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ABsTRACT. — This paper shows that a certain space monomial curve is a tangentially degenerate
curve such that all nonzero orders of hyperplanes at any point are not divisible by the characteristic
of the ground field. This indicates that a conjecture presented by Kaji in 2014 does not hold true.
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1. INTRODUCTION

An irreducible projective curve X C PV over an algebraically closed field k of char-
acteristic p > 0 is said to be tangentially degenerate if for a general point P € X, the
projective tangent line Tp X C PV to X at P meets X again (see [5]). Throughout this
paper, we assume that N > 3, X is not contained in any hyperplane, and ¢ : C — PV
is a morphism induced by the normalisation C — X C P¥. It would be natural to
ask the existence of tangentially degenerate curves. When p = 0, this problem was
posed by Terracini in 1932 [9, p. 143]. For the case where p = 0 and ¢ is unramified,
the nonexistence of such curves was proved by Kaji [5] in 1986 (see also [1,6]). The
problem of Terracini is still open in general if p = 0.

In the case of positive characteristic, many examples of tangentially degenerate
curves have been given (see [4,5,7]). In most known cases, the Gauss map y : X --»>
G(1,PN); P + TpX is not separable, where G (1, P") is the Grassmann variety
parameterising lines of PV . In 1994, Esteves and Homma presented the first example
of a tangentially degenerate curve in P3 with p > 5 whose order-sequence (at a
general point) is classical; in particular, the Gauss map is birational onto its image
[2, p. 39]. Recently, the present author described a method of constructing tangentially
degenerate curves admitting a birational Gauss map, focusing on the non-classicality
of automorphisms of the curves [3].

Automorphisms o € Aut(C) appearing in Esteves—Homma’s example and being
considered mainly in the previous paper [3] are additive; that is, there exist a point
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P € C and alocal parameter x of P such that 6*x — x € k \ {0}. This paper considers
multiplicative automorphisms and proves the following proposition.

ProposITION 1. Let p > 5, and let o : P! — P be an automorphism defined by
(1:¢) = (1:(=2)t). We consider a morphism

PSP Qi) (At :3P7Y),

which is birational onto its image. Then, the following hold:

(a) Forany point P € P\ {(0: 1)},
9(0(P)) € Typyo(P);

namely, p(P) is tangentially degenerate.
(b) It follows that

{ordpp*H | H C P3 : hyperplane)}

{0,1,2,3}, ifP # (1:0),(0:1);
=1140,1,3,3p — 1}, if P =(1:0);
0.3p—4,3p—23p—1}, ifP=(0:1).

In particular, for any point P € P and any hyperplane H C P3 with H > ¢(P),
ordp @™ H is not divisible by p.

This proposition indicates that the following conjecture presented by Kaji [6, Con-
jecture 4.1] in 2014 does not hold true.

CoNJECTURE 1. For a non-degenerate projective curve X C PV in arbitrary charac-
teristic p, if N > 3 and for any point P of the normalisation of X, there exist distinct
i, j,k > 0 such that none of the orders b; (P), b; (P), nor by (P) of X at P is divisible
by p; then X is not tangentially degenerate.

Some people might expect that the tangential degeneration is caused by the divisib-
ility of orders of curves by the characteristic p; however, such an expectation is negated
by virtue of Proposition 1. It turns out that whether a space curve (in the case p > 0)
is tangentially degenerate cannot be understood only from the order sequences.

2. PROOF AND REMARKS

The linear system A induced by the morphism ¢ : C — P¥ can be considered the set
of all divisors given by the intersection X N H of X and a hyperplane H C PV . Ifa
divisor ) pccnp P € A corresponds to a hyperplane-section X N H, then for any
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P e C,np =ordpp*H. For any point P € C, the set
{np ‘ Z nQQ S A}
QeC

consists of exactly N + 1 values (see, for example, [8]). Such values are denoted by
bo(P) < b1(P) <--- < byn(P).

ProoF oF ProposITION 1. Since (—2)3771 = ((=2)?71)3 x (=2)? = 4ink, it follows
that
poo = (1:—2t:—83: 41371,

On the other hand, it follows that
d
01— 1= = (230)(0, 1,312, Bp — 1)13P72) = (0, —31, —9¢3,31377).
dt
Therefore,
* de 3 443p—1
(,0+(O'I—I)E:(1,—2t,—8[,4l ):@OO’.

Assertion (a) follows.
We consider assertion (b). It follows that if P = (1 : 0), then

{ordpo*H | H C P* : hyperplane} = {0,1,3,3p — 1}.

Forapoint P = (0: 1), ¢ = (s377! : §3772 : §3P=4 . 1), where s = 1/t. This implies
that

{ordpp*H | H C P3 : hyperplane} = {0,3p —4,3p —2,3p — 1}.

We consider the case where P = (1 : «), where @ € k \ {0}. Let u = t — «. Then,
for a system (xg : X1 : X2 : x3) of coordinates of IP3, the power series expansions are
expressed as follows:
¢ x0 =1,
*x1 =a+u,
0*x2 = o + 30%u + 3au® + u,
3p—1 3p—1
Q*x3 = O[317—1_|_(3p_1)()[31;—211_'_( P2 )a3p—3u2+( P3 )a3p—4u3+ .

Note that

(3p—1) _Gp-DGp-2) _,

2 2
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—1

(3p— 1) _ Bp-DBp-2)3p—-3) _
3 B 6 -

as elements in k. It follows that the rank of the matrix

1 0 0 0

o 1 0 0

o3 302 3o 1
Q3P—1  _g3p—2 3p—3  _3p—4

is equal to four, where the (i, j) entry is the coeflicient of degree j — 1 of the function
@*x;_q fori, j = 1,2,3,4. This implies that

{ordpo*H | H C P3 : hyperplane} = {0, 1,2, 3}.
Assertion (b) follows. [ ]

REMARK 1. A counter-example of a smooth space curve exists, as follows. Let p > 5,
N >5,andn = N — 4. A morphism

0:PLS PN (L) (Lor:03: 03770 g P(=D) P =D " (=D
is an embedding, ¢(PP!) is tangentially degenerate, and orders by (P), by (P), b3(P)
are not divisible by p for any point P € P!,

REmARrk 2. For any N > 3, there exists a counter-example. When N =3 or N > 5,
we constructed it in Proposition | and Remark 1. For N = 4, the birational embedding

0 PP (1:t)> (1:1:13 43271 pP7D)
gives a counter-example.

RemaRrk 3. The method of constructing the example in Proposition 1 is related to that
in the previous paper [3]. The automorphism o with o (t) = —2¢ as in Proposition 1 is
non-classical with respect to the morphism ¢, in the sense of Levcovitz [7]. It follows
that

n n n n d
13,0371 PN 0T ey {g cekt)|o*g—g= (0"t —t)d—é;}

for any integer n > 1; the vector space V;; was introduced in [3]. For an automorphism
o of P! defined by o(t) = at witha € k \ {0, 1} and a monomial 1™, the condition
t"™ € Vg is satisfied if and only if

a”™—1=m(@a—1)

holds. The condition a™ — 1 = m(a — 1) appeared in several papers [1, p. 962],
[5, p. 439], [6, p. 749], [7, p. 146], and [9, p. 123].
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