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On the number of bound states for fractional Schrödinger
operators with critical and super-critical exponent

Sébastien Breteaux, Jérémy Faupin, and Viviana Grasselli

Abstract. We study the number N<0.Hs/ of negative eigenvalues, counting multiplicities, of
the fractional Schrödinger operator Hs D .��/

s � V.x/ on L2.Rd /, for any d � 1 and s �
d=2. We prove a bound on N<0.Hs/ which depends on s � d=2 being either an integer or
not, the critical case s D d=2 requiring a further analysis. Our proof relies on a splitting of
the Birman–Schwinger operator associated to this spectral problem into low- and high-energies
parts, a projection of the low-energies part onto a suitable subspace, and, in the critical case
s D d=2, a Cwikel-type estimate in the weak trace ideal L2;1 to handle the high-energies part.

1. Introduction

Estimating the number of bound states of the two-body Schrödinger operator

H ´ �� � V.x/

on L2.Rd / constitutes a rich problem that has attracted a large amount of atten-
tion in the mathematical literature. Classical textbook references include [30, Chap-
ter XIII.3], [37, Chapter 7], [10, Chapter XI], and [25, Chapter 4], see also [19, 36]
for review articles and [16, Chapter 4] for a more recent exposition.

Roughly speaking, the question raised is as follows. Consider a real-valued mea-
surable function V WRd ! R such that H identifies with a self-adjoint operator on
L2.Rd /, with essential spectrum Œ0;1/ (see e.g., [29] or [16] for sufficient condi-
tions on V implying these properties, see also Hypothesis B.1 and Remark B.2 below
for the conditions considered in this paper, in the setting of the fractional Schrödinger
operator). The bound states of H are defined as the normalized eigenvectors corre-
sponding to negative eigenvalues. One then aims at estimating N<0.H/, the number
of negative eigenvalues of H counting multiplicities.
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Note that, decomposing V D VC � V� with V˙ � 0, we have H � �� � VC.x/
in the sense of quadratic forms, which implies that

N<0.H/ � N<0.�� � VC.x//:

Therefore, to obtain a bound on the number of negative eigenvalues of H , it suffices
to consider the case where V D VC � 0. Throughout the paper, to simplify the expo-
sition, we thus assume that

V � 0:

Among the various bounds obtained in the literature, we mention the following
ones. The celebrated Cwikel–Lieb–Rozenblum (CLR) bounds state that

N<0.H/ .d

Z
Rd

V d=2; d � 3; (1.1)

for any V in Ld=2. Throughout this paper, a .y1;:::;yn
b means that there exists a

constant Cy1;:::;yn
> 0 depending only on the parameters y1; : : : ; yn such that a �

Cy1;:::;yn
b, and this constant may change from one line to the other.

Estimates (1.1) enjoy the important property that they are consistent with Weyl’s
semi-classical asymptotics. Namely, for sufficiently regular and fast-decaying V ,

��d=2N<0.�� � �V /! Ld

Z
Rd

V d=2; �!1;

for some positive constant Ld (see e.g., [25, Section 4.1.1] or [16, Theorem 4.28]).
The CLR bounds were proven independently by Cwikel [9], Lieb [24], and Rozen-
blum [31]. They are the crucial endpoint case of a more general family of bounds on
the moments of the negative eigenvalues of H , the Lieb–Thirring inequalities [27],
that in turn have important consequences for the stability of matter [25, 26]. Estimat-
ing the best constant in the CLR bound (1.1) therefore remains a well-studied open
problem. We refer to [8, 15, 20] for important recent progress regarding this question
and to [14, 16, 20, 32] for detailed discussions concerning the history, applications,
recent developments and open problems related to the Lieb–Thirring inequalities.

Note that the CLR bound (1.1) implies in particular that if kV kLd=2 is small
enough, in dimension � 3, then H has no bound states. The situation is different
in dimension one or two. In these cases, it is well known that H has at least one
bound state for any V � 0 in C10 which is not identically zero (see e.g., [30, Theo-
rem XIII.11], see also the recent work [18] for similar results for Schrödinger opera-
tors with general kinetic energies). In one-dimension, the estimate

N<0.H/ � 1 �

Z
R

jxjV.x/ dx; d D 1; (1.2)
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was obtained in [5, 21], as a consequence of Bargmann’s bound [1]. See also [30,
Theorem XIII.9] for other related bounds for central potentials in 3-dimension.

The two-dimensional case is the most subtle one. In this case, it is known that no
estimate of the form

N<0.H/ . 1C

Z
R2

w.x/V .x/ dx;

can hold, provided that w is bounded in a neighborhood of at least one point [17].
Several papers have been devoted to estimating the number of bound states of
2-dimensional Schrödinger operators in the recent years [3,7,17,22,23,34,38]. In par-
ticular, conditions on V ensuring the semi-classical growth N<0.�� � �V / D O.�/

as �!1 are derived in [22,23]. Among the various bounds obtained in 2-dimension,
we mention the following ones:

N<0.H/ � 1 .
Z

R2

.1C lnhxi/V .x/ dx �
Z
jxj�1

.ln jxj/V �.jxj/ dx; d D 2; (1.3)

where, for x 2 Rd , hxi ´
p
1C jxj2, and

N<0.H/ � 1 .
Z

R2

.1C lnhxi/V .x/ dx C kV kL logL; d D 2: (1.4)

In (1.3), V � stands for the decreasing rearrangement of V defined, for all t 2 Œ0;1/,
by

V �.t/´ inf¹s 2 Œ0;1/ j �V .s/ � tº;

where �V .s/´ j¹x 2 R2 j jV.x/j > sºj. In (1.4), k�kL logL stands for the norm in the
Orlicz space L logL defined by

kf kL logL´ inf
²
� > 0

ˇ̌̌̌ Z
R2

ˆ.jf j=�/ � 1

³
;

withˆ.s/D s ln.2C s/ for all s 2 Œ0;1/. Estimates (1.3) and (1.4) are proven in [34];
previously, estimate (1.3) was proven in the case where V is radial, and conjec-
tured in the general case, in [7]; estimate (1.4) relies on previous important results
obtained in [38]. We refer to [34] for further (and stronger) inequalities obtained in
the two-dimensional case.

For 0 < s < d=2, one can similarly study the fractional Schrödinger operator

Hs ´ .��/s � V.x/ (1.5)
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on L2.Rd /. The proof of the CLR bounds (1.1) extends to this case, leading to

N<0.Hs/ .d;s
Z

Rd

V d=2s; d � 1; 0 < s <
d

2
:

We refer to the review [13] and references therein for bounds on the number of nega-
tive eigenvalues and Lieb–Thirring inequalities for Hs with s < d=2.

In this paper, we consider the fractional Schrödinger operator (1.5) in the case s �
d=2. This includes in particular the critical case s D d=2, as well as “polyharmonic
Schrödinger operators,” namely the fractional Schrödinger operators Hs with integer
exponent s 2 N. For polyharmonic Schrödinger operators with N 3 s � d=2, it was
proven in [11, 12] that

N<0.Hs/ � s . s;q

Z
R

jxj2sq�1V.x/q dx; d D 1; s 2 N; q � 1; (1.6)

in one-dimension, and

N<0.Hs/ �

�
d C n

d

�

.d;s;q

8̂̂̂̂
<̂̂
ˆ̂̂̂:

Z
Rd

jxj2sq�dV.x/q dx; d odd; s 2 N; q > 1;

Z
Rd

.1C j ln jxjj/2q�1jxj2sq�dV.x/q dx; d even; s 2 N; q > 1;

(1.7)
in any dimension, where n D bs � d=2c. Still, for s � d=2, s an integer, the Lieb–
Thirring inequalities for moments of the negative eigenvalues of Hs of order � >
1� d=2s have been obtained in [28]; moreover the asymptotics ofN<0..��/s � �V /
as �!1 has been studied in [3, 4], giving in particular sufficient conditions on V ,
for d odd, to ensure the usual semi-classical behavior at large coupling.

Here, we aim at proving a bound on N<0.Hs/ in any dimension d and for any
real s � d=2, comparable to the bounds of the form (1.2) or (1.6) (with q D 1) in
dimension one, or (1.3)–(1.4) in dimension two.

1.1. Statement of the main result

Before stating our main results, Theorems 1.1 and 1.5, we recall and introduce some
notations.

