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The distribution of negative eigenvalues of Schrödinger
operators on asymptotically hyperbolic manifolds

Antônio Sá Barreto and Yiran Wang

Abstract. We study the asymptotic behavior of the counting function of negative eigenvalues
of Schrödinger operators with real valued potentials which decay at infinity on asymptotically
hyperbolic manifolds. We establish conditions on the rate of decay of the potential that determ-
ine if there are finitely or infinitely many negative eigenvalues. In the latter case, they may only
accumulate at zero and we obtain the asymptotic behavior of the counting function of eigenval-
ues in an interval .�1;�E/ as E ! 0.

1. Introduction

We are concerned with the following type of problem. Let .X; g/ be a non-compact
complete C1 Riemannian manifold and let �g be its (positive) Laplacian. Suppose
that V is a real valued potential such that V < 0 near infinity and the corresponding
Schrödinger operator H D �g C V is self-adjoint. Furthermore, suppose its point
spectrum �p.H/ � .�E0; 0/ and the eigenvalues only accumulate at zero. The prob-
lem is to find conditions on V which determine whether the point spectrum is finite or
infinite and if it is infinite, find the asymptotic behavior of the number of eigenvalues
(counted with multiplicity) in an interval .�E0;�E/ as E # 0.

In the Euclidean case, it has been shown, see for example [26], that if V is bounded
and if that near infinity V.z/ � �C jzj�2Cı , ı > 0, thenH has infinitely many eigen-
values, while if V � �C jzj�2�ı , ı > 0, there are finitely many eigenvalues. The
threshold decay of V.z/ forH to have finitely or infinitely many eigenvalues is there-
fore V.z/ � F.!/jr j�2, r D jzj, z D r!, ! 2 Sn�1. Moreover, an application of
Hardy’s inequality shows that if V.z/ � �cr2, there are finitely many eigenvalues
when c < .n � 1/2=4 and infinitely many if c > .n � 1/2=4. Precise results on the
asymptotics of the counting function of eigenvalues as E ! 0, in the case where
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V.z/D r�2.F.!/CE.r;!//with E.r;!/D o..logr/�1�"/ as r!1, were obtained
by Kirsch and Simon [16] and Hassell and Marshal [12]. We are not aware of similar
results for asymptotically Euclidean manifolds.

While this problem has been well studied in Euclidean space, it seems that it has
not been studied as much in hyperbolic space. We will work in the class of asymp-
totically hyperbolic manifolds in the sense of [9, 20], for which the hyperbolic space
serves as a model. Akutagawa and Kumura [2] have established bounds on the poten-
tial, similar to those in Euclidean space, which determine if the discrete spectrum
is finite or infinite (as in the first two items of Corollary 1.3 below), but they do not
establish bounds on the counting function of negative eigenvalues and do not consider
the cases of critical decay, as in our Theorems 1.2 and 1.4. We should also mention
the work of Mazzeo and McOwen [19]. While the problems considered in [19] are
somewhat the opposite of the ones we study here, there are some similarities.

The Poincaré model of the hyperbolic space HnC1 with constant curvature �1 is
given by the Euclidean ball of radius one:

BnC1D ¹z 2RnC1 W jzj< 1º equipped with the metric g0.z/D
4dz2

.1 � jzj2/2
: (1.1)

The closure of BnC1 is a compact C1 manifold with boundary, g0 2 C1.BnC1/,
but it is singular at ¹jzj D 1º D @BnC1. The function &.z/ D 1 � jzj2 2 C1.BnC1/,
is a defining function of @BnC1 in the sense that &.z/ � 0, &�1.0/ D @BnC1, and
d&.z/ 6D 0 if jzj D 1. Moreover, &2g0 D 4dz2 is a C1 Riemannian metric on the
closure BnC1. Following [9,20,21], one can extend this notion to anyC1 Riemannian
manifold with boundary.

Throughout this paper, VX will denote the interior of a C1 compact manifold X
with boundary @X of dimension nC 1. We say that & 2 C1.X/ is a defining function
of @X , or a boundary defining function, if & > 0 in VX , & D 0 at @X and d& ¤ 0 at
@X . We assume VX is equipped with a C1 Riemannian metric g such that G D &2g
is non-degenerate at @X and so . xX;G/ is a C1 compact Riemannian manifold with
boundary. According to [17], the sectional curvature of . VX; g/ converges to �jd& jG
along any curve that goes towards @X . The manifold . VX;g/ is called an asymptotically
hyperbolic manifold, or AHM, if jd& jG D 1 at @X . One might relax this assumption if
X has more than one boundary component and @X D Y1 t Y2 : : : t YN and jd& jG D
�j at Yj , �j is a constant.

The hyperbolic space serves as a model for this class of manifolds, and its quo-
tients by certain discrete groups of fractional linear transformations having a geo-
metrically finite fundamental domain without cusps at infinity are also examples of
such manifolds, see [1, 20, 23, 24]. In fact, our results apply for manifolds with more
than one boundary component and with different (constant) asymptotic curvatures at
each end. One important example from mathematical physics where this occurs is
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the stationary model of the de Sitter–Schwarzschild model of black holes discussed
in [27]. In this case, the manifold is VX D .a; b/ � Sn, and the asymptotic curvatures
are different on both ends.

If . VX; g/ is an AHM and & 2 C1.X/ is a boundary defining function, then the
conformal metric G D &2g is non-degenerate up to @X , but the metric &2Gj@X D
h0 obviously depends on the choice of & . In fact, given any two boundary defining
functions & and Q& , we must have & D a.z/ Q& , with a > 0. If zG D Q&2g, thenG D a2 zG,
and so Gj@X D .a2 zG/j@X , and hence &2g determines a conformal class of metrics at
@X . As shown in [11,15], given a representative h0 of the class Œ&2gj@X �, there exists
e > 0 and a unique boundary defining function x defined on a collar neighborhood U
of @X and a map ‰W Œ0; e/ � @X ! U such that

‰�g D
dx2

x2
C
h.x/

x2
; h.0/ D h0; (1.2)

where h.x/ is in C1.Œ0; e// with values on the space of Riemannian metrics on @X .
Of course, x can be extended (non-uniquely) from the collar neighborhood U to a
boundary defining function x 2 C1.X/.

For example, in the case of the hyperbolic space (1.1), the geodesic distance with
respect to the origin is given by

r D log
�1C jzj
1 � jzj

�
;

and using polar coordinates .r;�/, � D z=jzj, with respect to this distance r , the metric
g0 is given by

g0 D dr
2
C .sinh r/2d�2;

where d�2 is the standard metric on the sphere. If we set x D e�r , then

g0 D
dx2

x2
C
.1 � x2/2

4

d�2

x2
: (1.3)

While x is not smooth on X because jzj is not C1 at ¹z D 0º, it is C1 near @BnC1,
and one can modify it in the interior of X to satisfy the definition of a boundary
defining function and still keep (1.3) near @BnC1.

Let �g denote the (positive) Laplace operator on an AHM . VX; g/. We know
from [17, 18], that the spectrum of �g , denoted by �.�g/, satisfies

�.�g/ D �pp.�g/ [ �ac.�g/;

where �pp.�g/ consists of a finite number of eigenvalues in .0; n2=4/ with finite
multiplicity and �ac D Œn

2=4;1/ is the absolutely continuous spectrum. There are no
eigenvalues in Œn2=4;1/, see for example [4, 18]. We shall work with �g � n2=4
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which has continuous spectrum Œ0;1/. Let V 2 L1.X/ be real valued and such that
V.z/ < 0 near @X and V.z/! 0 as z ! @X . We shall denote

H0 D �g �
n2

4
and H D �g �

n2

4
C V: (1.4)

We will show that under the assumptions on the rate of decay of the potential V.z/ as
z ! @X , the point spectrum of H consists of eigenvalues of finite multiplicity con-
tained in some interval Œ�E0; 0/, which only possibly accumulate at zero. Its essential
spectrum �ess.H/D Œ0;1/ and it has no embedded eigenvalues, including the bottom
of �ess.H/. We want to count negative eigenvalues of H and other operators, and so
for an operator T and for E � 0, we define the counting function

NE .T / D #¹� 2 .�1;�E/ \ �pp.T /; E � 0 counted with multiplicityº: (1.5)

In coordinates for which (1.2) is valid, the Laplacian with respect to g is given by

�g D �.x@x/
2
� nx@x � x

2A.x; y/@x C x
2�h.x/; (1.6)

where�h.x/ is the Laplacian with respect to the metric h.x/ on @X , jhj is the volume
element of the metric h and A D @x log jhj=2. It is convenient to define � def

D � log x,
and so

�g D �@
2
� � n@� � e

��A.�; y/@� C e
�2�� Qh.�/; (1.7)

where A.�; y/ D A.e��; y/ and Qh.�/ D h.e��/.
Throughout the paper, . VX; g/ will denote a n C 1-dimensional asymptotically

hyperbolic manifold. Its closureX is a C1 manifold with boundary, and x 2 C1.X/
is a boundary defining function such that (1.2) holds for x 2 Œ0; e/. We define � def

D

� log x. We assume that V 2 L1.X/ is real valued, and that H0 and H and NE .H/
will be defined as in (1.4) and (1.5) respectively.

Theorem 1.1. Suppose that there exists �0 > 0 such that for � 2 .�0;1/

V .e��; y/ D �c��2Cı CO.��2Cı.log �/�"/; (1.8)

with c > 0, " > 0, and ı < 2, as �!1. If ı < 0, then N0.H/ <1, but if ı 2 .0; 2/,
then N0.H/ D1 and

log logNE .H/ D
1

2 � ı
logE�1 CO.1/; as E ! 0: (1.9)

Notice that if Qx D e'.x;y/x, ' 2 C1, is another boundary defining function, then

Q� D � log Qx D �' � log x D �CO.1/; as �!1;

so (1.8) does not depend on the choice of x.
In the threshold case ı D 0, we have the following.
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Theorem 1.2. Suppose that there exists �0 such that for all � 2 .�0;1/,

V.e��; y/ D �c��2 C o.��2.log �/�"/; c > 0; " > 0; as �!1: (1.10)

If c < 1=4, then N0.H/ <1, but if c > 1=4, then N0.H/ D1 and

log logNE .H/ D �
1

2
logE CO.1/ as E ! 0: (1.11)

Our proofs in fact give somewhat more precise upper and lower bounds for
NE .H/, and (1.9) and (1.11) are used to unify these bounds and provide the asymp-
totic behavior of iterated logarithms of NE .H/. The methods we use do not allow
us to treat the case where c is a function of y. However, we can use Theorems 1.1
and 1.2 to prove the following.

Corollary 1.3. Suppose that there exists �0 > 0 such that for all � 2 .�0;1/,

�c1�
�2Cı

� V.e��; y/ � �c2�
�2Cı
I

then we can say that

(1) if ı < 0, then N0.H/ <1;

(2) if ı 2 .0; 2/, then N0.H/ D1 and (1.9) holds;

(3) if ı D 0 and c1 < 1=4, then N0.H/ <1;

(4) if ı D 0 and c2 > 1=4, then N0.H/ D1 and (1.11) holds.

We can say more in the threshold case c D 1=4. For � large enough, we define

log.j / � D log log : : : log � j times.

Theorem 1.4. Suppose that there exists �0 > 0 such that for all � 2 .�0;1/,

V.e��; y/ D �
1

4
��2 � c1�

�2.log �/�2 CO.��2.log �/�2.log �/�"/; " > 0:

If c1 < 1=4, then N0.H/ <1 and if c1 > 1=4, N0.H/ D1 and

log.3/NE .H/ D log.2/.E
�1/CO.1/ as E ! 0: (1.12)

In fact, this process keeps going indefinitely and the result holds if for some �0 large,
and � 2 .�0;1/, the potential has an expansion of the form

V.e��; y/ D V0.�/CO.GN .�/.log �/�"/; " > 0; (1.13a)

where, for some N 2 N,

V0.�/ D �
1

4
��2 �

1

4

N�1X
jD1

Gj .�/C cNGN .�/; (1.13b)
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cN is a constant, and

G.j /.�/ D �
�2.log �/�2.log log �/�2 : : : .log.j / �/

�2: (1.13c)

The existence of infinitely many eigenvalues depends on whether cN < 1=4, or cN >

1=4. If cN < 1=4, there are only finitely many eigenvalues, but if cN > 1=4,

log.NC2/NE .H/ D log.NC1/.E
�1/CO.1/ as E ! 0: (1.14)

Notice that one cannot hope to takeN D1 in the definition of V0.�/ because the
denominators will be equal to zero at points of the form

� D ee
e
::
:

:

As in the case of Theorems 1.1 and 1.2, our proofs actually give better upper and
lower bounds for NE .H/ and this formulation is used to unify these bounds.

