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Stéphane Vinatier and Reg Alcorn

This article presents a series of hundreds of paintings produced by
the painter Reg Alcorn1 since 2017, entitled Transitions, as well as
the two mathematical objects he uses to determine the structure of
the paintings in this series, one ancient and the other more recent,
the Truchet tile and the Ulam spiral.

Figure 1. Let All Blues Rejoice, acrylic on canvas, 120× 120 cm, Reg
Alcorn (2019).

The title of our article echoes the one previously published
by the same authors in the same journal [19], in which we pre-
sented an initiative by the IREM of Limoges2 and the artist Reg
Alcorn, in collaboration with the CCSTI3 of Limousin Récréasciences,

1 https://www.reg-alcorn.fr
2 Institute of Research on Mathematics Education.
3 Center for Scientific, Technical and Industrial Culture.

to disseminate mathematical culture through artistic media: sev-
eral periods in the history of art were used to illuminate and
highlight mathematical concepts (Antiquity and proportion, the
Arab-Andalusian Middle Ages and paving, the Renaissance and per-
spective). Reg Alcorn’s art was then serving the topics explored in
this initiative by producing paintings that were used to explain
the artistic and mathematical concepts involved. In the series
Transitions, the artist reverses the perspective: he chooses objects
from his study of mathematics and its history and uses them for
his personal artistic explorations, resulting in unique works with
purely artistic aims.4

This may well be an effect of the work previously carried out
jointly by Reg Alcorn and the IREM of Limoges, which greatly
enriched the mathematical (or scientific) and artistic knowledge
of those involved. The artist has immersed himself in numerous
mathematical works (aimed at the general public, students and
even researchers), which has aroused in him a genuine fascination
for some of the objects or concepts encountered. So much so that,
after a maturing phase, two of them, from very different eras and
contexts, found themselves interwoven in the series of paintings
Transitions.

We will describe them in turn in the next two sections, taking
the opportunity to develop certain mathematical or historical as-
pects beyond what would be strictly necessary to understand the
artist’s use of them, in the hope that these digressions will be of
interest to our readers. Without pretending to be historians and
keeping to the surface of mathematical theories, we thought it
would be a good idea to present these objects through the circum-
stances of their discovery, surprising in both cases, to show how
they were apprehended and how they relate to key mathematical is-
sues at the beginning of the 18th century or today. Finally, for those
who would rather focus on the links between art and mathematics,
the definitions of the objects at the start of Sections 1 and 2 should
suffice to appreciate Reg Alcorn’s recipe for the paintings in his
Transitions series, which we will give in the third and final section.

4 That is why Reg Alcorn is listed as author of this article, almost
entirely written by the first author and based essentially on the artistic
investigation of the second.
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1 Truchet tiles

The first mathematical ingredient in the series Transitions, the
Truchet tile, is itself at the crossroads of science and art, as we shall
see. It takes us back to an important milestone in the development
of combinatorics, when Father Sébastien Truchet (1657–1729),
mathematician, typographer, “clockmaker, great canal specialist,
inventor of countless machines (cannons, tree-transplanting ma-
chines, sundials, etc.) including the famous mechanical tables of
Marly” [1], became interested in the different relative positions
of two squares, both divided into two colors: given two identical
squares, split in two along the diagonal, with one half white and
the other black (see Figure 2), in how many ways can they be
arranged in relation to each other?

Figure 2. Truchet tile.

This question is systematically discussed by Truchet in a 1704
paper for the Académie royale des sciences [18].

Combinatorics and tessellations. Before presenting his answer,
let us note that Truchet’s aim is to study ornamental pavings that
can be made from this tile (he proposes a selection of them in
his dissertation). This is indeed the motivation he himself gives
for his study, by way of an introduction to his Mémoire [18,
p. 363]:

On the last trip I made to the Orléans Canal by order of His
Royal Highness, I found in a castle named La Motte S. Lyé,
4 leagues from Orléans, several square fayence tiles divided
into two colors by a diagonal line, which were intended to
tile a chapel & several other rooms. In order to form pleasant
patterns & shapes by arranging these tiles, I first examined
how many ways two of these tiles could be joined together,
always arranging them in a chessboard.

