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We give an overview of recent advances on the circular restricted
three-body problem, from the perspective of modern symplectic
geometry, and describe a “symplectic toolkit” created in connec-
tion to spacecraft trajectory design. This is based on the author’s
recent book draft.

1 Introduction

The three-body problem is the dynamical system corresponding to
three masses under gravitational interaction, as described by New-
ton’s law. It is one of those ancient conundrums that has withstood
the ages, maturing like a complex wine. Its study goes back at least
to the times of Newton, and its history is tied up with some of the
most brilliant scientific figures, like Kepler, Poincaré, Arnold, Moser,
and so many others, who had the courage to try to delve into its
well-hidden secrets. The aim of this short note is to describe some
of the recent advances in a special case of this problem, made
possible through the modern methods of symplectic geometry. In
what follows, we will restrict our attention to the circular and
restricted three-body problem (or CR3BP for short), corresponding
to the case where one of the masses is negligible, and the other
two move in circles around their common center of mass. We will
focus on the spatial problem, where the negligible mass moves in
three-space, as opposed to the planar problem, where it moves in
the plane. Despite the simplifications and approximations, this is
still an outstanding open challenge.

The CR3BP is not only interesting from a theoretical point of
view, but also from a practical perspective, due to its deep connec-
tions to astronomy and space exploration. Namely, the CR3BP is
one of the most basic models approximating the motion of a space-
craft under the influence of a planet–moon system. This is a modern
interpretation: unlike the times of Newton, when space travel was
but a wild opium dream, in the current day and age, when mission
proposals to remote regions of our expanding Universe are com-
mon currency, the CR3BP is one of the preeminent models used
for spacecraft trajectory design. In the context of astrodynamics,
the CR3BP is then the theoretical starting point supporting the
high-fidelity (or ephemeris) numerical studies which go into actual

mission proposals. While finding trajectories that meet the require-
ments of an actual mission is a very complicated art, the families of
periodic orbits found in the CR3BP, as well as the stable/unstable
manifolds of some of them, can be used as building blocks for
designing the desired trajectories, and to transfer between them.

We will first discuss some of the theoretical aspects, and then
those aspects which are closer to applications. In particular, we will
describe a “symplectic toolkit” created with the needs of trajectory
design in mind, the result of a collaboration of the author with
NASA engineers. More details can be found in the author’s recent
book draft [13] (see also Quanta Magazine’s recent article [19]).

2 The CR3BP

We consider three bodies: Earth (E), the Moon (M) and a satellite
(S), with masses mE, mM, and mS. One has the following cases and
assumptions:
• (Restricted case) mS = 0, i.e., the satellite is negligibly small
when compared with the primaries E and M;

• (Circular assumption) Each primary moves in a circle, centered
around the common center of mass of the two (as opposed to
general ellipses);

• (Planar case) S moves in the ecliptic plane containing the
primaries;

• (Spatial case) The planar assumption is dropped, and S is
allowed to move in three-dimensional space.
We denote the mass ratio by μ = mM

mE+mM
∈ [0, 1], and we

normalize so that mE +mM = 1, and so μ = mM can be thought
of as the mass of the Moon. In rotating coordinates, in which both
primaries are at rest, the Hamiltonian describing the problem is
actually autonomous. If the positions of the Earth and the Moon
are E = (μ, 0, 0) and M = (−1+ μ, 0, 0), the Hamiltonian is

H∶ ℝ3\{E,M} × ℝ3 → ℝ,

H(q,p) = 1
2
‖p‖2 − μ

‖q−M‖ − 1− μ
‖q− E‖ + p1q2 − p2q1.

By conservation of energy, this means that H is a preserved quan-
tity of the Hamiltonian motion. The planar problem is the subset
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{p3 = q3 = 0}, which is clearly invariant under the Hamiltonian
dynamics. The two parameters in the problem are the Jacobi
constant c (the energy value), and μ.