The symbol N denotes the set of integers larger than or equal to 1, and N0 ´

N [ ¹0º. We recall the notation hxi ´
p
1C jxj2 for x 2 Rd . For 1 � p � 1, Lp
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denotes the usual Lebesgue space of functions on Rd , while the corresponding norm
is denoted by kf kLp for f 2 Lp . We recall that for 1 � p <1, the Schatten ideals
Lp (or trace ideals) and the weak trace ideals Lp;1 are defined, respectively, as the
spaces of compact operators A such that the following quantities are finite:

kAkLp ´

�X
j�0

�j .A
�A/p=2

�1=p
; kAk�Lp;1 ´ sup

j�0

.j C 1/1=p
q
�j .A�A/;

where �j .A�A/ is the sequence of the eigenvalues of A�A sorted in decreasing order.
The star in the notation k�k�

Lp;1 is a reminder that it is a quasinorm but not neces-
sarily a norm. (See, e.g., [35] for more information on the weak trace ideals Lp;1.)
Similarly, the space of bounded operators on L2 is denoted by L1.

Our main results are the following.

Theorem 1.1 (“Super-critical case”, s > d=2). Let d � 1, s > d=2, n D bs � d=2c
and set v´ V 1=2. Then,

N<0.Hs/ �

�
d C n

d

�
.d;s

8̂̂<̂
:̂
kjxjs�d=2vk2

L2 if s �
d

2
… N0;

khxis�d=2
p
1C lnhxivk2

L2 if s �
d

2
2 N;

for all v such that the right-hand side is finite.

We have the following accompanying remarks. As usual, for ˛ 2Nd
0 and x 2 Rd ,

we use the notations x˛ D
Qd
jD1 x

j̨

j and j˛j D
Pd
jD1 j̨ .

Remark 1.2. The constant
�
dCn
d

�
can be replaced by the possibly smaller constant

cd;n.v/´ dim.span¹x˛v j ˛ 2 Nd
0 ; j˛j � nº/

(it is not difficult to see that the maximal dimension of the vector space span¹x˛v j ˛ 2
Nd
0 ; j˛j � nº is

�
dCn
d

�
, see the proof of Theorem 1.1 below). On the other hand, the

constant cd;n.v/ cannot be removed from the estimate of Theorem 1.1, in the sense
that there are potentials V in C10 .R

d / such that Hs has at least cd;n.v/ bound states.
More precisely, we will prove that for all V 2 C10 .R

d /, V � 0, the operatorHs has at
least cd;n.v/ negative eigenvalues counting multiplicities. See Proposition 4.1 below.

Remark 1.3. In the endpoint case s D d=2, the bound stated in Theorem 1.1 does
not hold. Indeed, if it were true, then it would imply that, for d D 2,

N<0.�� � V.x// � 1 . k
p
1C lnhxi vk2

L2 ;

which cannot hold, as discussed in the introduction and proven in [17].
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Remark 1.4. Since the operators Hs and .��/s � V.x C x0/ are unitarily equiva-
lent, for any x0 2 Rd , the weights jxjs�d=2 and hxis�d=2

p
1C lnhxi in the estimate

of Theorem 1.1 can be replaced by jx � x0js�d=2 and hx � x0is�d=2
p
1C lnhx � x0i,

respectively.

We also note that, for d D 1 and s D 1, Theorem 1.1 gives, for the usual Schrö-
dinger operator H D �� � V.x/,

N<0.H/ � 1 .
Z
R

jxjV.x/ dx; d D 1:

The Bargmann estimate (1.2), which follows from the explicit expression of Green’s
operator in one-dimension, is of course stronger, since it gives the same estimate but
with a constant equal to 1 in front of the integral in the right-hand side (instead of the
implicit constant we obtain). Likewise, for d D 1 and s 2 N, Theorem 1.1 gives

N<0.Hs/ � s . s

Z
R

jxj2s�1V.x/ dx; d D 1; s 2 N;

which is (1.6) in the particular case where qD 1. Our result therefore shows how (1.2),
and (1.6) with q D 1, can be generalized to any dimension for the fractional Schrö-
dinger operator Hs , with any real s > d=2.

For d odd and N 3 s � d=2, our result also corresponds to the endpoint case qD 1
in the family of estimates (1.7) proven by Egorov and Kondratiev [11]. Note that the
endpoint case q D 1 was left open in [11]. Note also that our proof is very different
from that in [11], see Section 1.2 for a description of the strategy followed in this
paper. In the case where d is even, and with s > d=2, our result corresponds again to
q D 1 in (1.7), except for the local behavior of V , in that our bound requires that V is
L1 near the origin, while (1.7) with qD 1would only require that .ln jxj/jxj2s�dV.x/
is L1 near 0.

Our result in the critical case s D d=2 is stated in terms of the harmonic oscillator

h´ cd .��C x
2/;

where the constant cd is chosen, for technical convenience, as cd ´ ee=d (so that
h � ee). We then have the following result.

Theorem 1.5 (“Critical case”, sD d=2). Let d � 1, sD d=2, "> 0 and set v´ V 1=2.
Then,

N<0.Hs/ � 1 .d;" k.ln h/1=2.ln ln h/1=2C"vk2
L2 ;

for all v such that the right-hand side is finite.
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Theorem 1.5 should be compared with the bounds (1.3)–(1.4) forH D���V.x/
in dimension 2. In particular, in the same way as (1.3)–(1.4), our estimate requires
both a logarithmic decay and a “logarithmic regularity” of v, encoded here in the
condition that v belongs to the domain of .ln h/1=2. The slightly stronger requirement
that v belongs to the (smaller) domain of .ln h/1=2.ln ln h/1=2C" may be an artifact of
our proof.

1.2. Elements of the proof and auxiliary results

Our proof of Theorems 1.1 and 1.5 starts with a usual application of the Birman–
Schwinger principle [2, 33]. In our context, it states that, for all E < 0,

N�E .Hs/ D N�1.KE /; (1.8)

where N�E .A/ (respectively N�E .A/) denote the number of eigenvalues less than or
equal to E (respectively larger than or equal to E) of a self-adjoint operator A, and
the Birman–Schwinger operator KE is defined by

KE ´ v.x/..��/s �E/�1v.x/; E < 0:

Recall that we have set
v´ V 1=2:

For the convenience of the reader, a proof of the Birman–Schwinger principle (1.8)
under our assumptions is recalled in Appendix B.

Next, recalling that n D bs � d=2c, we introduce the finite-dimensional vector
space

Fn´ span¹x˛v j ˛ 2 Nd
0 ; j˛j � nº � L

2: (1.9)

The Birman–Schwinger operator is then split into its “low- and high-frequencies”
parts. More precisely, we set

KE;<1´ v.x/..��/s �E/�11j�irj<1v.x/; K?E;<1´ …?Fn
KE;<1…

?
Fn
; (1.10)

KE;>1´ v.x/..��/s �E/�11j�irj>1v.x/; K?E;>1´ …?Fn
KE;>1…

?
Fn
; (1.11)

where …?
Fn

denotes the orthogonal projection onto F ?n .
The variational principle (which we recall in Appendix A) then yields

N�1.KE / � dim.Fn/CN�1.K?E /;

where K?E D K
?
E;<1 CK

?
E;>1. It is not difficult to verify that

dim.Fn/ �
�
d C n

d

�
;
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(see eq. (4.3) in the proof of Theorem 1.1). Now, the splitting into high- and low-
frequencies comes into play, as we can write

N�1.K
?
E / � 2kK

?
E;>1k

�

L1;1 C 2kK
?
E;<1k

�

L1;1 � 2kKE;>1k
�

L1;1 C 2kK
?
E;<1kL1 :

Note that we have estimated kK?E;>1k
�

L1;1 � kKE;>1k
�

L1;1 , namely we do not use
the orthogonal projection …?

Fn
for the high-frequencies part. On the other hand, to

bound the low-frequencies part, the orthogonal projection …?
Fn

plays a crucial role,
but it suffices to estimate the trace norm of K?E;<1 instead of the more complicated
quasinorm in L1;1.

Theorems 1.1 and 1.5 are then consequences of the following two theorems.

Theorem 1.6 (Low-frequencies estimate). Let d � 1, s � d=2 and E � 0. Then,

kK?E;<1kL1 .d;s

8̂̂<̂
:̂
khxis�

d
2

p
1C lnhxivk2

L2 if s �
d

2
2 N0;

khxis�
d
2 vk2

L2 if s �
d

2
… N0;

(1.12)

for all v such that the right-hand side is finite.