As we have already mentioned, the metric g induces a conformal structure at @X
and this is reflected in the choice of the boundary defining function x. Since NE .H/
does not depend on this choice, its asymptotic behavior in principle could reveal some
invariants of the conformal structure of the metric induced by g at @X . However, our
methods are not refined enough to detect that. This dependence will not affect the main
term of the asymptotic behavior of NE .H/ and the contributions of the boundary
structure will be hidden among the terms of the O.1/ part of the estimates above and
these are very hard to track.

1.1. The strategy of the proofs

The methods used in the proof of Theorems 1.1, 1.2, and 1.4 are the Dirichlet–Neu-
mann bracketing and the Sturm oscillation theorem, which are standard for this type
problems.

For x as in (1.2) and x0 2 Œ0; e/, let

X1 D ¹z 2 X W x.z/ � x0º; X0 D ¹z 2 X W x.z/ � x0º: (1.15)

So .X0; g/ and .X1; x2g/ are C1 compact Riemannian manifolds with boundary.
We will define ‡�0 , and ‡�1, to be the restrictions of the operator H to X0 and X1
with Dirichlet (� D D) and Neumann (� D N ) boundary conditions. Since .X0; g/
is a compact C1 Riemannian manifold with boundary, it is well known, see for
example [26], that

�.‡D0 / D ¹
Q�1 < Q�2 � Q�3 : : :º; Q�j 2 R; Q�j !1; (1.16a)

�.‡N0 / D ¹ Q�1 < Q�2 � Q�3 : : :º; Q�j 2 R; Q�j !1: (1.16b)
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We will show that �ess.‡
�
1/D Œ0;1/, � DD;N , with no embedded eigenvalues,

and their point spectra satisfy

�pp.‡
D
1/ D ¹�1 < �2 � �3 : : :º; �j < 0;

is either finite or �j ! 0; as j !1;

�pp.‡
N
1/ D ¹�1 < �2 � �3 : : :º; �j < 0;

is either finite or �j ! 0 as j !1.
Following [26, Chapter XIII], we will show that

‡N0 ˚‡
N
1 � H � ‡

D
0 ˚‡

D
1;

and it follows that for any E < 0,

NE .‡
N
0 /CNE .‡

N
1/ � NE .H/ � NE .‡

D
0 /CNE .‡

D
1/;

where NE .T / is the counting function defined in (1.5) for the operators T D ‡�0 and
‡�1 instead of H . It follows from (1.16) that there exists N # > 0 such that for any
E < 0, NE .‡N0 / < N # and NE .‡D0 / < N #. We will show that if V satisfies the
hypotheses of either one of the Theorems 1.1, 1.2, or 1.4, then for E < 0, NE .‡�1/,
� D N;D, both have either finitely many eigenvalues or both infinitely many eigen-
values. In case both have infinitely many eigenvalues, the corresponding counting
function of their eigenvalues have the same asymptotic behavior asE& 0, and there-
fore it gives the asymptotic behavior of NE .H/.

2. The spectrum of H

For the lack of suitable references, we will briefly discuss some properties of the
spectrum ofH . First, we recall some results about of the spectrum ofH0 from [18,20].
Let x be a boundary defining function for which (1.2) holds in a collar neighborhood
of @X . In these coordinates, the Laplacian �g is given by (1.7), so �g is a zero
differential operator in the sense of [20], and we define the zero-Sobolev spaces of
order k as in [20]. Let V.@X/ denote the Lie algebra of C1 vector fields on X which
are equal to zero at @X . In coordinates .x; y/, these vector fields are spanned by
¹x@x; x@yj ; 1 � j � nº over the C1 functions. Let

Hk
0 .X/ D ¹u 2 L

2.X/ W W1W2 : : : Wmu 2 L
2.X/; Wj 2 V.@X/; m � kº: (2.1)

We know from [20] that �g with domain H2
0 .X/ � L

2.X/ is a self-adjoint operator,
we also know from [4, 17, 20] that its spectrum consists of an absolutely continu-
ous part �ac.�g/ D Œn2=4;1/ and finitely many eigenvalues in the point spectrum
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�pp.�g/ � .0; n
2=4/. There are no eigenvalues in Œ0;1/, see [4, 18]. As above, we

set H0 D �g � n2=4, and so the resolvent

RH0.�/ D .H0 � �/
�1
WL2.X/ 7! H2

0 .X/;

provided � 2 C n .Œ0;1/ [ ¹�1; �2; : : : ; �N º/;

where �j 2 .�n2=4; 0/, is an eigenvalue of finite multiplicity of H0. By definition,
the resolvent set of H0 is

�.H0/ D C n .Œ0;1/ [ ¹�1; : : : ; �N º/; �j is an eigenvalue of H0:

To analyze the spectrum of H , we begin by observing that for � 2 �.H0/,�
�g C V �

n2

4
� �

�
RH0.�/ D IC VRH0.�/;

Since

RH0.�/WL
2.X/! H2

0 .X/ is a bounded operator for � 2 �.H0/;

then if �j 2 C10 . VX/, �j .z/ D 1 in the region x.z/ > 1=j and �j .z/ D 0 if x.z/ <
1=.j C 1/, it follows that

�j .z/V .z/RH0.�/WL
2.X/! H 2

c .
VX/,!L2c.

VX/;

where the subindex c indicates compact support. Notice that since supports are com-
pact, we can use either H2

0 .X/ or the standard Sobolev spaceH 2.X/. It follows from
Rellich’s embedding theorem that for fixed j ,

�j .z/V .z/RH0.�/WL
2.X/! L2c.

VX/

is a compact operator. Since V 2 L1.X/ and V.z/! 0 as z ! @X , it follows that

k�j .z/V .z/RH0.�/ � V.z/RH0.�/kL.L2.X// ! 0 as j !1

in the operator norm, and so we conclude that VRH0.�/WL
2.X/! L2.X/ is a com-

pact operator, provided � 2 �.H0/. We also know that for Im � << 0, the operator
norm ofRH0.�/ is less than or equal to 1= Im.�/, see for example [25, Theorem VI.8],
and therefore .IC VRH0.�//

�1 is bounded for Im�� 0, and jRe�j > 1. Then, the
Fredholm theorem, see for example [25, Theorem VI.14], guarantees that with the
exception of a countable set of points, which are poles of RH .�/,

RH .�/ D RH0.�/.IC VRH0.�//
�1 for � 2 �.H0/:

Moreover, the poles of RH .�/ in �.H0/ consist of a countable set ¹�j ; j 2 Nº �

.�1; 0/ such that �j are eigenvalues of H with finite multiplicity. This set is either
finite or infinite. If there are infinitely may eigenvalues, they accumulate only at zero.
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Finally, since VRH0.�/ is compact for � 2 �.H0/, it follows that the operator

V WL2.X/! L2.X/; f 7! V.z/f

is relatively compact with respect toH0 and it follows from Weyl’s Theorem, see [13,
Theorem 14.6] that �ess.H/ D �.H/ n �pp.H/ D �ess.H0/ D Œ0;1/. Therefore, we
have the following.

Theorem 2.1. Let . VX; g/ be an AHM, let V 2 L1.X/ be real valued and suppose
that V.z/! 0 as z ! @X . Then, �ess.H/ D �.H/ n �pp.H/ D Œ0;1/. There are no
embedded eigenvalues. Moreover, the resolvent

RH .�/ D .H � �/
�1
WL2.X/! H2

0 .X/ is bounded for � 2 C n .Œ0;1/ [D/;

where D D ¹�1;�2; : : :º � .�1; 0/, with�jC1 ��j , is a bounded discrete set which
consists of eigenvalues of H of finite multiplicity and only possibly accumulate at 0.

The fact that there are no embedded eigenvalues is due to Mazzeo [18], see also [3,
4]. We also have the following.

Theorem 2.2. Let . VX; g/ be an AHM, let x be a boundary defining function such
that (1.2) holds. Let X1 be as in (1.15) and let ‡�1, � D N;D denote the operator
H with Dirichlet or Neumann boundary conditions in X1. If V.z/! 0 as z ! @X ,
according to either (1.8), (1.10), or (1.13), then �ess.‡

�
1/ D Œ0;1/. Moreover, there

are no embedded eigenvalues.

The fact that �ess.‡
�
1/D Œ0;1/ is a consequence of Theorem 2.1 and [7, Propos-

ition 2.1]; see also [3, Theorem 9.43]. The proofs of these results are actually for the
Dirichlet boundary conditions, but they work for Neumann conditions as well. The
results of [3, 4, 18] also guarantee that there are no embedded eigenvalues in these
cases. The point is to show that if there were eigenfunctions in L2, they would decay
exponentially and a Carleman estimate shows that they are actually equal to zero. The
argument takes place in a neighborhood of @X and thus also works for ‡�1.

3. Dirichlet–Neumann bracketing

The operator H as the unique self-adjoint operator on L2.X/ whose quadratic form
is the closure of

Q.'; / D hrg�;rg i
L2g.X/

C

D�
V �

n2

4

�
�; 

E
L2g.X/

D

Z
X

gij @i�@j N d volg C
Z
X

�
V �

n2

4

�
� N d volg ; with �; 2 C10 . VX/:

The domain of the quadratic form Q is H1
0 .X/ �H1

0 .X/, defined in (2.1).
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Let x be a boundary defining function such that (1.2) holds and let X0 and X1 be
as defined in (1.15). We consider the quadratic forms to be the closure of

QD.X0/.';  / D Q.'; / with '; 2 C10 . VX0/; (3.1)

QN .X0/.';  / D Q.'; / with '; 2 C1.X0/; (3.2)

where
@x'j¹xDx0º D @x j¹xDx0º D 0:

It turns out that the domains of these quadratic forms are

• D.QD.X0// D H
1
0 .X0/ �H

1
0 .X0/, where

H 1
0 .X0/ D C

1
0 .
VX0/

with the H 1
loc.
VX/ norm;

• D.QN .X0// D xH
1.X0/ � xH

1.X0/, where

xH 1.X0/ D ¹' 2 L
2.X0/ W 9f 2 H

1
loc.
VX/; f D ' in X0º:

The self-adjoint operators corresponding to QD.X0/ and QN .X0/ are defined
to be the operator H respectively with Dirichlet or Neumann boundary conditions,
which we denote by ‡D0 and ‡N0 respectively.

