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An inverse problem for the fractionally damped wave equation

Li Li and Yang Zhang

Abstract. We consider an inverse problem for a Westervelt type nonlinear wave equation with
fractional damping. This equation arises in nonlinear acoustic imaging and we show the forward
problem is locally well posed. We prove that the smooth coefficient of the nonlinearity can
be uniquely determined, based on the knowledge of the source-to-solution map and a priori
knowledge of the coefficient, in an arbitrarily small subset of the domain. Our approach relies on
a second order linearization as well as the unique continuation property of the spectral fractional
Laplacian.

1. Introduction

Ultrasound waves are widely used in medical imaging. The propagation of high-
intensity ultrasound waves are modeled by nonlinear wave equations; see [22]. Non-
linear ultrasound waves play an important role in diagnostic and therapeutic medicine,
for example, see [3, 13, 20]. On the other hand, damping effects naturally exist for
wave equations in many fields of physics and engineering, for instance, see [1].

In this paper, we consider a nonlinear wave equation of Westervelt type with a
damping term, given by

@2t .u � �u
2/ ��uCDu D f:

Here we focus on the space-fractional damping D D @t .��/
s , which models the

case when the damping is frequency-dependent and obeys an empirical power law,
see [6, 21, 27, 45, 46]. To define the fractional Laplacian on the bounded domain, we
consider the spectral fractional Laplacian .��/s for 0 < s < 1, i.e., the fractional
power of the Dirichlet Laplacian �� D .��/� (the restriction of the Laplacian to
the functions satisfying the homogeneous Dirichlet boundary condition on @�). This
spectral fractional Laplacian with Dirichlet boundary condition corresponds to the
infinitesimal generator of the so-called subordinate stopped Brownian motion at the
boundary, see [40]. Similarly, one can consider the spectral fractional Laplacian with
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Neumann boundary condition, which corresponds to the reflected Brownian motion
at the boundary. For more details about its definition, see Section 2.1.

More explicitly, let � be a bounded domain with smooth boundary. Suppose W
is an arbitrary nonempty and open subset of �, which is known. Suppose � n W
contains the region of interest that remains unknown. We consider the problem

@2t .u � �.x; t/u
2/ ��uC @t .��/

su D f; .x; t/ 2 � � .0; T /;

u D 0; .x; t/ 2 @� � .0; T /;

u.0/ D @tu.0/ D 0; x 2 �;

(1)

where u is the pressure field of the acoustic waves, f is a source supported in W �
.0; T /, and � 2 C1.x� � Œ0; T �/ is the coefficient of the nonlinearity.

We will prove that (1) is locally well posed at least for sufficiently regular and
small f , see Section 3. Then we can define the source-to-solution map

L�;W W f ! ujW�.0;T /; f 2 C1c .W � .0; T //: (2)

The goal is to determine � in the whole domain � � .0; T / based on the knowledge
of L�;W and the a priori knowledge of � inW � .0; T /. The following theorem is our
main result.

Theorem 1.1. Let �1; �2 2 C1.x�� Œ0;T �/. Suppose we have �1 D �2 inW � .0;T /.
Then

L�1;W D L�2;W (3)

implies �1 D �2 in � � .0; T /.

We emphasise that we are able to determine the coefficient � depending on both x
and t , based on the knowledge of the source-to-solution map and a priori knowledge
of �, with an arbitrarily small choice of W . We will see that this is mainly due to the
nonlocal features of the spectral fractional Laplacian. We remark that the assumption
�1 D �2 in W � .0; T / in the statement is necessary since the value of � in W cannot
be determined from the equation in (1) and the information on f; u in W . The reason
is that .��/s is nonlocal, so the value of .��/su in W relies on the value of u
outside W .

To the best of our knowledge, Theorem 1.1 is the first rigorous unique determina-
tion result for the Calderón type inverse problem in the setting of fractionally damped
wave, and no such strong partial data unique determination results have been obtained
for integer-order wave models in the existing literature.

We also remark that the theorem above can be extended to more general models,
although we restrict ourselves to the Dirichlet Laplacian and a nonlinearity of power
two in (1). In fact, the spectral and semigroup definitions of the fractional operator
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in Section 2.1 and the heat kernel estimate used in the proof of Proposition 4.1 work
for general elliptic operators in divergence form. Hence, the main theorem still holds
true if we replace the Dirichlet Laplacian by such operators in (1). In addition, we
can consider a higher order power type nonlinearity instead of u2 in (1). Once we
show the well-posedness of the corresponding forward problem, we can derive an
equation (similar to (27)) involving products of solutions of the linear equations based
on the multiple-fold linearization technique. This will enable us to use the density
result for linear equations (Runge approximation) to uniquely determine the variable
coefficient.

