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Phase transition in the integrated density of states of the
Anderson model arising from a supersymmetric sigma model

Margherita Disertori, Valentin Rapenne, Constanza Rojas-Molina, and
Xiaolin Zeng

Abstract. We study the integrated density of states (IDS) of the random Schrödinger operator
appearing in the study of certain reinforced random processes in connection with a supersym-
metric sigma-model. We rely on previous results on the supersymmetric sigma-model to obtain
lower and upper bounds on the asymptotic behavior of the IDS near the bottom of the spectrum
in all dimension. We show a phase transition for the IDS between weak and strong disorder
regime in dimension larger or equal to three, that follows from a phase transition in the cor-
responding random process and supersymmetric sigma-model. In particular, we show that the
IDS does not exhibit Lifshitz tails in the strong disorder regime, confirming a recent conjecture.
This is in stark contrast with other disordered systems, like the Anderson model. A Wegner-type
estimate is also derived, giving an upper bound on the IDS and showing the regularity of the
function.

1. Introduction and main results

Transport phenomena in disordered materials can be described at the quantum
mechanical level via random Schödinger operators. On the lattice Zd , d � 1, they
generally take the form of an infinite random matrix H! D ��C �V! 2 RZd�Zd

sym

where �� is the negative discrete Laplacian and V! is a diagonal matrix with random
entries.

In this paper, we consider a random Schrödinger operator Hˇ (defined in (1.1)
below) arising from the supersymmetric hyperbolic sigma model H 2j2 introduced
by Zirnbauer in the context of quantum diffusion [13, 35]. This can be seen as a
statistical mechanics spin model, where the spins take values on a supersymmetric
extension of the hyperbolic plane H 2. This model is expected to qualitatively reflect
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the phenomenon of Anderson localization and delocalization for real symmetric band
matrices (see [12, Section 3]) and exhibits a dimension-dependent phase transition
between a disordered phase [11] and an ordered phase with spontaneous symmetry
breaking [12].

In recent years, H 2j2 attracted a growing interest from the mathematics com-
munity due to the discovery in [32–34] of surprising connections with two linearly
reinforced random processes: the edge reinforced random walk introduced by Diaco-
nis in 1986, and the vertex reinforced jump process conceived by Werner around 2000.
A first spectacular application of this connection was the proof of a phase transition in
the reinforced processes between a recurrent and a transient phase that follows from
the disorder/order transition in the H 2j2 model [4, 10, 32].

In [33, 34], Sabot, Tarrès, and Zeng show that a key ingredient in proving many
properties of the reinforced processes is the connection with the random Schrödinger
operator Hˇ (1.1), which is the main object of study in the present paper. The spec-
trum of this random operator is deterministic (see [1, Theorem 3.10] and [30,
Chapter 4]) and the existence/non-existence of an eigenvalue in 0 is related to tran-
sience/recurrence properties of the stochastic processes [33,34]. At large disorder the
spectrum is pure point [7].

In this paper, we pursue the study of spectral properties of this operator. Our aim
is to study the asymptotics of the so-called integrated density of states (IDS) of the
operator Hˇ for energies near the bottom of the spectrum. The IDS is a function
on the spectrum of the operator that computes the average number of eigenvalues per
unit volume. In disordered systems like the Anderson model with independent random
variables, the IDS exhibits an exponential decay near the spectral edges at arbitrary
dimension, known as Lifshitz tails. This is in stark contrast with the behavior of the
IDS in periodic systems. The Lifshitz behavior of the IDS is a key ingredient to prove
localization for random operators, although it is not a necessary condition (see, e.g.,
Delone–Anderson models for which the IDS might not even exist but localization
still holds [14, 31]). The connection between the IDS behavior at the bottom of the
spectrum and localization explains the important role played by the IDS in the spectral
and dynamical study of random Schrödinger operators.

In [34], the authors conjecture that the asymptotic behavior of the IDS of the
random Schrödinger operator Hˇ appearing in connection to reinforced random pro-
cesses does not exhibit Lifshitz tails. This is due to dependencies in the random
variables, that imply that the bottom of the spectrum is not attained by extreme values
of the random variables, but can be attained by several configurations of the potential.

In this article, we show that the IDS N.E; Hˇ / of the operator Hˇ does not
exhibit Lifshitz tails, and undergoes a phase transition in its behavior as a function
of E, depending on the dimension and the strength of the disorder. This follows from
a phase transition in the associated reinforced random process and supersymmetric
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sigma-model. Namely, we prove that in dimension one, for any value of the disor-
der strength, the IDS behaves roughly as

p
E as E # 0, while in dimension two and

above, this behavior holds for large disorder. On the contrary, in dimension three and
above the decay rate is bounded above by E at weak disorder.

To the best of our knowledge, the operator Hˇ is the first Anderson-type model
for which the IDS is known to undergo a phase transition, whose dependence on
the disorder strength and dimension is similar to the one in the metal-insulator tran-
sition conjectured for the Anderson model. Note that the transitions appearing in
the literature for the IDS of Anderson-type models (the so-called classical-quantum
transitions) are transitions in the exponents of the Lifshitz tails depending on the
decay of the single site potential [16, 23]. A phase transition which does not involve
Lifshitz tails has been observed in the IDS for certain random spin models [15]. As
far as we know, the operator Hˇ provides a first physically motivated example where
Lifshitz tails break down, even in presence of pure point spectrum. The latter con-
tributes to the family of very specific models for which the violation of Lifshitz tails
is known [6, 20, 21, 26, 28].

We proceed to define the random Schrödinger operator Hˇ on Zd appearing in
connection with the hyperbolic H 2j2 sigma-model and reinforced random processes.
Let Zd be the undirected square lattice, with vertex set V.Zd / and edge set E.Zd /.
By abuse of notation, we will often identify the set in Zd with its vertex set and, in
particular, write Zd instead of V.Zd /. The operator Hˇ is defined as follows. Let
We D Wi;j > 0 be the edge weight of e D ¹i; j º on Zd , and PW be the associated
adjacency operator of Zd , or equivalently, PW is the operator on `2.Zd / defined by

PW f .i/ D
X
j Wj�i

Wi;jf .j / for all f 2 `2.Zd /;

where j � i means that ¹i;j º is an edge of the lattice Zd . We consider Hˇ 2RZd�Zd ,
the infinite symmetric matrix defined by

Hˇ ´ 2ˇ � PW ; (1.1)

where ˇ is a diagonal matrix whose diagonal entries .ˇi /i2Zd form a family of posi-
tive random variables defined as follows (cf. [33, Theorem 1] and [34, Proposition 1]):
for all i 2 Zd , ˇi > 0 a.s., and for all sub latticeƒ� Zd finite, the Laplace transform
of .ˇi /i2ƒ equals

EW .e�h�;ˇiƒ/

D e�
P
i;j2ƒ;i�j Wi;j .

p
.1C�i /.1C�j /�1/�

P
i2ƒ;j…ƒ;i�j Wi;j .

p
1C�i�1/

Y
i2ƒ

1
p
1C �i

:

(1.2)
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The law of this random field ˇ is characterized by the above Laplace transform. This
Laplace transform is a particular case of the general version, given in equation (2.1),
with � � 1. By means of the Laplace transform (1.2), one can see that if i and j are
not related by an edge in Zd , then ˇi and ǰ are independent. We say that the field ˇ
is 1-dependent. The infinite-volume distribution of .ˇi /i2Zd will be denoted by �W

and the associated expectation is denoted by EW . The operator Hˇ defined by

Hˇf .i/ D 2ˇif .i/ �
X
j Wj�i

Wi;jf .j / for all i 2 Zd ;

maps D ! `2.Zd / almost surely, where D � `2.Zd / is the set of sequences with
finite support, which is dense.

In this paper, we will set all Wi;j equal, and, in an abuse of notation, denote this
common valueW too (as it will not cause any ambiguity in the sequel). This condition
ensures that the operator Hˇ is ergodic with respect to the translations in Zd . Ergod-
icity is a key ingredient to prove the existence of the IDS and the deterministic nature
of the spectrum of Hˇ using standard arguments. In this case, the spectrum is given
by �.Hˇ /D Œ0;C1/ (see [34, Theorem 2.(i)] and [30]). At times, we still writeWi;j
to specify the vertex i that we are considering or to emphasize the generality of the
probability measures.

By [33, Proposition 1] or [34, Lemma 4], any finite marginal .ˇi /i2ƒ (i.e.,ƒ�Zd

is a finite subset) has the following explicit probability density with respect to the
product Lebesgue measure dˇ D

Q
i2ƒ dˇi :

�
W;�w

ƒ .dˇ/

D 1Hˇ;ƒ>0e
� 12 .h1;Hˇ;ƒ1iCh�

w ;H�1
ˇ;ƒ

�wi�2h1;�wi/ 1p
det Hˇ;ƒ

� 2
�

� jƒj
2

dˇ: (1.3)

The corresponding average will be denoted by EW;�
w

ƒ . Here, �w is a vector denoting
a wired boundary condition on ƒ, defined by

�w.i/´ �wƒ.i/ D
X

j…ƒ;j�i

Wi;j ; for i 2 ƒ; (1.4)

and
Hˇ;ƒ´ .2ˇ � PW /jƒ D 1ƒHˇ1ƒ

is the operator Hˇ restricted on the setƒ with simple boundary condition, i.e., a finite
matrix defined by

Hˇ;ƒf .i/´ 2ˇif .i/ �
X

j2ƒWj�i

Wi;jf .j /; for all f 2 Rƒ:
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Here, 1ƒ is the projection operator on ƒ. Note that, even if we replace �w by an
arbitrary � 2 Rƒ�0, (1.3) is still a probability density. In this case, the probability will
be denoted by �W;�ƒ and the expectation by EW;�ƒ , to stress the � dependence. A more
general finite volume density is given in Theorem 4 below.

Sometimes, we will write HS
ˇ;ƒ
´ Hˇ;ƒ to insist on the type of boundary con-

ditions considered, that we call simple boundary condition. We will also consider the
operator with Dirichlet boundary condition, which will be denoted by HD

ˇ;ƒ
and is

defined by

HD
ˇ;ƒ´ .2ˇ � PW /ƒ CWM2d�n D Hˇ;ƒ CWM2d�n;

where M2d�n is the multiplicative operator by 2d � n acting on `2.Zd /, where for
every i 2 ƒ, ni ´ deg.i/ in ƒ, i.e., ni D

P
j2ƒ; j�i 1.

In the usual Anderson model, the random Schrödinger operator H D ��C �V
with a bounded potential, the edge weight equals 1 (in the discrete Laplacian �,
entries are 0 or 1), and the disorder parameter � > 0 modulating the intensity of the
random potential allows for two well-defined regimes, that of strong disorder (�� 1)
and that of weak disorder (small �). In Hˇ , however, the edge weight equals W , and
the law of the random potential depends also on W , hence the disorder parameter
does not appear as a coupling constant but is encoded in the law of ˇ. To have an
expression that resembles the Anderson model, we consider the rescaled operatorHˇ
defined by

Hˇ ´
1

W
Hˇ D

2ˇ

W
� P D .��/C

�2ˇ
W
� 2d

�
; Pij ´ 1i�j :

The corresponding finite volume operator with Dirichlet boundary condition is then

HD
ˇ;ƒ´

1

W
HD
ˇ;ƒ D

�2ˇ
W
� P

�
ƒ
CM2d�n D Hˇ;ƒ CM2d�n; (1.5)

where Hˇ;ƒ D HS
ˇ;ƒ

is the operator with simple boundary condition.
Note that, by the explicit Laplace transform (1.2) (cf. [7, Theorem C]), we have

for every j 2 Zd and for every � > 0,

EW Œe�� ǰ � D
e�2dW.

p
1C��1/

p
1C �

:

Therefore, the one point marginal of the random potential is known to be a reciprocal
inverse Gaussian distribution.

It follows that the mean of 2ˇi is 2dW C 1, and its variance is 2dW C 2. The
corresponding rescaled potential Vi ´ 2ˇi=W � 2d has mean EW ŒVi � D 1=W and
variance VarŒVi �D 2d=W C 2=W 2. Therefore, analogously to the case of the Ander-
son model, for Hˇ we can identify two regimes: W small corresponds to a strong
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disorder regime andW large, to a weak disorder regime. Indeed, for largeW we have
EW ŒVi � D 1=W ' 0, and VarŒVi � D O.1=W / ' 0, hence Hˇ is a small perturba-
tion of 2d � P D ��. On the contrary, for small W both mean and variance are
large, EW ŒVi �D 1=W , and VarŒVi �' 1=W 2, henceHˇ is dominated by the diagonal
disorder.

Our main object of study is the integrated density of states (IDS)

N.E/ D N.E;Hˇ /

for Hˇ at an energy E 2 R, defined by

N.E;Hˇ / D lim
L!1

EWƒL ŒNƒL.E;H
#
ˇ;ƒL

/�; (1.6)

where ƒL is a box in Zd of side 2LC 1 centered at zero and NƒL.E;H
#
ˇ;ƒL

/ is the
finite volume IDS on ƒL defined by

NƒL.E;H
#
ˇ;ƒL

/´
1

jƒLj

X
�2�.H #

ˇ;ƒL
/\.�1;E�

1

D
1

jƒLj
tr.1.�1;E�.H #

ˇ;ƒL
//: (1.7)

Here, # 2 ¹D; Sº indicates if we have Dirichlet (see (1.5)) or simple boundary con-
ditions. Note that the usual definition of the IDS (see e.g., [1, Corollary 3.16]) does
not contain the expectation in the right-hand side of the equation (1.6). However, the
equivalence between these two definitions follows from, e.g., [1, Lemma 4.12]. Also,
the limiting function N does not depend on the boundary conditions in the finite-
volume restriction ofHˇ to the box, so we can replace the simple boundary conditions
with Dirichlet boundary conditions and the result still holds [1, Lemma 4.12].