Theorem 1.7 (High-frequencies estimate). Let d � 1, s � d=2, " > 0 and E � 0.
Then,

kKE;>1k
�

L1;1

8̂̂<̂
:̂

.d;" k.ln h/1=2.ln ln h/1=2C"vk2
L2 if s D

d

2
;

.d;s kvk2L2 if s >
d

2
;

for all v such that the right-hand side is finite.

The main ideas of the proof of Theorem 1.6 are as follows. We first use that

kK?E;<1kL1 D

Z
j�j<1

k…?Fn
eix��v.x/k2

L2
x

d�
j�j2s �E

�

Z
j�j<1

k…?Fn
eix��v.x/k2

L2
x

d�
j�j2s

;

(see Lemma 2.1 for the equality and use that E � 0 for the inequality). For s � d=2,
the function � 7! j�j�2s1j�j<1 is not integrable. We decompose the region j�j < 1

into annuli e�k�1 � j�j < e�k for k 2 N0, which we combine with a splitting of v
in each annuli, of the form v D v<

k
C v>

k
, with v<

k
.x/ D 1jxj�ekv.x/ and v>

k
.x/ D

1jxj�ekv.x/. For the terms with v>
k

, we can use the decay of v at infinity to ‘gain’
powers of � since

kj�j�2s1e�k�1�j�j<e�k 1jxj�ekvkL2 . e2ksk1jxj�ekvkL2 � kjxj2svkL2 :
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A refined estimate shows that the decay conditions imposed in the right-hand side
of (1.12) are enough to have summability with respect to k. To estimate the terms
with v<

k
, we use that …?

Fn
x˛v D 0 for all j˛j � n. Expanding the exponential eix��

into a series then allows us again to gain powers of � and reach integrability.
In the case where s > d=2, the proof of Theorem 1.7 is straightforward (using that

the function � 7! j�j�2s1j�j>1 is integrable). In the critical case where s D d=2, The-
orem 1.7 is a corollary of the following Cwikel-type estimate (Theorem 1.8). Before
stating it we recall a few notations.

For 1 � p <1, the weak spaces Lp;1 are defined as the sets of all measurable
functions f W Rd ! C such that the quasinorm

kf k�Lp;1 ´ sup
t>0

�.¹jf j > tº/1=p t

is finite (here � stands for the Lebesgue measure). For 1 � p; q < 1, the spaces
`q.Lp/ are defined as follows. For any m 2Zd , let 1Qm be the characteristic function
of the unit hypercube Qm of Rd with center m and, for all function f WRd ! C, let
fm´ 1Qmf . The space `q.Lp/ is the set of measurable functions f WRd ! C such
that .kfmkLp /m 2 `

q , equipped with the norm

kf k`q.Lp/´

� X
m2Zd

kfmk
q
Lp

�1=q
: (1.13)

Likewise, `p;1.Zd / are the spaces of families of complex numbers uD .um/Zd such
that the quasinorm

kuk�`p;1 ´ sup
j�0

.j C 1/1=pu�j

is finite, where .u�j /j2N0
is the sequence of the jumj sorted in decreasing order. The

space `q;1.Lp/ is defined analogously to the space `q.Lp/ in (1.13). The Fourier
transform on Rd is denoted by

F .f /.�/ D Of .�/ D .2�/�d=2
Z

Rd

e�ix��f .x/ dx:

For f WRd ! R a measurable function, f .�ir/ denotes the operator defined by
f .�ir/' D F �1.f O'/.

Theorem 1.8 (Cwikel-type estimate in L2;1). Let d � 1, ı > 0 and " > 0. Then,

kf .x/g.�ir/k�
L2;1

.d;ı;" k.ln h/1=2.ln ln h/1=2C"f kL2 sup
2<p�2Cı

1=pC1=p0D1

inf
gp ;gp0

g2Dgpgp0

q
kgpkLp;1kgp0k`p0;1.L2/

for any f and g such that the right-hand side is finite.
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Remark 1.9. One can state a slightly stronger estimate, involving the norm of g
in a suitably defined vector space, as follows. Given E1 and E2 two quasinormed
subspaces of the measurable functions from Rd to R, endowed with quasinorms k�kE1

and k�kE2
, consider the vector space

p
E1 � E2´

°
'
ˇ̌̌
9J 2 N; 9.a; b/ 2 EJ1 � EJ2 ; '

2
�

JX
jD1

aj bj

±
endowed with the quasinorm

k'k�p
E1�E2

´ inf
²p JX

jD1

kaj kE1
kbj kE2

ˇ̌̌̌
J 2 N; .a; b/ 2 EJ1 � EJ2 ; '

2
�

JX
jD1

aj bj

³
:

Then, the following holds: for all d � 1, ı > 0, and " > 0,

kf .x/g.�ir/k�
L2;1

.d;ı;" k.ln h/1=2.ln ln h/1=2C"f kL2 sup
2<p�2Cı

1=pC1=p0D1

kgk�p
Lp;1�`p0;1.L2/

for any f and g such that the right-hand side is finite.

Theorem 1.8 is obtained by first decomposing f as

f D
X
k2N

�kf; �k ´ 1ƒk�h<ƒkC1
; ƒk ´ ee

k

;

and then using Hölder’s inequality in weak trace ideals in each spectral region:

.k.�kf /.x/g.�ir/k
�

L2;1/
2

� k.�kf /.x/gp.�ir/k
�
Lp;1k.�kf /.x/gp0.�ir/k

�

Lp0;1 ;

with 1=p C 1=p0 D 1. Applying the usual Cwikel estimate [9] and an estimate due
to Simon [37, Theorem 4.6], we are then able to obtain Theorem 1.8 by suitably
choosing p (depending on k).

1.3. Organization of the paper

Our paper is essentially self-contained. It is organized as follows. Sections 2 and 3 are
devoted to the proofs of Theorems 1.6 and 1.7 respectively. In Section 4, we combine
Theorems 1.6 and 1.7 to deduce our main results, Theorem 1.1 and Theorem 1.5. In
Appendices A and B we recall respectively the proof of the variational principle and
of the Birman–Schwinger principle, while in Appendix C we remind the proofs of
Cwikel’s estimate [9] and Simon’s theorem [35, Theorem 4.6].
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2. Low-frequencies estimate

In this section we prove Theorem 1.6. We will use the following notations. For t � 0,
let �t ´ e�t . We decompose v into

v<t .x/´ 1jxj�etv.x/ and v>t .x/´ 1jxj�etv.x/: (2.1)

Before we turn to the proof of Theorem 1.6, we prove the following easy lemma
which gives a convenient formula for the trace of …?

Fn
KE;<1…

?
Fn

(recall that KE;<1
has been defined in (1.10) and Fn has been defined in (1.9)). Note that taking B D Id
in the next lemma, we obtain the well-known formula for the Hilbert–Schmidt norm
of an operator of the form g.�ir/f .x/.

Lemma 2.1. Let f , g be two functions in L2 and B be a bounded operator on L2.
Then,

k Ng.�ir/ Nf .x/B�k2
L2 D .2�/

�d

Z
Rd

jg.�/j2kBeix��f .x/k2
L2

x
d�:

Proof. Let .'j /j2N0
be an orthonormal basis of L2. For all j 2 N0, we have

k Ng.�ir/ Nf .x/B�'j k
2
L2 D

Z
Rd

jg.�/j2jF . Nf .x/B�'j /.�/j
2 d�: (2.2)

Now, for all � 2 Rd , we can rewrite

F . Nf .x/B�'j /.�/ D .2�/
�d=2
heix��f .x/; B�'j iL2

x

D .2�/�d=2hBeix��f .x/; 'j iL2
x
:

Summing (2.2) over j , we obtain

k Ng.�ir/ Nf .x/B�k2
L2 D .2�/

�d
X
j2N0

Z
Rd

jg.�/j2jhBeix��f .x/; 'j iL2
x
j
2 d�;

which implies the statement of the lemma by Parseval’s equality.

Now, we are ready to prove Theorem 1.6.