1.1. Connection with earlier literature

The inverse problem of determining the nonlinear coefficient from the Dirichlet-to-
Neumann map without damping is studied in [2] for the Westervelt equation and
in [49] for a more general nonlinear model. In [14], the authors consider the recon-
struction of the nonlinear coefficient using high frequency waves for the Westervelt
equation. In [51], the recovery of both a general nonlinearity and a weakly damping
term from the Dirichlet-to-Neumann map is studied. The main idea is to use multi-fold
linearization and interaction of distorted plane waves. In this case, the nonlinearity
helps to solve the inverse problem, as is first shown in [32]. Other damped or attenu-
ated models have been studied in [17, 23–28].

The rigorous mathematical study of (Calderón type) inverse problems for space-
fractional equations was initiated in [18] where the authors considered the exterior
Dirichlet problem

..��/s C q/u D 0 in �; uj�e
D g;

where .��/s is the fractional Laplacian in Rn and �e ´ Rn n x�. They defined the
associated Dirichlet-to-Neumann map

ƒqWg! .��/suj�e
:

Rather than constructing complex geometrical optics solutions (which have been used
for solving the classical Calderón problem), the authors exploited the nonlocal fea-
tures of the fractional operator to uniquely determine the potential q in� from partial
knowledge of ƒq . We refer readers to [8, 9, 33, 34, 36–39] for further unique determ-
ination results for fractional operators based on the knowledge of the Dirichlet-to-
Neumann map. In particular, the Calderón problem for linear and semilinear fractional
wave equations have been studied in [29, 30].

Besides, there are also several unique determination results for fractional operat-
ors based on the knowledge of the source-to-solution map in the existing literature.
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In [7, 16, 41], the authors considered equations involving spectral fractional operators
on manifolds, and they determined the Riemannian manifold up to an isometry.

In this paper, we combine the elements in [16,18] in the setting of fractional damp-
ing. Our source-to-solution map (2) can be viewed as an analogue of [16, (1.2)]. Our
approach to proving the unique determination result is motivated by the framework
established in [18]. We will see that nonlocal phenomenons will play a fundamental
role in solving the inverse problem as expected.

1.2. Organization

The rest of this paper is organised in the following way. In Section 2, we will sum-
marise the background knowledge. In Section 3, we will first show the well-posedness
of a linear problem associated with (1) and obtain several regularity results. Then we
will further use a fixed-point argument to show the well-posedness of (1) for small f .
In Section 4, we will first prove the unique continuation property of the spectral frac-
tional Laplacian and derive the related Runge approximation property. Then we will
combine the unique continuation property and the Runge approximation property with
a second order linearization technique to prove the main theorem.

2. Preliminaries

Throughout this paper we use the following notations.

• We fix the space dimension n D 3.

• We fix the fractional power 0 < s < 1 and the length of the time interval T > 0.

• � denotes a bounded domain with smooth boundary.

• c; C; C 0; C1; : : : denote positive constants (which may depend on some paramet-
ers).

• h�; �i denotes the standard L2-distributional pairing.

2.1. Sobolev spaces and fractional operators

We use H s to denote the standard W s;2-type Sobolev space. Let U be an open set in
Rn. Let F be a closed set in Rn. Then

H s.U /´ ¹ujU W u 2 H
s.Rn/º; H s

F .R
n/´ ¹u 2 H s.Rn/ W suppu � F º;

zH s.U /´ the closure of C1c .U / in H s.Rn/:
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Since � is a bounded domain with smooth boundary, we have the identification
zH s.�/ D H s

x�
.Rn/, and its dual space is H�s.�/.

The Dirichlet Laplacian �� is a non-negative self-adjoint operator in zH 1.�/.
Therefore, there exists an orthonormal basis of L2.�/ consisting of eigenfunctions
�k 2 zH

1.�/ (kD 1;2; : : :,) that correspond to the eigenvalues 0<�1<�2��3� � � �.
The spectral fractional Laplacian mapping

zH s.�/ D
°
u 2 L2.�/ W

1X
kD1

�skjhu; �kij
2 < C1

±
into H�s.�/ is defined by

.��/su´

1X
kD1

�skhu; �ki�k (4)

(see [5, Section 2.1] and [4, Section 3.1.3]). The spectral fractional Laplacian can
be also equivalently defined via the semigroup approach (see [5, Lemma 2.2]). Let
U.x; t/ D e�t.��/u.x/ be the solution of the parabolic problem

@tU ��U D 0; .x; t/ 2 � � .0;1/;