We are interested in the asymptotics of N.E/ for E & 0, that is, at the bottom of
the spectrum of Hˇ . For a random Schrödinger operator with i.i.d. random potential,
the Lifshitz tails estimate (e.g., [22]) claims that, near the bottom of the spectrum
(assuming it is 0), the integrated density of states behaves like

N.E/ D ce�E
� 1
2
dCo.1/

(1.8)

in d dimensions. This is in stark contrast with the case of the free laplacian which
exhibits Van Hove asymptotics, that is,N.E/�Ed=2 (see [5, Theorem 3]). The expo-
nential decay in (1.8) appears since, by the i.i.d. nature of the potential, configurations
near the bottom of the spectrum are highly unlikely. Lifshitz tails also appear in mod-
els exhibiting correlations in the potential, for example in potentials given by a linear
combination of i.i.d. random variables [19]. This behavior may be violated for exam-
ple when the operator is not monotonous in the random variables [6,20,21,28], or the
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lattice is replaced by a random graph. In particular, the random Laplacian of the per-
colation subgraph of bond-percolation with parameter p on Zd , exhibits a transition
between Van Hove and Lifshitz behavior depending of the percolation parameter p,
see [26, 27].

For our Hˇ operator, the 1-dependence of the ˇ variables entails that the number
of realizations of the potential favoring low energy states is large and hence Lifshitz
tails do not occur. Precisely, we will prove the following three results.

Theorem 1 (Lower bound on the IDS). We define

Wcr D Wcr.d/´ max¹Wc ; W 0cº; (1.9)

where Wc > 0 (resp., W 0c > 0) is the (dimensional dependent) parameter introduced
in Theorem 6 (resp., Theorem 8). In particular, Wcr D 1 for d D 1. Then, for each
0 < W < Wcr there exist constants c D c.W; d/ > 0 and E0 D E0.W; d; c/ > 0 such
that

N.E;Hˇ / � c.� logE/�d
p
E; for all 0 < E < E0:

Actually, we will show in Lemma 10 below that W 0c .d/ > Wc.d/ for all d � 2.
Equation (2.12) yields W 0c .d/ � 0:1.

The next result concerns the regularity of the finite volume IDS with simple/Di-
richlet boundary condition defined in (1.7) above.

Theorem 2 (Wegner-type estimate). For all W > 0, we have that the finite volume
IDS NƒL.E;H

#
ˇ;ƒL

/, with # 2 ¹D;Sº, satisfies the bound

EW;�
w

ƒL
ŒNƒL.E C ";H

#
ˇ;ƒL

/ �NƒL.E � ";H
#
ˇ;ƒL

/� � 4

r
W

2�

p
" (1.10)

uniformly in ƒL, E 2 R and " > 0.
Moreover, for d � 3, we define

W0 D W0.d/´ max¹W 00; 4
8
º;

where W 00 D W 00.d/ � 1 is the parameter introduced in Theorem 27. Then, for all
W � W0, the following improved estimate holds:

EW;�
w

ƒL
ŒNƒL.E C ";H

#
ˇ;ƒL

/ �NƒL.E � ";H
#
ˇ;ƒL

/� � C
p
W " (1.11)

uniformly in ƒL, E 2 R and " > 0, where C > 0 is some constant.

Theorem 3 (Upper bound and regularity for the IDS). For all W > 0, the func-
tion E 7! N.E;Hˇ / is Hölder continuous with exponent 1=2 and Hölder seminorm
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ŒN �
C
0; 1
2
� 2

p
W=� . In particular, it satisfies the bound

N.E;Hˇ / � 2

r
W

�

p
E for all E > 0:

Moreover, for d � 3 and W � W0, the function E 7! N.E/ is Lipschitz continuous
with Lipschitz constant Lip.N / � C

p
W =2, where C is the constant introduced in

Theorem 2. In addition, it satisfies the bound

N.E;Hˇ / � C
0E for all E > 0; (1.12)

for some constant C 0 > 0 independent of W .

Discussion on the results and open questions

Behavior of the IDS near E D 0. Theorems 1 and 3 imply, in the strong disorder
regime W < Wcr and for all dimension d ,

c
1

j lnEjd
p
E � N.E/ � 2

r
W

�

p
E

as E & 0. In particular, our results indicate that, for such a model, that is ergodic and
features a 1-dependent random potential, Lifshitz tails do not emerge. Note that it is
conjectured in [34] that, in the case of constant weights, the asymptotic behavior of
the IDS of the operator Hˇ is

p
E. Therefore, we prove this conjecture in the strong

disorder regime up to a logarithmic correction. We anticipate that this result will also
apply to non-constant weights, provided they do not vary excessively and the relevant
quantities can be defined.

Note that, for strong disorder W � 1, the random variables ˇ are approximately
iid with Gamma distribution (cf. the explicit Laplace transform in (1.2)). Therefore,
one expects that

N.E;Hˇ / D N.EW;Hˇ / ' P .2ˇ0 < EW / /
p
EW

for EW < 1, which is indeed what we obtained.
For weak disorder W � 1, the random variables approach the constant value 2d ,

hence one expects convergence to the IDS of 2d � P D �� as W !1 which is
proportional to Ed=2. Note that the improved bound (1.12) is compatible with this
expectation and moreover shows the IDS undergoes a phase transition at d � 3.
A more precise comparison with �� would require also a lower bound forN.E;Hˇ /
at weak disorder, which is still missing. This leads to the following open question.

Open question 1. What is the exact asymptotics of the IDS at the bottom of the spec-
trum at weak disorder W � 1, depending on the dimension? Does it approach the
IDS of the Laplacian?
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Critical value of the disorder strength W . For dimension d � 3, we have proved
a phase transition for the IDS in the following sense: for E near zero N.E/ �

p
E

when W � W 0c .d/ � 0:1 and N.E/ � C 0E �
p
E when W � W0 > 1. A natural

question is whether this phase transition is unique. This would require to know the
behaviour ofN.E/ for intermediate values ofW , which is at the moment out of reach
for our techniques. This unicity is known in the case of the vertex reinforced jump
process: in [29], Poudevigne-Auboiron proved that there is a unique transition point
W �.d/ between recurrence and transience for the vertex reinforced jump process
with constant weightsW on Zd when d � 3. The proof uses a monotonicity property
concerning H�1

ˇ
that follows from a clever coupling (see also Theorem 24 in the

appendix) and the 0–1 law in [34, Proposition 3]. As the operator Hˇ is crucial to
define the random environment of the vertex reinforced jump process, the following
question arises.

Open question 2. Is the phase transition for the density of states of Hˇ D Hˇ=W

unique and does it occur at the same value W �.d/?

The strong disorder behavior N.E/ �
p
E corresponds to the recurrence region

in the vertex reinforced jump process. A sufficient condition to obtain this behavior is

EW;�
w

ƒ ŒjH�1ˇ;ƒ.0; i/j
s� � e�cji j

for some s 2 .0; 1/ uniformly in ƒ. At the moment, we only have this bound for
W < W 0c .d/ � 0:1.

On the other hand, a sufficient condition to obtain the weak disorder behavior
N.E/ � C 0E, which corresponds to the transience region in the vertex reinforced
jump process, is to prove the L2-integrability of the martingale . L/L2N , defined in
Section 6. ForW >W0.d/ and d � 3, this bound follows from Lemma 28. Note that,
ifL2-integrability was equivalent to transience on Zd , then the boundN.E/� CWE,
for some constantCW , would hold for allW >W �.d/. In the case of trees, this equiv-
alence was proved in [30]. However, on Zd only uniform integrability of . L/L2N for
W > W �.d/ has been proven so far (see [30]). This result suggests another possible
scenario, with an intermediate phase where the vertex reinforced jump process is tran-
sient but . L/L2N is not bounded in L2 and may correspond to an intermediate phase
for the behaviour of the density of states of Hˇ too. This could also be consistent
with the presence of a phase where Hˇ exhibits singular continuous spectrum. The
existence of singular continuous spectrum for certain random Schrödinger operators
is conjectured to be true in high dimension by a growing community of physicists (see
for example [2]).

The Anderson transition. Sabot and Zeng conjecture in [34] that the phase transi-
tion in linearly reinforced random processes between recurrent and transient regimes
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is related to the dynamical localization and delocalization transition of Hˇ . This pro-
vides an additional motivation for the study of this random operator, since the local-
ization-delocalization transition for random Schrödinger operators is a long-standing
open problem in the theory of disordered systems, going back to the seminal work
of P. W. Anderson [3]. As in the standard Anderson model, the operator Hˇ exhibits
dynamical localization for strong disorder W � W 0.d/, see [7]. This motivates the
following question.

Open question 3. Does dynamical localization for Hˇ hold at spectral band edges
for any fixed disorder parameter W > 0, in particular at weak disorder?

This is so far out of reach, since the stardard proof relies on the Liftschitz tails of
the IDS, which are absent in our case.

Theorem 1: Strategy of the proof. We argue in three steps.

Step 1. By standard arguments (see Section 3.1), we have, for all L � 1,

N.E;Hˇ / � EW;�
w

ƒL
ŒNƒL.E;H

D
ˇ;ƒL

/� �
1

jƒLj
�
W;�w

ƒL

�
.HD

ˇ;ƒL
/�1.0; 0/ �

1

E

�
;

whereHD
ˇ;ƒL

was defined in (1.5) and NƒL.E;H
D
ˇ;ƒL

/ is the finite volume IDS with
Dirichlet boundary condition defined in (1.7).

Step 2. We have no direct information on the probability density of .HD
ˇ;ƒL

/�1.0; 0/,
but we do have detailed information on the distribution of

.HS
ˇ;ƒL

/�1.0; 0/ D H�1ˇ;ƒL.0; 0/:

In Section 3.2, we show that, for E � 1=2, W < Wcr, and L > 1 large enough, we
have °

.HS
ˇ;ƒL

/�1.0; 0/ >
1

E

±
H)

°
.HD

ˇ;ƒL
/�1.0; 0/ >

1

2E

±
;

on a configuration set �loc of probability close to one, precisely 1 � e��L, for some
positive constant � > 0. Hence,

N.E;Hˇ / �
1

jƒLj
�
W;�w

ƒL

�
�loc \

°
H�1ˇ;ƒL.0; 0/ �

1

2E

±�
:

Step 3. The conditional density of y ´ 1=H�1
ˇ;ƒL

.0; 0/ D W=H�1
ˇ;ƒL

.0; 0/, knowing
ˇ0c D . ǰ /j2ƒLn¹0º, is denoted by d�a0 and explicitly given in (4.2). All dependence
on ˇ0c is contained in the parameter a0, defined in (4.3), which contains the two-point
Green’s function of the ground state of Hˇ;ƒn¹0º. Therefore,

EW;�
w

ƒL
Œ1�loc1¹H�1

ˇ;ƒL
.0;0/� 1

2E º
� D EW;�

w

ƒL

�Z
1�loc1¹y�2EW ºd�a0.ˇ0c /.y/

�
:
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A subtle point is to show that we can choose �loc as intersection of two events
�loc D �loc;0 \ �loc;1, where �loc;0 is measurable with respect to ˇ0c and
�loc;1 D ¹y � e

��LW º is measurable with respect to y. As a result, we can write

EW;�
w

ƒL

�Z
1�loc1¹y�2WEºd�a0.ˇ0c /.y/

�
D EW;�

w

ƒL

�
1�loc;0

2WEZ
e��LW

d�a0.ˇ0c /.y/

�
:

The set �loc;0 ensures that a0.ˇ0c / � e��L=2 for all ˇ0c 2 �loc;0. Then, using the
explicit form of �a and the fact that �loc;0 has probability close to one, we get

EW;�
w

ƒL

�
1�loc;0

2WEZ
e��LW

d�a0.ˇ0c /.y/

�
� .1 � ce��L/�e��L=2.e

��LW � y � 2WE/:

The result now follows from a direct analysis of the one-dimensional measure �a. The
details are explained in Section 4.

Theorem 2: Strategy of the proof. Note thatHˇ;ƒL ˙ 2"DHˇ˙";ƒL . Following a
standard argument, we construct a sequence of potentials interpolating between ˇC "
and ˇ � ", by switching " one site at the time. As a result, we obtain the following
estimate (cf. Lemma 17):

EW;�
w

ƒL
ŒNƒL.E C ";H

#
ˇ;ƒL

/ �NƒL.E � ";H
#
ˇ;ƒL

/�

�
4

jƒLj

X
j2ƒ

EW;�
w

ƒL
ŒL�aj . ǰc /

.4W "/� for all L > 1;

where L�aj denotes the Lévy concentration (defined in (5.2)) of the conditional mea-
sure �aj . Using the explicit formula for �a, we then show that L�a."/� c

p
" for some

constant c > 0 independent of a (cf. (5.3)), which gives the first result. For d � 3, we
bound the conditional density pointwise by

�a.y/ �
1
p
2�

�1
a
C

1
p
a

�
for all y > 0:

The result now follows from the bound (cf. Lemma (19))

EW;�
w

ƒL

h1
a

i
D EW;�

w

ƒL
Œe�u0H�1ˇ;ƒL.0; 0/� �

Cd

W
;

where Cd > 0 is a constant depending only on the dimension.

Theorem 3: Strategy of the proof. The regularity bounds follow directly from the
Wegner estimate and (1.6) by replacingE and " byE=2. On the contrary, the improved
upper bound (1.12) is proved in Proposition 21 using properties of the infinite volume
distribution of ˇ.
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Organization of this paper. In Section 2, we review some definitions and known
results, and derive the modifications of these results that will be needed in the rest
of the paper. A few additional technical results that we will also use in this section
are summarized in Appendix A. Section 3 covers the first two steps in the proof of
Theorem 1. The final step is worked out in Section 4. Section 5 contains the proof
of Theorem 2. Some estimates on the field u associated to the H 2j2-model (see (2.4)
below) which are necessary for the proof, but are also interesting in their own, are
collected in Appendix B. Note that all these proofs involve only properties of the
finite volume marginal distribution but some of the above results can be recovered by
exploiting properties of the infinite volume distribution. The main ideas are sketched
in Section 6, while the detailed construction can be found in [30]. This alternative
approach also provides the improved bound (1.12) in Theorem 3. All corresponding
details are given in Section 6.