Similarly, we define the quadratic forms

QD.X1/ D Q.'; /; ';  2 C10 .
VX1/; (3.3a)

QN .X1/ D Q.'; /; ';  2 C1.X1/ \H2
0 .X1/; (3.3b)

where
@x'j¹xDx0º D @x j¹xDx0º D 0: (3.3c)

The domains of their closures are

• D.QD.X1// D W1
0 .X1/ �W1

0 .X1/, where

W1
0 .X1/ D C

1
0 .
VX1/

with the H1
0 .X/ norm;

• D.QN .X1// D xH
1

0.X1/ �
xH
1

0.X1/, where

xH
1

0.X1/ D ¹' 2 L
2.X1/ W 9f 2 H1

0 .X/; f D ' in X1º:

The corresponding self-adjoint operators are defined to be ‡D1 and ‡N1, which are
the operator H with Dirichlet or Neumann boundray conditions on X1.
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We follow [26, Section XIII.15] and define the direct sum of self-adjoint operat-
ors: if Aj , j D 1; 2, are self-adjoint operators acting on Hilbert spaces Lj , j D 1; 2,
with domains D.Aj /, j D 1; 2, let

L D L1 ˚L2

and
A1 ˚ A2.�1; �2/ D .A1�1; A2�2/; �j 2 D.Aj /; j D 1; 2:

It is proved in [26, Section XII.15] that

(1) A1 ˚ A2 is self adjoint;

(2) the associated quadratic forms satisfy Q.A1 ˚ A2/ D Q.A1/˚Q.A2/;

(3) if N.�;A/ D dimP.�1;�/.A/, then

N.�;A1 ˚ A2/ D N.�;A1/CN.�;A2/: (3.4)

In our case, we have four natural operators ‡�.X0/ and ‡�.X1/, � D D; N .
Notice that

H 1
0 .X0/˚W1

0 .X1/ � H1
0 .X/;

and that, for ' 2 C10 . VX0/,  2 C
1
0 .
VX1/,

QD.X0/.'; '/CQ
D.X1/. ;  / D Q.H/.'; '/CQ.H/. ; /:

On the other hand, if ' 2 H1
0 .X/,

'jX0 2
xH
1

0.X0/ and 'jX1 2
xH
1

0.X1/;

this means that
H1
0 .X0/ �

xH
1

0.X/˚
xH
1

0.X1/;

and, for ' 2 H1
0 .X/,

QN .X0/.'; '/CQ
N .X1/.'; '/ D Q.H/.'; '/:

If A and B are self-adjoint operators defined on a Hilbert space L and Q.A/ and
Q.B/ are their corresponding quadratic forms with domains D.Q.A// and D.Q.B//,

Q.A/.�; �/ �Mk�k; � 2 D.Q.A//

and

Q.B/. ; / �Mk k;  2 D.Q.B//;

we say that

A � B if D.Q.B// � D.Q.A// and Q.A/.'; '/ � Q.B/.'; '/; ' 2 D.Q.B//:

This translates into the following.
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Proposition 3.1. LetX0,X1, HD.X�/ and HN .X�/, �D 0;1, be defined as above,
then

‡N0 ˚‡
N
1 � H � ‡

D
0 ˚‡

D
1:

It follows from (3.4) that if E > 0,

NE .‡
N
0 /CNE .‡

N
1/ � NE .H/ � NE .‡

D
0 /CNE .‡

D
1/: (3.5)

Since ‡D0 and ‡N0 are Schrödinger operators with C1 potentials on compact
manifolds with boundary, their spectra satisfy (1.16) and so they have finitely many
eigenvalues less than zero and do not contribute to the asymptotic behavior of the
counting functionNE .H/ in case there are infinitely many eigenvalues. We will show
that the point spectra of ‡D1 and ‡N1 are jointly either finite or infinite. In the latter
case, we will show that both have the same asymptotic behavior asE goes to zero, and
so the asymptotic behavior of NE .H/ as E ! 0 is determined by that of NE .‡�1/,
� D D;N .

3.1. Model operators on X1

Our analysis in this section will be restricted to a small-enough collar neighborhood
of @X D ¹x D 0º where (1.2) holds and so �g is given by (1.6). Since h.x/ is a C1

one-parameter family of tensors on @X , we may write, in local coordinates,

h.x/ D

nX
j;kD1

hjk.x; y/dyjdyk; hjk.x; y/ 2 C
1 (3.6a)

and

hjk.x; y/ D hjk.0; y/C x Qhjk.x; y/; Qhjk.x; y/ 2 C
1: (3.6b)

and so the corresponding quadratic forms for H on X1 with Dirichlet or Neumann
boundary conditions defined in (3.3) may be written as

Q�.X1/.'; '/ D

x0Z
0

Z
@X

�
jx@x'j

2
C

nX
j;kD1

hjk.x; y/.x@yj '/.x@yk N'/

C

�
V �

n2

4

�
j'j2

�p
jh.x/j

xnC1
dydx; (3.7)

with

• ' 2 W1
0 .X1/ if � D D,

• ' 2 xH
1

0.X1/, if � D N , and

• .hjk/ D .hjk/
�1.
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We want to show that the quadratic forms Q�.X1/, � D D;N , can be bounded
from above and below by quadratic forms associated with the product metric where
h.x/ is replaced by h.0/ and V.x; y/ is replaced by potentials which depend on
x only. If jh.x/j D j det hjk.x; y/j is the volume element of the metric h.x/ and
.hjk.x; y//.hjk.x; y//

�1 is the inverse of the matrix .hjk.x; y//, we deduce from
(3.6) that there exists 
 > 0 and x0 small such that for x 2 .0; x0/, .1 � 
x/ > 1=2
and for all � 2 Rn,

.1 � 
x/1=2
nX

j;kD1

hjk.0; y/�j �k �

nX
j;kD1

hjk.x; y/�j �k

� .1C 
x/1=2
nX

j;kD1

hjk.0; y/�j �k; (3.8a)

and
.1 � 
x/1=2

p
jh.0/j �

p
jh.x/j � .1C 
x/1=2

p
jh.0/j: (3.8b)

Recall that Theorems 1.1, 1.2, and 1.4 require that, if x D e��, the potential
V.x; y/ satisfies

�V0.�/ � aV1.�/ � V.x; y/ � �V0.�/C aV1.�/; where a > 0 is a constant,

and V0.�/ and V1.�/ satisfy, for � 2 .�0;1/, one of the following three assumptions:

V0.�/ D c�
�2Cı ;

V1.�/ D �
�2Cı.log �/�"; " > 0;

(3.9a)

in Theorem 1.1;

V0.�/ D c�
�2;

V1.�/ D �
�2.log �/�"; " > 0;

(3.9b)

in Theorem 1.2; and

V0.�/ D
1

4
��2 �

1

4

NX
jD1

Gj .�/C cNGN .�/;

V1.�/ D GN .�/.log �/�"; " > 0;

(3.9c)

with GN .�/ defined by (1.13), in Theorem 1.4.
We will prove the following result.
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Proposition 3.2. Let Q�.X1/, � D N;D be as in (3.7). Then, for x0 small enough
and 
 given by (3.8),

Q��.X1/.'; '/ � Q
�.X1/.'; '/ � Q�C.X1/.'; '/; (3.10)

where Q�
˙
.X1/ are the quadratic forms defined by

Q�˙.X1/.'; '/

D

x0Z
0

Z
@X

.1˙ 
x/
�
jx@x'j

2
C

nX
j;kD1

hjk.0; y/.x@yj '/.x@yk N'/
�p
jh.0/j

xnC1
dydx

C

x0Z
0

Z
@X

�
�V0.� log x/˙ aV1.� log x/C xW ˙.x/ �

n2

4

�
j'j2

� .1˙ 
x/nC1
p
jh.0/j

xnC1
dydx;

with

• ' 2 W1
0 .X1/, if � D D,

• ' 2 xH
1

0.X1/, if � D N , and

• .hjk.0// D .hjk.0//
�1,

where

W ˙.x/ D
�
�V0.� log x/˙ aV1.� log x/ �

n2

4

�
F˙.x/;

F˙.x/ D
1

x

� .1˙ 
x/1=2
.1˙ 
x/nC1

� 1
�
:

Moreover, Q�
˙
.X1/ are respectively associated with the operators

M˙ D �gC � V0.� log x/ ˙ aV1.� log x/C xW ˙.x/ �
n2

4
; (3.11)

where

g˙ D .1˙ 
x/
2
n�1

�dx2
x2
C
h.0/

x2

�
with � D D;N , for Dirichlet or Neumann boundary conditions.

Proof. We observe that because of (3.8),

.1 � 
x/
�
jx@x'j

2
C hjk.0; y/.x@yj '/.x@yk N'/

�p
jh.0/j

�
�
jx@x'j

2
C hjk.x; y/.x@yj '/.x@yk N'/

�p
jh.x/j

� .1C 
x/
�
jx@x'j

2
C hjk.0; y/.x@yj '/.x@yk N'/

�p
jh.0/j;



Eigenvalues of Schrödinger operators on asymptotically hyperbolic manifolds 693

and�
V.x; y/ �

n2

4

�
.1 � 
x/1=2

p
jh.0/j �

�
V.x; y/ �

n2

4

�p
jh.x/j

�

�
V.x; y/ �

n2

4

�
.1C 
x/1=2

p
jh.0/j:

We may write
.1˙ 
x/1=2 D .1˙ 
x/nC1.1C xF˙.x//;

where

F˙.x/ D
1

x

� .1˙ 
x/1=2
1.˙
x/nC1

� 1
�
;

and so �
V.x; y/ �

n2

4

�
.1˙ 
x/1=2 D V.x; y/

�
1˙

1

2
x
�nC1

.1C xF˙.x//:

Therefore,�
�V0.log x/ � aV1.� log x/

�
.1 � xF�.x//.1C 
x/

nC1
p
jh.0/j

�

�
V.x; y/ �

n2

4

�p
jh.x/j

�
�
�V0.log x/C aV1.� log x/

�
.1C xFC.x//.1C 
x/

nC1
p
jh.0/j:

This proves (3.10). Notice that for g˙ as in (3.11),p
jg˙j D

.1˙ 
x/.nC1/=.n�1/

xnC1
j
p
jh.0/j

and

�g˙ D �
xnC1

.1˙ 
x/nC1
p
jh.0/j

@x

� .1˙ 
x/
xnC1

x2
p
jh.0/j@x

�
�

xnC1

.1˙ 
x/nC1
p
jh.0/j

@yj

� .1˙ 
x/
xnC1

p
jh.0/jx2hjk.0/@yk

�
;

and so, the quadratic forms associated with g˙ define the operators M�
˙

, as claimed.
This ends the proof of the proposition.

We have shown that

• the domains of QD
˙
.X1/ and QD.X1/ are the same and equal to W1

0 .X1/;

• the domains of QN
˙
.X1/ and QN .X1/ are the same and equal to xH

1

0.X1/;
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• and, moreover,

QD
� .X1/.'; '/ � Q

D.X1/.'; '/ � QD
C .X1/.'; '/; ' 2 W1

0 .X1/;

QN .X1/.'; '/ � Q
N .X1/.'; '/ � QN .X1/.'; '/; ' 2 xH

1

0.X1/:
(3.12)

Notice that the L2.X1/ spaces defined with respect to g or g˙ are the same, but are
equipped with different, but equivalent norms, and there are constants C˙j , j D 1; 2
such that

C�1 k'kL2g�
� k'kL2

g
� C�2 k'kL2g�

;

CC1 k'kL2gC
� k'kL2

g
� CC2 k'kL2gC

:
(3.13)

If we put together (3.12) and (3.13), we obtain

1

C�2

QD
� .X1/.'; '/

h'; 'i
L2g�

�
QD.X1/.'; '/

h'; 'i
L2g

�
1

CC1

QD
C .X1/.'; '/

h'; 'i
L2gC

; ' 2 W1
0 .X1/;

1

C�2

QN
� .X1/.'; '/

h'; 'i
L2g�

�
QN .X1/.'; '/

h'; 'i
L2g

�
1

CC1

QN
C .X1/.'; '/

h'; 'i
L2gC

; ' 2 xH
1

0.X1/:

We will use M�
˙

to indicate the operator M˙ with � DD;N . We also remark that
one may extend the metrics g˙ to the manifold X , so that it becomes an AHM, and
as a consequence of Theorem 2.2, we obtain

�ess.M
�
˙/ D Œ0;1/; � D D;N: (3.14)

We now appeal to the following characterization of the eigenvalues of a self-
adjoint operator, see for example [8, p. 1543] or [28, Theorem 3].

Theorem 3.3. Let H be a separable Hilbert space with inner product hu; vi and let
A be a self-adjoint operator corresponding to a semi-bounded quadratic formQ with
domain D.Q/. Suppose that the essential spectrum of A satisfies �ess.A/ D Œ0;1/

and that its point spectrum satisfies

�pp.A/ D ¹�1 � �2 � � � � º:

For u 2 D.Q/, u 6D 0, let R.u/ D Q.u; u/=hu; ui denote the Rayleigh quotient, and
for n 2 N, let

�n D inf¹max¹R.u/; u 2 B such that B � D.Q/ is a subspace with dim B D nºº:

Then, �n � 0. If �n D 0, then A has at most n � 1 eigenvalues �j < 0, counted
with multiplicity. If �n < 0, then �n D �n is the n-th eigenvalue of A counted with
multiplicity.
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The important aspect of this characterization is that there is no orthogonality
required, as would be the case if we switched the order of max and min. As a con-
sequence of Theorem 2.2 and Theorem 3.3 and (3.14), we arrive at the following.