U D 0; .x; t/ 2 @� � .0;1/;

U jtD0 D u; x 2 �:

Then for u 2 zH s.�/,

.��/su D
1

�.�s/

1Z
0

.U � u/
d t
t1Cs

(5)

in H�s.�/, where �.�/ is the standard Gamma function. More precisely, for v 2
zH s.�/, we have

h.��/su; vi D
1

�.�s/

1Z
0

.hU; vi � hu; vi/
d t
t1Cs

:

We remark that the spectral fractional Laplacian defined here is different from the
restriction of .��Rn/s to �, although they enjoy several common properties (see [4,
Section 2.1]).
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2.2. Sets Z m

To study the well-posedness of (1), we introduce the set Zm.R; T / consisting of u
satisfying

u 2

m\
kD0

Hm�k.0; T IH k.�//; kuk2Zm D

mX
kD0

TZ
0

k@m�kt u.t/k2
Hk d t � R2

and @kt u.0/ D 0 for k � m.
The proof of [48, Claim 1] ensures that Zm.R; T / has the following property.

Proposition 2.1. Suppose u 2 Zm.R; T / for some R > 0 and m � 5. Then @tu 2
Zm�1.R; T / with k@tukZm�1 � kukZm . Moreover, we have the following estimates.

(1) If v 2 Zm.R0; T /, then kuvkZm � CkukZmkvkZm .

(2) If v 2 Zm�1.R0; T /, then kuvkZm�1 � CkukZmkvkZm�1 .

3. Forward problem

3.1. Linear equation

We first study the well-posedness of the linear problem

@2t u ��uC @t .��/
su D f; .x; t/ 2 � � .0; T /;

u D 0; .x; t/ 2 @� � .0; T /;

u.0/ D @tu.0/ D 0; x 2 �:

(6)

Proposition 3.1. For any f 2L2.0;T IL2.�//, (6) has a unique solution u satisfying

u 2 H 2.0; T IH�1.�// \W 1;1.0; T IL2.�// \ L1.0; T I zH 1.�//

and @tu 2 L2.0; T I zH s.�//. Moreover, for t 2 Œ0; T �, we have the estimate

k@tu.t/k
2
L2 C kru.t/k

2
L2 C

tZ
0

k@t .��/
s=2u.�/k2

L2 d � � C

tZ
0

kf .�/k2
L2 d �; (7)

where C is a positive constant independent of f .

Proof. We use the Galerkin method. For l 2 N, consider the approximate solution
ul.t/ of the form

Pl
kD1 ul;k.t/�k satisfying

h@2t ul ; vi C hrul ;rvi C h@t .��/
sul ; vi D hf; vi (8)
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for any v in the space spanned by �1; : : : ; �l and the initial conditions ul.0/ D
@tul.0/ D 0. (The standard theory for linear ODE systems ensures that C 2-function
ul;k can be uniquely determined.)

By choosing v D @tul , we have

1

2

� d
d t
k@tul.t/k

2
L2 C

d
d t
krul.t/k

2
L2

�
C k@t .��/

s=2ul.t/k
2
L2 D hf; @tuli

and
1

2
.k@tul.t/k

2
L2 C krul.t/k

2
L2/C

tZ
0

k@t .��/
s=2ul.�/k

2
L2 d �

D

tZ
0

hf .�/; @tul.�/i d �:

Since the first eigenvalue the Dirichlet Laplacian is strictly positive, the definition of
the spectral fractional Laplacian (4) ensures the Poincaré inequality

k.��/s=2vk2
L2 � ckvk

2
L2 ; v 2 zH s.�/: (9)

Using the inequality
tZ
0

hf .�/; @tul.�/i d � �
2

c

tZ
0

kf .�/k2
L2 d � C

c

2

tZ
0

k@tul.�/k
2
L2 d �;

we obtain

k@tul.t/k
2
L2 C krul.t/k

2
L2 C

tZ
0

k@t .��/
s=2ul.�/k

2
L2 d � �

4

c

tZ
0

kf .�/k2
L2 d �:

To derive an estimate for @2t ul , we estimate (8) for v 2 zH 1.�/ with kvkH1 � 1 and
following the same idea as before. Thus, ¹ulº1lD1 is bounded in

H 2.0; T IH�1.�// \W 1;1.0; T IL2.�// \ L1.0; T I zH 1.�//

and ¹@tulº1lD1 is bounded in L2.0; T I zH s.�//. Next, by using the standard com-
pactness argument, we can find a subsequence of ¹ulº1lD1 weakly convergent to u
satisfying (6) and (7). The uniqueness of the solution directly follows from the estim-
ate (7).