As computed by Euler and Lagrange, there are precisely five criti-
cal points of H, called the Lagrangian points Li = Li(μ), i= 1,…, 5,
ordered so that H(L1) < H(L2) < H(L3) < H(L4) = H(L5). The
low-energy range corresponds to c < H(L1) (or slightly above).

For c ∈ ℝ, consider the energy hypersurface Σc = H−1(c). If

π∶ ℝ3\{E,M} × ℝ3 → ℝ3\{E,M}, π(q,p) = q,

is the projection onto the position coordinate, we define the Hill
region of energy c as

𝒦c = π(Σc) ∈ ℝ3\{E,M}.

This is the region in space where the satellite of energy c is allowed
to move. If c < H(L1), then 𝒦c has three connected components:
a bounded one around the Earth, another bounded one around the
Moon, and an unbounded one. Denote the first two components
by𝒦E

c and𝒦M
c , and set ΣEc = π−1(𝒦E

c)∩ Σc, ΣMc = π−1(𝒦M
c )∩ Σc.

As c crosses the value H(L1), 𝒦E
c and 𝒦M

c get glued together into
a new connected component, 𝒦E,M

c , topologically their connected
sum. Then, the satellite in principle has enough energy to transfer
between Earth and the Moon. See Figure 1.

3 Theoretical aspects

3.1 The Poincaré–Birkhoff theorem, and the planar CR3BP
Poincaré [16,17] reduced the problem of finding periodic orbits in
the planar CR3BP to:
(1) finding a global surface of section for the dynamics;
(2) proving a fixed point theorem for the resulting first-return map.
This is the setting for the celebrated Poincaré–Birkhoff theorem.

3.2 Collision regularization
The 5-dimensional energy hypersurfaces in the spatial CR3BP are
non-compact, due to collisions of the massless body S with one of
the primaries. Two-body collisions can be regularized via Moser’s
recipe. The bounded components ΣEc and ΣMc (for c < H(L1)), as
well as ΣE,Mc (for c ∈ (H(L1),H(L1) + ε)), are thus compactified to
compact manifolds ΣEc ≅ ΣMc ≅ S3× S2, and ΣE,Mc ≅ S2× S3#S2× S3.
In the planar problem, we obtain copies of ℝP3 and ℝP3#ℝP3. We
use the notation ΣEP,c, Σ

M
P,c and ΣE,MP,c for the corresponding planar

regularized energy level sets.

3.3 The advent of contact geometry in the CR3BP
It was only recently that the modern techniques from contact and
symplectic geometry (holomorphic curves, Floer theory, etc.) have
been made to bear on the CR3BP. This is due to the following result.

EL3 L1 M L2

L5

L4

Figure 1. The Hill regions and the Lagrange points for the planar problem.

Theorem 1 ([1] (planar problem), [5] (spatial problem)). If c<H(L1),
the regularized hypersurfaces ΣEc, Σ

M
c , Σ

E
P,c, Σ

M
P,c carry contact struc-

tures. The same holds for ΣE,Mc and ΣE,MP,c , if c ∈ (H(L1),H(L1) + ε)
for sufficiently small ε > 0.

3.4 Open book decompositions
We have the following fundamental notion from smooth topol-
ogy.

Definition 3.1 (Open book decomposition). Let M be a closed
manifold. A (concrete) open book decomposition onM is a fibration
π∶ M\B→ S1, where B⊂M is a closed, codimension-2 submanifold
with trivial normal bundle. We further assume that π(b, r,θ) = θ
along some collar neighborhood B ×𝔻2 ⊂ M, where (r, θ) are
polar coordinates on the disk factor.

The submanifold B is called the binding, and the closures of the
fibers P= Pθ = π−1(θ) are called the pages, which satisfy ∂Pθ = B
for every θ. We usually denote a concrete open book by the pair
(π,B), but also use the abstract notationM=OB(P,φ), where φ is
a diffeomorphism φ∶ P → P with φ = id near B (the monodromy).
See Figure 2.