Proposition 3.4. Let �j .‡D1/ and �j .MD
˙
/ denote the eigenvalues of the operat-

ors ‡1 and M˙, with Dirichlet boundary conditions. Similarly, let �j .‡N1/ and
�j .M

N
˙
/ denote the eigenvalues of these operators with Neumann boundary condi-

tions. If M�� has finitely many eigenvalues, so do M�C and ‡�1, � DD;N . If M�C has
infinitely many eigenvalues, so do M�� and ‡�1, � D D;N and if C˙j , j D 1; 2, are
as defined in (3.13), then, for all j ,

1

C�2
�j .M

D
� / � �j .‡

D
1/ �

1

CC1
�j .M

D
C /;

1

C�2
�j .M

N
� / � �j .‡

N
1/ �

1

CC1
�j .M

N
C /:

In particular, in the case there exist infinitely many eigenvalues, then for allE < 0,

NC�
2
E .M

�
�/ � NE .‡

�
1/ � NCC

1
E
.M�C/; � D D;N; (3.15)

where NE .T / is the counting function of negative eigenvalues defined in (1.5).

4. The asymptotic behavior of NE .M�
˙

/, � D D; N as E ! 0

We will show that under the hypotheses of either one of Theorems 1.1, 1.2 or 1.4,
and if �0 D � log x0 is large enough, we have two possibilities: either both MD

˙
and

MN
˙

have no negative eigenvalues, or both have infinitely many. In the latter case, the
iterated logarithms of the counting functions NE .M�˙/, � D D;N , defined in (1.5),
have the same asymptotic behavior E ! 0, according to the asymptotic behavior
of the potential as in Theorems 1.1, 1.2, and 1.4. More precisely, we will prove the
following.

Proposition 4.1. Let M�
˙

, � D D;N , be defined as above and let NE .M�˙/ denote
the corresponding counting function of eigenvalues.

(T.1) Suppose that V0.�/ and V1.�/ satisfy (1.8). If �0 is large enough and ı<0,
then M�

˙
has no negative eigenvalues, but if ı 2 .0; 2/, then NE .M�˙/ sat-

isfies (1.9).

(T.2) Suppose that V0.�/ and V1.�/ satisfy (1.10). If �0 is large enough and
c <1=4, then M�

˙
has no negative eigenvalues, but if c > 1=4, thenNE .M�˙/

satisfies (1.11).
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(T.3) Suppose that V0.�/ and V1.�/ satisfy (1.13). If �0 is large enough and
cN < 1=4, then M�

˙
has no negative eigenvalues, but if cN > 1=4 then

NE .M
�
˙
/ satisfies (1.14).

These results, together with equations (3.15), (3.5), and (1.16) respectively prove
Theorems 1.1, 1.2, and 1.4.

We will consider the Dirichlet and Neumann eigenvalue problems in X1 D ¹x �
x0º for the operators M�

˙
, � D D;N defined above. We will drop the ˙ sub-indices

and work with 
; a 2 R. We will assume that x0 is small enough so that xj
 j < 1=2
for x 2 .0; x0/. We will work with the metric

G D .1C 
x/
2
n�1

�dx2
x2
C
h.0/

x2

�
:

We find that

�G D �x
nC1f �.nC1/@x.f

n�1x1�n@x/C x
2f �2�h.0/;

where
f .x/ D .1C 
x/1=.n�1/:

To get rid of the factor n2=4 in M˙, we observe that

x�n=2
�
�G �

n2

4

�
xn=2 D �f �.nC1/x@x.f

n�1x@x/C x
2f �1�h.0/ � xA.x/;

where

A.x/ D �
n

2
f �.nC1/.x/@x.f

n�1.x//C
n2

4x
.f 2.x/ � 1/:

So, we study the eigenvalue problems corresponding to the operators x�n=2M˙xn=2,
which are of the form�

�f �.nC1/.f n�1x@x/
2
C x2f �2�h.0/ C U.x/C xW.x/CE

�
u� D 0;

with E > 0, � D D;N ,

uD.x0; y/ D 0 or @xu
N .x0; y/ D 0;

where

U.x/ D V0.� log x/C aV1.� log x/

and

W.x/ D
�
U.x/ �

n2

4

�
F.x/ � A.x/; F 2 C1:
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We multiply the equation by f nC1, and use that for x small

f nC1.x/ D 1C x Qf .x/; Qf 2 C1;

and we arrive at�
�.f n�1x@x/

2
C x2f n�1�h.0/CU.x/C x�W.x/CE

�
u� D 0; E > 0; � DD:N;

(4.1)
with

uD.x0; y/ D 0 or @xu
N .x0; y/ D 0

and �W D W C Qf .U C xW CE/; Qf 2 C1:

Noice that �W.x/ has a term of the form Ex Qf .x/, f 2 C1. So, one should keep in
mind that it depends on E, but it will not affect the estimates below because this term
goes to zero if E ! 0.

Since f n�1 D 1C 
x, we define r to be such that

dr

r
D

dx

x.1C 
x/
;

r D 0 if x D 0;

and, therefore,
r D

x

1C 
x

and so

x D
r

1 � 
r
D r C r2X.r/; X 2 C1.Œ0; r0�/; r0 small enough.

Therefore, after the change of variables, equation (4.1) becomes�
�.r@r/

2
C r2.1C rF.r//�h.0/ C U.x.r//C x.r/�W.x.r//CE

�
u� D 0; (4.2)

with
uD.r0; y/ D 0 or @ru

N .r0; y/ D 0;

where E > 0, � D D;N , and F 2 C1.Œ0; r0�/.
We will need the following fact.

Lemma 4.2. Suppose that x D x.r/ D r C r2X.r/, with X.r/ 2 C1.Œ0; r0�/ and r0
is small enough. Let � D � log x and let G.j /.�/ be as defined in (1.13); then,

log.j /.x.r/
�1/ D log.j /.r

�1/
�
1C

r

.log r/.log.j / r�1/
Tj .r/

�
; (4.3a)
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with Tj .r/ 2 C
1..0; r0�/ \ C

0.Œ0; r0�/ and, for ˛ 2 R,

.log.j /.x.r//
�1/˛ D .log.j /.r

�1//˛
�
1C

r

.log r�1/.log.j / r�1/
Tj;˛.r/

�
; (4.3b)

with Tj;˛ 2 C1..0; r0�/ \ C 0.Œ0; r0�/.
As a consequence, we find that if G.j / is given by (1.13), then

G.j /.log.x.r/�1// D G.j /.log.r�1//
�
1C

r

.log r/.log.2/ r�1/
Tj .r/

�
; (4.4)

where Tj 2 C
1..0; r0�/\L

1.Œ0; r0�/. If V0.�/ and V1.�/, � D � logx, are given by
one of the alternatives of (3.9), and % D � log r , then

V0.�/ D V0.%/C e
�%V0.�/; V0 2 C

1.Œ%0;1// \ L
1.Œ%0;1//;

V1.�/ D V1.%/C e
�%V1.%/; V1 2 C

1.Œ%0;1/ \ L
1.Œ%0;1//:

(4.5)

Proof. The point is that since for t small, log.1C t / D tf .t/, f 2 C1, and we find
that

log x.r/ D log.r.1C rX.r/// D log r C log.1C rX.r//

D log r C rX.r/f .rX.r// D .log r/
�
1C

r

log r
T .r/

�
;

where T .r/ D X.r/f .rX.r// 2 C1.Œ0; r0�/.
Similarly if ˛ 2 R, we have that .1C t /˛ D 1C tf˛.t/, f˛ 2 C1, and so

.� log x.r//˛ D .� log r/˛
�
1C

r

log r
T .r/

�˛
D .� log r/˛

�
1C

r

log r
T˛.r/

�
;

T˛ D T .r/f˛

�rT .r/
log r

�
2 C1..0; r0�/ \ L

1.Œ0; r0�/:

Using the same ideas, we obtain

log.2/.x.r/
�1/ D log

�
log.r�1/

�
1C

r

log r
T .r/

��
D log.2/.r

�1/C log
�
1C

r

log r
T .r/

�
D .log.2/.r

�1//
�
1C

r

.log r/.log.2/ r�1/
T1.r/

�
;

where T1 2 C1..0; r0�/ \ L1.Œ0; r0�/. Using induction, we find that

log.j /.x.r/
�1/ D .log.j /.r

�1//
�
1C

r

.log r/.log.j / r�1/
Tj .r/

�
;

where Tj 2 C1..0; r0�/\L1.Œ0; r0�/, and this proves the first equation in (4.3). The
second equation in (4.3) and the equations (4.4) and (4.5) follow directly from (4.3).
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If we replace r D e�%, % 2 Œ%0;1/ in (4.2) (we have used �D� logx before, and
here we are using %D� log r , and these are not the same) and to simplify the notation
we use X.%/ D �W.x.e�%// and B.%/ D F.e�%/, then equation (4.1) becomes

Mu� D �Eu�; � D D;N; uD.%0; y/ D 0 or @%uN .%0; y/ D 0; (4.6)

where

M D �@2% C q.%/e�2%�h.0/ C U.e
�%/C e�%X.%/; q.%/ D 1C e�%B.%/;

B;X 2 L1.Œ%0;1// \ C
1.Œ%0;1//.

We decompose u�.%; y/ in Fourier series with respect to the eigenfunctions of the
Laplacian �h.0/ on @X :

u�.%; y/ D

1X
jD0

u�j .%/ j .y/; u�j .%/ D hu
�.%; y/;  j .y/i

L2.@X;h.0//
;

where
�h.0/ j D �j j ; 0 D �0 < �1 < �2 � �3 � � � � :

Let

Yj D the eigenspace corresponding to �j (4.7a)

and define

m.�j / D dim Yj D the multiplicity of �j ; (4.7b)

and so we have that

L2.X1/ D

1M
jD1

Yj and M� D

1M
jD1

M�j ; � D D;N; (4.8)

where

Mj D �

� d
d%

�2
C e�2%q.%/�j C U.e

�%/C e�%X.%/:

For each j , M�j , � D D;N , are self-adjoint operators and �ess.M
�
j / D Œ0;1/, see for

example [10]. We prove in Appendix A, for the convenience of the reader, that they
have no eigenvalues in Œ0;1/, so they have only negative eigenvalues which only
possibly accumulate at zero. It also follows from (4.8) that if E > 0,

dimP.�1;�E/.M
�/ D

1X
jD1

m.�j / dimP.�1;�E/.M
�
j /; � D D;N;
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or in other words,

NE .M
�/ D

1X
jD1

m.�j /NE .M
�
j /; � D D;N; (4.9)

where as above, NE .T / denotes the counting function (1.5).
The eigenfunctions ��j .%;E/, � D D;N , with eigenvalue �E satisfy

.M�j CE/�
�
j D 0;

�Dj .%0; E/ D 0; @%�
D
j .%0; E/ D 1 or �Nj .%0; E/ D 1; @%�

N
j .%0; E/ D 0I

just notice that by dividing the equation by a constant, we can always assume either
the function or its derivative is equal to one at %0. For E > 0, we will consider the
Cauchy problems

.M�j CE/u
�
j .%;E/ D 0; � D D;N; on .%0;1/; (4.10a)

with boundary conditions

uDj .%0;E/D 0; @%u
D
j .%0;E/D 1 or uNj .%0;E/D 1; @%u

N
j .%0;E/D 0; (4.10b)

which have unique solutions in X1. Even though u�j .%; E/ exist for every E, for
% 2 .%0;1/, they are not necessarily eigenfunctions because they may not be in L2.
In fact, it follows from Theorem A.2 that a solution u�j .%; E/ of (4.10) is an eigen-
function if and only if u�j .%;E/ � Ce

�%
p
E as %!1. The key point of the proof

Proposition 4.1 is the following.