Proof of Theorem 1.6. Applying Lemma 2.1 and using E � 0, we estimate the trace
of K?E;<1 as

k…?Fn
v.x/..��/s �E/�11j�irj<1v.x/…

?
Fn
kL1

D

Z
j�j<1

k…?Fn
eix��v.x/k2

L2
x

d�
j�j2s �E

�

Z
j�j<1

k…?Fn
eix��v.x/k2

L2
x

d�
j�j2s

:
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Using the decompositions

ei� D

nX
jD0

.i�/j

j Š
C

X
j�nC1

.i�/j

j Š

and v D v>
k
C v<

k
(see (2.1)), we obtainZ

j�j<1

k…?Fn
eix��v.x/k2

L2
x

d�
j�j2s

.d;s
X
k2N0

Z
�kC1�j�j<�k

.A1.k; �/C A2.k; �/C B.k; �//
d�
j�j2s

;

where we have set

A1.k; �/´ k…
?
Fn
eix��v>k .x/k

2

L2
x
; A2.k; �/´

nX
jD0




…?Fn

.ix � �/j

j Š
v<k .x/




2
L2

x

;

and

B.k; �/´



…?Fn

X
j�nC1

.ix � �/j

j Š
v<k .x/




2
L2

x

:

The estimate of A1.k; �/ is straightforward:

A1.k; �/ � ke
ix��v>k .x/k

2

L2
x
� kv>k k

2
L2 �

X
j˛j�n

j�j2j˛jkx˛v>k k
2
L2 :

The purpose of the last inequality is only to bound A1.k; �/ and A2.k; �/ by the same
term. To estimate A2.k; �/, using j�j � 1 and …?

Fn
x˛v D 0 for j˛j � n, we write

A2.k; �/ D

nX
jD0




…?Fn

.ix � �/j

j Š
.v � v>k /.x/




2
L2

x

.d;s
X
j˛j�n

j�j2j˛jk…?Fn
x˛v>k k

2
L2 .d;s

X
j˛j�n

j�j2j˛jkx˛v>k k
2
L2 :

Integrating over � and summing over k yieldsX
k2N0

Z
�kC1�j�j<�k

.A1.k; �/C A2.k; �//
d�
j�j2s

.d;s
X
k2N0

j˛j�n

� Z
�kC1�j�j<�k

d�
j�j2s�2j˛j

kx˛v>k k
2
L2

�

.d;s
X
k2N0

j˛j�n

�
d�2sC2j˛j

k
kx˛v>k k

2
L2 :
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To bound this sum by an integral we isolate the term for k D 0, shift the indexes for
k � 1 and use that �kC1 D e�1�k to obtainX

k2N0

Z
�kC1�j�j<�k

.A1.k; �/C A2.k; �//
d�
j�j2s

.d;s khxinvk2L2 C

X
k2N0

j˛j�n

�
d�2sC2j˛j

k
kx˛v>kC1k

2
L2 :

Now, since k 7! �
d�2sC2j˛j

k
is non-decreasing (given that s � d=2 � n � j˛j) and

k 7! kx˛v>
k
k2
L2 is decreasing, we can estimate

X
k2N0

�
d�2sC2j˛j

k
kx˛v>kC1k

2
L2 D

X
k2N0

kC1Z
k

�
d�2sC2j˛j

k
kx˛v>kC1k

2
L2 dt

�

X
k2N0

kC1Z
k

�
d�2sC2j˛j
t kx˛v>t k

2
L2 dt

D

1Z
0

�
d�2sC2j˛j
t

Z
jxj�et

jx˛v.x/j2 dx dt:

By Fubini’s theorem, this givesX
k2N0

Z
�kC1�j�j<�k

.A1.k; �/C A2.k; �//
d�
j�j2s

.d;s khxinvk2L2 C

X
j˛j�n

Z
jxj�1

jx˛v.x/j2

ln jxjZ
0

�
d�2sC2j˛j
t dt dx

.d;s

8̂<̂
:
khxis�d=2

p
1C lnhxivk2

L2 if s �
d

2
2 N0;

khxis�d=2vk2
L2 if s �

d

2
… N0;

(2.3)

where we used that �t D e�t in the last inequality.
It remains to estimate B.k; �/. We write, using the Taylor–Lagrange formula,

B.k; �/ �



 X
j�nC1

.ix � �/j

j Š
v<k .x/




2
L2

x

.d;s j�j2nC2kjxjnC1v<k k
2
L2 :
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Integrating over � and summing over k yieldsX
k2N0

Z
�kC1�j�j<�k

B.k; �/
d�
j�j2s

.d;s
X
k2N0

Z
�kC1�j�j<�k

j�j2nC2�2s d� kjxjnC1v<k k
2
L2

.d;s
X
k2N0

�d�2sC2nC2
k

kjxjnC1v<k k
2
L2 :

Since
k 7! �d�2sC2nC2

k

is decreasing (as d � 2s C 2nC 2 > 0) and

k 7! kjxjnC1v<k k
2
L2

is increasing, we can estimate

X
k2N0

Z
�kC1�j�j<�k

B.k; �/
d�
j�j2s

.d;s
X
k2N0

kC1Z
k

�d�2sC2nC2
kC1

kjxjnC1v<k k
2
L2 dt

.d;s
X
k2N0

kC1Z
k

�d�2sC2nC2t kjxjnC1v<t k
2
L2 dt

.d;s

1Z
0

�d�2sC2nC2t

Z
jxj<et

jxj2nC2jv.x/j2 dx dt:

An application of Fubini’s theorem yields, as �t D e�t ,

X
k2N0

Z
�kC1�j�j<�k

B.k; �/
d�
j�j2s

.d;s
Z

Rd

1Z
ln jxj

e�t.d�2sC2nC2/ dt jxj2nC2jv.x/j2 dx

.d;s
Z

Rd

jxj�.d�2sC2nC2/ jxj2nC2jv.x/j2 dx

.d;s
Z

Rd

jxj2s�d jv.x/j2 dx;

and therefore X
k2N0

Z
�kC1�j�j<�k

B.k; �/
d�
j�j2s

.d;s khxis�d=2vk2L2 : (2.4)

Putting together (2.3) and (2.4), we obtain the statement of Theorem 1.6.
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3. High-frequencies estimate

This section is devoted to the proof of the Cwikel-type estimate in L2;1 given in
Theorem 1.8, as well as its consequence stated in Theorem 1.7. Before giving the
proof of Theorem 1.8, we show that it indeed implies Theorem 1.7.

Proof of Theorem 1.7 using Theorem 1.8. Recall that KE;>1 has been defined in
(1.11). As x 7! 1=x is operator monotone, we have

kKE;>1k
�

L1;1 � kv.x/.��/
�s1j�irj>1v.x/k

�

L1;1 ;

for all E � 0, the operator .��/�s1j�irj>1 being bounded.
For s > d=2, the map � 7! j�j�s1j�j�1 belongs to L2. Hence, the statement of

Theorem 1.7 is straightforward since the trace norm dominates the k�k�
L1;1-norm and

kv.x/.��/�s1j�irj>1v.x/kL1 D k.��/�
s
2 1j�irj>1v.x/k

2
L2

D kj�j�s1j�j�1k
2
L2kvk

2
L2 D Cskvk

2
L2 :

For s D d=2, writing

v.x/.��/�d=21j�irj>1v.x/ D AA
�; A D v.x/.��/�d=41j�irj>1;

together with the relation kA�Ak�
L1;1 D .kAk

�

L2;1/
2, yields

kv.x/.��/�d=21j�irj>1v.x/k
�

L1;1 D .kv.x/.��/
�d=41j�irj>1k

�

L2;1/
2:

Now, we apply Theorem 1.8 with

f .x/ D v.x/; g.�/ D
1

j�jd=2
1j�j�1:

Setting
gp.�/´ j�j

�d=p1j�j�1;

we have g2D gpgp0 for any p � 2 and 1D 1=pC 1=p0. We claim that the quasinorms

kgpk
�
Lp;1 ; kgp0k

�

`p0;1.L2/

are uniformly bounded with respect to p � 2. Indeed, an easy computation shows that

kgpk
�
Lp;1 D sup

t>0

t .�.¹1 � j�j � t�p=d º//1=p .d 1: (3.1)
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Similarly, for gp0 ,

kgp0k
�

`p0;1.L2/
D kk1Qmgp0kL2k

�

`p0;1 . khmi�d=p0k�
`p0;1

D sup
j�0

.j C 1/1=p
0

.hmi�d=p
0

/�j

.d sup
j�1

.j C 1/1=p
0

j�1=p
0 .d 2: (3.2)

Hence, we can apply Theorem 1.8 with

sup
2<p�2Cı

1=pC1=p0D1

inf
gp ;gp0

g2Dgpgp0

q
kgpkLp;1kgp0k`p0;1.L2/ .d 1;

for any ı > 0. This concludes the proof of Theorem 1.7.

Now, we turn to the proof of Theorem 1.8. It is based on the following results.

Theorem 3.1 (Cwikel [9]). Let d � 1. Then,

kf .x/g.�ir/k�Lp;1 .d .p � 2/
�1=p
kf kLpkgk�Lp;1

for all p 2 .2;1/, f 2 Lp.Rd / and g 2 Lp;1.Rd /.