If M is oriented and endowed with an open book decomposi-
tion, then the natural orientation on the circle induces orientations
on the pages, which in turn induce the boundary orientation on
the binding.
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Figure 2. A neighborhood of the binding look precisely like the pages of
an open book, whose front cover has been glued to its back cover via
some gluing map (the monodromy).

Definition 3.2 (Giroux). Let (M,ξ) be an oriented contact manifold,
and (π,B) an open book decomposition onM. Then ξ is supported
by the open book if one can find a positive contact form α for ξ
(called a Giroux form) such that:
(i) αB ∶= α|B is a positive contact form for B;
(ii) dα|P is a positive symplectic form on the interior of every

page P.
Here, a positive contact form is a contact form α on M2n−1 such
that the orientation induced by the volume form α∧ dαn−1 coin-
cides with the given orientation on M.

We say that the open book is adapted to the dynamics of α if
(i) and (ii) hold. One has the following fundamental result.

Theorem 2 (Giroux [8]). Every open book decomposition supports
a unique isotopy class of contact structures. Any contact structure
admits a supporting open book decomposition.

Here, two contact structures are said to be isotopic if they can
be joined by a smooth path ξt of contact structures. By Gray’s
stability result, isotopic contact structures are contactomorphic,
i.e., there exists a diffeomorphism which carries one to the other.

Remark 3.3. In fact, Giroux’s result is stronger, as there is in fact
a correspondence between contact structures up to isotopy and
open books up to a notion of positive stabilization. Giroux proved
this in dimension 3, and the result was recently established in higher
dimensions by Breen, Honda, and Huang [3].

We usually write (M,ξ) =OB(P,φ) to indicate that the contact
structure ξ is supported by the open book (P,φ).

The Giroux correspondence reduces the topological study of
contact manifolds to the topological study of open books. How-

ever, this result holds only when the (isotopy class of the) contact
structure is fixed, and the contact form (and hence the dynamics)
is auxiliary; Giroux’s result is not dynamical, but rather topologi-
cal/geometrical. But this will serve as motivation for what comes
next.

3.5 Open books in the CR3BP
Let Σc stand for either ΣEc, Σ

M
c or ΣE,Mc (for the spatial problem).

The following result generalizes the approach of Poincaré in the
planar problem (i.e., step (1)) to the spatial problem. Combining
Theorem 1 with the Giroux correspondence, we know there exist
supporting open book decompositions on Σc when c belongs to
the low-energy range. However, as we emphasized already, this
correspondence does not give adapted open books whenever the
dynamics is fixed. The content of the following result is that the
given dynamics of the spatial CR3BP in the low-energy range, and
near the primaries, is given by a contact form which is a Giroux
form for some concrete open book.

Theorem 3 (Moreno–van Koert [15]). For any μ∈ [0,1], if c lies in
the low-energy range, Σc admits a supporting open book decom-
position for energies c < H(L1) that is adapted to the dynamics.
Furthermore, if μ< 1, then there is ε> 0 such that the same holds
for c ∈ (H(L1),H(L1) + ε). The open books have the following
abstract form:

Σc ≅

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪
⎩

(S∗S3, ξstd) = OB(𝔻∗S2, τ2), if c < H(L1),
(S∗S3, ξstd)#(S∗S3, ξstd)
= OB(𝔻∗S2 ♮𝔻∗S2, τ21 ∘ τ22), if c ∈ (H(L1),H(L1) + ε),

μ < 1.

In all cases, the binding is the planar problem is

B= ΣP,c =

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

(S∗S2, ξstd), if c < H(L1)
(S∗S2, ξstd)#(S∗S2, ξstd), if c ∈ (H(L1),H(L1) + ε),

μ < 1.

Here,𝔻∗S2 is the unit cotangent bundle of the 2-sphere, τ is the
positive Dehn–Seidel twist, and𝔻∗S2 ♮𝔻∗S2 denotes the boundary
connected sum of two copies of 𝔻∗S2. The monodromy of the
second open book is the composition of the square of the positive
Dehn–Seidel twists along both zero sections (they commute).