Proposition 4.3. Let u�j .%;E/, �DD;N be the unique solutions of the corresponding
Cauchy problems in (4.10). Let Z�j .E/ denote the number of its zeros, which are
different from % D %0 in the case � D D. If E < 0, then

NE .M
�
j / D Z

�
j .E/; � D D;N; (4.11)

and, as a consequence of (4.9), we have

NE .M
�/ D

1X
jD1

m.�j /Z
�
j .E/; � D D;N: (4.12)

This result is somewhat well known and its proof is essentially, but not quite, the
same as the proof of [26, Theorem XIII.8]. For the convenience of the reader, we
provide the details in Appendix B.
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4.1. The set up of the problems

Now, we have to count the zeros of solutions of (4.10). We set up the general type of
problem for U.e�%/ D �V0.%/C aV1.%/ with Vj .%/, j D 0; 1, satisfying one of the
alternatives in (3.9). The arguments we use do not depend on the boundary condition,
so we work with the Dirichlet problem in (4.10). We consider the problem�
�
d2

d%2
� V0.%/C e

�2%.1C B.%/e�%/�CE C aV1.%/C e
�%X.%/

�
u D 0;

(4.13a)
with E > 0,

u.%0/ D 0; @%u.%0/ D 1; (4.13b)

where B.%/;X.%/ 2 C1.Œ%0;1// \ L1.Œ%0;1//. We will denote

R.%/ D aV1.%/C e
�%X.%/ and P .%/ D �e�2%.1C e�%B.%//CE; (4.14)

and (4.13) is reduced to�
�
d2

d%2
� V0.%/CP .%/CR.%/

�
u D 0; E > 0;

u.%0/ D 0:

(4.15)

We will deal with each one of the cases (1.8), (1.10), and, in general, (1.13) sep-
arately.

4.2. Proof of item (T.1) of Proposition 4.1

In this case,

V0.%/ D c%
�2Cı and V1.%/ D a%

�2Cı.log %/�":

We multiply equation (4.15) by %2�ı , and notice that

%�.1�ı=2/=2
�
%2�ı

d2

d%2

�
%.1�ı=2/=2 D

�
%1�ı=2

d

d%

�2
�
1

4

�
1 �

ı2

4

�
%�ı :

So if u.%/ D %.1�ı=2/=2w.%/, then (4.15) becomes�
�

�
%1�ı=2

d

d%

�2
� c C

1

4

�
1 �

ı2

4

�
%�ı C E.%/

�
w D 0;

w.%0/ D 0;

(4.16)

where

E.%/ D %2�ı.P .%/CR.%//;
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R.%/ D a%�2Cı.log %/�" C e�%X.%/; " > 0;

P .%/ D �e�2%
�
1C e�%B.%/

�
CE:

Set
t D

2

jıj

p
c%ı=2;

and in this case (4.16) becomes�
�
d2

dt2
� 1C

1

c
E.%.t//C

1

4c

�
1 �

ı2

4

�� t jıj
2
p
c

��2�
w D 0; t D

p
c
2

jıj
%ı=2;

w.t0/ D 0:

(4.17)

The case ı < 0. Since X.%/ 2 L1, it follows from the assumptions on the decay of
V0.%/ and V1.%/ that %2�ıR.%/! 0 as %!1. Since P .%/ > 0 for % large, there
exists t0 > 0 independent of E and � such that for t < t0,

U.t/ D � 1C
1

c
E.%.t//C

1

4c

�
1 �

ı2

4

�� t jıj
2
p
c

��2
> �1C

1

4c
%2�ıR.%/C

1

4

�
1 �

ı2

4

�� t jıj
2
p
c

��2
> 0;

and so w.t/ is a solution of a differential equation

d2w

dt2
D U.t/w; t < t0; with U.t/ > 0;

w.t0/ D 0:
(4.18)

We have three possibilities for w0.t0/: w0.t0/ D 0, w0.t0/ > 0, or w0.t0/ < 0. If
w0.t0/ D 0, then by uniqueness, w.t/ D 0 for t < t0. If w0.t0/ > 0, since w.t/ is
C1, there exists t1 < t0 such that w0.t/ > 0 for t1 < t � t0 and so w.t/ < 0 for
t1 < t � t0 and therefore, w00.t/ < 0 for t1 < t � t0, and so, w0.t/ < w0.t0/ < 0 for
t1 < t < t0 and w.t/ < 0 for t1 < t < t0. Repeating this argument, we conclude that
w.t/ < 0 for all t < t0. If w0.t0/ < 0, since �w.t/ also solves the equation, then
w.t/ > 0 for all t < t0. Therefore, we conclude that either w.t/ D 0 for all t > t0 or
w.t/ has no zeros for t > t0.

In this case, we conclude from (4.12) that for this choice of %0,

NE .M
�/ D 0; � D N;D: (4.19)

The case 0 < ı < 2. In this case, in view of the discussion above, the set of zeros of
the solution w is contained in the set°

% > %0 W �1C
1

c
E1.%.t// � 0

±
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where

E1.%/ D %
2�ı

�
P .%/CR.%/C

1

4

�
1 �

ı2

4

�
%�2

�
:

We want to obtain upper and lower bounds on the number of zeros of the solution
w.t/ of (4.17) and consequently upper bounds on the number of eigenvalues of M�,
� D N;D. We begin by taking %0 large enough, and independently of � and E, such
that ˇ̌̌1

c
%2�ıR.%/C

1

4c

�
1 �

ı2

4

�
%�ı

ˇ̌̌
�
1

2
for all % > %0: (4.20)

Next, we obtain upper bounds for the number of zeros of w.�.t//, in t 2 Œt0;1/
where t0 corresponds to �0. Notice that, for this choice of %0, since E is small,°

% > %0 W �1C
1

c
E1.%.t// � 0

±
�

°
% � %0 W �1 �

1

c
E1.%/ �

3

2

±
�

°
% � %0 W

%2�ı

c
.E C �e�2%.1C B.%/e�%// � 2

±
;

and one may yet taken %0 larger if necessary, such that 1C e�%B.�/ � 1=2, and so°
% � %0 W

%2�ı

c
.E C �e�2%.1C B.%/e�%// � 2

±
�

°
% � %0 W

%2�ı

c

�
E C

1

2
�e�2%

�
� 2

±
: (4.21)

Also, if %0 is large,°
% � %0 W

%2�ı

c

�
E C

1

2
�e�2%

�
� 2

±
D Œ%L; %U �;

and this is because if F.%/ D %2�ı.E C �e�2%=2/; then,

F 0.%/C F 00.%/

D .2 � ı/%�ı
�
E C

1

2
�e�2%

�
.%C 1 � ı/C 4�%1�ıe�2%.% � 2.2 � ı// > 0;

and therefore, if F 0.%/ D 0, then F 00.%/ > 0, so if F.%/ has a critical point, it is a
local minimum. We then observe that°

% � %0 W
%2�ı

c

�
E C

1

2
�e�2%

�
� 2

±
D Œ%L; %U � �

°
% � %0 W

E

c
%2�ı � 2

±
\

°
% � %0 W

�

2c
%2�ıe�2% � 2

±
:
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If we take %uı such that
E

c
%2�ıuı

D 2;

so

%uı D
�2c
E

�1=.2�ı/
;

then %U � %uı and we will get an upper bound on the number of zeros of w.%.t// in
the interval Œt0; tuı �, where %0 D %.t0/ and %uı D %.tuı /. This gives an upper bound
on the zeros of w.t/ in Œt0;1/.

Since %2�ı is an increasing function, then

E

c
%2�ı � 2 for % � %uı ;

but in view of (4.21) if % � %uı and %2�ı.E C �e�2%=2/=c � 2, only if � satisfies

� �
4c

%2�ı
e2% �

4c

%2�ıuı

e2%uı D 2Ee.2c=E/
1=.2�ı/ def

D �
ı;U
;

then
1

c
E1.%/ �

3

2
provided % 2 Œ%0; %uı � and � � �

ı;U
:

As usual, see for example [5, Chapter 8], to count the zeros of w.t/ for t � tuı D
2.
p
c=ı/%

ı=2
uı , one sets

�.t/ D tan�1
� w.t/
w0.t/

�
; where w.t/ satisfies (4.17).

The number of zeros of w in the interval Œt0; tuı �, coincides with the number of times
�.t/ D k� , for some k 2 N. It follows from (4.17) that

d�

dt
D
.w0/2 � w00w

w2 C .w0/2
D 1 �

1

c
E1.t.%//

� w2

w2 C .w0/2

�
; (4.22)

and since �1 � E1.t.%//=c < 3=2, it follows that jd�=dt j � 3, and so

�.tu;ı/ � �.t0/ � 3.tuı � t0/ � 3tuı ; tuı D
2
p
c

ı
%ı=2uı :

Therefore, if Z.w/ denotes the number of zeros of w.t/, then

Z.w/ �
3tuı
�
D
6
p
c

�ı

�2c
E

�ı=.2.2�ı//
:

So, we conclude that for E small,

Z�j .E/ �
6
p
c

�ı

� 2
cE

�ı=.2.2�ı//
for all j:
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In view of (4.7) and (4.12), as E ! 0, we have for � D D;N ,

NE .M
�/ �

X
�j��ı;U

mj .�j /Z
�
j .E/ � C

� 2
cE

�ı=.2.2�ı//X
�j��ı;U

mj .�j /

D C
� 2
cE

�ı=.2.2�ı//
N�

ı;U
.�h.0//;

where N�.�h.0// is the number of eigenvalues of �h.0/ which are less than or equal
to � counted with multiplicity. Weyl’s Law, see for example [14, Corollary 17.5.8],
says that

N�.�h.0// D Cn�
n
CO.�n�1/; (4.23)

and this implies that

NE .M
�/ � C

� 2
cE

�ı=.2.2�ı//
�n
ı;U
D C

� 2
cE

�ı=.2.2�ı//
.Ee.2=cE/

1=.2�ı/

/n;

and we find that

log logNE .M�/ �
1

2 � ı
logE�1 CO.1/; as E ! 0;

which is the upper bound of (1.9).
To obtain a similar lower bound, we will find %1 D %1.E/ < %2.E/ D %2, such

that %1.E/ > %0, for E small enough with %0 as in (4.20), and �ı;L such that

%2�ı

c
.E C

1

2
�e�2%/ �

1

4
for % 2 Œ%1; %2� and � � �ı;L

and this implies that 1=cE1.%/ � 3=4 and so

Œ%1; %2� �
°
% � �0 W

1

c
E1.%/ < 1

±
;

and therefore the number of zeros of w.t/ in this interval is less than or equal to the
number of zeros of w.t/ in Œ%0;1/. We deduce from (4.22) that

�.t2/ � �.t1/ �
1

4
.t2 � t1/;

and so

Z�j .E/ �
1

4�
.t2 � t1/; tj D

2
p
c

ı
%
ı=2
j ; j D 1; 2:

Notice that, sinceE%2�ı is an increasing function and�%2�ıe�2% is an decreasing
function, we choose %2 such that

E

c
%2�ı2 D

1

8
; %2 D

� c

8E

�1=.2�ı/
;
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and for %1 D %2=2, we only pick � such that

�

2c
%2�ı1 e�2%1 �

1

8
I

this implies that

� �
c

4%2�ı1

e2%1 �
c

4%2�ı2

e2%2 D 2Ee.c=.8E//
1=.2�ı/ def

D �
ı;L
:

Therefore, for this choice of %1 and %2, and � � �
ı;L

it follows that

1

c
%2�ı

�1
2
�e�2% CE

�
�
1

4
in
h1
2
%2; %2

i
:

Therefore,

Z�j .E/ �
1

4�
.t2 � t1/ D

2
p
c

�ı
.%
ı=2
2 � %

ı=2
1 /

�
2
p
c

�ı
%
ı=2
2

�
1 �

�1
2

�ı=2�
� C

� c

8E

�ı=.2�ı/
:

It follows from (4.7) and (4.12) that as E ! 0,

NE .M
�/ �

X
�j��ı;L

mj .�j /Z
�
j .E/ � C

� c

4E

�1=.2�ı/
.�

ı;L
/n

� C
� c
8E

�ı=.2�ı/
Enen.c=.8E//

1=.2�ı/

;

and this shows that

log logNE .M�/ �
1

2 � ı
logE�1 CO.1/ as E ! 0:

This ends the proof of item (T.1) of Proposition 4.1 and together with equations (3.15),
(3.5), and (1.16) it also ends the proof of Theorem 1.1.