2. Some previous results on the Hˇ operator

As mentioned in the introduction, the operator Hˇ has been studied in the literature
in connection with linearly reinforced random processes and the H 2j2 sigma-model.
In this section, we collect some tools and results that we will use in the next sections.
The following theorem can be found in [24, 33, 34].

Theorem 4 (Multivariate inverse Gaussian distribution). Let G D .V; E/ be a finite
graph. For any W 2 RE>0, � 2 RV>0 and � 2 RV�0, the following holds:Z

Hˇ;V>0

e
� 12 .h�;Hˇ;V �iCh�;H

�1
ˇ;V

�i�2h�;�i/

Q
i �ip

det Hˇ;V

� 2
�

� 1
2 jV j

dˇ D 1;

where Hˇ;V ´ 2ˇ�PW 2RV�V . We denote by �W;�;�
G

the probability defined by the
above integral, in particular, �W;�

G
D �

W;�;�

G
with � � 1. The associated expectations

are denoted by EW;�;�
G

and the Laplace transform is given by

EW;�;�
G

.e�h�;ˇi/

D e
�
P
i;j2V;i�j Wi;j .

q
.�2
i
C�i /.�

2
j
C�j /��i�j /�

P
i2V �i .

q
�2
i
C�i��i /

Y
i2V

�iq
�2i C �i

:

(2.1)
Moreover, if .ˇi /i2V is distributed according to �W;�;0

G
, and G 0 D .V 0; E 0/ is the

subgraph obtained by taking V 0 � V and E 0 ´ ¹¹i; j º 2 Ej i; j 2 V 0º, then the
marginal law of .ˇi /i2V 0 is �W

0;� 0;�

G 0
, where W 0; � 0 equal W; � restricted on ƒ0, and

�, is defined by �i D
P
j2V nV 0 Wi;j �j . Note that � is a generalization of �wV 0 defined

in (1.4).
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In the sequel of the paper, we will always assume that � � 1 and we will use the
notation �W;�

G
instead of �W;1;�

G
.

Remarks on various marginals. Note that (see, e.g., [7, Remark 3.5]), in the case
� � 0, for any i 2 V ,


 ´
1

2H�1
ˇ;V
.i; i/

has density 1
>0
1
p
�


e�
 ; (2.2)

i.e., it is a Gamma random variable of parameter 1=2. This holds for any W and any
finite graph G .

If we consider a box ƒL of side 2LC 1 in Zd , a Borel function f WRƒL ! R,
and ƒL � ƒ0 �� Zd , then

E
W;�w

ƒL

ƒL
Œf .ˇƒL/� D EW;0ƒLC1

Œf .ˇƒL/� D EW;0
ƒL[¹ıº

Œf .ˇƒL/� D E
W;�w

ƒ0

ƒ0 Œf .ˇƒL/�;

(2.3)
where �wƒL ; �

w
ƒ0 are given in (1.4), the graphƒL [ ı has vertex setƒL [ ¹ıº and edge

set E.ƒL/ [ ¹¹i; ıº j i 2 ƒLº, and we defined Wiı D �wƒL.i/, for all i 2 ƒL. Note
that � can be seen as the boundary condition of the law of the random potential. The
case � � 0 is called zero boundary condition.

Connection with the H 2j2 model. Let G be the graph associated to a box ƒ of
Zd and � 2 Œ0;1/ƒ with at least one strictly positive component. The following
expression defines a probability measure for u 2 Rƒ (cf. [11]):

�
W;�
ƒ .u/

D e�
P
i�j;i;j2ƒWij .cosh.ui�uj /�1/e�

P
j2ƒ �j .coshuj�1/

q
det Hˇ.u/;ƒ

1
p
2�
jƒj
duƒ;

(2.4)

where we defined

2ˇi .u/ D
X
j2ƒ

Wij e
uj�ui C �ie

�ui for all i 2 ƒ: (2.5)

The corresponding average is denoted by EW;�u;ƒ . Note that the measure �W;�ƒ .u/ is
also the effective bosonic field measure in [12, ySection 2.3], which is obtained as a
marginal of the H 2j2 measure after inserting horospherical coordinates.

The next lemma connects �W;�ƒ .u/ with �W;�ƒ .ˇ/ and can be found in [33, Propo-
sition 2 and Theorem 3].

Lemma 5 (Connection toH 2j2). Let G be the graph associated to a boxƒ of Zd and
� 2 Œ0;1/ƒ with at least one strictly positive component. It holds

EW;�ƒ Œf .ˇƒ/� D EW;�u;ƒ Œf .ˇƒ.u//� (2.6)

for any function f integrable with respect to the measure �W;�ƒ .
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Moreover, remembering that �W;�ƒ corresponds to the marginal of �W;0
ƒ[ı

with
Wj;ı D �j for all j 2 ƒ (cf. equation (2.3)), it holds

eui D
H�1
ˇ;ƒ[ı

.i; ı/

H�1
ˇ;ƒ[ı

.ı; ı/
for all i 2 ƒ;

where the above fraction is independent of ˇı . In particular, we have

EW;�u;ƒ Œf .u/� D EW;0
ƒ[ı

Œf .u.ˇ//� D EW;�ƒ Œf .u.ˇƒ//�:

Note that, by the resolvent identity, we have, for all j 2 ƒ,

H�1ˇ;ƒ[ı.j; ı/ D 0C
X
k2ƒ

H�1ˇ;ƒ.j; k/Wk;ıH
�1
ˇ;ƒ[ı.ı; ı/

D H�1ˇ;ƒ[ı.ı; ı/
X
k2ƒ

H�1ˇ;ƒ.j; k/�k D H�1ˇ;ƒ[ı.ı; ı/ .H
�1
ˇ;ƒ�/.j /;

and hence

euj D
H�1
ˇ;ƒ[ı

.j; ı/

H�1
ˇ;ƒ[ı

.ı; ı/
D .H�1ˇ;ƒ�/.j /: (2.7)

It follows

EW;�u;ƒ Œf .e
uj�uj 0 /� D EW;�ƒ

h
f
� .H�1

ˇ;ƒ
�/.j /

.H�1
ˇ;ƒ
�/.j 0/

�i
:

for any function f , as long as the left and right-hand side are well defined. In the
special case �j D �ıjj0 (pinning at one point), the formula simplifies to

euj�uj0 D
H�1
ˇ;ƒ
.j; j0/

H�1
ˇ;ƒ
.j0; j0/

D
H�1
ˇ;ƒ
.j0; j /

H�1
ˇ;ƒ
.j0; j0/

: (2.8)

With these notations, we can translate [11, Theorems 1 and 2] into the following.

Theorem 6 (Decay of the ground state Green’s function (1)). Let ƒL be a finite box
of side 2LC 1 in Zd , and � 2 Œ0;1/ƒ with at least one strictly positive component.
We define

IW ´
p
W

1Z
�1

dt
p
2�
e�W.cosh t�1/

and Wc > 0 as the unique solution of IWce
Wc.2d�2/.2d � 1/ D 1. Then, for all

0 < W <Wc , IW eW.2d�2/.2d � 1/ < 1, and for d D 1, we haveWc DC1. Finally,
set C0 D C0.W /´ 2e2W .1 � IW e

W.2d�2/.2d � 1//�1.
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The following holds.

(i) For all i; j 2 ƒ such that �i > 0; �j > 0, we have

EW;�ƒL
ŒH�1ˇ;ƒL.i; j /�

� C0e
P
k2ƒL

�k .��1i C �
�1
j /ŒIW e

W.2d�2/.2d � 1/�ji�j j; (2.9)

where ji � j j is the graph distance between i; j on Zd .

(ii) Assume there is only one pinning at j0 2 ƒL, i.e. �j D �ıjj0 . Then, for all
j 2 ƒL,

EW;�ƒL

"p
H�1
ˇ;ƒL

.j0; j /

H�1
ˇ;ƒL

.j0; j0/

#
� C0.IW e

W.2d�2/.2d � 1//jj�j0j: (2.10)

How the results above follow from [11]. Note that in [11] � is called " and it
is assumed that

P
k2ƒ "k � 1. This implies that the term e

P
k2ƒ "k in [11, equa-

tion (2.24)] is bounded by e1, which is absorbed by the global constant C0 in [11,
equation (1.18)]. Also, although in [11] the global constant C0 is not given explicitely,
it follows directly from the second line of [11, equation (2.20)], so we have given its
precise value here.

Note that statement (ii) above is slightly different from the one in [11, Theorem 2].
Namely, in [11] the pinning point is set to j0D 0 and the observable is e.1=2/uj , while,
by (2.8), the observable in (2.10) is e.1=2/.uj�uj0/ . Since the two observables differ
only by a function of uj0 (the variable at the pinning point), the proof for this modified
observable is identical to the one in [11] up to the final line in [11, equation (3.5)],
where the integral I"0 is replaced byp

"0=.2�/

Z
R

dte�.1=2/te�"j0 .cosh t�1/
D 1:

As a consequence, the bound in (2.10) is written in terms of the same constant C0
used in (2.9) and is independent from the pinning stregth "j0 , while the bound in [11]
does depend on "j0 via the function I"j0 .

Remark. The function W 7! IW is monotone increasing (cf. [11, Remark 1 after
Theorem 1]). Therefore, the function W 7! Fd .W /´ IW e

W.2d�2/.2d � 1/ is also
monotone increasing and Wc is well defined.

In this article, we will use the following extension of Theorem 6.

Theorem 7 (Decay with wired bc (1)). Let ƒL be a finite box of side 2L C 1 in
Zd . We consider .ˇi /i2ƒL � �

W;�w

ƒL
, where �wƒL is the wired boundary condition

introduced in (1.4). Let Wc be as in Theorem 6 above.
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For all 0 < W < Wc , j; j0 2 ƒ, we have

EW;�
w

ƒL

"p
H�1
ˇ;ƒL

.j0; j /

H�1
ˇ;ƒL

.j0; j0/

#
� C0e

��jj�j0j: (2.11)

where
� D �.W; d/´ � log.IW eW.2d�2/.2d � 1// > 0;

and C0 D C0.W / is the constant introduced in Theorem 6. In particular, in d D 1,
we have Wc D1, hence the bound holds for all W > 0.

Proof. By (2.3), we have

EW;�
w

ƒL

"p
H�1
ˇ;ƒL

.j0; j /

H�1
ˇ;ƒL

.j0; j0/

#
D EW;0ƒLC1

"p
H�1
ˇ;ƒL

.j0; j /

H�1
ˇ;ƒL

.j0; j0/

#
:

By a random walk representation (cf. [34, Proposition 6 and notations therein]),

H�1
ˇ;ƒL

.j0; j /

H�1
ˇ;ƒL

.j0; j0/
D

X
�2 xP

ƒL
jj0

W�

.2ˇ/��

where xPƒL
j0j

is the set of nearest neighbor paths from j0 to j in ƒL that visit j0 only
once. Moreover, for every path � ,

W� D

j� j�1Y
kD0

W�k ;�kC1 and .2ˇ/�� D
j� j�1Y
kD0

.2ˇ�k /:

It follows, for all j; j0 2 ƒL,

H�1
ˇ;ƒL

.j0; j /

H�1
ˇ;ƒL

.j0; j0/
�

H�1
ˇ;ƒLC1

.j0; j /

H�1
ˇ;ƒLC1

.j0; j0/
;

since in the term in the right-hand side contains more paths. Hence,

EW;�
w

ƒL

"p
H�1
ˇ;ƒL

.j0; j /

H�1
ˇ;ƒL

.j0; j0/

#
D EW;0ƒLC1

"p
H�1
ˇ;ƒL

.j0; j /

H�1
ˇ;ƒL

.j0; j0/

#

� EW;0ƒLC1

"p
H�1
ˇ;ƒLC1

.j0; j /

H�1
ˇ;ƒLC1

.j0; j0/

#
:
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By the monotonicity result [29, Theorem 6] (cf. Corollary 25 in Appendix A), we
have, setting �j D W ıjj0 for all j 2 ƒLC1,

EW;0ƒLC1

"p
H�1
ˇ;ƒLC1

.j0; j /

H�1
ˇ;ƒLC1

.j0; j0/

#
� EW;�ƒLC1

"p
H�1
ˇ;ƒLC1

.j0; j /

H�1
ˇ;ƒLC1

.j0; j0/

#
D EW;�u;ƒLC1

Œ
p

euj�uj0 � � C0e
��jj�j0j;

with � D � log.IW eW.2d�2/.2d � 1// > 0, and C0 D 2e2W . In the last step, we used
Lemma 5 and Theorem 6 (ii).

Another useful result on the decay of the ground state Green’s function is [7,
equation (5.4) in Theorem 2.1]. We state this result for our applications.

Theorem 8 (Decay of the ground state Green’s function (2)). Let ƒL be a finite box
of side 2LC 1 in Zd , and define

W 0c D W
0
c .d/´

p
�

�
�
1
4

�
2
3
4d
: (2.12)

Let .ˇi /i2ƒL � �
W;0
ƒL

. Then, for all 0<W <W 0c , there are constants �0D �0.d;W /
and C 00.d;W / such that, for any i; j 2 ƒL,

EW;0ƒL
ŒH�1ˇ;ƒL.i; j /

1
4 � � C 00e

��0ji�j j:

In this paper, we will use the following corollary of the above result.

Corollary 9 (Decay with wired b.c. (2)). LetƒL be a finite box of side 2LC 1 in Zd ,
and let .ˇi /i2ƒL � �

W;�w

ƒL
where �wƒL is the wired boundary condition introduced

in (1.4). Remember the definition of W 0c in (2.12).
For all 0 < W < W 0c , there are constants �0 D �0.W; d/ > 0 and C 00.W; d/ > 0

such that, for any i; j 2 ƒL,

EW;�
w

ƒL
ŒH�1ˇ;ƒL.i; j /

1
4 � � C 00e

��0ji�j j: (2.13)

In an abuse of notation, in the rest of the paper we will write C0 for the constant
in both decay results in Theorem 6(ii) and Theorem 8.