To study the well-posedness of (1) later, we also need to consider the following
linear problem:

.1 � 2�v/@2t u ��uC @t .��/
su D f; .x; t/ 2 � � .0; T /;

u D 0; .x; t/ 2 @� � .0; T /;

u.0/ D @tu.0/ D 0; x 2 �:

(10)
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Proposition 3.2. Suppose m � 8, � 2 C1.x� � Œ0; T �/ and f 2 Zm�1.R; T /. There
exists r0 > 0 depending on �; m; �, such that for any v 2 Zm�1.r0; T /, the linear
problem (10) has a unique solution u satisfying

u 2

m\
kD0

Hm�k.0; T IH k.�//; kukZm � Ckf kZm�1 ;

where C is a positive constant depending on r0; �;m; T;�.

We will prove this proposition using the Galerkin method as before but with more
complicated energy estimates, following the idea in [10]. To prove Proposition 3.2, we
need the following embedding property, which follows from the Sobolev embedding
H k.�/ ,! C k�2.x�/ (where we use the assumption n D 3) and [15, Theorem 2 in
Section 5.9.2].

Proposition 3.3. Suppose that l;k are positive integers and that k� 2. If u2H l.0;T I

H k.�//. Then,

u 2 C l�1.Œ0; T �IH k.�// and u 2 C l�1.Œ0; T �IC k�2.x�//

with the estimates

l�1X
jD0

sup
t2Œ0;T �

k@
j
t u.t/kCk�2.x�/ � C

l�1X
jD0

sup
t2Œ0;T �

k@
j
t u.t/kHk.�/

� C 0kukH l .0;T IHk.�//:

Proof of Proposition 3.2. In the following, we write a.t/ D 1 � 2�v and let C1; C2
be generic positive constants only depending on �;m;�. With � 2 C1.Œ0; T � � x�/,
we choose r0 small enough such that a satisfies

1

2
� a.t; x/ �

3

2
; for any .t; x/ 2 Œ0; T � ��;

sup
t2Œ0;T �

m�3X
kD1

k@kt a.t/kCm�3�k.x�/ � C1r0; for any t 2 Œ0; T �:
(11)

As in the proof of Proposition 3.1, we consider the Galerkin approximation method
and construct a sequence of approximate solutions ui .t/ given by

ui .t/ D

iX
kD1

ui;k.t/�k;
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which satisfy

ha.t/@lC1t ui ; wi C
D lX
jD2

@
lC1�j
t a.t/@

j
t ui ; w

E
� h@l�1t �ui ; wi C h@

l
t .��/

sui ; wi

D h@l�1t f .t; x/; wi (12)

for any t 2 Œ0; T � and any w in the space spanned by �1; : : : ; �n. Note that the initial
conditions are @ltui .0/ D 0 for l � m, since we are given ui .0; x/ D @tui .0; x/ D

@kt f .0; x/ D 0 for k � m � 1. Here we differentiate the equation l � 1 times with
respect to t and note that when l D 1, we do not have the second term. There exists
a unique solution ui;k.t/ to the ODE obtained from the equation above. We derive
energy estimates for ui in the following.

Step 1. We set w D @ltui in (12) and we integrate it with respect to t . We estimate
each term below. From the first term, we have

tZ
0

ha.�/@lC1t ui .�/; @
l
tui .�/i d �

D
1

2
ha.t/@ltui .t/; @

l
tui .t/i �

1

2

tZ
0

h@ta.�/@
l
tui .�/; @

l
tui .�/i d �

�
1

4
k@ltui .t/k

2
L2 � C1r0

tZ
0

k@ltui .�/k
2
L2 d �:

Next, we estimate

�

tZ
0

h@l�1t �ui .�/; @
l
tui .�/i d � D

tZ
0

h@l�1t rui .�/; @
l
trui .�/i d �

D
1

2
k@l�1t rui .t/k

2
L2 ;

tZ
0

h@lt .��/
sui .�/; @

l
tui .�/i d � D

tZ
0

k@lt .��/
s=2ui .�/k

2
L2 d �;

tZ
0

h@l�1t f .�/; @ltui .�/i d � �

tZ
0

1

C1r0
k@l�1t f .�/k2

L2 C C1r0k@
l
tui .�/k

2
L2 d �:

To get an estimate for the second term in (12), we consider three different cases, when
l �m� 2, l Dm� 1 and l Dm. For the first case, we have l C 1� j �m� 3 for any
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j � 2, which impliesa 2 C lC1�j .Œ0; T �IC.x�// with (11) by Proposition 3.3. Then
we have