This work, in which chance and curiosity seem to have played an
important role, makes him a precursor in the history of the study of
tessellations, which was little practiced by scientists before the 19th
century and the development of crystallography (although he had
Kepler5 as a very illustrious predecessor in this field [10]). It is also
based on a combinatorial study, a field to which his contribution
is described in [16, p. 377] as follows:

5 Johannes Kepler, German astronomer (1571–1630).

Truchet’s treatise is of considerable importance for it is in
essence a graphical treatment of combinatorics, a subject
that, under the influence of Pascal, Fermat and Leibniz, was
at the forefront of mathematics at the time.

The originality of his approach, which links combinatorics and
tessellations, is also underlined by André and Girou [3, p. 11].

Truchet’s treatise. He begins by presenting 64 combinations ob-
tained by considering that the two tiles are different: the first has
four possible orientations, as does the second, which can moreover
be placed against any of the four sides of the first. This number
of combinations is immediately reduced to 32 if we no longer dif-
ferentiate the two tiles, and further reduced to ten if, in addition,
we disregard the pairs of tiles that only differ by rotation.6 These
combinations and reductions are illustrated by two tables in [18],
reproduced in Figure 3.

The paper [15], in addition to examining the patrimonialization
in various ways (mathematical, playful, pedagogical) of the Truchet
tiles, rightly notes that ten equals the number of combinations
with possible repetition of two objects among four. This equality
does not seem immediately meaningful to us: if we have to choose
two of the four squares, with possible repetition, to form the
patterns considered by Truchet, and if we can arrange them in a line,
regardless of pairwise rotation, the order in which we arrange them
has an importance (ab does not produce the same result as ba,
regardless of pairwise rotation) and some of the resulting patterns
are identical after rotation, such as ab and dc (a, b, c, d denote the
tiles obtained by successive quarter-turn rotations of the Truchet
tile in Figure 2, see also Figure 9). However, these two effects
compensate each other: the involutions defined on {a,b, c,d}2 by
(x, y) ↦ (y, x) and (x, y) ↦ (r(y), r(x)), where r is the “half-turn”
that changes a to c and b to d, both have four fixed points and
six pairs of related couples, i.e., they have the same number of
orbits; yet those of the first involution correspond to combinations
with possible repetition, and those of the second to patterns of
two tiles regardless of pairwise rotation.

The “graphical treatment” of the combinatorial problem evoked
by [16] also consists in the spatial organization of the possible
configurations, which reflects the systematic study carried out by
Truchet: in each column of his Table I (see Table I in Figure 3), the
“first” tile is in the orientation drawn in the first row, while that of
the “second” varies according to the row; finally, the four relative
positions appear in the four corners of each box of the table. The
arrangement of the configurations shows the completeness of the
initial search, so all that remains is to identify those that are alike
according to the set criteria (Tables II and III in Figure 3).

The author adds that he has begun work on combinations of
three, four and five bisected tiles, but that he is not satisfied with

6 See [16, p. 384, note 5.] for a discussion of these reductions.
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Figure 3. Tables of the combinations obtained by Truchet [18]. (Source: gallica.bnf.fr / Bibliothèque nationale de France)

it and intends to publish it at a later date (which will not be the
case). Of course, complexity increases very rapidly with the number
of tiles, as can be seen in Reg Alcorn’s paintings, if only because
there are several spatial arrangements of three, four or five tiles: in
a line, in an ‘L,’ in a square, in a ‘T,’ in a cross…

Lastly, Truchet presents seven plates of tiling patterns obtained
by connecting some of the 64 tile combinations he has listed: they
include 24 tilings of size 12 × 12 tiles and six of size 24 × 18,
chosen from among 100 completed tilings, themselves selected
among patterns in “too large a quantity to report them all” [18,
p. 364].

Another reverend of the same religious order as Father Truchet,
Dominique Doüat, took up this work and published a Method for
making an infinite number of drawings in 1722 [8] containing 72
tilings produced with Truchet’s bisected tiles. We show one of his
plates in Figure 4.