Lemma 3.2 (Sobolev embedding). Let d � 1, ı > 0. Then,

kf kLp .d;ı kf kH t

for all p 2 Œ2; 2C ı�, t � d.1=2 � 1=p/ and f 2 H t .

Theorem 3.3 (Simon [37]). Let d � 1, 0 < ı0 < 1. Then,

kf .x/g.�ir/k�
Lp0;1 .d;ı0 .2 � p

0/1=p
0�1
kf k`p0 .L2/kgk

�

`p0;1.L2/

for all p0 2 Œ2 � ı0; 2/, f 2 `p
0

.L2.Rd // and g 2 `p
0;1.L2.Rd //.

Lemma 3.4 (Embedding of L2.hxi2r dx/ into `p
0

.L2/). Let d � 1. Then,

kf k`p0 .L2/ .d

�
1C

1

rq � d

�1=q
khxirf kL2 :

for all 1 � p0 < 2 and r > 0 such that rq > d with 1=q D 1=p0 � 1=2, and f 2
L2.hxi2r dx/.

Lemma 3.2 is the usual Sobolev embedding. In Appendix C, for the convenience
of the reader, we reproduce the proofs of [9] and [37, Theorem 4.6], carefully fol-
lowing the dependence on p in both cases in order to attain the statements of Theo-
rems 3.1 and 3.3. We also prove Lemma 3.4 in Appendix C.
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We recall from the introduction the definition of the harmonic oscillator

h´ cd .��C x
2/;

where the constant cd is chosen such that h � ee .

Proof of Theorem 1.8. If the result holds for 0 < ı < 1, then the result also holds for
ı � 1 since the sup increases when ı increases. Hence, we assume that 0 < ı < 1

without loss of generality. Let ƒk ´ ee
k

. We will use the following decomposition:

f D
X
k2N

�kf;

where �k stands for the spectral projection

�k ´ 1ƒk�h<ƒkC1
:

Using that k�k�
L2;1 is equivalent to a certain norm k�kL2;1 (see e.g., [6, Chapter 5.4]),

we can write

kf .x/g.�ir/k�
L2;1 . kf .x/g.�ir/kL2;1

.
X
k2N

k.�kf /.x/g.�ir/kL2;1

.
X
k2N

k.�kf /.x/g.�ir/k
�

L2;1 : (3.3)

Let p 2 .2; 2C ı�, 1=pC 1=p0 D 1, and let gp 2 Lp;1, gp0 2 `p
0;1.L2/ be such

that g2 D gpgp0 . Thanks to the relation .kAk�
L2;1/

2 D kA�Ak�
L1;1 for any operator

A in L2;1, we have, for all k 2 N,

.k.�kf /.x/g.�ir/k
�

L2;1/
2

D kg.�ir/.�kf .x//
2g.�ir/k�

L1;1

D k�kf .x/g
2.�ir/�kf .x/k

�

L1;1

D k�kf .x/gp.�ir/.�kf .x/gp0.�ir//
�
k
�

L1;1

. k�kf .x/gp.�ir/k�Lp;1k�kf .x/gp0.�ir/k
�

Lp0;1 ; (3.4)

for any p 2 .2; 2C ı�, thanks to Hölder’s inequality in weak trace ideals ([35, Theo-
rem 2.1]).

Since p > 2, the usual Cwikel estimate, Theorem 3.1, yields

k�kf .x/ gp.�ir/k
�
Lp;1 .d .p � 2/

�1=p
k�kf kLpkgpk

�
Lp;1 : (3.5)

On the other hand, since p0 < 2, Simon’s result, Theorem 3.3, implies

k�kf .x/gp0.�ir/k
�

Lp0;1 .d;ı .2 � p0/1=p
0�1
k�kf k`p0 .L2/kgp0k

�

`p0;1.L2/
: (3.6)
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It follows from (3.4)–(3.6) that, for all p > 2,

.k.�kf /.x/ g.�ir/k
�

L2;1/
2

.d;ı .p � 2/�1=p.2 � p0/1=p
0�1
k�kf kLpk�kf k`p0 .L2/

� inf
gp ;gp0

g2Dgpgp0

.kgpk
�
Lp;1kgp0k

�

`p0;1.L2/
/: (3.7)

We now give bounds on the �kf terms. Choosing p 2 .2; 2C ı� in such a way
that tp ´ d.1=2 � 1=p/ � 2, the usual Sobolev embedding, Lemma 3.2, together
with the quadratic form inequality h�iritp � hhitp=2 give

k�kf kLp .d;ı kh�iri
tp�kf kL2 .d;ı ƒ

tp=2

kC1
k�kf kL2 :

At this point, we take
1

p
D
1

2
�

ı

d lnƒkC1

so that p 2 .2; 2C ı� and tp D ı= lnƒkC1, which in turn gives ƒtp=2
kC1
D eı=2.

To treat the contribution of k�kf k`p0 .L2/, we use the embedding

L2.hxi2r dx/ ,! `p
0

.L2/

for any r > d.1=p0 � 1=2/, see Lemma 3.4. With our choice of p, we have

1

p0
D
1

2
C

ı

d lnƒkC1
:

Hence, we can choose r D 2ı= lnƒkC1 � 2 yielding hxir � hhir=2 and

k�kf k`p0 .L2/ .d

�
1C

1

rq � d

�1=q
khxir�kf kL2 .d ƒ

r=2

kC1
k�kf kL2 ;

as .1C 1=.rq � d//1=q � .1C 1=d/ı=de . Just as previously, we observe thatƒr=2
kC1
D

eı . Hence, our previous estimates imply

k�kf kLpk�kf k`p0 .L2/ .d;ı k�kf k2L2 : (3.8)

Next, using the relations

p � 2 D
4ı

d lnƒkC1 � 2ı
; 2 � p0 D

4ı

d lnƒkC1 C 2ı
;

yields the bound
Œ.p � 2/.2 � p0/��1=p .d;ı lnƒkC1: (3.9)
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Putting together (3.7), (3.8), and (3.9) gives

k.�kf /.x/ g.�ir/k
�

L2;1

.d;ı .lnƒkC1/1=2k�kf kL2

�
sup

2<p�2Cı

1=pC1=p0D1

inf
gp ;gp0

g2Dgpgp0

kgpk
�
Lp;1kgp0k

�

`p0;1.L2/

�1=2
:

Since lnƒkC1 D e lnƒk , the k-dependent part of the right-hand side can then be
summed over k as follows:X
k2N

.lnƒkC1/1=2k�kf kL2 .
X
k2N

k�k..ln h/1=2f /kL2

.d;"

X
k2N

k�1=2�"k�k..ln h/1=2.ln ln h/1=2C"f /kL2

.d;" k.ln h/1=2.ln ln h/1=2C"f kL2 ;

where we used that 0 < " and the Cauchy–Schwarz inequality in the last inequality.
This along with (3.3) implies the statement of Theorem 1.8.

4. Proof of Theorems 1.1 and 1.5

In this section, we prove Theorem 1.1 using the Birman–Schwinger principle, the
variational principle, Theorem 1.6 and Theorem 1.7.

Proof of Theorems 1.1 and 1.5. LetE <0. To estimateN�E .Hs/we use the Birman–
Schwinger principle (see Proposition B.3) which shows that

N�E .Hs/ D N�1.KE /; (4.1)

where we recall that the Birman–Schwinger operator KE is given by

KE D v.x/..��/
s
�E/�1v.x/;

with v.x/ D
p
V.x/. We recall also that n D bs � d=2c and

Fn´ span¹x˛v j ˛ 2 Nd
0 ; j˛j � nº; (4.2)

where j˛j D
Pd
jD1 j̨ and x˛ D

Qd
jD1 x

j̨

j . Note that, with S1´¹˛ 2Nd
0 j j˛j � nº,

dim.Fn/ � jS1j D
�
d C n

d

�
: (4.3)
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Indeed, set S2´ ¹X � ¹0; 1; 2; : : : ; 1; d C n � 1º j jX j D dº. Then,

S1 3 ˛ 7! ¹k � 1C ˛1 C � � � C ˛k j 1 � k � dº 2 S2

and

S2 3 ¹ˇ1 < � � � < ˇd º 7! .ˇ1; ˇ2 � ˇ1 � 1; : : : ; ˇd � ˇd�1 � 1/ 2 S1

are inverse functions of each other and hence bijections. It follows that jS1j D jS2j D�
dCn
d

�
.