Proof of Corollary 9. By (2.3), we have

EW;�
w

ƒL
ŒH�1ˇ;ƒL.i; j /

1
4 � D EW;0ƒLC1

ŒH�1ˇ;ƒL.i; j /
1
4 �:

By random walk representation (cf. [34, Proposition 6 and notations therein]),

H�1ˇ;ƒL.i; j / D
X

�2P
ƒL
ij

W�

.2ˇ/�
;
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where P
ƒL
ij is the set of nearest neighbor paths from j0 to j in ƒL. It follows, for all

i; j 2 ƒL,
H�1ˇ;ƒL.i; j / � H�1ˇ;ƒLC1.i; j / (2.14)

since in the second term we have more paths. Therefore,

EW;�
w

ƒL
ŒH�1ˇ;ƒL.i; j /

1
4 � D EW;0ƒLC1

ŒH�1ˇ;ƒL.i; j /
1
4 �

� EW;0ƒLC1
ŒH�1ˇ;ƒLC1.i; j /

1
4 � � C 00e

��0ji�j j;

where in the last step we applied Theorem 8.

Comparing Wc and W 0
c . In Section 3.2, we will construct two sets of measure close

to one �1 (resp �2) using Theorem 7 (resp., Corollary 9). Both sets can be used to
construct the same lower bound on the IDS (cf. Section 4), which will be valid for all
W < Wc D Wc.d/ (resp., for all W < W 0c D W

0
c .d/), if we use �1 (resp., �2).

It is then reasonable to ask which result works for a larger set of parameters W ,
i.e., which of the two critical values is larger. While we have an explicit numeric
expression for W 0c .d/, Wc.d/ is only indirectly determined as the unique solution of
Fd .W / D IW e

W.2d�2/.2d � 1/ D 1 (cf. the remark before Theorem 7). The next
lemma shows that Wc.d/ < W 0c .d/ for all d � 2.

Lemma 10. For d D 1, Wc.1/ D1 > W 0c .1/. For d � 2, Wc.d/ < W 0c .d/.

Proof. Recalling the definition of modified Bessel function of the second kind

K˛.x/´

1Z
0

cosh.˛t/e�x cosh tdt;

we have

IW D 2e
W

r
W

2�
K0.W /

and

Fd .W / D

r
2W

�
K0.W /e

W.2d�1/.2d � 1/:

Note that, from (2.12), W 0c .d/ D C=d , where C is a constant independent of d , and
hence f .d/´ Fd .W

0
c .d// D Fd .C=d/. Moreover,

@W Fd .W / D
� 1

2W
C .2d � 1/ �

K1.W /

K0.W /

�
Fd .W /;

@dFd .W / D
�
2W C

2

2d � 1

�
Fd .W /:
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It follows

f 0.d/ D �
C

d2
@W Fd

�C
d

�
C @dFd

�C
d

�
D Fd

�C
d

�h 2d C 1

2d.2d � 1/
C
C

d2
C
C

d2

K1
�
C
d

�
K0
�
C
d

�i > 0;
which proves that f is monotone increasing.

We compute numerically F2.W 0c .2// � 2:908, hence Wc.2/ < W 0c .2/. As f is
increasing, we have Fd .W 0c .d// � F2.W

0
c .2// � 2:9, which impliesW 0c .d/ > Wc.d/

for all d � 2.

Before going to the proof of the lower bound, we list an additional useful corollary
on the probability distribution of H�1

ˇ;ƒL
.0; 0/.

Corollary 11. LetƒL be a finite box of side 2LC 1 in Zd , and let .ˇi /i2ƒL � �
W;�w

ƒL
,

where �wƒL is the wired boundary condition introduced in (1.4).
Then, for any ı > 0, we have

�
W;�w

ƒL
.H�1ˇ;ƒL.0; 0/ > ı/ �

1=.2ı/Z
0

1
p
�


e�
d
:

Proof. We argue

�
W;�w

ƒL
.H�1ˇ;ƒL.0; 0/ > ı/ D �

W;0
ƒLC1

.H�1ˇ;ƒL.0; 0/ > ı/:

By (2.14), H�1
ˇ;ƒLC1

.0; 0/ � H�1
ˇ;ƒL

.0; 0/, and hence

H�1ˇ;ƒL.0; 0/ > ı H) H�1ˇ;ƒLC1.0; 0/ > H�1ˇ;ƒL.0; 0/ > ı:

It follows

�
W;0
ƒLC1

.H�1ˇ;ƒL.0; 0/ > ı/ � �
W;0
ƒLC1

.H�1ˇ;ƒLC1.0; 0/ > ı/

D �
W;0
ƒLC1

� 1

2H�1
ˇ;ƒLC1

.0; 0/
<
1

2ı

�
D

1=.2ı/Z
0

1
p
�


e�
d
;

where in the last step we used that 1=Œ2H�1
ˇ;ƒLC1

.0; 0/� is Gamma distributed (cf.
equation (2.2)).



M. Disertori, V. Rapenne, C. Rojas-Molina, and X. Zeng 506

3. Preliminary results

3.1. Connection between N.E/ and the Green’s function with Dirichlet b.c.

To obtain a lower bound on N.E;Hˇ /, we use the following classical argument (see,
e.g., [18])

Lemma 12. For any finite box ƒL of side 2LC 1, we have

N.E;Hˇ / � EW;�
w

ƒL
ŒNƒL.E;H

D
ˇ;ƒL

/�;

where NƒL.E; H
D
ˇ;ƒL

/ is the finite volume IDS with Dirichlet boundary condition

defined in (1.7), EW;�
w

ƒL
denotes the expectation with respect to the finite marginal

�
W;�w

ƒL
of .ˇi /i2ƒL given in (1.3), and �w D �wƒL are the wired boundary condition

given in (1.4).

Proof. Recalling the definition of the integrated density of states N , by (1.6) we have

N.E/ D lim
K!1

1

jƒK j
E
W;�w

ƒK

ƒK
Œtr.1.�1;E�.Hˇ;ƒK //�;

where ƒK is a finite box of side 2K C 1. We split the large box ƒK into a tiling of
smaller boxes of side 2LC 1 with L < K, ƒK D

SNK
jD1ƒL;j . Using .vi � vj /2 �

2.v2i C v
2
j / (Dirichlet–Neumann bracketing), we obtain

Hˇ;ƒK �

NKM
jD1

HD
ˇ;ƒL;j

;

as a quadratic form. Note that, by the min-max principle, if A > B , then �A;j > �B;j ,
where �A;j are ordered eigenvalues of A. This, together with translation invariance,
the relation jƒLjNK D jƒK j, and (2.3) yields

1

jƒK j
E
W;�w

ƒK

ƒK
Œtr.1.�1;E�.Hˇ;ƒK //� �

NKX
jD1

1

jƒK j
E
W;�w

ƒK

ƒK
Œtr.1.�1;E�.HD

ˇ;ƒL;j
//�

D

NKX
jD1

1

jƒK j
E
W;�w

ƒL;j

ƒL;j
Œtr.1.�1;E�.HD

ˇ;ƒL;j
//�

D
NK

jƒK j
E
W;�w

ƒL

ƒL
Œtr.1.�1;E�.HD

ˇ;ƒL
//�

D E
W;�w

ƒL

ƒL
ŒNƒL.E;H

D
ˇ;ƒL

/�;

for any finite box ƒL in the family ¹ƒL;j º
NK
jD1. Taking the limit K !1 keeping L

fixed gives the desired result.
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As we are looking for a lower bound of N.E; Hˇ /, we can consider any finite
box ƒL (usually a larger L gives a better bound). We will fix ƒL D Œ�L;L�d \ Zd

in the sequel. At the end, we will choose L depending on the energy E.

Lemma 13. Let ƒL D Œ�L;L�d \ Zd . It holds

EW;�
w

ƒL
ŒNƒL.E;H

D
ˇ;ƒL

/� �
1

jƒLj
�
W;�w

ƒL

�
.HD

ˇ;ƒL
/�1.0; 0/ �

1

E

�
Proof. HD

ˇ;ƒL
is a self adjoint finite random matrix, and by definition it is a.s. positive

definite. As a consequence, its smallest eigenvalue �1 satisfies

�1 > 0 and
1

�1
D k.HD

ˇ;ƒL
/�1kop;

where k � kop stands for the operator norm. It follows that

EW;�
w

ƒL
ŒNƒL.E;H

D
ˇ;ƒL

/� D
1

jƒLj
EW;�

w

ƒL
Œtr.1.�1;E�.HD

ˇ;ƒL
//�

�
1

jƒLj
�
W;�w

ƒL
.tr.1.�1;E�.HD

ˇ;ƒL
/ � 1//

D
1

jƒLj
�
W;�w

ƒL
.�1 � E/

D
1

jƒLj
�
W;�w

ƒL

�
k.HD

ˇ;ƒL
/�1kop �

1

E

�
:

Note that

k.HD
ˇ;ƒL

/�1kop D sup
 Wk kD1

k.HD
ˇ;ƒL

/�1 k

� k.HD
ˇ;ƒL

/�1e0k � j.H
D
ˇ;ƒL

/�1.0; 0/j D .HD
ˇ;ƒL

/�1.0; 0/;

where e0 D .ıj0/j2Zd . In the last step, we used that, since the matrix is a.s. an
M-matrix, the entries of its Green’s function are all positive. Therefore,

EW;�
w

ƒL
ŒNƒL.E;H

D
ˇ;ƒL

/� �
1

jƒLj
�
W;�w

ƒL

�
k.HD

ˇ;ƒL
/�1kop �

1

E

�
�

1

jƒLj
�
W;�w

ƒL

�
.HD

ˇ;ƒL
/�1.0; 0/ �

1

E

�
:

This concludes the proof of the lemma.

3.2. From Dirichlet to simple boundary conditions

Lemma 14 (Dirichlet versus simple bc (1)). Let ƒL be the finite box in Zd of side
2LC 1 centered at 0. We consider .ˇi /i2ƒL � �

W;�w

ƒL
, where �w is the wired boundary
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condition introduced in (1.4). Define �1 D �1;0 \�1;1, with

�1;0´

´p
H�1
ˇ;ƒL

.0; i/

H�1
ˇ;ƒL

.0; 0/
� e�

1
2�ji j for all i 2 @ƒL

µ
; (3.1a)

�1;1´ ¹H
�1
ˇ;ƒL

.0; 0/ � e�Lº; (3.1b)

where � is the constant introduced in Theorem 7, and remember that

Hˇ;ƒL D WHˇ;ƒL :

Let Wc be as in Theorem 6.
There are constants L0 D L0.W; d/ > 1 and C1 D C1.d;Wc/ such that, for all

L � L0 and 0 < W < Wc , we have

�
W;�w

ƒL
.�1;j / � 1 � C1 e

��L=4 for j D 0; 1; (3.2)

and hence �W;�
w

ƒL
.�1/ � 1 � 2C1 e

��L=4. Moreover, on the set �1, for any E > 0, it
holds °

.HS
ˇ;ƒL

/�1.0; 0/ >
1

E

±
H)

°
.HD

ˇ;ƒL
/�1.0; 0/ >

1

2E

±
;

In particular, when d D 1, this result holds for all W > 0, since Wc D1.

Note that the set �1;0 is measurable with respect to ¹ ǰ ºj2ƒn¹0º, while �1;1 is
measurable with respect to .Hˇ;ƒL/

�1.0; 0/. This fact will be important in the proof
of the lower bound for the IDS.

Proof of Lemma 14. The decay estimate (2.11), together with the Markov inequality,
entails that, for all 0 < W < Wc ,

�
W;�w

ƒL
.�c1;0/ �

X
i2@ƒL

�
W;�w

ƒL

  p
H�1
ˇ;ƒL

.0; i/

H�1
ˇ;ƒL

.0; 0/

!
> e�

�jij
2

!
� C0j@ƒLje

� 12�L � C1e
� 14�L

for some constants C1, and for L large enough depending on W and d . Corollary 11
with ı D e�L=2=W gives

�
W;�w

ƒL
.�c1;1/ D �

W;�w

ƒL
.H�1ˇ;ƒL.0; 0/ > e

�L/

D �
W;�w

ƒL

�
H�1ˇ;ƒL.0; 0/ >

e�L

W

�
� C1e

� 14�L:

Therefore, (3.2) holds.
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Assume now we are in �1. By the resolvent identity, we have

.HS
ˇ;ƒL

/�1.0; 0/ � .HD
ˇ;ƒL

/�1.0; 0/

D

X
j2@ƒL

.HS
ˇ;ƒL

/�1.0; j /.2d � nj /.H
D
ˇ;ƒL

/�1.j; 0/: (3.3)

By random walk representation, we have, setting P
ƒL
j0;j
D the set of nearest neighbor

paths from j0 to j in ƒL (cf. [34, Proposition 6] and notations therein),

H�1ˇ;ƒL.0; i/ D
X

�2P
ƒL
0;i

W�

.2ˇ/�
�

X
�2P

ƒL
0;i

W�

.2ˇ CW.2d � n//�
D .HD

ˇ;ƒL
/�1.0; i/:

(3.4)
Therefore, on the set �1, we haveˇ̌̌̌

ˇ .HD
ˇ;ƒL

/�1.0; 0/

.HS
ˇ;ƒL

/�1.0; 0/
� 1

ˇ̌̌̌
ˇ D 1 � .HD

ˇ;ƒL
/�1.0; 0/

.HS
ˇ;ƒL

/�1.0; 0/

D

X
j2@ƒL

.HS
ˇ;ƒL

/�1.0; j /.2d � nj /
.HD

ˇ;ƒL
/�1.j; 0/

.HS
ˇ;ƒL

/�1.0; 0/

� .HS
ˇ;ƒL

/�1.0; 0/
X
j2@ƒL

.HS
ˇ;ƒL

/�1.0; j /

.HS
ˇ;ƒL

/�1.0; 0/
.2d � nj /

.HS
ˇ;ƒL

/�1.j; 0/

.HS
ˇ;ƒL

/�1.0; 0/

� e�L2d
X
j2@ƒL

e�2�jj j � 2d j@ƒLje
C�Le�2�L � e�

1
4�L �

1

2
;

for L � L0, where L0 depends on W; d . Thus, on �1, it holds

.HD
ˇ;ƒ/

�1.0; 0/ D .HS
ˇ;ƒ/

�1.0; 0/
h
1 �

�
1 �

.HD
ˇ;ƒL

/�1.0; 0/

.HS
ˇ;ƒL

/�1.0; 0/

�i
�
1

2
.HS

ˇ;ƒ/
�1.0; 0/;

and hence

.HS
ˇ;ƒL

/�1.0; 0/ >
1

E
H) .HD

ˇ;ƒ/
�1.0; 0/ �

1

2E
:

Lemma 15 (Dirichlet versus simple bc (2)). Let ƒL be the finite box in Zd of side
2LC 1 centered at 0. We consider .ˇi /i2ƒL � �

W;�w

ƒL
, where �w is the wired boundary

condition introduced in (1.4).
Define �2 D �2;0 \�2;1, with

�2;0´ ¹ max
j2@ƒL;i�0

.H�1ˇ;ƒLn¹0º.i; j // � e
� 32�

0L
º; (3.5a)

�2;1´ ¹H
�1
ˇ;ƒL

.0; 0/ � e�
0L
º; (3.5b)
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where �0 is the constant introduced in Theorem 8, and remember that

Hˇ;ƒL D WHˇ;ƒL :

Let W 0c be as in Theorem 8.
There is L0.W; d/ > 1 such that, for all L � L0 and 0 < W < W 0c , we have

�0L > 1, and there is a constant C 01 D C
0
1.W; d/ > 0 such that

�
W;�w

ƒL
.�2;j / � 1 � C

0
1e
� 14�

0L for j D 0; 1; (3.6)

and hence �W;�
w

ƒL
.�2/ � 1 � 2C

0
1e
��0L=4. Moreover, on the set �2 it holds°

.HS
ˇ;ƒL

/�1.0; 0/ >
1

E

±
H)

°
.HD

ˇ;ƒL
/�1.0; 0/ >

1

2E

±
;

for all energy 0 < E < 1=2.

Note that also here the set �2;0 is measurable with respect to ¹ ǰ ºj2ƒn¹0º, while
�2;1 is measurable with respect to .Hˇ;ƒL/

�1.0; 0/. This fact will be important in the
proof of the lower bound on the IDS.

Proof of Lemma 15. Using the random path representation, as in (2.14), we obtain
H�1
ˇ;ƒLn¹0º

.i; j / � H�1
ˇ;ƒL

.i; j /. Then, the decay estimate (2.13) together with the
Markov inequality entails, for all 0 < W < W 0c ,

�
W;�w

ƒL
.�c2;0/ �

X
j2@ƒL;i�0

�
W;�w

ƒL
.H�1ˇ;ƒLn¹0º.i; j / > e

� 32�
0L/

�

X
j2@ƒL;i�0

e
3
8�
0LEW;�

w

ƒL
Œ.H�1ˇ;ƒLn¹0º.i; j //

1
4 �

�

X
j2@ƒL;i�0

e
3
8�
0LEW;�

w

ƒL
Œ.H�1ˇ;ƒL.i; j //

1
4 �

� C0
X

j2@ƒL;i�0

e
3
8�
0Le��

0ji�j j
� C0j@ƒLje

� 58�
0L
� C 01e

� 14�
0L

for some constant C 01 D C
0
1.W; d/. The bound for �2;1 works exactly as the one for

�1;1 in Lemma 14. Therefore, (3.6) holds.
Assume now we are on �2. We have, for all j 2 @ƒL,

H�1ˇ;ƒL.0; j / D
X
i�0

H�1ˇ;ƒL.0; 0/WH�1ˇ;ƒLn¹0º.i; j /:

Therefore,
H�1ˇ;ƒL.0; j / � W 2de

�0Le�
3
2�
0L
� We�

1
4�
0L:
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By (3.3) and (3.4),

j.HD
ˇ;ƒL

/�1.0; 0/ � .HS
ˇ;ƒL

/�1.0; 0/j

D

X
j2@ƒL

.HS
ˇ;ƒL

/�1.0; j /.2d � nj /.H
D
ˇ;ƒL

/�1.j; 0/

�

X
j2@ƒL

.HS
ˇ;ƒL

/�1.0; j /.2d � nj /.H
S
ˇ;ƒL

/�1.j; 0/

� W 2
j@ƒLj2de

� 12�
0L
� e�

1
4�
0L;

for L large enough, depending on W and d . It follows that if E � 1=2, then

.HS
ˇ;ƒL

/�1.0; 0/ >
1

E

H) .HD
ˇ;ƒL

/�1.0; 0/ � .HS
ˇ;ƒL

/�1.0; 0/ � e�
1
4�
0L
�
1

E
� e�

1
4�
0L
�

1

2E

for L � L0 D L0.W; d/.

4. Lower bound on the IDS

We are now ready to prove Theorem 1. By Lemma 12 and Lemma 13 in Section 3.1,
we have

N.E;Hˇ / �
1

jƒLj
�
W;�w

ƒL

�
.HD

ˇ;ƒL
/�1.0; 0/ �

1

E

�
:

Remember the definition of Wcr in (1.9) and the configuration sets �1;0; �1;1; �2;0;
�2;1 introduced in (3.1) and (3.5). We define, for j D 0; 1,

�loc;j ´

´
�1;j if Wcr D Wc ;

�2;j if Wcr D W
0
c :

and �loc ´ �loc;0 \ �loc;1. Note that the constants �; C0; C1; �0; C 00; C
0
1 appearing

in the definition of the sets �1;j ; �2;j and the results of Lemma 14 and 15 play the
same role. To alleviate the notation, in the following we will not distinguish them.

By Lemma 14 and 15, we have

N.E;Hˇ / �
1

jƒLj
EW;�

w

ƒL
Œ1�loc1¹H�1

ˇ;ƒL
.0;0/� 1

2E º
� (4.1)

for all 0 < W <Wcr,E < 1=2 and L large. Remember thatHˇ;ƒL DHˇ;ƒL=W , and
set 0c D ƒL n ¹0º. By Schur decomposition,

1

W
H�1ˇ;ƒL.0; 0/ D H�1ˇ;ƒL.0; 0/ D

1

2ˇ0 � P
W
0;0cH

�1
ˇ;ƒLn¹0º

PW0c ;0
µ

1

y
:
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Lemma 16. The conditional density of the variable y´ 2ˇ0�P
W
0;0cH

�1
ˇ;ƒLn¹0º

PW0c ;0,
given ˇ0c D . ǰ /i20c , is

d�a0.y/ D �a0.y/dy D
ea0
p
2�
e�

1
2 .yC

a2
0
y /

1
p
y

1y>0dy; (4.2)

where

a0 D a0.ˇ0c / D
X
j2@ƒL

H�1
ˇ;ƒL

.0; j /

H�1
ˇ;ƒL

.0; 0/
�wj D W

X
i�0;j2@ƒL

H�1ˇ;ƒLn¹0º.i; j / �
w
j : (4.3)

The corresponding average will be denoted by Ea0 .

Proof. The result follows from the factorization in [34, equation (5.14)] with U D
ƒ n ¹0º and U c D ¹0º.

Alternatively, one may insert the following relations in (1.3):

h1;Hˇ;ƒL1i D 2ˇ0 C h10c ;Hˇ;ƒLn¹0º10c i � 2
X
i�0

W D y C F.ˇ0c /;

h�w ;H�1ˇ;ƒL�
w
i D h�w ;H�1ˇ;ƒLn¹0º�

w
i C a20H

�1
ˇ;ƒL

.0; 0/ D G.ˇ0c /C
a20
y
;

det Hˇ;ƒL D y det Hˇ;ƒLn¹0º;

where F; G are functions of ˇ0c and in second line we combined �w0 D 0 and the
resolvent identity

A�1 D B�1 C B�1.B � A/B�1 C B�1.B � A/A�1.B � A/B�1

with
A D Hˇ;ƒL and B D 2ˇ0 ˚Hˇ;ƒLn¹0º:

This yields

�a0.y/ D ca0e
� 12 .yC

a2
0
y /

1
p
y

1y>0:

To determine the normalizing constant ca0 , note that

1Z
0

e�
1
2 .yC

a2
0
y /

1
p
y
dy D

p
2�

a0
e�a0 EIG.a0;a20/

Œy� D
p
2�e�a0 ;

where EIG.a0;a20/
denotes the expectation with respect to the probability distribution

of the inverse Gaussian IG.a0; a20/.
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Using these results, the average in (4.1) can be reformulated as follows:

EW;�
w

ƒL
Œ1�loc1¹H�1

ˇ;ƒL
.0;0/� 1

2E º
� D EW;�

w

ƒL
Œ1�loc1¹ 1W H�1

ˇ;ƒL
.0;0/� 1

2EW º
�

D EW;�
w

ƒL

�
1�loc;0

Z
1�loc;11y�2EW

ea0
p
2�
e�

1
2 .yC

a2
0
y /

1
p
y

1y>0dy
�

D EW;�
w

ƒL
Œ1�loc;0E

a0.ˇ0c /Œ1�loc;11y�2EW ��

D EW;�
w

ƒL
Œ1�loc;0 Ea0.ˇ0c /Œ1We��L�y�2EW � �;

where we used that �loc;0 is measurable with respect to ˇ0c and

�loc;1 D ¹H
�1
ˇ;ƒL

.0; 0/ < e�Lº D
° y
W

> e��L
±
:

We have, for L large enough, for all ˇ0c 2 �1;0,

a0.ˇ0c / D
X
j2@ƒL

H�1
ˇ;ƒL

.0; j /

H�1
ˇ;ƒL

.0; 0/
�wj � 2dW j@ƒLje

��L
� We�

1
2�L

and, for all ˇ0c 2 �2;0,

a0.ˇ0c / D W
X

i�0;j2@ƒL

H�1ˇ;ƒLn¹0º.i; j /�j � 2dW j@ƒLje
� 32�L � We�

1
2�L:

Setting Na0´ We��L=2, and remarking that a0 � 0, we argue

ea0.ˇ0c /e�
.a0.ˇ0c //

2

2y � e�
.a0.ˇ0c //

2

2y � e�
Na2
0
2y D e Na0e�

Na2
0
2y e�Na0 ;

hence
�a0.ˇ0c /.y/ � � Na0.y/e

�Na0 for all ˇ0c 2 �loc;1:

Therefore, we obtain

EW;�
w

ƒL
Œ1�loc;0 Ea0.ˇ0c /Œ1We��L�y�2WE � �

� e�Na0 �
W;�w

ƒL
.�loc;0/ � Na0.We

��L
� y � 2WE/

� .1 � C2e
� 14�L/ � Na0.We

��L
� y � 2WE/

for some constant C2, where we used (3.2), (3.6), and the bound e�Na0 D e�We
��L=2

�

.1 � ce��L=4/ for some constant c > 0.
It remains to extract a lower bound on � Na0.We

��L � y � 2WE/. Set

L D LE ´
1

�
ln
1

E
:
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For E small, LE is large enough for all our results to hold. Then 2WE D 2We��L

and hence We��L < 2WE < Na0. Moreover,

. Na0 � y/
2

y
� W for all y such that We��L � y � 2We��L:

It follows

� Na0.We
��L
� y � 2WE/ D

1
p
2�

2WEZ
We��L

e�
. Na0�y/

2

2y
1
p
y
dy

�
e�

1
2W

p
2�

2WEZ
We��L

1
p
y
dy D ce�

1
2W
p
WE

for some constant c > 0 independent of E; �;L;W . Putting all these results together,
we obtain

N.E;Hˇ / �
1

jƒLE j
�
W;�w

ƒLE

�
.HD

ˇ;ƒLE
/�1.0; 0/ �

1

E

�
�

1

jƒLE j
.1 � C2e

� 14�LE / ce�
1
2W
p
W
p
E � c0

1

j logEjd
p
E

for some constant c0 > 0 depending onW;d; �. This concludes the proof of the lower
bound.

5. Wegner estimate

In this section, we prove Theorem 2. We work out in detail the proof only for the case
of simple boundary conditions. The proof in the case of Dirichlet boundary conditions
works exactly in the same way.

Proof of Theorem 2. Note that, since H D H=W , we have

NƒL.E;Hˇ;ƒL/ D NƒL.WE;Hˇ;ƒL/ D
1

jƒLj
tr 1.�1;0�.Hˇ;ƒL �WE/:

We start with a regularity bound on

NƒL.E C ";Hˇ;ƒL/ �NƒL.E � ";Hˇ;ƒL/ D
1

jƒLj
tr 1Œ�";"�.Hˇ;ƒL �WE/:

We smooth out the discontinuous function 1Œ�";"�.x/ as follows. Let � be a smooth
non-decreasing function � satisfying � D 0 on .�1;�"/ and � D 1 on .";1/. Then,

1Œ�";"�.x/ � �.x C 2"/ � �.x � 2"/ for all x 2 R:
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Setting

ıL.E; "/´ EW;�
w

ƒL
Œtr.�.Hˇ;ƒL �E C 2"/ � �.Hˇ;ƒL �E � 2"//�;

we have

0 � EW;�
w

ƒL
ŒNƒL.E C ";Hˇ;ƒL/ �NƒL.E � ";Hˇ;ƒL/� �

1

jƒLj
ıL.WE;W "/:

Remember that the conditional measure for 2 ǰ �P
W
j;j cH

�1
ˇ;ƒLn¹j º

PWj c ;j , given ǰ c D

. ǰ /i2ƒLn¹j º, is �aj defined in (4.2), where, for general j 2 ƒL,

aj D aj . ǰ c /´ �wj C W
X

i�j;k2ƒLn¹j º

H�1ˇ;ƒLn¹j º.i; k/ �
w
k D

P
k2@ƒL

H�1
ˇ;ƒL

.j; k/�w
k

H�1
ˇ;ƒL

.j; j /

(5.1)
(cf. [34, equation (5.14)]). We also recall that the Lévy concentration of a measure �
on R is defined by

L�."/ D sup
x
�.Œx; x C "//: (5.2)

By Lemma 17 below, we have

EW;�
w

ƒL
ŒNƒL.E C ";Hˇ;ƒL/ �NƒL.E � ";Hˇ;ƒL/�

�
1

jƒLj
ıL.WE;W "/

�
1

jƒLj

X
j2ƒL

EW;�
w

ƒL
ŒL�aj . ǰc /

.4W "/�:

Now, (1.10) and (1.11) follow by inserting the bounds (5.3) and (5.4), stated below.
This concludes the proof of Theorem 2.