Sources. For all Truchet-related information, Jacques André’s web-
site7 is an invaluable mine of documents and references, in addition
to his own publications on the subject [1,3]. In particular, he men-
tions the possibility of consulting Truchet’s treatise [18] on the
Bibliothèque nationale de France’s Gallica documentary database
(with plates of engravings ahead of the memoir), as well as in
English translation in [16]. Doüat’s work [8] (which André makes
available, preceded by a rich introduction) and the article Carreau

7 https://jacques-andre.fr/faqtypo/truchet/

(Architecture) [7] from Diderot and d’Alembert’s Encyclopédie, dis-
cussed below, are also available on Gallica in facsimile. For all these
documents, links to Gallica are provided in the bibliography. André
also points to the transcribed version of the Encyclopédie on the
ARTFL project site,8 see also the Édition Numérique Collaborative
et CRitique de l’Encyclopédie which combines transcription and
facsimile of the first edition.9

On Jacques André’s website, one can also find a document [2]
featuring illustrations of Truchet tilings from several sources: by
Truchet himself, in his treatise [18] and in the Description des arts et
métiers, an encyclopedia whose project was launched by Colbert,
directed in particular by Réaumur, to which he contributed10; by
Doüat [8]; from the Encyclopédie [7], whose Table des 64 combi-
naisons is reproduced (while pointing out an error); and from a later
work by an architect (Lemaire, 1862), from which two similarly
inspired plates are featured.

In the Encyclopédie. Diderot faithfully reproduces the contents of
Truchet’s treatise in the article ‘Carreau’ of the Encyclopédie [7]:
he presents the 64 combinations obtained by differentiating the
two tiles under consideration, as well as the reductions to 32 and
ten combinations we have described. He goes on to add a final

8 https://encyclopedie.uchicago.edu
9 https://enccre.academie-sciences.fr/encyclopedie/
10 The plates date from 1705, but this encyclopedia only began to be
published in fascicules from 1761 onwards.
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Figure 4. A plate of tilings by Father Doüat [8].
(Source: gallica.bnf.fr / Bibliothèque nationale de France)

(double) reduction, consisting of identifying identical combinations
by color inversion or by flipping (the latter identification is described
as follows: “if we suppose them traced on transparent paper, we
will see some of them by looking through the paper, the same
way we see the others on the paper itself” [7, p. 700]). This leaves
only four classes of combinations. He concludes the reduction as
follows:

Perhaps if we had looked for a way of arranging the combi-
nations of these tiles on paper, we would have found a law
that would have dispensed with the previous enumeration:
but this is what no one has yet attempted, nor the combina-
tion of several tiles, and even less the combination of tiles of
several colors.

It is noteworthy that Diderot concludes this study by highlight-
ing a number of gaps in the knowledge of the time on this subject,
which can be considered open questions to the scientific commu-
nity; and it is just as noteworthy that the artist Reg Alcorn happily
exploited a variant of this last gap, by declining at will the colors
of the halves of the squares he laid out on his canvas, taking full
advantage of his artistic freedom and finding there a field in which
to express his talent. To describe the way he arranges them, we’ll
introduce a second, more recent and complex mathematical object
a little further down, in Section 2.

Another enumeration of combinations. Before that, let us try to
answer Diderot’s first question and show how we can arrive at
the four terminal combinations more quickly than by Truchet’s and
Diderot’s successive reductions. We start with two empty squares,
and there is, disregarding rotation, only one way to assemble them
side by side:

We now add a diagonal to each: there are, a priori, two possible
choices of the diagonal in each of the two squares, so four possi-
bilities; but they are two by two identical by flipping, which leaves
us with the two configurations:

We now need to color one half out of two in each square. Again, in
each of the two configurations, there are two choices for the half to
be colored in each of the two squares, i.e., a priori four possibilities
for each configuration, which would make eight possibilities in
total. But each of these is accompanied by one where the colors are
reversed, so if we identify the identical combinations by reversing
the colors, this divides the number of possibilities by two, and we
get the following four combinations:

The result points the way to another, evenmore straightforward
demonstration: allowing rotation, the two tiles can be arranged
in a line and, allowing flipping and color inversion, we get the
following pattern first.

It remains to choose the second motif from the possible four.

2 The Ulam spiral

Now we come to our second mathematical ingredient.

