whose axis
contains the center O.

We will call the natural number n the order of the rosette. In
this way, there exist only two types of rosettes, namely cyclic or
dihedral. The first one can only admit rotations, and the second
one both rotations and symmetries. We show a few examples in
Figures 7, 8, 9, 10 and 11.

Figure 8. Rosette at Mexuar.

Figure 9. Chamber of Ambassadors.

3.1 The incredible case of the regular nonagon
It is well known that the regular nonagon is not constructible
with ruler and compass. However, it is possible to find examples of
rosettes of order nine in the Nasrid Palaces. We show four examples
in Figures 13, 15, 14, 16.

Before the wide adoption of personal computers, architects and
draftsmen used two right triangles known as set squares, usually of
two types: The first one with two angles of π/4 and the second one
with angles of π/3 and π/6. Arabic artisans also used right triangles
to make their designs, according to the book written by Diego
López de Arenas between 1613 and 1619, see [6] and [1]. In fact,
there were two families of right triangles, namely, cartabones
and ataperfiles. For each cartabon there was the corresponding
ataperfil, whose smaller angle was half of the smaller angle of the
cartabon. With them, it was possible to divide the straight angle
into several equal angles, taking the possible values 4, 5, 6, 7, 8, 9,
10, 12, 14, 16, 18 and 20, see [1].
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Figure 10. The Partal (on the left) and Court of the Lions (on the right).

Figure 11. Room of the Two Sisters.
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Figure 12. Splitting a straight angle into five equal angles with a cartabon.

We know that it is mathematically impossible to obtain some
of such angles with ruler and compass, according to the theorem

Figure 13. Rosette of order 9, wooden ceiling.

Figure 14. Rosette of order 9, false window, Court of the Myrtles.

of classification of constructible regular polygons. However, we
should recall that in the 20th century, it was possible to construct
protractors, which divided a straight angle in 180 equal parts, by
accepting a small enough error. Now, in the 21st century, the user
of some software can set the accuracy to make drawings.

We note that Manuel Martínez Vela in [4, pp. 366–371] ob-
tained a method to construct a rosette of order nine with an error
of just 0.2 degrees, which is a very good achievement.

The amazing fact is that the Nasrid artisans were able to con-
struct all these cartabones and ataperfiles with high precision,
bearing in mind the available technology in the Middle Ages.
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Figure 15. Rosette of order 9, Room of Abencerrajes.

Figure 16. Rosette of order 9, Point of Observation of Daraxa.

4 Crystallographic groups

Definition 4.1. A plane crystallographic group is a discrete sub-
group of the affine isometries ofℝ2 whose subgroup of translations
is generated by two linearly independent minimal translations.

Theorem 4.2 (Crystallographic restriction). Let rθ,c ∶ ℝ2 → ℝ2 be
a rotation of angle θ ∈ ]0, 2π[ and center c ∈ ℝ2. If rθ,c is an
element of a plane crystallographic group, then there exists m ∈
{2, 3, 4, 6} such that rθ,c∘ m… ∘rθ,c = Id (identity map).

As an element of a group, the order of rθ,c can only be m =
2, 3, 4 or 6. The point c is called a center of rotation or order m.

Note that the minimal angle of rotation can only be π (m = 2),
2π/3 (m = 3), π/2 (m = 4) or π/3 (m = 6). For our purposes,
we introduce now Conway’s notation, [2], with a little change. In
the book [2], the glide reflections are called miracles, but we avoid
this term.
o: Only translations.
∗: Reflections with respect to an axis.
×: Glide reflection (axis and translation vector).
∗n: When n different axes of reflection intersect at one point, called
rotation point.
∗np: When n axes of reflection intersect at one point, and also p
axes of reflection intersect at another point.
m: A center of rotation of order m not included in any reflection
axis, called gyration point.
Always, n,m, p ∈ {2, 3, 4, 6}, according to the Crystallographic
Restriction Theorem. With this notation, we completely determine
a group by its generators. To simplify notation, we discard the
translations. A suitable description is called a signature.

Examples.
∗∗ Two parallel axes of reflection.
∗× An axis of reflection and a glide reflection whose axis is parallel
to the first axis.
2∗22 First, the blue 2 stands for a gyration point of order 2. Next,
the red ∗22 indicates that there are two reflection axes at one point,
but also another pair of axes intersecting at a different point.
632 A gyration point of order 6, another gyration point of order 3,
and finally a gyration point of order 2. There are no reflection axes
in this case.
2222 Four different gyration points of order 2.