By the variational principle recalled in Proposition A.1, if…?
Fn

denotes the orthog-
onal projection onto F ?n , we have

N�1.KE / �

�
d C n

d

�
CN�1.K

?
E /; (4.4)

with K?E D …
?
Fn
KE;…

?
Fn

.
Let

jmax ´ max¹j � 0 j �j .K?E / � 1º:

Using that �j .K?E / is a decreasing sequence and actually coincides with the singular
values of K?E (as K?E � 0), we have

N�1.K
?
E / D .jmax C 1/ � .jmax C 1/�jmax.K

?
E / � kK

?
Ek
�

L1;1 : (4.5)

We now use the decomposition in low- and high-frequencies parts of K?E as defined
in (1.10)–(1.11), obtaining

kK?Ek
�

L1;1 � 2kK
?
E;<k

�

L1;1 C 2kK
?
E;>k

�

L1;1 � 2kK
?
E;<kL1 C 2kKE;>k

�

L1;1 :

(4.6)
It follows from (4.1)–(4.6), Theorem 1.6, and Theorem 1.7 that

N<0.Hs/ �

�
d C n

d

�
.d;s

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

khxis�d=2 vk2
L2 if s �

d

2
… N0;

khxis�d=2
p
1C lnhxivk2

L2 if s �
d

2
2 N;

k.ln h/1=2.ln ln h/1=2C"vk2
L2 if s D

d

2
:

This proves Theorem 1.1 in the case where s � d=2 2 N, as well as Theorem 1.5. In
the case where s � d=2…N0, it remains to show that we can replace hxi by jxj. To this
end, we argue as follows.1 By scaling, the operators Hs and R2s.��/s � V.R�1x/

1We are grateful to R. Frank for pointing out this argument to us.
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are unitarily equivalent, for any R > 0. Hence,

N<0.Hs/ D N<0..��/
s
�R�2sV.R�1x//:

Applying the previous estimate (for s � d=2 … N0), we obtain that

N<0.Hs/ �

�
d C n

d

�
.d;s R�2s

Z
Rd

hxi2s�dV.R�1x/ dx

D

Z
Rd

.R�2 C x2/s�d=2V.x/ dx:

Letting R!1, using the monotone convergence theorem, we deduce that

N<0.Hs/ �

�
d C n

d

�
.d;s

Z
Rd

jxj2s�dV.x/ dx;

which proves Theorem 1.1 in the case where s � d=2 … N0.

We conclude this section with a proposition showing that Hs D .��/s � V has
at least dim.Fn/ negative eigenvalues for smooth compactly supported V (with Fn

defined in (4.2)). Taking V such that dim.Fn/ is maximal, i.e., dim.Fn/D j¹˛ 2Nd
0 j

j˛j � nºj, shows that the constant
�
dCn
d

�
cannot be removed from the statement of

Theorem 1.1. The proof of Proposition 4.1 is a fairly direct generalization of that
given in [30, Theorem XIII.11].

Proposition 4.1. Let d � 1, s � d=2 and n D bs � d=2c. Let V 2 C10 .R
d / be such

that V � 0. Then, the operatorHs D .��/s � V has at least dim.Fn/ negative eigen-
values.

Proof. By the Birman–Schwinger principle (see Proposition B.3), it suffices to show
that N�1.KE / � dim.Fn/ for E < 0, jEj small enough, where KE is the Birman–
Schwinger operator defined as above, namely KE D v.x/..��/s �E/�1v.x/.

Let ' 2 Fn, ' ¤ 0. Then ' 2 C10 .R
d / and we claim that there exist " > 0 and

c > 0 (which depends on V , ', n) such that, for all � 2 Rd with j�j � ",

jcv'.�/j � cj�jn: (4.7)

Indeed, if this property did not hold, then we would have that for all ˛ 2Nd
0 such that

j˛j � n,

0 D @˛�cv'.0/ D .�i/˛1x˛v'.0/ D .�i/˛ Z
Rd

x˛v.x/'.x/ dx;

which contradicts the facts that ' 2 Fn and ' ¤ 0.
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Now, using (4.7), we write, for all ' 2 Fn, ' ¤ 0,

h';KE 'i D

Z
Rd

.j�j2s �E/�1jcv'.�/j2 d� � c
Z
j�j�"

j�j2n.j�j2s �E/�1 d�:

Since 2s � 2n � d , the previous integral tends to infinity as E! 0. Hence, it follows
from the min-max principle (see Theorem A.2) that, for jEj small enough, KE has at
least dim.Fn/ eigenvalues larger than 1. This concludes the proof.

A. Variational principle

In this appendix, we recall how to estimate the number of eigenvalues larger than 1
of an operator, by the number of eigenvalues larger than 1 of the restriction of this
operator to the orthogonal of a linear subspace, up to the dimension of the subspace
itself. We refer to, e.g., [16, Section 1.2.3] for general versions of the variational
principle.

If F is a closed linear subspace of a Hilbert space H ,…F denotes the orthogonal
projection onto F .

Proposition A.1. Let K a compact self-adjoint non-negative operator on a Hilbert
space H . Then, for any linear subspace F of H of finite dimension,

N�1.K/ � dim.F /CN�1.…F?K…F?/: (A.1)

To prove this result, we use the following simple version of the min-max principle,
with eigenvalues in decreasing order. (See, e.g., [30] for a more general version.)

Theorem A.2. Let K a compact self-adjoint non-negative operator on a Hilbert
space H . Then, the sequence defined by

�j .K/ D min
dim.�/Dj

max
u2�?

kukD1

hu;Kui; j � 0

coincides with the non-increasing sequence either of the positive eigenvalues of K if
K is of infinite rank, or, otherwise, of all its eigenvalues. Here, the minimum is taken
over all linear subspaces � of H of dimension dim.�/ D j .

Proof of Proposition A.1. Let us setD D dim.F /. By the min-max principle in The-
orem A.2,

�DCk.K/ D min
dim.�/DDCk

max
u2�?

kukD1

hu;Kui:
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For any subspace V of F ? of dimension k, we have dim.F ˚ V/ D D C k. As
u D …F?u for u 2 F ?,

�DCk.K/ � max
u2.F˚V/?

kukD1

hu;Kui D max
u2F?\V?

kukD1

h…F?u;K…F?ui

D max
u2V?

kukD1

hu;…F?K…F?ui;

for any subspace V of F ? of dimension k. This implies

�DCk.K/ � min
dim.V/Dk

V�F?

max
u2V?

kukD1

hu;…F?K…F?ui D �k.…F?K…F?/:

As the eigenvalues given by the min-max principle are sorted in non-increasing order,
we deduce that

N�1.K/ �D � j¹k � 0 j �DCk.K/ � 1ºj

� j¹k � 0 j �k.…F?K…F?/ � 1ºj D N�1.…F?K…F?/;

which yields (A.1).

B. Birman–Schwinger principle

In this section, for the convenience of the reader, we recall a proof of the Birman–
Schwinger principle for Hs D .��/s � v2 and KE ´ v..��/s �E/�1v, under the
following assumption.

Hypothesis B.1. Let d � 1, s � d=2, and v measurable and real-valued, such that

• either v 2 L2, if s > d=2,

• or v 2 D..ln h/1=2.ln ln h/1=2C"/ � L2 for some " > 0 if s D d=2.

Here, we denote by D.A/ the domain of an operator A. We refer to, e.g., [16,
Section 1.2.8] for a proof of the Birman–Schwinger principle in a general abstract
setting.

Remark B.2. Hypothesis B.1 and E < 0 ensure that the chain

L2
v�
��! L1 ,! .L1/� ,! H�s

..��/s�E/�1

���������! H s ,! L1
v�
��! L2;

holds for s > d=2. For s D d=2, we observe that, for all p > 2 and 1=p C 1=p0 D 1,
we have the decomposition

.j�jd �E/�1 D .j�jd �E/�1=p.j�jd �E/�1=p
0

;
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where

k.j�jd �E/�1=pk�Lp;1 .d 1 and k.j�jd �E/�1=p
0

k
�

`p0;1.L2/
.d 1;

uniformly in p 2 .2; 2 C ı� for any ı > 0 (this follows from a similar calculation
as in (3.1)–(3.2)). Theorem 1.8 then shows that ..��/d=2 � E/�1=2v.x/ belongs to
L2;1 and hence is bounded. Its adjoint is then also bounded. This shows that the
operator of multiplication by v is bounded from Hd=2 to L2 and from L2 to H�d=2.
Therefore, the chain

L2
v�
��! H�d=2

..��/d=2�E/�1

�����������! Hd=2 v�
��! L2;

holds. In particular, KE is a bounded operator on L2.
Moreover, KE is also compact. For s > d=2, it is Hilbert–Schmidt, since its inte-

gral kernel is given by the L2 function

�v.x/v.y/

Z
e�i.x�y/�

1

j�j2s �E
d�:

For s D d=2, this follows again from Theorem 1.8.
Note that this also implies that Hs is self-adjoint by the KLMN theorem [29,

Theorem X.17] and that the essential spectrum of Hs is equal to Œ0;1/ thanks
to Weyl’s essential spectrum theorem [30, Theorem XIII.14] (see also [30, Section
XIII.4, Example 7]).