Creativity from boredom. According to Martin Gardner,11 who tells
the story in an article for the popular science magazine Scientific
American [11], the mathematician Stanislaw Ulam, bored while
attending a conference in the autumn of 1963, began to draw
a grid on a sheet of paper to represent a chessboard; changing
his mind, he began to number the intersections starting from the
center of the grid and spiraling around it in an anti-clockwise
direction; then he began to circle the prime numbers and, to
his great surprise, saw lines forming along the diagonals (Fig-
ure 5).

As Gardner points out, this fact is not very significant for a small
spiral, insofar as all the integers belonging to a line of diagonal

11American writer (1914–2010), great popularizer of mathematics.
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65 64 63 62 61 60 59 58 57

66 37 36 35 34 33 32 31 56

67 38 17 16 15 14 13 30 55

68 39 18 5 4 3 12 29 54

69 40 19 6 1 2 11 28 53

70 41 20 7 8 9 10 27 52

71 42 21 22 23 24 25 26 51

72 43 44 45 46 47 48 49 50

73 74 75 76 77 78 79 80 81

Figure 5. Ulam spirals 9× 9 (prime numbers are circled) and 200× 200 (prime numbers are represented by gray dots, 1 in the center by a black dot).

direction have the same parity, all the primes (except one12) are
odd and the density of primes is high among the smallest integers.
So in the 9× 9 spiral shown in Figure 5, the 21 odd primes are
distributed among just 41 possible positions, forming lines parallel
to the diagonals…

Consolidation. However, Ulam was able to verify with two col-
laborators, Stein and Wells [17], that the observed phenomenon
was not confined to small integers, but appeared to be a general
property of prime numbers. To do this, they used the MANIAC II
computer at their research institution, the Los Alamos laboratory
of the University of California, as well as magnetic tapes containing
tables of prime numbers, to obtain spirals covering much larger
numbers of integers (photos of spirals obtained with 10000 and
65000 integers are reproduced in [11], they resemble the spiral on
the right in Figure 5, at different scales).

As impressive as these images of unexpected prime number
alignments may be, so much so that Ulam’s spiral made the front
page of the issue of Scientific American in which Gardner’s article
appeared, Ulam and his collaborators explain that they are due to
the large numbers of prime values taken by certain quadratic func-
tions of the integers, of the type n↦ an2 + bn+ c with a,b,c∈ℤ,
such as Euler’s famous formula

E(n) = n2 + n+ 41 (1)

for which all the values for n between 0 and 39 are distinct primes (!)
and which takes about 47.5% of prime values among its values
up to 10000000 [17, p. 520]. Ulam and his colleagues have identi-

12 Or rather except two!

fied other quadratic forms with high rate τ of prime values up to
10000000, including

4n2 + 170n+ 1847 (τ ≈ 46.6%),
4n2 + 4n+ 59 (τ ≈ 43.7%). (2)

However, the reporter of the article pointed out that the integer
values of the first are included in the sequence of numbers produced
by Euler’s formula (on even integers):

4n2 + 170n+ 1847 = E(2n+ 42).

The rate of 46.6% of prime values among values up to 107 of
E(2n+ 42) is roughly the rate of prime values among values up
to 107 of E at even integers; by comparison with the overall rate,
that at odd integers must be 48.4%. We do not know whether
this slight difference between the rates for even and odd integers
is asymptotically confirmed. We shall see below that our knowl-
edge of the asymptotic behavior of the number of prime values of
polynomials is essentially conjectural.

Alignments parallel to semi-diagonals. It is easy to position one-
self in Ulam’s spiral by observing (on Figure 5) that the piece
of spiral that goes from 1 to (2n + 1)2 for an integer n forms
a square, each side of which contains 2n+ 1 integers, centered
at 1, with the number (2n+ 1)2 = 4n2 + 4n+ 1 in the bottom
right-hand corner. We immediately deduce the expressions of the
numbers at the other corners of the square of size 2n+ 1. They
form the four semi-diagonals starting from 1, and are plotted on
Figure 6.

For example, the numbers of the southeast semi-diagonal
are the squares of odd integers, of the form 4n2 + 4n + 1, so
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Figure 6. Alignments parallel to semi-diagonals.

that the values of the second quadratic form mentioned in (2),
(4n2 + 4n+ 1) + 58, occupy, for n large enough, the translation
of this semi-diagonal by 58 upwards (we turn counter-clockwise,
following Ulam’s example).