Lemma 17. For all E > 0 and 0 < " < E, it holds

ıL.E; "/ �
X
j2ƒL

EW;�
w

ƒL
ŒL�aj . ǰc /

.4"/�:

Proof. Note that

Hˇ;ƒL ˙ 2" D 2.ˇ ˙ "/ � P
W
D Hˇ˙";ƒL :

Order the vertices in ƒL as ¹1; 2; : : : ; jƒLjº. For each 1 � k � jƒLj, we define

ˇ0k D ˇ
0
k."/´ .ˇ1 C "; ; : : : ; ˇk�1 C "; ˇk � "; : : : ; ˇjƒLj � "/

and
ˇ0
jƒLjC1

D ˇ0
jƒLjC1

."/´ .ˇ1 C "; ; : : : ; ˇjƒLj C "/:



M. Disertori, V. Rapenne, C. Rojas-Molina, and X. Zeng 516

With this convention, we have

Hˇ 0
kC1

;ƒL
.i; j / D Hˇ 0

k
;ƒL

.i; j /C 1iDjDk4":

Expanding in a telescopic sum, we get

ıL.E; "/ D

jƒLjX
kD1

EW;�
w

ƒL
Œtr.�.Hˇ 0

kC1
;ƒL
�E/ � �.Hˇ 0

k
;ƒL
�E//�:

We concentrate now on the k-th term in the sum. For a fixed configuration ˇkc , we
define yk ´ 2ˇk � P

W
k;kc

H�1
ˇ;ƒLn¹kº

PW
kc ;k

. Note that ˇ0
k
D ˇ0

k
.yk; ˇkc / is a function

of yk and ˇkc . We consider the function yk 7! Fk.yk/´ tr�.Hˇ 0
k
.yk ;ˇkc /;ƒL

�E/.
We can write

EW;�
w

ƒL
Œtr.�.Hˇ 0

kC1
;ƒL
�E/ � �.Hˇ 0

k
;ƒL
�E//�

D EW;�
w

ƒL

�Z
.Fk.yk C 4"/ � Fk.yk//�ak .yk/dyk

�
:

We take the following primitive of �ak :

Gk.y/´

yZ
0

�ak .t/dt:

This function is differentiable and satisfies G.1/ D 1 and G.0/ D 0. Moreover, we
can write

1Z
0

�ak .y/ŒFk.y C 4"/ � Fk.y/�dy

D lim
M!1

MZ
0

�ak .y/ŒFk.y C 4"/ � Fk.yk/�dy µ lim
M!1

I kM :

Performing integration by parts, we argue, using Gk.0/ D 0,

I kM D Gk.M/.Fk.M C 4"/ � Fk.M// �

MZ
0

Gk.y/.F
0
k.y C 4"/ � F

0
k.y//dy

D

MC4"Z
M

Gk.M/F 0k.y/dy �

MZ
0

Gk.y/F
0
k.y C 4"/dy C

MZ
0

Gk.y/F
0
k.y/dy:
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We write the second integral as

MZ
0

Gk.y/F
0
k.y C 4"/ D

MZ
4"

Gk.y � 4"/F
0
k.y/dy C

MC4"Z
M

Gk.y � 4"/F
0
k.y/dy

and the third integral as

MZ
0

Gk.y/F
0
k.y/dy D

MZ
4"

Gk.y/F
0
k.y/dy C

4"Z
0

Gk.y/F
0
k.y/dy:

Putting everything together, we get

I kM D

MC4"Z
M

.Gk.M/ �Gk.y � 4"//F
0
k.y/dy

C

MZ
4"

.Gk.y/ �Gk.y � 4"//F
0
k.y/dy C

4"Z
0

Gk.y/F
0
k.y/dy:

Now, we argue

Gk.y/ �Gk.y � 4"/ D

yZ
y�4"

�ak .t/dt � L�ak .4"/ for all y 2 Œ4";M �:

The same bound holds for Gk.M/�Gk.y � 4"/ for y 2 ŒM;M C 4"� and Gk.y/ D
Gk.y/ �Gk.0/ for y 2 Œ0; 4"�. Therefore,

I kM � L�ak .4"/

MC4"Z
0

F 0k.y/dy D L�ak .4"/.Fk.M C 4"/ � Fk.0//:

Finally, using a standard argument of rank-one perturbation (see, e.g., [18, Lemma
5.25]), we get .Fk.M C 4"/ � Fk.0// � 1 uniformly in M . The result follows.

Lemma 18. It holds, for all " > 0 and a > 0,

L�a."/ �

r
2"

�
: (5.3)

Moreover, for d � 3 and W � W0 (as defined in Theorem 2), the following improved
estimate holds for all " > 0:

EW;�
w

ƒL
ŒL�aj . ǰc /

."/� �
C1
p
W
" for all j 2 ƒL; (5.4)

where C1 > 0 is a constant depending only on the dimension.
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Proof. Note that, for all y > 0, we have

�a.y/ D
1
p
2�
e�

1
2y .y�a/

2 1
p
y
�

1
p
2�y

;

and, therefore,

L�a."/ D sup
x�0

�a.Œx; x C "// � sup
x�0

xC"Z
x

1
p
2�y

dy D

"Z
0

1
p
2�y

dy D

r
2"

�
:

This gives the first bound (5.3). To obtain the improved bound (5.4), note that, by (5.1),
a D aj . ǰ c / > 0 almost surely; hence, the function y 7! �a.y/ takes its maximum
value in

ya ´
1

2
.�1C

p
1C 4a2/:

Therefore, we have L�a."/ � �.ya/". Now, using

1

2ya
D
1C
p
1C 4a2

4a2
�
2C 2a

4a2
D
1

2

� 1
a2
C
1

a

�
;

we obtain

�.ya/ D
1

p
2�ya

e�
1
2
.ya�a/

2

ya �
1

p
2�ya

�
1
p
2�

� 1
a2
C
1

a

� 1
2

�
1
p
2�

�1
a
C

1
p
a

�
:

It follows

EW;�
w

ƒL
ŒL�aj . ǰc /

."/� �
"
p
2�

�
EW;�

w

ƒL

h 1
aj

i
C EW;�

w

ƒL

h 1
p
aj

i�
�

"
p
2�

�
EW;�

w

ƒL

h 1
aj

i
C EW;�

w

ƒL

h 1
aj

i 1
2
�
:

The result now follows from Lemma 19 below setting C1´
p
2C2=� .

Lemma 19. For d � 3 and W � W0, (as defined in Theorem 2), it holds

EW;�
w

ƒL

h 1

aj . ǰ c /

i
�
C2

W
for all j 2 ƒL; (5.5)

where C2 > 0 is a constant depending only on the dimension.

Proof. In the case j 2 @ƒL, by (5.1), we have aj � �wj � W a.s., and, hence, (5.5)
holds with C2 D 1.

Assume now j 2 ƒL n @ƒL. Using (2.7) and (5.1), we have

aj D

P
k2@ƒL

H�1
ˇ;ƒL

.j; k/ �w
k

H�1
ˇ;ƒL

.j; j /
D

euj

H�1
ˇ;ƒL

.j; j /
;
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therefore

EW;�
w

ƒL

h 1
aj

i
D EW;�

w

u;ƒL
ŒH�1ˇ.u/;ƒL.j; j /e

�uj � D
1

W
EW;�

w

u;ƒL
ŒD�1.j; j /euj �;

where we used (2.5) and (2.6). The matrixD D D.u/´ euHˇ.u/;ƒLe
u can be char-

acterized via the quadratic form

hv;D.u/vi D
X

k�k02ƒL

eujCuk .rkk0v/
2
C

X
k2ƒL

Q�wk e
ukv2k; (5.6)

where we defined Q�w
k
´ �w

k
=W and rkk0v ´ vk � vk0 . To estimate the average

of D�1.j; j /euj , we use the same strategy as in [12, proof of Theorem 3]. We can
write D�1.j; j /euj D hf; D�1f i, where fk ´ ıkj e

uj =2 D euj =2.ıj /.k/. Setting
D0´ D.0/ D ��C Q�w , we argue

hf;D�1f i D hD0D
�1
0 f;D�1f i

D

X
k�k0

.rkk0D
�1
0 f /.rkk0D

�1f /C
X
k

Q�wk .D
�1
0 f /k.D

�1f /k

D

X
k�k0

.rkk0D
�1
0 f /

e
1
2 .ukCuk0 /

.rkk0D
�1f /

e�
1
2 .ukCuk0 /

C

X
k

Q�wk
.D�10 f /k

e
1
2uk

.D�1f /k

e�
1
2uk

�

� X
k�k0

.rkk0D
�1
0 f /2

e.ukCuk0 /
C

X
k

Q�wk
.D�10 f /2

k

euk

� 1
2

hf;D�1f i
1
2 ;

where in the last step we used the Cauchy–Schwarz inequality. It follows

hf;D�1f i �
X
k�k0

.rkk0D
�1
0 f /2

e.ukCuk0 /
C

X
k

Q�wk
.D�10 f /2

k

euk

D

X
k�k0

.rkk0D
�1
0 ıj /

2 euj�.ukCuk0 / C
X
k

Q�wk .D
�1
0 ıj /

2
k e

uj�uk

where we used the explicit form of f . Therefore,

EW;�
w

u;ƒL
Œhf;D�1f i� �

X
k�k0

.rkk0D
�1
0 ıj /

2 EW;�
w

u;ƒL
Œeuj�.ukCuk0 /�

C

X
k

Q�wk .D
�1
0 ıj /

2
k EW;�

w

u;ƒL
Œeuj�uk �:

Note that

EW;�
w

u;ƒL
Œeuj�.ukCuk0 /� � 4EW;�

w

u;ƒL
Œ.cosh.uj � uk//2�

1
2EW;�

w

u;ƒL
Œ.coshuk0/2�

1
2 ;

EW;�
w

u;ƒL
Œeuj�uk � � 2 EW;�

w

u;ƒL
Œcosh.uj � uk/�:
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The bounds (B.3) and (B.4) in Appendix B ensure EW;�
w

u;ƒL
Œ.cosh.uj � uk//m� � 2 for

all j; k 2 ƒL, and EW;�
w

u;ƒL
Œ.cosh uk/2� � 8 for all j 2 ƒL. Putting all these bounds

together, we obtain

EW;�
w

u;ƒL
Œhf;D�1f i� � 16

� X
k�k0

.rkk0D
�1
0 ıj /

2
C

X
k

Q�wk .D
�1
0 ıj /

2
k

�
D 16hıj ;D

�1
0 ıj i D 16.��ƒL C Q�/

�1
jj � C2; (5.7)

for some constant C2 independent of j and L, since we are in dimension d � 3. This
concludes the proof of the lemma.

6. An alternative approach

Some of the above results can also be obtained by using the properties of the infi-
nite volume measure �W , defined in (1.2). This alternative approach also provides the
improved bound (1.12) in Theorem 3. In this section, we higlight the main differ-
ences with the finite volume approach and give the proof of (1.12). For more details,
see [30].

To explain the strategy, we need to introduce a few preliminary notions and results.
Recall that ƒL D Œ�L;L�d \ Zd . We define, for every i 2 Zd and L 2 N�1,

 L.i/´

8<: 1 if i … ƒL;P
k2@ƒL

H�1
ˇ;ƒL

.i; k/�wƒL.k/ D e
ui .ˇƒL / if i 2 ƒL:

The following result is an extract of [34, Theorem 1].

Proposition 20. The following facts hold true.

(1) For every .i; j / 2Zd , .H�1
ˇ;ƒL

.i; j //L2N�1 is increasing �W -a.s. Moreover, it
converges toward some almost surely finite random variable which is denoted
by yG.i; j /.

(2) For every i 2 Zd , . L.i//L2N�1 is a positive martingale with respect to the
filtration .�.ˇi ; i 2 ƒL/; L 2 N�1/.

(3) For every i 2 Zd , the bracket of . L.i//L2N�1 equals .H�1
ˇ;ƒL

.i; i//L2N�1 .
In particular, . L.i/2 �H�1

ˇ;ƒL
.i; i//L2N�1 is a martingale for every i 2 Zd .

By [34, Theorem 2], yG is the inverse of the infinite volume operator Hˇ in the fol-
lowing sense: yG.i; j /´ lim"!0.Hˇ C "/

�1.i; j /, �W -a.s. Moreover, for every i; j ,
" 7! .Hˇ C "/

�1.i; j / is increasing �W -a.s. These facts are the key for the construc-
tion of the infinite volume environment of the related vertex reinforced jump process.
A first application is the improved bound (1.12).
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Proposition 21 (Upper bound on the IDS for largeW ). For d � 3, there existsW0 >1
such that, for all W � W0, the function E 7! N.E/ satisfies the bound

N.E;Hˇ / � C 0E for all E > 0;

for some constant C 0 > 0 independent of W .