Recall thatN�r.A/ (respectivelyN�r.A/) denotes the number of eigenvalues less
or equal (respectively larger or equal) than r of a self-adjoint operatorA, counted with
multiplicity.

Proposition B.3 (Birman–Schwinger principle). Assume E < 0 and Hypothesis B.1
holds. Then,

N�E .Hs/ D N�1.KE /: (B.1)

The non-increasing sequence of eigenvalues .�j .K//j�0 is rigorously defined in
the statement of Theorem A.2. We prove Proposition B.3 following the arguments of
[25, Chapter 4.3], using properties of the maps E 7! �j .KE / that we collect in the
following lemma.

Lemma B.4. Assume Hypothesis B.1 holds. For any j � 0, the map E 7! �j .KE / is
non-decreasing, continuous on .�1; 0/ and tends to 0 as E ! �1.

Proof. As x 7! 1=x is operator monotone, the expression of �j .KE / given in the
min-max principle (Theorem A.2) yields that E 7! �j .KE / is non-decreasing.
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To prove continuity, we use first the resolvent identity. Let E 0 < E < 0. Then,

KE �KE 0 D .E �E
0/v..��/s �E/�1..��/s �E 0/�1 v �

E �E 0

�E 0
KE ;

and hence, for all u 2 L2,

hKE u; ui � hKE 0 u; ui C
E �E 0

�E 0
kKEkL1kuk

2
L2 :

The min-max principle (Theorem A.2) and the previous inequality then yield

�j .KE / � max
u2�?

kuk
L2D1

hKE u; ui � max
u2�?

kuk
L2D1

hKE 0 u; ui C
E �E 0

�E 0
kKEkL1 ;

for all subspace � of L2 of dimension j . Hence, taking the minimum over all such
spaces and using again the min-max principle, we obtain

�j .KE / � �j .KE 0/C
E �E 0

�E 0
kKEkL1 :

Together with �j .KE 0/ � �j .KE /, this gives the continuity with respect to E of
�j .KE /.

To prove that �j .KE /! 0 as E ! �1, since �j .KE / � kKEkL1 , it suffices
to show that kKEkL1 D k..��/s �E/�1=2v.x/k2L1 ! 0.

Suppose that s D d=2. Recall that v 2D..ln h/1=2.ln ln h/1=2C"/ by assumption.
Let "0 > 0 and let R"0 > 0 be such that

k1h�R"0
.ln h/1=2.ln ln h/1=2C"vkL2 � "0: (B.2)

Setting v"0 ´ 1h<R"0
v, we have v"0 2 L1 (as v"0 is a finite linear combination of

bound states of h) and therefore we can write

k..��/s �E/�1=2v.x/kL1

� k..��/s �E/�1=2v"0.x/kL1 C k..��/
s
�E/�1=2.v.x/ � v"0.x//kL1

� .�E/�1=2kv"0kL1 C Ck.ln h/1=2.ln ln h/1=2C".v � v"0/kL2 ; (B.3)

for some C > 0, uniformly in E � �1. In the second inequality, we used that
kAkL1. kAkL2;1 , for any operator A 2 L2;1, together with Theorem 1.8 (applied
with g.�/ D .j�j2s �E/�1=2, so that g2 can be decomposed as g2.�/ D gp.�/gp0.�/
with p > 2, 1=p C 1=p0 D 1 and gp.�/ D .j�j2s � E/�1=p; a similar calculation as
in (3.1)–(3.2) then shows that kgpkLp;1 , kgp0k`p0;1.L2/ are uniformly bounded in
p 2 .2; 2 C ı� and E � �1 for any ı > 0). Combining (B.2) and (B.3) shows that
k..��/s �E/�1=2v.x/kL1 ! 0 as E ! �1.
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In the case where s > d=2, it suffices to write

kKEkL1 D sup
kuk

L2D1

hu;KEui D sup
kuk

L2D1

Z
Rd

.j�j2s �E/�1jcvu.�/j2 d�

�k.j�j2s �E/�1kL1 sup
kuk

L2D1

kjcvuj2kL1 :
Now, we have

kjcvuj2kL1 D kcvuk2L1 .d kuk
2
L2kvk

2
L2 ;

and the dominated convergence theorem shows that k.j�j2s �E/�1kL1 ! 0 as E !
�1. This concludes the proof.

Now, we are ready to prove Proposition B.3.

Proof of Proposition B.3. Any eigenfunction  of Hs associated to an eigenvalue
E 0 < 0 is in particular in the domain of Hs (hence in H s , the form domain of Hs),
and satisfies

..��/s �E 0/ D v2  :

We set � D v 2 H�s (see Remark B.2). The resolvent ..��/s � E 0/�1 applied to
the equality above yields

 D ..��/s �E 0/�1v� 2 H s;

which in turn implies that � ¤ 0. Multiplying by v then gives

� D v..��/s �E 0/�1v� 2 L2;

so that � is an eigenvector of KE 0 corresponding to the eigenvalue 1.
Vice versa, for any eigenfunction � 2 L2 of KE 0 associated to the eigenvalue 1,

we set  D ..��/s � E 0/�1v� 2 H s � L2. Multiplying by v yields v D � ¤ 0,
so that  ¤ 0 and

..��/s �E 0/ D v� D v2..��/s �E 0/�1v� D v2 :

It follows that  is an eigenvector of Hs associated to the eigenvalue E 0.
We have thus, for any E 0 < 0, a bijection between the eigenfunctions � of KE 0

corresponding to the eigenvalue 1, and the eigenfunctions  of Hs corresponding
to E 0. Hence,

N�E .Hs/ D
X
E 0�E

dim.ker.Hs �E 0// D
X
E 0�E

j¹j j �j .KE 0/ D 1ºj: (B.4)
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Now, for every j , the map E 7! �j .KE / takes at most once the value 1, because
otherwise the set of eigenvalues ofHs would contain an interval ŒE1;E2�� .�1; 0/,
which is impossible. It follows thatX

E 0�E

j¹j j �j .KE 0/ D 1ºj D j¹j j 9E
0
� E; �j .KE 0/ D 1ºj: (B.5)

As, for any j , E 0 7! �j .KE 0/ is continuous and �j .KE 0/ ! 0 as E 0 ! �1, we
deduce that

j¹j j 9E 0 � E; �j .KE 0/ D 1ºj D j¹j j �j .KE / � 1ºj D N�1.KE /: (B.6)

The bound (B.1) then follows from (B.4), (B.5), and (B.6).

C. Proofs of Theorem 3.1, Theorem 3.3 and Lemma 3.4

In this section we prove Theorem 3.1, Theorem 3.3, and Lemma 3.4 which were used
in the proof of Theorem 1.8. To obtain Theorem 3.1 and Theorem 3.3; we reproduce
the proofs in [9] and [37, Theorem 4.6], respectively, carefully following the depen-
dence on the parameter p and p0 in all the estimates.

To simplify notation, we set

�j .A/ D
p
�j .A�A/; j � 0:

Proof of Theorem 3.1. Without losing generality, we can assume that kgk�Lp;1 D 1D

kf kLp . We have f .x/g.�ir/ D .2�/�d=2Af;gF , where F is the Fourier transform
and Af;g is the operator with kernel Af;g.x; �/ D eix��f .x/g.�/. It is thus sufficient
to bound

kAf;gk
�
Lp;1 D sup

j�0

.j C 1/1=p�j .Af;g/:

Using Fan’s inequality �jCk.B C C/ � �j .B/C �k.C / for j; k � 0 (see e.g., [37,
Theorem 1.7]) with Af;g D B C C , we obtain

�j .Af;g/ � �j .B/C �0.C / �
� 1

j C 1

jX
mD0

�m.B/
2
�1=2
C kCkL1

�
1

p
j C 1

kBkL2 C kCkL1 :

Now, we choose a particular decomposition, setting

B.x; �/´ eix��f .x/ g.�/
X

mCn�0

1Fm
.x/1Gn

.�/;

C.x; �/´
X

mCn<0

eix��.1Fm
f /.x/ .1Gn

g/.�/;
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with Fm D ¹x j 2mR < jf .x/j � 2mC1Rº and Gn D ¹� j 2n < jg.�/j � 2nC1º, for
some parameter R > 0 to be fixed later.