Similarly, the numbers of the northeast (resp. southwest) semi-
diagonal are integers of the form 4n2−2n+1 (resp. 4n2+2n+1),
so that the values of Euler’s formula (1) at odd integers, E(2n−1)=
(4n2−2n+1)+40 (resp. at even ones, E(2n)= (4n2+2n+1)+
40), occupy, for n large enough, the translation of the northeast
(resp. southwest) semi-diagonal by 40 to the left (resp. right).

We therefore see in Figure 7 alignments of prime numbers
in directions parallel to the diagonals, produced by the quadratic
forms (1) and (2), which according to [17] take many prime values
at integers, up to 107. To find out whether this phenomenon
persists beyond this value, when the size of the spiral is further
increased, we need to look at the asymptotic behavior of these
polynomials.

Asymptotic behavior. Hardy and Littlewood’s “Conjecture F” (1923)
predicts the asymptotic behavior of the number of values of the
variable, natural number less than a positive real x, for which r poly-
nomials with integer coefficients simultaneously take prime values,
in the form of a constant depending on the respective polynomials
multiplied by the function x/(ln x)r. See [5] for more details in the
general case.

In [13], Jacobson and Williams study polynomials of degree 2
that generalize Euler’s formula, of the form fA(x)= x2 + x+Awith
A ∈ ℤ. Denoting by PA(n) the number of prime values taken by fA
at natural integers at most n and by Δ = 1− 4A the discriminant
of fA, they state Conjecture F as follows:

PA(n) ∼ 2C(Δ)∫
n

0

dx
ln fA(x)

, (3)

Figure 7. In the Ulam spiral 160× 160, E(n) for n ≤ 160: in red (prime
values) and blue (other values); 4n2 + 4n+ 59 for n ≤ 80: in orange
(prime values) and green (other values).

where the Hardy–Littlewood constant C(Δ) is defined by the Euler
product:

C(Δ) = ∏
p≥3

(1−
(Δp )
p− 1

).

It is a product on odd primes p, with (Δp ) denoting the Legendre
symbol for Δ on p. One can check by calculation (via integration
by parts) or by using the formulation of the conjecture given in [5]
(note that the constant is defined here by an Euler product over
all primes) that the equivalence (3) can also be written as

PA(n) ∼ C(Δ) n
lnn

. (4)

Under this conjecture, the constant C(Δ) has a decisive influence on
the asymptotic behavior of the number of prime values taken by fA.

The numerical results support Conjecture F. For A= 41, we have
C(−163)= 3.3197732 and the Euler polynomial x2 + x+ 41 takes
87% of prime values up to 100 (estimated value using (4): 72%) and
47.5% up to 3162 = ⌊√107⌋ according to [17] (estimated value:
41.2%). We know from [13] that this rate is 22.08% up to 107 (es-
timated value: 20.6%) and that, for A′ = 3399714628553118047,
we have

C(−13598858514212472187) = 5.3670819

and 25.17% of prime values up to 107; even if this rate is lower than
the estimated value (33.3%), it is higher than the corresponding
rate for A = 41, which seems to corroborate the fact that a larger
Hardy–Littlewood constant corresponds asymptotically to a larger
number of prime values.
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The value of C(Δ) associated with the integer A′ considered
above was the largest known before the calculations presented
in [13]. The prepublication [4, §4.2] explains how to determine
a high-precision approximate value of C(Δ) and also gives as an ex-
ample the much smaller value for A = 75, C(−299) = 0.3109767.
The maximum value for C(Δ) found by Jacobson and Williams is
5.65726388 (under the generalized Riemann hypothesis), corre-
sponding to an integer with 71 decimal digits.

Arithmetic progressions. One may also see in [5] that, while the
general Conjecture F is supported by numerical calculations and
sieve methods, it is only proven in the case of one polynomial of
degree 1: it then comes down to Dirichlet’s arithmetic progressions
theorem (in the quantitative version proved by de La Vallée Poussin),
which states that for all coprime integers a,b the polynomial ax+ b
takes infinitely many prime values (uniformly distributed in the in-
vertible classes modulo a). More precisely, denoting by Pa,b(n) the
number of prime values of ax+ b at natural numbers at most n,
we have the equivalence

Pa,b(n) ∼
a

φ(a)
n
lnn

where φ is the Euler totient function; this confirms the equiv-
alence (4) and specifies the Hardy–Littlewood constant in this
particular case. This result in degree 1 also has a graphic inter-
pretation: let us write the integers in a rectangular grid of given
width, starting at the top left and filling the grid line by line. The
numbers an+ b for n∈ℕ then lie on a straight line (cut into pieces
by the grid), so the corresponding prime values again produce
alignments.