4.3. Proof of item (T.2) of Proposition 4.1

In this case
V0.%/ D c%

�2 and V1.%/ D %
�2.log %/�";

so if R, P are defined by (4.14), equation (4.15) becomes�
�
d2

d%2
� c%�2 CR.%/CP .%/

�
u D 0; E > 0;

u.%0/ D 0:

(4.24)
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Next, we multiply the equation by %2, set u D %1=2w, and notice that

%�1=2
�
%2
d

d%

�2
%1=2 D

�
%
d

d%

�2
�
1

4
I (4.25)

then, (4.24) becomes�
�

�
%
d

d%

�2
�

�
c �

1

4

�
C E.%/

�
w D 0; E.%/ D %2.R.%/CP .%//;

w.%0/ D 0:

(4.26)

Set s D log %, and (4.26) becomes�
�
d2

ds2
�

�
c �

1

4

�
C E.%.s//

�
w D 0;

w.s0/ D 0; where s0 D log.%0/:
(4.27)

The case c < 1=4. Since P .%/ > 0 and %2R.%/! 0 as %!1, there exists R > 0
independent of � and E such that�1

4
� c

�
C E.%/ �

�1
4
� c

�
C %2R.%/ > 0; for %0 > R:

Therefore, we have an equation as (4.18), with U.s/ D .1=4� c/C E.%.s// > 0 and
sow has no zeros, and again we conclude from (4.12) that for this choice of %0, (4.19)
holds.

The case c > 1=4. We set t D �s, � D .c � 1=4/1=2 and (4.27) becomes�
�
d2

dt2
� 1C

1

�2
E.%.t//

�
w D 0;

w.t0/ D 0; where t0 D � log.%0/:
(4.28)

The argument used above shows that the zeros of the solution w of (4.27) lie on
the set °

t > t0 W
1

�2
E.%.t// < 1

±
and as in the first case, we prove upper and lower bounds for the number of zeros of
the solution w.t/ of (4.28) and we start by picking %0 large so that j%2R.%/j < 1=2,
for % > %0. In this case,°

% > %0 W
1

�2
E.%/ < 1

±
�

°
% � %0 W

%2

�2
.R.%/CP .%// �

3

2

±
�

°
% � %0 W

%2

�2

�
E C

1

2
�e�2%

�
� 2

±
:

We have the following result.
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Lemma 4.4. Let f .%/ > 0 be a C1 function such that f 00.%/ > 0 and f .%/ > f 0.%/
for % > %0. Then, the function F.%/ D f .%/.E C �e�2%/ is convex and therefore the
set

�.E;�;C / D
°
t > t0 W f .%/

�
E C

1

2
�e�2%

�
� C

±
is either empty or is equal to an interval Œa; b� with a � %0.

Proof. We find that

F 00.%/ D f 00.%/
�
E C

1

2
�e�2%

�
C 4�.f .%/ � f 0.%//e�2% > 0:

Therefore,

Œa; b� D
°
% � %0 W

%2

�2

�
E C

1

2
�e�2%

�
� 2

±
�

°
% � %0 W

E

�2
%2 � 2

±
\

°
% � %0 W

�

2�2
%2e�2% � 2

±
: (4.29)

If we take %u to satisfy
E

�2
%2u D 2;

then b � %u and .E=�22/%
2 � 2, for % � %u. We count the zeros of w.t/ in the interval

Œt0; tu� and as above one sets

�.t/ D tan�1
� w.t/
w0.t/

�
; where w.t/ satisfies (4.28)

and then (4.22) holds, and since �1 � E.%.t// � 2, it follows that jd�=d%j � 3 and
so

�.tu/ � �.t0/ � 3tu:

Therefore, if Z.w/ denotes the number of zeros of w.%.t// in an interval Œt0; tu�, we
have

Z.w/ D
2

�
.�.tu/ � �.t0// �

3tu

�
:

So, we conclude that for E small,

Z�j .E/ �
�

�
log
�r�2

E

�
� C logE�1=2 as E ! 0

On the other hand, according to (4.29), we must also have

� �
4�2

%2
e2% �

4�2

%2u
e2%u D 2Ee2

p
2�2=E def

D �
u
;
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and so
%2

�2

�
E C

1

2
e�2%�

�
� 2 on the interval Œ%0; %u�

and � � �u, and in view of (4.7) and (4.12), as E ! 0, we have

NE .M
�/ �

X
�j��U

mj .�j /Z
�
j .E/

� C logE�1=2
X

�j��U

mj .�j / D C logE�1=2N�u
.�h.0//;

and, because of (4.23), this implies that

NE .M
�/ � C�n

u
logE�1=2:

It follows from the definition of �
u

that

log logNE .M�/ � �
1

2
logE CO.1/;

which gives the upper bound in (1.11).
To prove a similar lower bound forNE .M�/, we will find %1D %1.E/ < %2.E/D

%2 and �L such that %0 < %1.E/ for E small enough and

%2

�2

�
E C

1

2
�e�2%

�
�
1

4
for % 2 Œ%1; %2� and � � �L;

and so E.%/=�2 < 3=4 for % 2 Œ%1; %2�, and this implies that

Œ%1; %2� �
°
� � �0 W

1

�2
E.%/ < 1

±
:

It then follows from (4.22) that for t 2 Œt0; t1�, d�=dt � 1=4 and so �.t2/ � �.t1/ �
.t2 � t1/=4 and

Z.!/ �
1

4�
.t2 � t1/; tj D � log %j ; j D 1; 2:

Since E%2 is increasing, we pick %2 such that

E

�2
%22 D

1

8
;

and so E%2=�2 � 1=8, for % � %2. Pick %1 such that %1 D %2=M , with M to be
chosen; we want

�

2�2
%21e
�2%1 �

1

8
;
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thus

� �
�2

4%21
e2%1 �

�2

4%22
e2%2 D 2Ee2

p
�2=.8E/ def

D �
L
: (4.30)

Since t1 D � log %1 and t2 D � log %2, we can choose M , independently of E and �,
such that

Z.w/ �
1

4�
.t2 � t1/ �

�

4�
log
�%2
%1

�
D

�

4�
logM > 1:

Again, we conclude from (4.7) and (4.12) that for �
L

as in (4.30),

NE .M
�/ �

X
�j��L

mj .�j /Z
�
j .E/ � C

X
�j��L

mj .�j / � C�
n
L
:

This gives that

log logNE .M�/ � �
1

2
logE CO.1/;

which is the lower bound in (1.11) and proves item (T.2) of Proposition 4.1 and
together with equations (3.15), (3.5), and (1.16) it also ends the proof of Theorem 1.2.

4.4. Proof of item (T.3) of Proposition 4.1

We first consider the case N D 1 in (1.13) and we have equation (4.15) with

V0.e
�%/ D

1

4
%�2 C c1%

�2.log %/�2 and V1.e
�%/ D %�2.log %/�2.log %/�";

and R, P given by (4.14). We multiply the equation by %2, set u D %1=2w, and
use (4.25), and we obtain�

�.%@%/
2
� c1.log %/�2 C %2E.%/

�
w D 0; E.%/ D R.%/CP .%/;

w.%0/ D 0;
(4.31)

Now, we set � D log %, multiply (4.31) by �2 and set w D �1=2v, use (4.25) and
we obtain�

�

�
�
d

d�

�2
�

�
c1 �

1

4

�
C E1.%.�//

�
v D 0; E1.%/ D %

2.log %/2E.%/;

v.�0/ D 0:

As before, if c1 < 1=4, v has no zeros for � > �0, and so it follows from (4.12) that
M�, � D N;D have no eigenvalues.

If c1 > 1=4, we set �1 D .c1 � 1=4/1=2 and � D �1 log �, and we obtain�
�@2� � 1C

1

�21
E1.�.%//

�
v D 0; � D �1 log.2/ %;

v.�0/ D 0:
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As before, we assume that %0 is so large thatˇ̌̌ 1
�1

2

%2.log %/2R.%/
ˇ̌̌
�
1

2
; for % � %0;

and for this choice of %0, we have°
% � %0 W

1

�21
E1.%/ < 1

±
�

°
% � %0 W

1

�21
.% log %/2P .%/ � 2

±
�

°
% � %0 W

E

�21
.% log %/2 � 2

±
\

°
% � %0 W

�

2�21
.% log %/2e�2% � 2

±
: (4.32)

Since f .%/ D %2.log %/2 satisfies the hypothesis of Lemma 4.4, we deduce that°
% � %0 W

1

�21
.% log %/2

�
E C

1

2
�e�2%

�
� 2

±
D Œa; b�;

but then we must have
E

�21
.b log b/2 � 2

and, in particular, if we take

%u1 D
2

logA1
A1 where A1 D

s
2�21
E
;

then, for E small, and independently of �,

%u1 log %u1 D 2A1
�
1C

log 2
logA1

�
1

logA1
log.logA1/

�
� A1;

and so b � %u1 and therefore for % � %u1 , in view of (4.32), we must have

� �
4�21

.% log %/2
e2% �

4�21
.%u log %u1/2

e2%u1
def
D �

U1
: (4.33)

Since � D �1 log log %, we obtain for small E,

�.�u1/ � �.�0/ � 3.�u1 � �0/ � 3�u1 D 3�1 log log %u1
� 3�1 log log %u1 � C�1 log logE�1;

and for �
U1

as in (4.33),

NE .M
�/ � C�1 log logE�1N@X;h0.�U1 / � C�1 log.logE�1/.�

U1
/n:
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It follows that
log.3/NE .H/ �

1

2
log.2/E

�1
CO.1/;

and this gives the upper bound in (1.12).
To obtain the lower bound, we find %1 D %1.E/ < %2.E/ D %2 and �L such that

%0 < %1.E/ for E small enough and

%2.log %/2

�21

�1
2
�e�2% CE

�
�
1

4
for % 2 Œ%1; %2� and � � �L;

and this can be achieved if we take %1 and %2 such that

E

�21
.%2 log %2/2 �

1

8
and %1 D %

1=M
2 ;

with M large enough to be chosen independently of � and E. For instance, for E
small enough, take

%2 D
1

logˇ1
ˇ1; where ˇ1 D

s
�21
8E

;

and, therefore,

%2 log %2 D ˇ1
�
1 �

1

logˇ1
log.2/ ˇ1

�
< ˇ1:

But we also want .�=.2�21//%
2.log %/2e�2% � 1=8, and so we need � to satisfy

� �
1

16.%1 log %1/2
e2%1

def
D �

L1
:

Since � D �1 log log %, we can choose M , independent of E and �, so that

�.�2/ � �.�1/ �
1

4�
.�2 � �1/ �

�1

4�
log
� log %2

log %1

�
D
�1

4�
log
�
M
�
> 1:

This implies that, for �
L1

as above,

NE .M
�/ � N@X;h0.�L1 / � C.�L1 /

n;

and we conclude that

log.3/NE .M
�/ � log.2/E

�1
CO.1/;

which implies (1.12).
Next, we consider the case N D 2, which corresponds to

V0.%/ D
1

4
%�2 C

1

4
%�2.log %/�2 C c2%�2.log %/�2.log.2/ %/

�2;

V1.%/ D %
�2.log %/�2.log.2/ %/

�2.log %/�";
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with R.%/ and P .%/ as in (4.14). This time, we set � D log.3/ % in equation (4.15)
and set u D .%.log %/.log.2/ %//