Using
P
mCn�0 1Fm

.x/1Gn
.�/� 1¹.x;�/jjf .x/g.�/j>Rº and the layer cake represen-

tation yields

kBk2
L2 D

Z
R2d

jB.x; �/j2 dx d�

�

Z
R2d

jf .x/g.�/j2 1¹.x;�/jjf .x/g.�/j>Rº dx d�

� 2

1Z
0

�.¹.x; �/ j jf .x/g.�/j1¹.x;�/jjf .x/g.�/j>Rº > tº/ t dt

� 2

RZ
0

�.ER/ t dt C 2

1Z
R

�.Et / t dt;

with Et ´ ¹.x; �/ j jf .x/g.�/j > tº. The Lebesgue measure of Et can be estimated
as

�.Et / D

Z
Rd

�
�°
�
ˇ̌̌
jg.�/j >

t

jf .x/j

±�
dx

� .kgk�Lp;1/
p

Z
Rd

�
jf .x/j

t

�p
dx � kf kpLp t

�p
D t�p;

using that kgk�Lp;1 D supt>0 �.¹� j jg.�/j> tº/
1=p t D 1 and kf kLp D 1. Therefore,

kBk2
L2 � 2

RZ
0

R�p t dt C 2

1Z
R

t�p t dt � R2�p C
2

p � 2
R2�p D

p

p � 2
R2�p:

Now, we estimate the L1-norm of C . For all '; 2 L2, we have

jh'; C ij D
ˇ̌̌ X
mCn<0

Z
R2d

eix��.f 1Fm
N'/.x/ .g1Gn

 /.�/ dx d�
ˇ̌̌

.d

X
k<0

X
m2Z

kF �1.f 1Fm
N'/kL2kg1Gk�m

 kL2

.d

X
k<0

X
m2Z

R2mC1k1Fm
'kL22k�mC1k1Gk�m

 kL2

.d Rk'kL2 k kL2 ;
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and hence kCkL1 .d R. It follows that

�j .Af;g/ .d

1
p
j C 1

r
p

p � 2
R1�p=2 CR:

Choosing

R D
1

.j C 1/1=p

� p

p � 2

�1=p
yields, as p1=p ����!

p!1
1, for p > 2,

.j C 1/1=p�j .Af;g/ .d

� p

p � 2

�1=p
.d .p � 2/

�1=p;

which is the result.

Proof of Theorem 3.3. Assume that kf k`p0 .L2/ D kgk
�

`p0;1.L2/
D 1. Recall thatQm

stands for the unit hypercube of Rd with center m2Zd . For all functions f WRd!C,
we set

fm ´ 1Qmf;
Qfm ´

fm

kfmkL2

; Qgm ´
gm

kgmkL2

;

and write

f D
X

m2Zd

am
Qfm; am ´ kfmkL2 ; g D

X
m2Zd

bm Qgm; bm ´ kgmkL2 ;

so that kamk`p0 D kbmk
�

`p0;1
D 1. As in [37, Theorem 4.6], for any n 2 Z, we define

fn´
X

2n�1<am�2
n

am
Qfm; gn´

X
2n�1<bm�2

n

bm Qgm;

An´
X
lCk�n

fl.x/gk.�ir/; Bn´
X
lCk>n

fl.x/gk.�ir/;

so that f .x/g.�ir/ D An C Bn. Then, using Fan’s inequality [37, Theorem 1.7],

�m.f .x/g.�ir// � �m=2C1=2.An/C �m=2C1=2.Bn/; m odd; (C.1)

and

�m.f .x/g.�ir// � �m=2C1.An/C �m=2.Bn/

� �m=2.An/C �m=2.Bn/; m even: (C.2)

By estimating the norms kAnkL2 and kBnkL1 , we obtain bounds on the singular
values of An and Bn which will allow us to conclude the proof. Since fl and fl 0 have
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disjoint supports for l ¤ l 0 and gk and gk0 have disjoint supports for k ¤ k0, we first
obtain that

kAnk
2
L2 D Tr.A�nAn/ D Tr

� X
lCk�n

l 0Ck0�n

fl.x/fl 0.x/gk.�ir/gk0.�ir/
�

D Tr
� X
lCk�n

gk.�ir/jfl.x/j
2gk.�ir/

�
:

This expression can be computed thanks to the formula

kf .x/g.�ir/kL2 D .2�/�d=2kf kL2kgkL2 ;

which yields

kAnk
2
L2 D

X
lCk�n

kfl.x/gk.�ir/k
2
L2 D cd

X
lCk�n

kflk
2
L2kgkk

2
L2 D cd

X
lCk�n

2l�1<am�2
l

2k�1<bp�2
k

a2mb
2
p:

The number of bp in the interval .2k�1; 2k� is bounded by

j¹p W bp � 2
k�1
ºj � 2�p

0.k�1/
kbpk

�

`p0;1 � 2
22�kp

0

: (C.3)

Using this in the norm of An gives

kAnk
2
L2 .d

X
lCk�n

2l�1<am�2
l

a2m2
2k

X
2k�1<bp�2

k

1 .d

X
l2Z

2l�1<am�2
l

a2m

X
k�n�l

22k�kp
0

D
2.2�p

0/n

1 � 2p
0�2

X
l2Z

2l�1<am�2
l

2�.2�p
0/la2m �

2.2�p
0/n

1 � 2p
0�2
;

where in the last inequality we have used the boundX
l2Z

2l�1<am�2
l

2�.2�p
0/la2m D

X
l2Z

2l�1<am�2
l

2�.2�p
0/la2�p

0

m ap
0

m �

X
m

ap
0

m D 1:

By [37, Theorem 4.5], we also have

kBnkL1 .
X
lCk>n

2l�1<am�2
l

2k�1<bp�2
k

ambp:
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Using again (C.3), we have

kBnkL1 .
X
lCk>n

2l�1<am�2
l

am2
k�kp0

D

X
l2Z

2l�1<am�2
l

am

X
k�n�lC1

2.1�p
0/k

D

X
l2Z

2l�1<am�2
l

am
2.1�p

0/.n�lC1/

1 � 21�p
0 �

2.1�p
0/n

1 � 21�p
0 ;

where we have used the following inequalityX
l2Z

2l�1<am�2
l

am2
.1�p0/.1�l/

D

X
l2Z

2l�1<am�2
l

ap
0

ma
1�p0

m 2�.1�p
0/.l�1/

�

X
m

ap
0

m D 1:

Going back to (C.1) and (C.2), it suffices to consider m even. By the definition of
the norms on the trace ideals L1;L2 and since the singular values are arranged in
decreasing order, we have

kBnkL1 �

m=2X
jD1

�j .Bn/ �
m

2
�m=2.Bn/;

which implies

�m=2.Bn/ .
2

m

2.1�p
0/n

1 � 21�p
0 .

2.1�p
0/n

m
:

Analogously,

�m=2.An/ .
r
1

m

2.1�p
0=2/n

p
1 � 2p

0�2
;

and, hence, thanks to (C.2), we have

�m.f .x/g.�ir// . m�1=2
2.1�p

0=2/n

p
1 � 2p

0�2
Cm�12.1�p

0/n:

Optimizing with respect to n yields

�m.f .x/g.�ir// . m�1=p
0

.1 � 2p
0�2/1=p

0�1 . m�1=p
0

.2 � p0/1=p
0�1;

which proves the statement of the theorem.

We end this appendix with the proof of Lemma 3.4.
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Proof of Lemma 3.4. Let q be defined by 1=q C 1=2 D 1=p0. We have

kf k`p0 .L2/ Dkk1Qmf kL2k`p0 . khmi�rk1Qmf kL2.hxi2r dx/k`p0

.khmi�rk`qkf kL2.hxi2r dx/;

as r is such that rq > d , hmi�r indeed belongs to `q.Zd /. By straightforward com-
putations, one obtains

kf k`p0 .L2/ .d

.rq � d C 1/1=q

.rq � d/1=q
kf kL2.hxi2r dx/

which is the result.
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