lX
jD2

tZ
0

h@
lC1�j
t a.�/@

j
t ui .�/; @

l
tui .�/i d �

� C1r0

�
l

tZ
0

k@ltui .�/k
2
L2 d � C

l�1X
jD2

tZ
0

k@
j
t ui .�/k

2
L2 d �

�
; (13)

for l D 1; : : : ; m � 2. We summarise over l to have

m�2X
lD1

1

4
k@ltui .t/k

2
L2 C

1

2
k@l�1t ruik

2
L2 C

tZ
0

k@lt .��/
s=2uik

2
L2 d �

�
1

C1r0

m�2X
lD1

tZ
0

k@l�1t f k2
L2 d � C 2mC1r0

m�2X
lD1

tZ
0

k@ltui .�/k
2
L2 d �:

By choosing r0 small enough to satisfy the Poincaré inequality (9), i.e.,

r0 D
c

4mC1
;

we have

m�2X
lD1

k@ltu.t/k
2
L2 C k@

l�1
t ruik

2
L2 C

tZ
0

k@lt .��/
s=2uik

2
L2 d � � C2kf kZm�1 :

In particular, this implies that

m�2X
lD1

tZ
0

k@ltuik
2
L2 d � C

tZ
0

k@l�1t ruik
2
L2 d � � C2T kf kZm�1 : (14)

When l D m � 1 and l D m, we need different inequalities instead of (13) (since we
cannot control the L1-bound of @m�2t a and @m�1t a) using estimates for @2t ui , @

3
t ui in

H 2.�/. We will deal with these two cases in Step 3.

Step 2. We would like to derive higher-order regularity estimates at least for l �
m � 3. More explicitly, for l D 1; : : : ; m � 2, we rewrite (12) as

h@l�1t .��/ui ; wi C h@
l
t .��/

su;wi

D �ha.t/@lC1t u;wi �

lX
jD2

h@
lC1�j
t a.t/@

j
t u;wi C h@

l�1
t f .t; x/; wi;



An inverse problem for the fractionally damped wave equation 739

where we setwD @l�1t .��/kui , for non-negative integer k satisfying kC l �m� 2.
It follows that a 2 C l�1.Œ0; T �IC k.x�// with (11). Following the same idea as before,
we can prove that

tZ
0

k@l�1t ui .�/k
2
HkC1 d �

� C

tZ
0

k@lC1t ui .�/k
2
Hk�1 C

lX
jD2

k@
j
t ui .�/k

2
Hk C k@

l�1
t f .�/k2

Hk d �;

for l D 1; : : : ; m � 2 and each k satisfying k � m � l � 2. Note that in (14) we have
the estimates for k@ltuikL2 and k@l�1t uikH1 when l D 1; : : : ; m � 2. Setting k D 1,
we have

tZ
0

k@l�1t ui .�/k
2
H2 d � � C2T kf kZm�1 ; for l D 1; : : : ; m � 3:

In particular, withm� 8, this estimate implies @jC1t ui 2 L
2.0; T IH 2.�// and there-

fore @jt ui 2 H
1.0; T IH 2.�//, for j D 2; 3. By Proposition 3.3, we have

@
j
t ui 2 C.Œ0; T �IC.x�// with k@jt uik

2

C.Œ0;T �IC.x�//
� C2T kf kZm�1 ; j D 2; 3:

(15)

Further, we can use an inductive procedure to show

m�1�kX
lD1

tZ
0

k@l�1t ui .�/k
2
Hk d � � C2T kf kZm�1 ; for k D 0; : : : ; m � 3; (16)

following the same idea as before.

Step 3. We would like to finish Step 1 and consider (12) for l > m � 2. When l D
m � 1, we write the left-hand side of (13) as

m�1X
jD3

tZ
0

h@
m�j
t a.�/@

j
t ui .�/; @

m�1
t ui .�/i d � C

tZ
0

h@m�2t a.�/@2t ui .�/; @
m�1
t ui .�/i d �

� C1r0

m�2X
jD3

tZ
0

k@
j
t ui .�/k

2
L2 d � C .m � 2/

tZ
0

k@m�1t ui .�/k
2
L2 d �

C
1

C1r0
k@2t uik

2

C.Œ0;T �IC.x�//

tZ
0

k@m�2t a.�/k2
L2 d � C C1r0

tZ
0

k@m�1t ui .�/k
2
L2 d �

� C2kf kZm�1 ;
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where we use (15) and the inequality

k@m�2t akL2.0;T IL2.�// � C2kvkZm�1 � C2r0:

When l D m, we similarly estimate the left-hand side of inequality (13) based on the
L1-boundedness of @3t ui . This proves a complete version of (14), i.e.,

mX
lD0

tZ
0

k@ltuik
2
L2 d � C

tZ
0

k@l�1t ruik
2
L2 d � � C2T kf kZm�1 : (17)

Step 4. From (17), we conclude that ¹uiº1nD1 is bounded in Hm.0; T IL2.�// and
also inHm�1.0; T I zH 1.�//, with the desired estimates. Using the standard compact-
ness argument, we can extract a subsequence which converges weakly to the solution

u 2 Hm.0; T IL2.�// \Hm�1.0; T I zH 1.�//:

At last, we would like to show such u is inH k.Œ0;T �IHm�k.�// for kD 0; : : : ;m
by an inductive procedure. Following the same proof of (17) and passing to limits
as i ! C1, we know that this statement holds true for k D m and k D m � 1.
Then we prove by induction. The key point is to combine the estimate for a in (11)
with the regularity of u in (16) to derive an estimate for @˛.a.t/@lC1t ui .t// andPl
jD2 @

˛.@
lC1�j
t a.t/@

j
t ui .t//; where ˛ is an multi-index with j˛j � k and l � k.

We follow the same idea as before and conclude that

tZ
0

k@ltu.�/k
2
Hm�k d � � C2T kf kZm�1 ; for 0 � l � k � m:

3.2. Nonlinear equation

Based on Proposition 3.2, we can use a fixed-point argument to show the well-posed-
ness of (1) for small f .

Proposition 3.4. Suppose m � 8, � 2 C1.x� � Œ0; T �/ and f 2 Zm�1.�; T /. Then,
for sufficiently small � > 0, the nonlinear problem (1) has a unique solution u satis-
fying

u 2

m\
kD0

Hm�k.0; T IH k.�//; kukZm � Ckf kZm�1 ;

where C is a positive constant independent of f .



An inverse problem for the fractionally damped wave equation 741

Proof. We consider the linearised problem

.1 � 2�v/@2t u ��uC @t .��/
su

D f C 2�.@tv/
2
C 4.@t�/v@tv C .@

2
t �/v

2 in � � .0; T /;

u D 0; .x; t/ 2 @� � .0; T /;

u.0/ D @tu.0/ D 0; x 2 �:

For given f 2 Zm�1.�; T /, we consider the map

J W v ! u; v 2 Zm.r; T /:

The parameters �; r are chosen in the following to ensure J is a contraction map on
Zm.r; T /. First, we choose r0 to satisfy Proposition 3.2. For any v 2 Zm.r; T / with
r < r0, we have

kukZm � Ckf C 2�.@tv/
2
C 4.@t�/v@tv C .@

2
t �/v

2
kZm�1

� C 0.kf kZm�1 C kvk2Zm/ � C
0.�C r2/; (18)

where the second inequality comes from Proposition 2.1. Then we choose

r < min
°
r0;

1

.2C 0/

±
and � D r=.2C 0/ to ensure that J maps Zm.r; T / into itself.

Next, we introduce a weaker metric

d.!1; !2/ D sup
s2Œ0;T �

k!1.s/ � !2.s/k
2
H1 C k@t .!1.s/ � !2.s//k

2
L2 :

By [11] and [44, Theorem 2.2.2], the set Zm equipped with d is a complete metric
space. We would like to prove that J is a contraction with respect to d . Let uj D Jvj
with vj 2 Zm.r; T / for j D 1; 2. We write w´ u2 � u1, which satisfies

.1 � 2�v1/@
2
tw ��w C @t .��/

sw

D 2�.@tv1 C @tv2/.@tv2 � @tv1/C 2�.v2 � v1/@
2
t u2

C 4.@t�/.v2 � v1/@tv1 C 4.@t�/v2@t .v2 � v1/C .@
2
t �/.v1 C v2/.v1 � v2/:

We denote the right-hand side by I and by Proposition 2.1 we have

sup
s2Œ0;T �

kI.s/kL2 � C.kv1kZm C kv2kZm C ku2kZm/d.v1; v2/:

Recall r is small enough such that vj 2 Zm.r; T / implies uj 2 Zm.r; T /. By Step 1
in the proof of Proposition 3.2, we have

d.u2; u1/ � C
00rd.v1; v2/:
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Hence, J is a contraction with respect to d when r is sufficiently small. In this case,
there exists a unique solution zu in Zm.r; T / to the nonlinear problem (1), as the fixed
point of J . Note for sufficiently small r , we have C 0kvk2Zm < kvkZm=2D kzukZm=2

in (18). This implies kzukZm � Ckf kZm�1 .