1=2v, and we obtain�
�

� d
d�

�2
�

�
c2 �

1

4

�
C E2.%.�//

�
v D 0;

where
E2.%/ D %

2.log %/2.log log %/2.R.%/CP .%//; v.�0/ D 0:

As before, if c2 < 1=4, v has no zeros for � > �0, and so M� has no negative eigen-
values. If c2 > 1=4, we set �2 D .c2 � 1=4/1=2 and � D �2�, and we obtain�

�

� d
d�

�2
� 1C

1

�22
E2.�.%//

�
v D 0;

v.�0/ D 0;

We pick %0 large such thatˇ̌̌ 1
�22
%2.log %/2.log log %/2R.%/

ˇ̌̌
�
1

2
; if % � %0;

and for G2 D .%
2.log %/2.log log %/2/�1, it follows that°

% � �0 W
1

�22
E2.%/ < 1

±
�

°
% � %0 W

1

�22G2.%/

�
E C

1

2
�e�2%

�
� 2

±
�

°
% � %0 W

E

�22G2.%/
� 2

±
\

°
% � %0 W

�

2�22G2.%/
e�2% � 2

±
:

and since f .%/D 1=G2.%/D %2.log%/2.log log%/2 satisfies the hypothesis of Lemma
4.4, we find that °

% � %0 W
1

�22G2.%/

�
E C

1

2
�e�2%

�
� 2

±
D Œa; b�;

and so for % 2 Œa; b� we must have

E

�22G2.�/
� 2 and so %.log %/.log log %/ �

s
2�22
E
D A2:

If we take
%u2 D

2A2

logA2.log logA2/
;

then
%u2.log %u2/.log log %u2/ D 2A2.1C o.1// � A2; as E ! 0;
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and so b � %u2 . Therefore, for % � %u2 , we must have

� � 4�22G2.%/e
2%
� 4�22G2.%u2/e

2%u2
def
D �u2 :

It follows from (4.12) that

NE .M
�/ � C.log.3/ %u2/.�u2/

n;

which implies that

log.3/NE .M
�/ � log.2/E

�1
CO.1/ as E ! 0; (4.34)

and this implies the upper bound of (1.14) when N D 2.
Again, to obtain the lower bound, we find %1 D %1.E/ < %2.E/ D %2 and �L

such that %0 < %1.E/ for E small enough and

1

�22G2.%/

�
E C

1

2
�e�2%

�
�
3

4
for % 2 Œ%1; %2� and � � �L:

We pick %2 such that

E

�22
.%2.log %2/.log log %2//2 �

1

8
:

For instance, we can just take

%2 D
1

.logˇ2/.log logˇ2/
ˇ2; where ˇ2 D

s
�22
8E

:

We then pick %1 such that log %1 D .log %2/1=M , with M to be chosen, and we need
to restrict the values of � so that

� �
�22
4

G2.%1/e
2%1 D �

L2
:

Since � D �2 log.3/ %, we can choose M , independent of � and E, such that

�.�2/ � �.�1/ �
1

4�
.�2 � �1/ �

C�2

4�
log
� log.log %2/

log.log %1/

�
�
C�2

4�
logM > 1:

This implies that for �
L2

as above

NE .M
�/ � N@X;h0.�L2/ � C.�L2 /

n:

This implies that
log.4/NE .M

�/ � log.3/E
�1
CO.1/;
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which is the lower bound (1.14) for the case N D 2. Because of the choice of �1 we
get a weaker lower bound than (4.34).

The proof in the general case in (1.13) follows the same principle. We pick %0
such that log.j / % > 1 for % � %0, and for all j � N C 1. If G.j /.%/ is defined as
in (1.13), we have

V0.%/ D
1

4
%�2 C

1

4

N�1X
jD1

G.j /j.%/C cNG.N/.%/; V1.%/ D G.N/.%/.log %/�";

with R.%/ and P .%/ defined in (4.14).
This time, we set � D log.NC1/ % in (4.15) and u D .GN .%//�1=2v; we obtain�

�

� d
d�

�2
�

�
cN �

1

4

�
C EN .%.�//

�
v D 0;

EN .%/ D .G.N/.%//
�1.R.%/CP .%//;

v.�0/ D 0:

If cN < 1=4, then v has no zeros for � > �0, if �0 is large, and so M� has no
negative eigenvalues. If cN > 1=4, we set �N D .cN � 1=4/1=2 and � D �N�, and
we obtain �

�

� d
d�

�2
� 1C

1

�2N
EN .%.�//

�
v D 0; � D �N log.NC1/ %;

v.%0/ D 0;

Again, we follow the steps in the proof of the previous cases and pick %0 such that

jGN .%/
�2R.%/j �

1

2
if % � %0;

and so the zeros of v will be contained in the set°
% � %0 W

1

�2N
EN .%/ < 1

±
�

°
% � %0 W

1

�2N .GN .%//
2

�
E C

1

2
�e�2%

�
� 2

±
�

°
% � %0 W

E

�2N .GN .%//
2
� 2

±
\

°
% � %0 W

�

2�2N .GN .%//
2
e�2% � 2

±
:

and since 1=.GN .%//2 satisfies the hypothesis of Lemma 4.4, we find that°
% � %0 W

1

�2N .GN .%//
2

�
E C

1

2
�e�2%

�
� 2

±
D Œa; b�:
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Since

1

GN .%/
D %.log %/.log log %/ : : : .log.N/ %/ �

s
2�2N
E

; % � %�;

as before, if we define

%uN D
2AN

logAN .log logAN / : : : log.N/AN
; AN D

s
2�2N
E

;

then
1

GN .%uN /
D %uN .log %uN / : : : log.N/ %uN � AN ;

and therefore, b � %uN . We must also have � such that

� � 4�2N .GN .%//
2e2% D 4GN .%uN /e

2%uN
def
D �uN :

On the other hand,

�.�2/ � �.�1/ �
3

2�
�2 �

3

2�
�N log.NC1/ %uN ;

and therefore
NE .M

�/ � C.log.NC1/ %uN /.�uN /
n;

and this implies that

logNE .M�/ D %uN
�
2C

1

%uN
.log GN .%uN /C log.C log.NC1/ %uN //

�
;

and so
log.2/NE .M

�/ D log %uN .1CO.1// as E ! 0:

But
log %uN D .logE�1/

�1
2
CO.1/

�
as E ! 0;

and, therefore,

log.2/NE .M
�/ D .logE�1/.C CO.1// as E ! 0;

and this implies that

log.3/NE .M
�/ � log.2/E

�1
CO.1/; (4.35)

which is a better bound than (1.14).
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To establish the lower bound in (1.14), we need to find %1 D %1.E/ < %2.E/D %2
and �L such that %0 < %1.E/ for E small enough and

1

�2NGN .%/

�1
2
�e�2% CE

�
�
3

4
for % 2 Œ%1; %2�; � � �L:

We pick %2 such that
E

�2NGN .%2/
�
1

8
;

and we can just take

%2 D
ˇN

.logˇN /.log logˇN / : : : .log.N/ ˇN /
; where ˇN D

s
�2N
8E

;

and we pick %1 such that

log.N�1/ %1 D .log.N�1/ %2/
1=M ;

where M is large enough and chosen independently of � and E. We only consider
the values of � such that

� �
�2N
4

GN .%1/e
2%1 D �

LN
:

Since � D �N log
.NC1/

%, we can chooseM , independently of E and �, large enough
such that

�.%2/ � �.%1/ �
�N

4�
.log.NC1/ %2 � log.NC1/ %1/

D
�N

4�
log
� log.N/ %2

log.N/ %1

�
D
�N

4�
log.M/ > 1

In view of (4.12) and (4.23), this implies that

NE .M
�/ � C.�

LN
/n:

Then, we have

logNE .M�/ � 2n%1 C log.CGN .%1// D %1.2nCO.1//;

and so
log.2/NE .M

�/ D log %1 CO.1/;

and we deduce that

logNC1NE .M
�/ D log.N/ %1 CO.1/ D

1

M
log.N/ %2 CO.1/;
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and so
logNC2NE .M

�/ D log.NC1/ %2 CO.1/:

On the other hand,

log %2 D .logE�1/
�1
2
CO.1/

�
;

and so
log.j / %2 D log.j /E

�1
CO.1/; j � 2;

This implies the lower bound in (1.14) and ends the proof of item (T.3) of Proposi-
tion 4.1, and together with equations (3.15), (3.5), and (1.16) it also ends the proof of
Theorem 1.4. Notice that, as in the case N D 2, because of the choice of %1, we get a
worse lower bound than (4.35).

A. The spectrum of Mj

We will show that if V0.%/ and V1.%/ satisfy the assumptions of either one of the
Theorems 1.1, 1.2, or 1.4, the operators M�j defined in (4.10) have no eigenvalues in
Œ0;1/, j 2 N, � D D; N . In particular, this implies that the operator M� defined
in (4.6) with boundary conditions � DD;N . has no eigenvalues E � 0. If it did, then
each M�j would have the same eigenvalue. We prove the following.

Proposition A.1. The operators M�j , j 2 N, � DD;N , j 2 N, defined in (4.8) have
no eigenvalues in Œ0;1/.

Proof. If E is an eigenvalue of M�j , then there exists  2 L2..%0;1// such that

 00.%/ D
�
�E C V0.e

�%/C aV1.e
�%/C e�% zX.%/

�
 .%/;

with
zX.%/ D X.%/C e�%q.%/�j :

Now, we appeal to [22, Theorems 2.1 and 2.4 from Section 6.2], which we state
in a single theorem.

Theorem A.2. In a given finite or infinite interval .a1; a2/, let f .x/ be a positive,
twice continuously differentiable function, g.%/ a continuous real or complex func-
tion, and

F.%/ D

Z
Œf �1=4.f �1=4/00 � gf �1=2�d%:

Then, in this interval, the differential equations

u00.%/ D .f .%/C g.%//u.%/ (A.1a)
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and

w00.%/ D .�f .%/C g.%//w.%/; (A.1b)

have twice continuously differentiable solutions which in the case (A.1a) are given by

u1.%/ D f
�1=4.%/e

R
f 1=2d%.1C "1.%//;

u2.x/ D f
�1=4.%/e�

R
f 1=2d%.1C "2.%//;

and in the case (A.1b) are given by

w1.%/ D f
�1=4.%/ei

R
f 1=2d%.1C "1.%//;

w2.x/ D f
�1=4.%/e�i

R
f 1=2d%.1C "2.%//;

such that the error terms "j .%/, j D 1; 2, satisfy

j"1.%/j � e
Va1;%.F /=2 � 1 and j"2.%/j � e

V%;a2 .F /=2 � 1;

1

2
f �1=2.%/j"01.x/j � e

Va1;%.F /=2 � 1 and
1

2
f �1=2.%/j"02.x/j � e

V%;a2 .F /=2 � 1;

provided Va1;%.F / <1. Here, V˛;ˇ .F / denotes the total variation of F on the inter-
val .˛; ˇ/.

We first show that one cannot have an eigenvalueE > 0. We will consider the case
of Theorem 1.1, V0.e��/ D c��2Cı and V1.�/ D ��2Cı.log�/�", the other cases are
very similar. We apply Theorem A.2 with

�f .�/ D �E � c��2Cı C c1�
�2Cı.log �/�"

and
g.�/ D e��V.�/

Then, on the interval Œ�1;1/, with �1 large,

w1.�/ D f
�1=4ei

p
f .�/.1C "1.�//; w2.�/ D E

�1=4e�i
p
f .�/.1C "2.�//:

But
.f �1=4/00f �1=4 D �

c

4
.3 � ı/.2 � ı/E�3=2��4Cı.1C o.1//

and
jg.�/j � Ce��;

and so

V�1;�.F /.�/ D

�Z
�1

jF 0.s/jds �

�Z
�1

.M1e
�s
CM2E

�3=2s�4Cı/ds

� C1.e
��1 C e��/C C2E

�3=2.��3Cı1 C ��3Cı/;
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and so

"1.�/ � e
V�1;�.F /.�/=2 � 1 � C..e��1 C e��/CE�3=2.��3Cı1 C ��3Cı//; ı � 0;

and hence for �1 large, 1C "1.�/ � c1 C c2��3Cı and therefore w1 62 L2.Œ�1;1/.
A similar analysis works to estimate E2. Since there are constants C1 and C2 such that
 .E;�/D C1w1.�/CC2w2.�/, it follows that  62 L2.Œ�1;1// and so  cannot be
an eigenfunction.