4 Practical aspects

A given Hamiltonian system usually depends on parameters (e.g.,
energy or mass parameters), which one may vary. Under such defor-
mations, periodic orbits may undergo bifurcation, a mechanism by
which new families of periodic trajectories arise. The way different
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Figure 3. Theorem 3 admits a physical interpretation: away from collisions,
the orbits of the negligible mass point intersect the plane containing the
primaries transversely. The “pages” {q3 = 0,p3 > 0}, {q3 = 0,p3 < 0} of
the “physical” open book (q,p) ↦ q3+ ip3

‖q3+ ip3‖ ∈ S1, are global
hypersurfaces of section outside of the collision locus.

families can connect to each other is encoded in the topology of
a bifurcation graph. The aim of this chapter is then to introduce
a “symplectic toolkit,” extracted from the modern methods of sym-
plectic geometry, and designed to systematically map out how
different orbit families merge together.

4.1 Symplectic data analysis
The “symplectic toolkit” consists of the following elements:
(1) Floer numbers: Integers that are invariant under bifurcation,

and so can help predict the existence of orbits.
(2) The B-signs [7]: a± sign associated to each elliptic or hyperbolic

orbits, which helps predict bifurcations, and generalizes the
classical Krein theory [9,10].

(3) Global topological methods: the (geometric invariant theory)
GIT-sequence [7], a sequence of spaces whose global topology
encodes bifurcations, and refines Broucke’s stability diagram [4]
by adding the B-signs.

(4) CZ-index [6,18]: a winding number associated to non-degen-
erate orbits, extracted from the topology of the symplectic
group. It can be used to determine which families connect
to which.

4.2 Numerical work
We now describe some numerical work where we put the symplec-
tic toolkit into practical use. This is based on the article [14].

We consider the Jupiter–Europa system (JE), which corresponds
to a CR3BP with μ = 2.5266448850435e−05, and the Saturn–
Enceladus system (SE), μ = 1.9002485658670e−07. These two

−∞

+∞

Γ Hill three-body problem Jupiter–Europa system

g g

DPO

LPO1
LPO2

g′ g′

3 3
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2
3

3

3
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Figure 4. Bifurcations of planar direct/prograde orbits with corresponding
CZ-index.

systems are of tremendous current interest for space agencies
such as NASA, as they may have conditions suitable for real life
problems. Starting from the Hill 3BP, we deform to JE and to SE.
One symmetry is broken, and families behave more generically. In
what follows, we use Γ = −2c.

4.3 Planar direct/prograde orbits
The planar pitchfork bifurcation described by Hénon [12] in the Hill
3BP (concerning planar orbit families f, g, g′) becomes a generic
broken bifurcation in the planar JE CR3BP, see Figure 4.
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Figure 5. Bifurcation graph for JE, between g-LPO13, DPO3, LPO23,
and DRO5.
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Figure 6. Prograde to retrograde spatial connection, red CZ-index 15 in Figure 5.

4.4 Spatial bifurcation graphs between planar prograde and
retrograde orbits

A bifurcation graph relating third covers of the direct orbits g,g′,
and fifth covers of planar retrograde orbits f, connected via spa-
tial families, was obtained by Aydin [2]. We deformed it to JE in
Figure 5.

4.5 Halo orbits in SE
We consider halo orbits coming out of the Lagrange point L2 in SE.
This family appears also in NASA’s technical report on the Enceladus
Orbilander [11], and is meant to be used to visit the poles in future
missions. The corresponding family for the Earth–Moon system is
currently very popular, as it will be where NASA’s Gateway Space
Station will be parked. The most interesting part of the family in
SE occurs just after the CZ-index jumps from 3 to 4, where orbits
are stable and close to the water plumes.

Figure 7. Halo-polar orbit (Γ = 3.000034709155895) with an altitude of 29 km. The CZ-index has just jumped to 4, and is doubly elliptic.
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