In all other cases, we cannot even prove that the number whose
asymptotic behavior the conjecture predicts, tends towards infinity
with x. For example, the integer values of the two polynomials x
and x+ 2 that are simultaneously prime are the twin primes, and
we do not know whether they are infinite or not.

In degree 1, we know even more thanks to Green and Tao’s
Theorem [12]: not only do arithmetic progressions contain an in-
finite number of primes, but there are arithmetic progressions of
primes of any length: for any natural number k, there are primes
p1, p2, …, pk which are consecutive terms of an arithmetic se-
quence, i.e., such that the differences pi+1 − pi are constant. The
proof of the theorem is not constructive, and finding such se-
quences is difficult, as the common difference is likely to be very
large.13

Small variable values. Several authors have studied the first values
of other polynomials of degree 2, with smaller coefficients and for
smaller values of the variable, and therefore more likely to explain

13 The current record is for k = 27, set by Gahan in 2019, see https://
oeis.org/A327760.

the lines that show on the small-scale plots of Ulam’s spiral. The
polynomial of degree 2:

36x2 + 18x− 1801 (5)

holds the current record for the number of consecutive distinct
prime values: 45 (between −33 and 11, established by Ruby
in 1989); it therefore surpasses the Euler polynomial (only two
other polynomials are known for which this is true, due to Fung
and dating from 1988). In addition, it takes 49 distinct prime values
in 50 consecutive values of the variable, with five possible starts
between −41 and −33. See the introduction and Section 2 of [9]
for details.
In that paper, Dress and Olivier present the results of their numer-
ical search for polynomials with a large number of prime values,
counting only the distinct prime values taken for 50, 100, 500 or
1000 consecutive values of the variable. In the latter case, they
significantly improve on previous results with the polynomials
• x2 + x − 1354363: 698 prime values (from x = 1139 to
x = 2138);

• x2 + x− 752293 and 4x2 + 2x− 349513: 685 prime values;
• 4x2 + 2x− 501229: 684 prime values.
Note that 36x2 + 18x− 1801 = E(6x+ 1) − 1844 and that,

for any A ∈ ℤ:

x2 + x+ A = E(x) + A− 41

and

4x2 + 2x+ A = E(2x) + A− 41,

so that the polynomials we have just discussed, like Euler’s formula,
produce alignments in Ulam’s spiral parallel to the northeast and/or
southwest semi-diagonals, provided the value of the variable is
sufficiently large. A number of other polynomials taking a large
number of prime values appear in [9], which are neither of this
form nor of the second identified by Ulam and his collaborators (2),
including in degree 2. A precise description of the alignments that
may appear in Ulam’s spiral is found in [14], along with figures
showing the distribution of values of some of these other polyno-
mials (in the spiral-wound plane as for Ulam’s spiral), such as the
one in Figure 8.

3 The genesis of the Transitions series

At the origin of the Transitions series, there is … a desire for geom-
etry! Like several other artists before him, Reg Alcorn was looking
for a geometric process to structure the canvases of his new series.
Among the artists who followed this path, some of them hav-
ing links to mathematics, are Mondrian (1872–1944), Kandinsky
(1866–1944), Vasarely (1906–1997), Morellet (1926–2016) and, of
course, Picasso (1881–1973) and the Cubist movement in general,
for the analysis of perception and the geometrization of space.
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Figure 8. Fung polynomial values 103n2 + 31n− 3391 for n ≤ 1000
(prime values in red).

3.1 Reg Alcorn’s approach
For his series of paintings Transitions, the artist has developed
a systematic procedure14 determined by the two mathematical
ingredients presented above: Truchet tiles and Ulam’s spiral. In fact,
to the four tiles obtained by turning the Truchet tile in Figure 2,
he adds two: an all-white square and an all-black square. It is
convenient to codify them as in Figure 9.

a b c d k w

Figure 9. The expanded Truchet tile inventory.