Proof. Note that N.E;Hˇ / D N.WE;Hˇ /µ zN.WE/. In the rest of the proof, we
will work with zN . By [1, Section 3.3], for every bounded continuous function f ,

C1Z
0

f .u/d zN.u/ D EW Œf .Hˇ /.0; 0/�

where f .Hˇ / is an operator which is well defined because Hˇ is self adjoint. In
particular, for every " > 0, it holds that

C1Z
0

1

uC "
d zN.u/ D EW Œ.Hˇ C "/

�1.0; 0/�: (6.1)

Furthermore, as remarked above,

.Hˇ C "/
�1.0; 0/ ���!

"!0

yG.0; 0/;

�W -a.s. and this convergence is increasing. Therefore, by monotone convergence the-
orem, for every " > 0,

EW Œ.Hˇ C "/
�1.0; 0/� ���!

"!0
EW Œ yG.0; 0/�

and
C1Z
0

1

uC "
d zN.u/ ���!

"!0

C1Z
0

1

u
d zN.u/:

Thus, if we make " go to 0 in (6.1), this implies that, �W -a.s.,
C1Z
0

1

u
d zN.u/ D EW Œ yG.0; 0/�:

Using Fatou’s lemma, it yields
C1Z
0

1

u
d zN.u/ D EW Œ yG.0; 0/� � lim inf

L!C1
EW ŒH�1ˇ;ƒL.0; 0/�

D lim inf
L!C1

1

W
EW;�

w

u;ƒL
ŒD�1.0; 0/e2u0 �

D lim inf
L!C1

1

W
EW;�

w

u;ƒL
Œhf;D�1f i�;
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where the matrixD was defined in (5.6) and fk´ ık0e
u0 (instead of fk´ ıkj e

uj =2

in the proof of Lemma 19). Repeating the same arguments as in the proof of
Lemma 19, we obtain

EW;�
w

u;ƒL
Œhf;D�1f i� �

X
k�k0

.rkk0D
�1
0 ı0/

2 EW;�
w

u;ƒL
Œe2u0�.ukCuk0 /�

C

X
k

Q�wk .D
�1
0 ı0/

2
k EW;�

w

u;ƒL
Œe2u0�uk �;

where remember that D0´ D.0/ D ��ƒL C Q�
w and Q�w

k
´ �w

k
=W . Note that

EW;�
w

u;ƒL
Œe2u0�.ukCuk0 /� � 4 EW;�

w

u;ƒL
Œ.cosh.u0 � uk//2�

1
2EW;�

w

u;ƒL
Œ.cosh.u0 � uk0//2�

1
2 ;

EW;�
w

u;ƒL
Œe2u0�uk � � 4 EW;�

w

u;ƒL
Œ.cosh.u0 � uk//2�

1
2EW;�

w

u;ƒL
Œ.coshu0/2�

1
2 :

Using (B.3) and Lemma 28, we obtain (cf. (5.7))

EW;�
w

u;ƒL
Œhf;D�1f i� � 16hı0;D

�1
0 ı0i D 16.��ƒL C Q�

w/�1.0; 0/ � C2;

where C2 > 0 is the same constant we obtained in (5.7) and we used that we are in
dimension d � 3. Hence,

R C1
0

1
u
d zN.u/ � C2=W . It follows

N.E;Hˇ / D zN.WE/ D

WEZ
0

u

u
d zN.u/ � WE

C1Z
0

1

u
d zN.u/ � C2E:

This concludes the proof setting C 0´ C2.

Remark. Note that .H�1
ˇ;ƒL

.0; 0//L2N�1 is the quadratic variation of the martingale
. L.0//L2N�1 (cf. Proposition 20 ). This observation gives the slightly weaker esti-
mate

C1Z
0

1

u
d zN.u/ D EW Œ yG.0; 0/� � lim inf

L!C1
EW ŒH�1ˇ;ƒL.0; 0/�

D lim inf
L!C1

EW Œ L.0/
2� � 16;

where in the last inequality we used Lemma 28 together with

EW Œ L.0/
2� D EW;�

w

u;ƒL
Œe2u0 � � 4EW;�

w

u;ƒL
Œ.coshu0/2� � 16:

The infinite volume measure approach also gives an alternative proof of the lower
bound for N.E/. For this, we need some more definitions. Setting for i 2 Zd , we
define

Q̌
i ´ ˇi � ıi;0

1

2 yG.0; 0/
: (6.2)

We have the following result.
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Proposition 22 ([17, Proposition 2.4]). Recall the definition ofWcr in (1.9). Then, for
allW <Wcr, 1=.2 yG.0;0// has density 1
>0 e

�
=
p
�
 . Moreover, Q̌ and 1=.2 yG.0;0//

are independent random variables.

Note that this proposition works for anyW such that the corresponding reinforced
jump process is recurrent. This is true in particular for W < Wcr. The variable Q̌i
arises naturally as the jump rate of the vertex reinforced jump process at vertex i (see
[34, Theorem 1.(iii)]). In the following, we will consider zHˇ ´ 2 Q̌ � PW and its
Dirichlet restriction on the finite box ƒL zHD

ˇ;ƒL
(cf (1.5)).

Finally, recall that the graphƒL[ ı has vertex setƒL[¹ıº and edge setE.ƒL/[
¹¹i; ıºj i 2 ƒLº, and we defined Wi;ı D �wi D

P
j�i;j…ƒL

W for all i 2 ƒL. Now,
consider an electrical network on ƒL [ ı with conductances

c.i; j /´ W
yG.0; i/ yG.0; j /

yG.0; 0/2
for all i; j 2 ƒL;

c.i; ıL/´
X
j�i
j…ƒL

W
� yG.0; i/ yG.0; j /

yG.0; 0/2
C
yG.0; i/2

yG.0; 0/2

�
for all i 2 ƒL;

and let RL.0$ ı/ be the effective resistance of the random walk associated with this
network. The following proposition is proved in [30].

Proposition 23. Let W < Wcr. Then, for every L 2 N�1,

. zHD
ˇ;ƒL

/�1.0; 0/ D RL.0$ ı/:

Thanks to this result, we can use some tricks from the theory of electrical networks
(e.g., [25, Chapter 2]) to construct an alternative proof of Theorem 1. We sketch below
the argument.

Proof of Theorem 1 (II). As in the proof given in Section 4, we start from

N.E;Hˇ / �
1

jƒLj
�W

�
.HD

ˇ;ƒL
/�1.0; 0/ �

1

E

�
:

Note that

�W
� 1

2 yG.0; 0/
�
E

4

�
D �W

�
yG.0; 0/ �

2

E

�
� �W

�
yG.0; 0/ � .HD

ˇ;ƒL
/�1.0; 0/ �

1

E

�
C �W

�
.HD

ˇ;ƒL
/�1.0; 0/ �

1

E

�
:
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Consequently,

N.E;Hˇ / �
1

jƒLj

h
�W

� 1

2 yG.0; 0/
�
E

4

�
� �W

�
yG.0; 0/ � .HD

ˇ;ƒL
/�1.0; 0/ �

1

E

�i
�

1

jƒLj

h
C
p
E � �W

�
yG.0; 0/ � .HD

ˇ;ƒL
/�1.0; 0/ �

1

E

�i
;

where C > 0 is some constant and we used that 1=.2 yG.0; 0// is a �.1=2; 1/ random
variable (cf. Proposition 22). We claim that, for E small and L large enough,

�W
�
yG.0; 0/ � .HD

ˇ;ƒL
/�1.0; 0/ �

1

E

�
�
p
E;

which implies the result. To prove this asymptotic domination, note that zHD
ˇ;ƒL

�

HD
ˇ;ƒL

D �ı01= yG.0; 0/ (cf. equation (6.2)). Therefore,

.HD
ˇ;ƒL

/�1.0; 0/ D
. zHD

ˇ;ƒL
/�1.0; 0/

1C
. zHD

ˇ;ƒL
/�1.0;0/

yG.0;0/

and thus, using Proposition 23,

yG.0; 0/ � .HD
ˇ;ƒL

/�1.0; 0/ �
yG.0; 0/2

. zHD
ˇ;ƒL

/�1.0; 0/
D

yG.0; 0/2

RL.0$ ı/
:

Therefore, we have

�W
�
yG.0; 0/ � .HD

ˇ;ƒL
/�1.0; 0/ �

1

E

�
� �W

� yG.0; 0/2

RL.0$ ı/
�
1

E

�
D

C1Z
0

e�

p
�


�W
� 1

RL.0$ ı/
�
4
2

E

�
d


(6.3)

where, in the last equality of (6.3), we used Proposition 22 and the measurability
of .HD

ˇ;ƒL
/�1.0; 0/ D RL.0$ ı/ with respect to Q̌. Then, one can use classical a

result in electrical networks (the Nash–Williams inequality) to control the inverse of
RL.0 $ ı/, using the local conductances on the boundary of ƒL. Finally, we can
control these local conductances thanks to Corollary 9 if we choose a “good” L as a
function of E.

A. Monotonicity

The following monotonicity result can be found in [29, Theorem 6].
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Theorem 24. Let V be a finite set, W C; W � 2 RV�V�0 two families of non-negative
weights satisfying W ˙jj D 0 for all j 2 V , and

W �j i D W
�
ij � W

C

ij D W
C

j i for all i ¤ j:

Let EC (resp., E�) be the set of pairs with positive weight W Cij > 0 (resp W �ij > 0)
and denote by G˙ D .V;E˙/ the corresponding graphs.

If i; j 2 V are connected by G�, then it holds

EW
�;0

G�

h
f
�H�1

ˇ;V;W�
.j; k/

H�1
ˇ;V;W�

.j; j /

�i
� EW

C;0

GC

h
f
�H�1

ˇ;V;WC
.j; k/

H�1
ˇ;V;WC

.j; j /

�i
for any concave function f . Here, we write Hˇ;V;W˙ instead of Hˇ;V to emphasize
the dependence of W ˙.

In this paper, we use the following corollary.

Corollary 25. Let G D .V;E/ be a connected finite graph and W 2 RE>0 a given set
of weights. Fix a vertex j0 2 V and set �j D �ıjj0 with � > 0 (one pinning at j0). It
holds, for all j 2 V ,

EW;�
G

"p
H�1
ˇ;V
.j0; j /

H�1
ˇ;V
.j0; j0/

#
� EW;0

G

"p
H�1
ˇ;V
.j0; j /

H�1
ˇ;V
.j0; j0/

#
:

Proof. The measure �W;�
G

is the marginal of �W;0
G ı

, where the graph G ı has vertex set
V [ ¹ıº and edge set E [ ¹j0; ıº, and we defined Wj0;ı D �. Moreover, by resolvent
expansion, we have

H�1ˇ;V[¹ıº.j0; j / D H�1ˇ;V .j0; j / Œ1C �
2H�1ˇ;V .j0; j0/H

�1
ˇ;V[¹ıº.ı; ı/�;

H�1ˇ;V[¹ıº.j0; j0/ D H�1ˇ;V .j0; j0/ Œ1C �
2H�1ˇ;V .j0; j0/H

�1
ˇ;V[¹ıº.ı; ı/�;

and hence

EW;�
G

"p
H�1
ˇ;V
.j0; j /

H�1
ˇ;V
.j0; j0/

#
D EW;0

G ı

"p
H�1
ˇ;V
.j0; j /

H�1
ˇ;V
.j0; j0/

#

D EW;0
G ı

"p
H�1
ˇ;V[¹ıº

.j0; j /

H�1
ˇ;V[¹ıº

.j0; j0/

#
:

Define �Wij DWij for all i � j 2 V and �Wj0ı D 0. Then,Wij � �Wij for all i � j 2 G ı

and the graph generated by �W connects j0 to j for all j 2 V . Since f .x/ D
p
x is a
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concave function, by Theorem 24 we have

EW;0
G ı

"p
H�1
ˇ;V[¹ıº;W

.j0; j /

H�1
ˇ;V[¹ıº;W

.j0; j0/

#
� E

�W;0
G ı

"p
H�1
ˇ;V[¹ıº; �W .j0; j /

H�1
ˇ;V[¹ıº; �W .j0; j0/

#
:

Since �Wj0ı D 0 and �W D W on V , 2ˇı is independent of the other random variables
and we have H

ˇ;V[¹ıº; �W D 2ˇı ˚Hˇ;V , where we abbreviated Hˇ;V D Hˇ;V;W .
Therefore,

H�1
ˇ;V[¹ıº; �W .j0; j / D H�1ˇ;V .j0; j /; H�1

ˇ;V[¹ıº; �W .j0; j0/ D H�1ˇ;V .j0; j0/:

It follows

E
�W;0
G ı

"p
H�1
ˇ;V[¹ıº; �W .j0; j /

H�1
ˇ;V[¹ıº; �W .j0; j0/

#
D E

�W;0
G ı

"p
H�1
ˇ;V
.j0; j /

H�1
ˇ;V
.j0; j0/

#

D EW;0
G

"p
H�1
ˇ;V
.j0; j /

H�1
ˇ;V
.j0; j0/

#
;

where in the last step we used that ˇı is independent of the other variables. This
concludes the proof.

B. Long range order estimates on the field u associated to the
H 2j2-model

Recall the definition of �W;�ƒ .u/ and �w in (2.4) and (1.4), respectively.

Lemma 26. For any W > 0, d � 1, j 2 ƒ such that �j > 0 and m � �j =2, we have

EW;�u;ƒ Œ.coshuj /m� �
1

1 � m
�j

� 2: (B.1)

In particular, in the case ƒ D ƒL and � D �w , we have

EW;�
w

u;ƒL
Œ.coshuj /m� �

1

1 � m
W

� 2 (B.2)

for all j 2 @ƒL and m � W=2.

Proof. This inequality follows by a supersymmetric Ward identity analog to the one
in [12, Section 5.1]. See also in [9, Lemma 4.2]. We sketch here the argument. We
refer to the notation in [12], in particular,

Bj D coshuj C
1

2
s2j e

uj
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where sj is a real variable. Denoting the supersymmetric mean by h�isusy, we have

1 D h.Bj C x j j e
uj /misusy D EW;�u;ƒ

h
Bmj

�
1 �

m

Bj
H�1ˇ;ƒL.j; j /

�i
;

where x j ;  j are anti-commuting variables. The bound (B.1) now follows from
Bj � 1 and H�1

ˇ;ƒL
.j; j /� 1=�j . The bound (B.2) is obtained observing that �wj �W

for all j 2 @ƒL.