When E D 0, and ı > 0, we apply the same argument with �f D �c��2Cı and
we obtain

.f �1=4/00f �1=4 D c1�
�1�ı=2;

and so we find that for �1 large, 1C "j .�/ � c1 C c2��ı , and so there are no eigen-
functions with E � 0.

The last case does not quite apply when ı D 0 and we use an argument as in the
proof of Hardy’s inequality in [6]. We will prove the following.

Lemma A.3. Suppose u 2 L2.Œ�0;1//, h.�/ is continuous and h.�/ D o.1/ as
�!1 and

u00.�/ D ��2
�
�
1

4
C h.�/

�
u in .�0;1/; c > 0; (A.2)

then u.�/ D 0 on Œ�0;1/.

Proof of the lemma. Since u2L2.Œ�0;1//, by using equation (A.2) and the Cauchy–
Schwarz inequality, we find that ju0.�/j � C��3=2 and hence ju.�/j � C��1=2, and
the equation gives ju00.�/j � C��5=2. Therefore, if ˛ 2 .1; 2/, �D .˛ � 1/=2 > 0 and
�1 > �,

1Z
�1

�˛.u0.�//2d� D

1Z
�1

�˛.���.��u/0 � ���1u/2d�

� �2
1Z
�1

�˛�2.u.�//2d� � �

1Z
�1

..��u/2/0d�

and since � < 1=2, we deduce that for ˛ 2 .1; 2/,

.˛ � 1/2

4

1Z
�1

�˛�2.u.�//2d� �

1Z
�1

�˛.u0.�//2d�:
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We apply the same argument to the second derivative, and use that ju0.�/j � C��3=2;
then, for ˛ 2 .1; 4/,

.˛ � 1/2

4

1Z
�1

�˛�2.u0.�//2d� �

1Z
�1

�˛.u00.�//2d�:

We combine these two estimates and we obtain, for ˛ 2 .3; 4/,

.˛ � 1/2

4

.˛ � 3/2

4

1Z
�1

�˛�4.u.�//2d� �

1Z
�1

�˛.u00.�//2d�:

This equation implies that

.˛ � 1/2

4

.˛ � 3/2

4

1Z
�1

�˛�4.u.�//2d� �

1Z
�1

�
�
1

4
C h.�/

�2
�˛�4.u.�//2 d�:

Pick �1 large and ˛ D 4 � " with " small and this implies that u.�/ D 0 on Œ�1;1/.
Then, u D 0 on .�0;1/ by uniqueness.

This ends the proof of Proposition A.1.

B. Proof of Proposition 4.3

We follow the arguments used in the proof of [26, Theorem XIII.8]. We have already
established that �ess.M

�
j /D Œ0;1/, � DD;N and that there are no eigenvalues in the

essential spectrum. Then, one needs to prove three lemmas.

Lemma B.1. Let V.�/2C1.I /, I �R open, and letE 2R. Let u.�;E/, not identic-
ally zero, satisfy

u00.�; E/ D .V .�/ �E/u.�;E/ on I:

If a0 D a0.E0/ 2 I is such that u.a0; E0/ D 0, then there exists ı > 0 and a C1

function a.E/ defined for jE �E0j < ı such that a.E0/ D a0 and u.a.E/;E/ D 0.

Proof. We know from the existence and uniqueness and stability theorems for ordin-
ary differential equations that u.�; E/ is a C1 function and since u.�; E/ is not
identically zero, if u.a0; E0/ D 0, then @�u.a0; E0/ 6D 0. The implicit function the-
orem then guarantees that there exists a C1 function a.E/ defined on an interval
jE �E0j < ı such that a.E0/ D a0 and u.a.E/;E/ D 0.
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Lemma B.2. As above, let � D D;N . Let Mj be the operators defined in (4.10). Let
V0 and V1 satisfy the hypotheses of either Theorem 1.1, 1.2, or 1.4. The following
statements about Z�j .E/ hold true:

(1) if �E < 0, then Z�j .E/ <1;

(2) if Z�j .E0/ � m, there exists ı > 0 so that Z�j .E/ � m for jE �E0j < ı;

(3) �E0 < �E, then Z�j .E/ � Z
�
j .E0/;

(4) if �E0 is an eigenvalue of M�j , and �E0 < �E, then Z�j .E/ � Z
�
j .E0/C 1;

(5) if k > j and �k > �j , then Z�j .E/ � Z
�
k
.E/;

(6) if k > j , �E is an eigenvalue, and �k > �j , then Z�j .E/ � Z
�
k
.E/C 1.

Proof. We have already shown that item (1) is true. Lemma B.1 says that if �1 <
�2 < � � � < �m�1 < �m 2 .�0;1/ are such that u�j .�j ;E0/D 0, then there exist ı > 0
and C1 functions rj .E/ defined in jE � E0j < ı such that rj .E0/ D �j and that
u�j .rj .E/;E/ D 0, and therefore Z�j .E/ � m.

To prove item (3), we first consider the Dirichlet problem. This is the stand-
ard form of the Sturm oscillation theorem. Let �0 < �1 < � � � < �n be the zeros of
uDj .�; E0/. We claim that uDj .�; E/ has a zero in each of the intervals .�j ; �jC1/. To
see that, suppose that uDj .�;E/ does not have a zero in this interval. By possibly mul-
tiplying the functions by �1, we may assume that uDj .�; E/ > 0 and uDj .�; E0/ > 0
in .�j ; �jC1/. In this case, u0j .�j ; E0/ > 0 and u0j .�jC1; E0/ < 0. Therefore,

ID D

�mC1Z
�m

Œ.uDj /
0.�; E0/u

D
j .�; E/ � u

D
j .�; E0/.u

D
j /
0.�; E/�0d�

D .uDj /
0.�mC1; E0/u

D
j .�mC1; E/ � .u

D
j /
0.�m; E0/u

D
j .�m; E/ � 0:

On the other hand,

ID D

�mC1Z
�m

Œ.uDj /
00.�; E0/u

D
j .�; E/ � u

D
j .�; E0/.u

D
j /
00.�; E/�d�

D .E0 �E/

�mC1Z
�m

uDj .�; E0/u
D
j .�; E/ d� > 0:

If E0 is an eigenvalue, we claim that uDj .�;E/ also has a zero in .�n;1/. To see that,
we apply the same idea, but now one needs to justify the convergence of the integral
from �n to1. We appeal again to Theorem A.2. If we take f D E0, and f D E, the
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solutions of (4.10) for � large are of the form

uDj .�; E0/ D E
�1=4
0

�
C1e

��
p
E0.1C "1.�//C C2e

�
p
E0.1C "2.�//

�
;

uDj .�; E/ D E
�1=4

�
zC1e
��
p
E .1C "1.�//C zC2e

�
p
E .1C "2.�//

�
:

Since E0 is an eigenvalue, uDj .�; E0/ 2 L
2..�0;1// and C2 D 0. Since E0 > E,

then integrals will involve terms of the type e�.
p
E�
p
E0/O.1/, which will converge

if E0 > E.
As for the Neumann problem, the same argument applies with the exception of

the interval .�0; �1/. In this case, we know from the assumptions made in (4.10) that

.uNj /
0.�0; E0/ D .u

N
j /
0.�0; E/ D 0; uNj .�0; E0/ D u

N
j .�0; E/ D 1;

and we also know that uNj .�1; E0/ D 0. In this case, we would have uNj .�; E/ > 0
and uNj .�; E0/ > 0 in .�0; �1/, and so we would have

.uNj /
0.�1; E0/ � 0 and uNj .�1; E/ � 0

and, therefore,

IN D

�1Z
�0

Œ.uNj /
0.�; E0/u

N
j .�; E/ � u

N
j .�; E0/.u

N
j /
0.�; E/�0d�

D .uNj /
0.�1; E0/u

N
j .�1; E/ � 0:

As above,

IN D .E0 �E/

�1Z
�0

uNj .�; E0/u
N
j .�; E/ d� > 0:

The same argument can be used to show that Z�j .E/ � Z
�
k
.E/, provided j > k

and �k > �j . In this case, we suppose that �1 < �2 < � � � < �n are the zeros of
uD
k
.�; E/ and we want to show that uj .�; D/ has a zero in .�m; �mC1/. We assume

there are no zeros of uj .�; E/ in .�m; �mC1/ and we may assume that uD
k
.�; E/ > 0

and uDj .�; E/ > 0 on �m; �mC1 and that

.uDk /
0.�m; E/ > 0; .uDk /

0.�mC1; E/ < 0;

and
uDj .�m; E/ � 0; uDj .�mC1; E/ � 0:
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Then,

ID D

�mC1Z
�m

Œ.uDk /
0.�; E/uDj .�; E/ � u

D
k .�; E/.u

D
j /
0.�; E/�0d�

D .uDk /
0.�mC1; E/u

D
j .�mC1; E/ � .u

D
k /
0.�m; E/u

D
j .�m; E/ � 0:

On the other hand,

ID D

�mC1Z
�m

.�k � �j /e
�2�uDk .�; E/u

D
j .�; E/ d� > 0:

The same argument works for the Neumann problem and to prove item (6).

Lemma B.3. Let ���
j;k

, k D 1; 2; : : : , denote the eigenvalues of M�j , � D D;N . The
following facts hold.

(I) The eigenvalues have multiplicity one.

(II) If E � 0, m 2 N and Z�j .E/ � m, then ��j;m < �E. In particular,

NE .M
�
j / � Z

�
j .E/:

(III) Z�j .�
�
j;k
/ D k � 1.

Proof. The eigenvalues are simple by the uniqueness theorem for ordinary differential
equations. By dividing an eigenfunction  �.�/ by a constant, one may assume it will
satisfy  D.�0/D 0 and . D/0.�0/D 1 or . N /0.�0/D 0 and  N .�0/D 1, and one
cannot have two different solutions with the same Cauchy data.

We will show that there exist at least m eigenvalues ��
j;k

which are less than �E.
Let u�j .�; E/ be the solution of (4.10) and let �1 < �2 < � � � < �M , M � m, and
�0 < �1, denote its zeros (not equal to �0 in case � D D), and let

 �k.�/ D

´
u�j .�; E/ if �k � � � �kC1; k D 0; 1; : : : ;M � 1;

0 otherwise.

Obviously, h �i ;  
�
k
i D 0, if i 6D k. Let U be the M -dimensional subspace spanned

by  �
k

. If  � D
Pm0
jD1 ak 

�
k

, one can check that

hM�j 
�;  �i D �Eh �;  �iI

it follows from the min-max principle, see [26, Theorem XIII.2], that ���j;M � �E
and, in particular, ��j;m � �E. It follows from Lemma B.2 (2) that if " > 0 is small
enough,Z�j .E C "/�m, and we have shown that in fact��m.M�j /��E � " <�E.
This proves item (II).
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We haveZ�j .�
�
j;1/ � 0. Suppose thatZ�j .�

�
j;k�1

/ � k � 2. It follows from Lemma
B.2 (5) that Z�j .�

�
j;k
/ � Z�j .�

�
j;k�1

/ C 1 � k � 1. On the other hand, notice that if
Z�j .�

�
j;k
/ > k � 1, then by item (II), ��j;k < ��j;k . So, Z�j .��

�
j;k
/ � k � 1. This

proves item (III).

Now, we can prove (4.11). We know from Lemma B.3 (II) thatNE .M�j /�Z
�
j .E/.

Since Z�j .E/ <1 if �E < 0, suppose that NE .M�j / > Z
�
j .E/ D m; then, by defin-

ition, this implies that ���j;mC1 � �E, so Lemma B.2 (4) and Lemma B.3 (III) imply
that

Z�j .E/ � Z
�
j .�
�
j;mC1/C 1 D mC 1:

This proves (4.11).
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