He then chooses a sequence of some of these tiles, of any
length, for example daadb, and – instead of arranging it in a line,
which would look like this:

– he winds it in a spiral from the center of the painting, repeating
the sequence identically until the painting is filled. In our example,
the first steps are:

14Although he might occasionally deviate from it, over the course of the
two hundred paintings in this series.

for the first occurrence of the sequence, then:

and

with two, three, four and five occurrences respectively (a complete
square is obtained). Figure 10 shows the result with 20 occurrences
of the sequence (i.e., 100 tiles forming a square of 10×10).

Figure 10. The pattern daadb wound in a spiral (repeated 20 times).

We realize immediately that the very simple process we have im-
plemented quickly produces complex, unpredictable patterns, even
though they are determined by the sequence chosen at the outset
and, in particular, are highly dependent on its length. For example,
it can be seen in Figure 11 that sequences with lengths in multiples
of four produce much more regular patterns than the example of
length five chosen above, notably because the numbers belonging
to any of the pattern’s semi-diagonals are always congruent mod-
ulo 4. This means that the same tile can be found all along (resp.,
at least every other time) a semi-diagonal of a pattern produced by
a sequence of length four (resp., eight). It is worth noting that, even
in this case, reversing two tiles will produce very different effects.

An atlas of sequences is in preparation, which promises to
show the incredible richness of this process, complementing the
numerous canvases created by the artist, more examples of which
are given below.
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Figure 11. abck, abkc and aaawwwww.

3.2 Playing with color
Once the sequence has been selected and the configuration of
the painting determined, Reg Alcorn’s art consists in choosing the
colors that will replace the black and white of the areas drawn
by the completed paving, accentuating particular motifs, some-
times revealing different ones depending on the distance from
the viewer,15 provoking amazing visual effects as in the paintings
displayed in Figure 12, where the complex juxtapositions of colors
puzzle and draw the eye in, and can even, in full size, make us
doubt the reality of what we are actually looking at.

Combining colors. The basic rule is to choose two main colors,
red and green for example, which complement each other well,

15 It is striking that, with a completely different take on Truchet’s tilings,
[16] also stresses the differences in perception depending on distance
from the motif or the scale at which it is viewed.

and assign one to the white areas created by the paving, and the
other to the black areas. However, in the world of painting, things
are not all black and white, and different combinations of the two
colors can replace either one or the other for a given area, obtained
either by mixing them in varying proportions, or by superimposing
one on the other. The choice of one variant or another may be
guided, for example, by the shapes that appear and whether or
not the artist wishes to emphasize them, or simply by the color
harmony of the painting.

Then, during the slow, delicate work of filling in the areas, the
artist gives free rein to his inspiration to introduce a third, warmer
color here, a cooler one there, as the overall picture takes shape in
his mind, and he senses whether or not to broaden his palette. In
the end, there are no real rules when it comes to the colors: the
constraint of the paving patterns is the framework within which
the artist’s freedom to choose, arrange and interact with them can
fully expand. In his words:

Figure 12. The paintings Golden Orbweaver, oil on canvas, 130× 130 cm (2018); Garden Raga, acrylic on canvas, 130× 130 cm (2019); Stripe Break,
acrylic on canvas, 120× 120 cm (2020) – Reg Alcorn.

28 EMS MAGAZINE 135 (2025)



Coming across a picture of the Ulam spiral in a completely
different context, I saw the potential. The creation of the
paintings at first depends largely on these calculations, but in
the elaboration, the eye and intuition also come into play.

Precision. Long an adept of fast painting, where brushstrokes
amalgamate colors into rich, vibrant textures with slightly blurred
outlines, Reg Alcorn adopted a different way of painting for the
Transitions series: slow, precise work, very sharp contours, which
he had previously experimented with in geometrically patterned
canvases inspired in particular by Penrose tilings.

Although the colors are well delineated on the canvas, predict-
ing the effect their juxtaposition will produce in the patterns created
by the sequence of Truchet tiles is a challenge that only the artist’s
long experience and sense of color can meet. And there are surpris-
ing outcomes in certain cases, when the colors “vibrate” in contact
with each other, whenever the eye is at the right distance from the
canvas. All this is the fruit of long-term research, as he explains:

I spent a long time trying to develop a formal grammar
capable of exploiting these combinations, in order to create
compelling yet legible configurations for any harmony, and to
highlight the colors’ distinct identities.