4. Inverse problem

4.1. Unique continuation property

The following proposition is an analogue of the unique continuation property of the
fractional Laplacian in Rn, which was first established in [18] based on the Carle-
man estimates in [42]. Here we will exploit the semigroup definition of the spectral
fractional Laplacian (5) and the unique continuation property of the classical para-
bolic operator in the proof. This idea was also used for proving [16, Theorem 1.1]
and [19, Proposition 3.2].

Proposition 4.1. Let u 2 zH s.�/. Suppose

.��/su D u D 0

in W . Then u D 0 in �.

Proof. Based on the semigroup definition (5), the assumption implies
1Z
0

U.x; t/

t1Cs
dt D 0; x 2 W;

where
U.x; t/´ e�t.��/u.x/ D

Z
�

pt .x; y/u.y/ dy

and pt .x; y/ is the heat kernel associated with the Dirichlet Laplacian. The integral
here (and all integrals below) should be interpreted in the distributional sense, i.e.,

1Z
0

hU.t/; �i

t1Cs
dt D 0; � 2 C1c .W /:

Based on the heat kernel estimate (see [12, Corollary 3.2.8]),

pt .x; y/ � Ct
�n=2e�jx�yj

2=.ct/; x; y 2 �; t > 0:

Now, we fix a nonempty W 0 �� W . Let c0 D dist.W 0; � nW /. Then we have

pt .x; y/ � Ct
�n=2e�.c

0/2=.ct/ (19)
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for x 2 W 0; y 2 � nW . For m 2 N, we will inductively show that

1Z
0

U.x; t/

tmCs
dt D 0; x 2 W 0: (20)

In fact, once we have shown the casem, we apply �� to (20). Since U solves the
heat equation, we have

1Z
0

@tU.x; t/

tmCs
dt D

1Z
0

�U.x; t/

tmCs
dt D 0; x 2 W 0: (21)

Note that for � 2 C1c .W
0/, by (19) we have

hU.t/; �i D

Z
W 0

Z
�

pt .x; y/u.y/�.x/ dy d x

D

Z
W 0

Z
�nW

pt .x; y/u.y/�.x/ dy d x � C 0t�n=2e�.c
0/2=.ct/; (22)

so hU.t/; �i=tmCs vanishes at both 0 and C1. Hence, we can integrate by parts to
derive

1Z
0

U.x; t/

tmC1Cs
dt D 0; x 2 W 0;

from (21). Hence, we have verified (20).
Now, we consider the substitution � D 1=t and define

V.x; �/´ 1.0;1/.�/
U.x; 1=�/

��s
:

Then (20) becomesZ
R

V.x; �/�m�1 d� D 0; x 2 W 0; m 2 N: (23)

Note that for each � 2 C1c .W
0/, the functionZ
R

hV.�/; �ie�i�� d�

is holomorphic for Im � < .c0/2=c based on (22), and (23) implies all its derivatives
at � D 0 are zeros.
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Hence, we conclude that the Fourier transform of hV.�/; �i is zero for � 2 R, so
U.x; 1=�/D U.x; t/D 0 inW 0 � .0;1/. By the unique continuation property of the
classical parabolic operator (see [50]), we conclude that U D 0 in � � .0;1/ and
thus u D 0 in �.

4.2. Runge approximation property

We prove a Runge approximation property based on the unique continuation prop-
erty of the spectral fractional Laplacian and the well-posedness of (6) (and its dual
problem). The following proposition can be viewed as a variant of the Runge approx-
imation properties for evolutionary fractional operators established in [35, 38, 43].

Proposition 4.2. The set

S ´ ¹uf j.0;T /�.�nW / W f 2 C
1
c .W � .0; T //º

is dense in L2.0; T IL2.� nW //. Here uf is the solution of (6) corresponding to the
source f .

Proof. By the Hahn–Banach theorem, it suffices to prove the following statement.
Let g 2 L2.0; T IL2.� nW //. If

TZ
0

Z
�nW

ug D 0

for all u 2 S , then g D 0.
We consider Qg 2 L2.0; T IL2.�// which is the zero extension of g, and the dual

problem
@2t v ��v � @t .��/

sv D Qg; � � .0; T /

v D 0; @� � .0; T /;

v.T / D @tv.T / D 0;�:

(24)

Proposition 3.1 ensures that this problem has a unique solution v satisfying

v 2 H 2.0; T IH�1.�// \W 1;1.0; T IL2.�// \ L1.0; T I zH 1.�//

and @tv 2 L2.0; T I zH s.�//. The assumption implies

0 D

TZ
0

h@2t v ��v � .��/
sv; ui d t (25)
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for u 2 S . Based on the initial and final conditions, we integrate by parts to obtain