Theorem 4.3 (Classification of plane crystallographic groups). Up
to isometry, there are 17 different plane crystallographic groups,
described by their signature: o, ∗∗, ∗×, ××, 2222, ∗2222, 2∗22,
22×, 22∗, 333, ∗333, 3∗3, 442, ∗442, 4∗2, 632, ∗632.

Some authors complain that, sometimes, the painting, tiling,
or the decorative motive made of plaster is not big enough to be
properly considered an example or realization of a plane crystallo-
graphic group. However, in all the examples shown in this paper,
the main idea is there, up to the size of the tiling or plaster artwork.
That is to say, even though the given realization or construction
is not a perfect crystallographic group, I would like to think that,
indeed, just by chance or by good luck, these geniuses were able
to find all possible combinations without knowing it.

In the following list of Figures from 17 until 33, I provide the
Conway signature, a basic explanation, and the place. To be hon-
est, the last example (Figure 33) in our list is a bit complicated.
It is unknown where this example was exactly located. According
to [1, p. 500], there is an original hexagonal piece of ceramic, with
register number 1295.
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Figure 17. (1) ×× – Glide reflections with parallel axes. Painting, Wine
Gate.

Figure 18. (2) 22× – A glide and two gyration points of order 2. Ceiling,
Wine Gate.

Figure 19. (3) 3 ∗ 3 – A gyration point of order 3, and three axes
intersecting at a point. Paint, Wine Gate.

Figure 20. (4) ∗∗ – Parallel reflection axes. Column, Golden Patio.

Figure 21. (5) 22∗ – Two gyration points of order 2, and a reflection axis.
Fountain, Golden Patio.

Figure 22. (6) o – Only translations. Court of the Myrtles.

Figure 23. (7) Recall Figure 5. 2 ∗ 22 – One gyration point of order 2, and
perpendicular axes of reflection. Chamber of the Ambassadors.

Figure 24. (8) ∗× – A reflection and a glide reflection with parallel axes.
Chamber of Ambassadors.
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Figure 25. (9) ∗442 – Four reflection axes intersecting at one point. Room
of the Ship.

Figure 26. (10) ∗632 – Six reflection axes intersecting at one point. Court
of the Myrtles.

Figure 27. (11) ∗333 – Three points are the intersection of three reflection
axes. Court of the Lions.

Figure 28. (12) ∗2222 – Four points are the intersection of two
orthogonal reflection axes. Hall of the Kings.

Figure 29. (13) 632 – Gyration points of orders 6, 3 and 2. Hall of the
Kings.

Figure 30. (1) 442 – Gyration points of orders 4 and 2. Hall of the Kings.

Figure 31. (15) 4 ∗ 2 – A gyration point of order 4, and two reflection axes
intersecting at a point. The Infant’s Tower.

Figure 32. (16) 2222 – Gyration points of order 2. Generalife, Tower of
Ismail I.
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Figure 33. (17) 333 – Gyration points of order 3. The structure of the
drawing and the hexagonal shape can only lead to this 333 example.

5 A few words of gratitude

When the author was a young assistant professor in Granada
University, professors Rafael Pérez Gómez and Ceferino Ruiz Garrido
introduced him to the marvelous world of the mathematics in
the Alhambra. Bearing in mind the background of the ‘World
Mathematical Year 2000,’ professor Pérez Gómez made up a first
mathematical visit, and this author participated as one bumbling
mathematical guide. Since then, the author has been teaching this
subject to his students, as well as promoting it in talks for the
general public.

Finally, the author wishes to thank the Patronato de la Alham-
bra y Generalife, and especially Silvia Pérez López, who works at
the Fondo del Museo, for her kindness. Without her help, his stu-
dent Elora Prados Raya would have never made the video about
the crystallographic groups in the Alhambra.1

Remark. All photos were taken by Miguel Ortega or Raquel
Máiquez Sáez. All drawings made by Miguel Ortega.

1 https://www.youtube.com/watch?v=wl4h0Wot6cY

Funding. M. Ortega was partially supported the Spanish MICINN
and ERDF project PID2020-116126GB-I00.
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