Pigments. Note that the chemical composition of the pigments
is very important for this work: for example, the red-green sec-
tor shows significant variations in visual impact depending on
whether, for example, cadmium red dark is used in combination
with phthalocyanine green, or iron oxide red with green earth.

There are actually a dozen top-of-the-range reds, according to
paint manufacturers, made of either mineral, vegetable or synthetic
pigments, with differences in hue, transparency or opacity. Their
texture depends on the thickness of the paint, the additives and
tools used, the texture of the canvas fabric and its preparation for
the color. Let us take two colors as examples: cadmium red light, an
opaque, vivid color with great visual impact, and alizarin crimson
red, a transparent, very dark color with a violet-red tendency. Their
juxtaposition enhances their identities, while their overlay modifies
both colors.

The paintings in the “Transitions” series invite us to discover
a chromatic perspective, giving the illusion that colors are at
different distances. Composing these paintings, I embarked
on an exciting odyssey, exploiting the alchemy of colors
and multiple combinations without being committed to
representativeness. This is the heart of “Transitions.”

3.3 Variations
The rule we have described for determining the paintings’ motifs,
that is, the choice of a sequence of Truchet tiles wound into a spiral,

has also been subject to exceptions, even transgressions, in the
course of the very many canvases that have been created. These
have often proved to be judicious and enriching in terms of new
perspectives. Some paintings, for example, are constructed from
several spirals starting from different foci, which can give the impres-
sion of a more realistic painting: with five foci, one thinks almost
instinctively of the more or less symmetrical five-pointed shapes so
familiar in the natural environment, like that of a silhouette with
a head, two arms and two legs, somehow blurred by the pictorial
process, unless the colors chosen by the painter make it appear.

In other paintings, Truchet tiles are replaced by “Pythagorean”
rectangles cut diagonally into two triangles of sides 3, 4, 5, wound
into a spiral in the same way as before. The first consequence
is that the canvases are no longer necessarily square, which was
almost always the case before, as a matter of construction; the
second is that the lines delimiting the spiral are less blended into
the overall motif, revealing more of the painting’s structure. Finally,
the elongated triangles give rise to smoother, more fluid shapes
than Truchet’s tiles. Of course, the artist also played with mixing
“Greek” tiles with Truchet’s, or even with squares cut into four
triangles along the diagonals – there are countless combination
possibilities… An example is shown in Figure 13.

3.4 From so simple a beginning
A stunning characteristic of Reg Alcorn’s process is that, despite its
great simplicity, it produces extraordinarily rich and complex pat-
terns. Music is another artistic field where this principle is frequently
found.

Figure 13. Snow step, oil on canvas, 120× 120 cm, Reg Alcorn (2023).
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Electronic musician Grand Ciel experimented with it, notably by
mixing loops of very simple sounds of different lengths (on three,
four and five beats, for example), on the occasion of a conference-
performance organized by the IREM de Limoges for the Fête de
la Science 2019, at the Musée national Adrien Dubouché in Limo-
ges, as part of the Year of Mathematics. This show entitled From
so simple a beginning sought to dramatize that principle, with
a live performance by the painter and musician improvising to-
gether, following a two-part lecture by the first author and his
colleague Olivier Prot, to introduce the theme, the Ulam spiral and
Reg Alcorn’s method.

During a second, longer performance of the show, we also pro-
posed an example of a mathematical question in which complexity
appears unexpectedly in a problem that is easy to state, in this
case the Jacobsthal function that associates with any integer n the
largest difference between two consecutive integers prime to n,
and for which only about sixty terms are known when applied to
primorials.16 The firsts are

2, 4, 6, 10, 14, 22, 26, 34,

and the following is not 38 but 40!
The show’s title quotes Charles Darwin [6], to reflect the fact

that the mentioned characteristic, far from applying only to the
arts or mathematics, is intrinsic to the evolution of life:

From so simple a beginning, endless forms most beautiful
and most wonderful have been, and are being, evolved.
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