�

TZ
0

h@t .��/
sv; ui d t D

TZ
0

h@t .��/
su; vi d t;

TZ
0

h@2t v; ui d t D

TZ
0

h@2t u; vi d t:

Hence, (25) implies

0 D

TZ
0

Z
�

f v d x d t D

TZ
0

Z
W

f v d x d t

for f 2 C1c .W � .0; T // since u is the solution of (6). Hence, v D 0 in W � .0; T /.
Note that

@2t v ��v � @t .��/
sv D 0

in W � .0; T / since v is the solution of (24), so @t .��/sv D 0 in W � .0; T /. By
Proposition 4.1, we have @tv D 0 in � � .0; T /. We further conclude that v D 0 in
� � .0; T / based on the final conditions and thus g D 0.

4.3. Proof of the main theorem

We are ready to prove Theorem 1.1. Our proof will heavily rely on the unique continu-
ation property (Proposition 4.1) of the spectral fractional Laplacian and the Runge
approximation property (Proposition 4.2) associated with (6), which are typical non-
local phenomenons. To relate the nonlinear problem (1) to the linear problem (6),
we will perform a second order linearization. We remark that this kind of multiple-
fold linearizations have been widely applied in solving inverse problems for nonlinear
equations (see for instance, [31, 32, 47]).

Proof. For f1; f2 2 C1c .W � .0; T //, we use u.j /"1;"2
to denote the solution of

@2t .u � �j .x; t/u
2/ ��uC @t .��/

su

D "1f1 C "2f2; .x; t/ 2 � � .0; T /;

u D 0; .x; t/ 2 @� � .0; T /;

u.0/ D @tu.0/ D 0; x 2 �

(26)

(j D 1; 2) for small "1; "2. Then

@

@"j

ˇ̌̌
"1D"2D0

u.1/"1;"2
D

@

@"j

ˇ̌̌
"1D"2D0

u.2/"1;"2
µ wj
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is the solution of

@2tw ��w C @t .��/
sw D fj ; .x; t/ 2 � � .0; T /;

w D 0; .x; t/ 2 @� � .0; T /;

w.0/ D @tw.0/ D 0; x 2 �:

(27)

Let

v.j / D
@2

@"1@"2

ˇ̌̌
"1D"2D0

u.j /"1;"2
:

Then, we have

@2t v
.j /
��v.j / � 2@2t .�j .x; t/w1w2/C @t .��/

sv.j / D 0; .x; t/ 2 � � .0; T /;

v.j / D 0; .x; t/ 2 @� � .0; T /;

v.j /.0/ D @tv
.j /.0/ D 0; x 2 �:

(28)
Assumption (3) implies

u.1/"1;"2
� u.2/"1;"2

D 0

in W � .0; T /. Then, the assumption �1 D �2 in W � .0; T / implies

@2t .u
.1/
"1;"2
� �1.x; t/.u

.1/
"1;"2

/2/ ��u.1/"1;"2
D @2t .u

.2/
"1;"2
� �2.x; t/.u

.2/
"1;"2

/2/ ��u.2/"1;"2

in W � .0; T /. By the equation in (26), we have

.��/s@t .u
.1/
"1;"2
� u.2/"1;"2

/ D 0

inW � .0;T /. By Proposition 4.1, we conclude that @tu
.1/
"1;"2
D @tu

.2/
"1;"2

in�� .0;T /.
Then the initial conditions imply u.1/"1;"2

D u
.2/
"1;"2

in � � .0; T / and thus v.1/ D v.2/

in � � .0; T /.
Now, by the equation in (28) we have

@2t ..�1.x; t/ � �2.x; t//w1w2/ D 0 (29)

in � � .0; T /. We choose � 2 C1.Rn/ such that supp � � x� and � > 0 in �. Let
Q�.x; t/´ .t � T /2�.x/. Then Q�.T / D @ Q�.T / D 0. Let (29) act on Q�. Based on the
initial and final conditions, we can integrate by parts to obtain

TZ
0

Z
�nW

w1.x; t/w2.x; t/.�1.x; t/ � �2.x; t//�.x/ d x d t D 0:

By Proposition 4.2, we can choose f1; f2 2 C1c .W � .0; T // such that

w1 ! 1; w2 ! �1.x; t/ � �2.x; t/
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in L2.0; T IL2.� nW //. Then, we take the limit to obtain

TZ
0

Z
�nW

.�1.x; t/ � �2.x; t//
2�.x/ d x d t D 0:

Hence, we conclude that �1.x; t/ D �2.x; t/ in .� n W / � .0; T / and thus in � �
.0; T /.
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