The following result has been proved in [12, Theorem 1].

Theorem 27. Let d � 3. There exists W 00 D W
0
0.d/ > 1 such that, for all W � W 00,

we have

EW;�u;ƒL
Œ.cosh.uj � uk//m� � 2 for all j; k 2 ƒL; m � W

1
8 : (B.3)

This bound holds for all �.

Proof. Although the model considered in [12] has uniform pinning �j D " > 0 for all
j 2 ƒL, the proof of Theorem 1 is completely independent from the pinning choice.
Also, while in [12] only d D 3 is considered, the same proof works for any d � 3.
Indeed, the key dimension-dependent result (Lemma 5) is proved for general dimen-
sion d � 3. The same strategy was used in [10] in the case when the edge weightsWe
are independent Gamma distributed variables. For a related result on a one-dimen-
sional chain with non homogeneous weights, see [8].

Lemma 28. Let d � 3 and W 00 D W
0
0.d/ > 1 be the parameter introduced in Theo-

rem 27 above. For all W � W0´ max¹W 00; 4
8º, we have

EW;�
w

u;ƒL
Œ.coshuk/2� � 8 for all k 2 ƒL: (B.4)

Proof. By Lemma 26, for any W � W0, j 2 @ƒ, and m � W=2, we have

EW;�
w

u;ƒL
Œ.coshuj /m� �

1

1 � m
W

� 2: (B.5)

Fix now k 2ƒL n @ƒL and let j be some vertex on @ƒL. We have the bound coshuk �
2 coshuj cosh.uk � uj /, and hence

EW;�
w

u;ƒL
Œ.coshuk/2� � 4 EW;�

w

u;ƒL
Œ.coshuj /4�

1
2EW;�

w

u;ƒL
Œ.cosh.uj � uk//4�

1
2 :

The constraint W � max¹W0; 48º ensures 4 � W 1=8 and 4 � W=2. The result now
follows from (B.3) and (B.5).
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Remark. Note that in [12] the bound (B.4) is proved in Theorem 2 and requires quite
some work due to the presence of a uniform small pinning "� 1=jƒLj1�s , 0 < s� 1.
Here, the same bound follows easily from (B.3) and the fact that we have large pinning
at the boundary �wj � W � 1 for all j 2 @ƒL.
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[15] L. Erdős and D. Schröder, Phase transition in the density of states of quantum spin glasses.
Math. Phys. Anal. Geom. 17 (2014), no. 3-4, 441–464 Zbl 1310.82051 MR 3291938

[16] R. Fukushima and N. Ueki, Classical and quantum behavior of the integrated density of
states for a randomly perturbed lattice. Ann. Henri Poincaré 11 (2010), no. 6, 1053–1083
Zbl 1210.82013 MR 2737491

[17] T. Gerard, Representations of the vertex reinforced jump process as a mixture of Markov
processes on Zd and infinite trees. Electron. J Probab. 25 (2020), article no. 108
Zbl 1459.60179 MR 4150520

[18] W. Kirsch, An invitation to random Schrödinger operators. In Random Schrödinger oper-
ators, pp. 1–119, Panor. Synthèses 25, Société mathématique de France, Paris, 2008
Zbl 1162.82004 MR 2509110

[19] W. Kirsch and B. Metzger, The integrated density of states for random Schrödinger opera-
tors. In Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s
60th birthday, pp. 649–696, Proc. Sympos. Pure Math. 76, American Mathematical Soci-
ety, Providence, RI, 2007 Zbl 1208.82028 MR 2307751

[20] W. Kirsch and F. Nitzschner, Lifshitz-tails and non-Lifshitz-tails for one-dimensional ran-
dom point interactions. In Order, disorder and chaos in quantum systems (Dubna, 1989),
pp. 171–178, Oper. Theory Adv. Appl. 46, Birkhäuser, Basel, 1990 Zbl 0711.60063
MR 1124663

[21] F. Klopp and S. Nakamura, Spectral extrema and Lifshitz tails for non-monotonous alloy
type models. Comm. Math. Phys. 287 (2009), no. 3, 1133–1143 Zbl 1198.35065
MR 2486675

[22] F. Klopp and S. Nakamura, Lifshitz tails for generalized alloy-type random Schrödinger
operators. Anal. PDE 3 (2010), no. 4, 409–426 Zbl 1226.35058 MR 2718259

[23] H. Leschke and S. Warzel, Quantum-classical transitions in Lifshitz tails with magnetic
fields. Phys. Rev. Lett. 92 (2004), article no. 086402

https://arxiv.org/abs/2305.07359v2
https://doi.org/10.1007/s00220-015-2392-y
https://zbmath.org/?q=an:1329.60116
https://mathscinet.ams.org/mathscinet-getitem?mr=3366053
https://doi.org/10.1007/s00220-010-1124-6
https://zbmath.org/?q=an:1203.82017
https://mathscinet.ams.org/mathscinet-getitem?mr=2736958
https://doi.org/10.1007/s00220-010-1117-5
https://doi.org/10.1007/s00220-010-1117-5
https://zbmath.org/?q=an:1203.82018
https://mathscinet.ams.org/mathscinet-getitem?mr=2728731
https://doi.org/10.1002/andp.19925040210
https://doi.org/10.1002/andp.19925040210
https://mathscinet.ams.org/mathscinet-getitem?mr=1161915
https://doi.org/10.4171/JST/74
https://doi.org/10.4171/JST/74
https://zbmath.org/?q=an:1304.82039
https://mathscinet.ams.org/mathscinet-getitem?mr=3232816
https://doi.org/10.1007/s11040-014-9164-3
https://zbmath.org/?q=an:1310.82051
https://mathscinet.ams.org/mathscinet-getitem?mr=3291938
https://doi.org/10.1007/s00023-010-0051-6
https://doi.org/10.1007/s00023-010-0051-6
https://zbmath.org/?q=an:1210.82013
https://mathscinet.ams.org/mathscinet-getitem?mr=2737491
https://doi.org/10.1214/20-ejp510
https://doi.org/10.1214/20-ejp510
https://zbmath.org/?q=an:1459.60179
https://mathscinet.ams.org/mathscinet-getitem?mr=4150520
https://zbmath.org/?q=an:1162.82004
https://mathscinet.ams.org/mathscinet-getitem?mr=2509110
https://doi.org/10.1090/pspum/076.2/2307751
https://doi.org/10.1090/pspum/076.2/2307751
https://zbmath.org/?q=an:1208.82028
https://mathscinet.ams.org/mathscinet-getitem?mr=2307751
https://doi.org/10.1007/978-3-0348-7306-2_16
https://doi.org/10.1007/978-3-0348-7306-2_16
https://zbmath.org/?q=an:0711.60063
https://mathscinet.ams.org/mathscinet-getitem?mr=1124663
https://doi.org/10.1007/s00220-008-0666-3
https://doi.org/10.1007/s00220-008-0666-3
https://zbmath.org/?q=an:1198.35065
https://mathscinet.ams.org/mathscinet-getitem?mr=2486675
https://doi.org/10.2140/apde.2010.3.409
https://doi.org/10.2140/apde.2010.3.409
https://zbmath.org/?q=an:1226.35058
https://mathscinet.ams.org/mathscinet-getitem?mr=2718259
https://doi.org/10.1103/physrevlett.92.086402
https://doi.org/10.1103/physrevlett.92.086402


M. Disertori, V. Rapenne, C. Rojas-Molina, and X. Zeng 530

[24] G. Letac and J. Wesołowski, Multivariate reciprocal inverse Gaussian distributions from
the Sabot–Tarrès–Zeng integral. J. Multivariate Anal. 175 (2020), article no. 104559
Zbl 1445.62106 MR 4029748

[25] R. Lyons and Y. Peres, Probability on trees and networks. Camb. Ser. Stat. Probab. Math.
42, Cambridge University Press, New York, 2016 Zbl 1376.05002 MR 3616205

[26] P. Müller and P. Stollmann, Spectral asymptotics of the Laplacian on supercritical bond-
percolation graphs. J. Funct. Anal. 252 (2007), no. 1, 233–246 Zbl 1127.60090
MR 2357356

[27] P. Müller and P. Stollmann, Percolation Hamiltonians. In Random walks, boundaries and
spectra, pp. 235–258, Progr. Probab. 64, Birkhäuser/Springer, Basel, 2011
Zbl 1225.05220 MR 3051702

[28] H. Najar, Non-Lifshitz tails at the spectral bottom of some random operators. J. Stat. Phys.
130 (2008), no. 4, 713–725 Zbl 1214.82054 MR 2387562

[29] R. Poudevigne-Auboiron, Monotonicity and phase transition for the VRJP and the ERRW.
J. Eur. Math. Soc. (JEMS) 26 (2024), no. 3, 789–816 Zbl 1545.60119 MR 4721024

[30] V. Rapenne, Etude de quelques problèmes liés aux marches aléatoires avec renforcement et
aux marches branchantes. Ph.D. thesis, Université Lyon 1, Lyon httpsW//theses.hal.science/
tel-04558358 visited on 24 February 2025

[31] C. Rojas-Molina, The Anderson model with missing sites. Oper. Matrices 8 (2014), no. 1,
287–299 Zbl 1291.82059 MR 3202941

[32] C. Sabot and P. Tarrès, Edge-reinforced random walk, vertex-reinforced jump process and
the supersymmetric hyperbolic sigma model. J. Eur. Math. Soc. (JEMS) 17 (2015), no. 9,
2353–2378 Zbl 1331.60185 MR 3420510

[33] C. Sabot, P. Tarrès, and X. Zeng, The vertex reinforced jump process and a random
Schrödinger operator on finite graphs. Ann. Probab. 45 (2017), no. 6A, 3967–3986
Zbl 06838112 MR 3729620

[34] C. Sabot and X. Zeng, A random Schrödinger operator associated with the vertex rein-
forced jump process on infinite graphs. J. Amer. Math. Soc. 32 (2019), no. 2, 311–349
Zbl 1450.60062 MR 3904155

[35] M. R. Zirnbauer, Fourier analysis on a hyperbolic supermanifold with constant curvature.
Comm. Math. Phys. 141 (1991), no. 3, 503–522 Zbl 0746.58014 MR 1134935

Received 27 May 2023; revised 24 November 2024.

Margherita Disertori
Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn,
Germany; disertori@iam.uni-bonn.de

Valentin Rapenne
Institut Camille Jordan, Université Lyon 1, 43 bd. du 11 nov. 1918, 69622 Villeurbanne cedex,
France; valentin.rapenne.maths@gmail.com

https://doi.org/10.1016/j.jmva.2019.104559
https://doi.org/10.1016/j.jmva.2019.104559
https://zbmath.org/?q=an:1445.62106
https://mathscinet.ams.org/mathscinet-getitem?mr=4029748
https://doi.org/10.1017/9781316672815
https://zbmath.org/?q=an:1376.05002
https://mathscinet.ams.org/mathscinet-getitem?mr=3616205
https://doi.org/10.1016/j.jfa.2007.06.018
https://doi.org/10.1016/j.jfa.2007.06.018
https://zbmath.org/?q=an:1127.60090
https://mathscinet.ams.org/mathscinet-getitem?mr=2357356
https://doi.org/10.1007/978-3-0346-0244-0_13
https://zbmath.org/?q=an:1225.05220
https://mathscinet.ams.org/mathscinet-getitem?mr=3051702
https://doi.org/10.1007/s10955-007-9467-x
https://zbmath.org/?q=an:1214.82054
https://mathscinet.ams.org/mathscinet-getitem?mr=2387562
https://doi.org/10.4171/jems/1298
https://zbmath.org/?q=an:1545.60119
https://mathscinet.ams.org/mathscinet-getitem?mr=4721024
https://theses.hal.science/tel-04558358
https://theses.hal.science/tel-04558358
https://doi.org/10.7153/oam-08-16
https://zbmath.org/?q=an:1291.82059
https://mathscinet.ams.org/mathscinet-getitem?mr=3202941
https://doi.org/10.4171/JEMS/559
https://doi.org/10.4171/JEMS/559
https://zbmath.org/?q=an:1331.60185
https://mathscinet.ams.org/mathscinet-getitem?mr=3420510
https://doi.org/10.1214/16-AOP1155
https://doi.org/10.1214/16-AOP1155
https://zbmath.org/?q=an:06838112
https://mathscinet.ams.org/mathscinet-getitem?mr=3729620
https://doi.org/10.1090/jams/906
https://doi.org/10.1090/jams/906
https://zbmath.org/?q=an:1450.60062
https://mathscinet.ams.org/mathscinet-getitem?mr=3904155
https://doi.org/10.1007/bf02102812
https://zbmath.org/?q=an:0746.58014
https://mathscinet.ams.org/mathscinet-getitem?mr=1134935
mailto:disertori@iam.uni-bonn.de
mailto:valentin.rapenne.maths@gmail.com


IDS for the Anderson model arising from a supersymmetric sigma model 531

Constanza Rojas-Molina
Laboratoire AGM, Département de Mathématiques, CY Cergy Paris Université,
2 Av. Adolphe Chauvin, 95302 Cergy-Pontoise, France; crojasmo@cyu.fr

Xiaolin Zeng
IRMA, Université de Strasbourg, 7 rue René Descartes, 67084 Strasbourg, France;
zeng@math.unistra.fr

mailto:crojasmo@cyu.fr
mailto:zeng@math.unistra.fr

	1. Introduction and main results
	2. Some previous results on the ℋ_𝛽 operator 
	3. Preliminary results
	3.1. Connection between N (E) and the Green's function with Dirichlet b.c.
	3.2. From Dirichlet to simple boundary conditions

	4. Lower bound on the IDS
	5. Wegner estimate
	6. An alternative approach
	A. Monotonicity
	B. Long range order estimates on the field u associated to the H2|2 -model
	References

