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Abstract. – This paper shows that a certain space monomial curve is a tangentially degenerate
curve such that all nonzero orders of hyperplanes at any point are not divisible by the characteristic
of the ground field. This indicates that a conjecture presented by Kaji in 2014 does not hold true.
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1. Introduction

An irreducible projective curve X � PN over an algebraically closed field k of char-
acteristic p � 0 is said to be tangentially degenerate if for a general point P 2 X , the
projective tangent line TPX � PN toX at P meetsX again (see [5]). Throughout this
paper, we assume that N � 3, X is not contained in any hyperplane, and ' W C ! PN

is a morphism induced by the normalisation C ! X � PN . It would be natural to
ask the existence of tangentially degenerate curves. When p D 0, this problem was
posed by Terracini in 1932 [9, p. 143]. For the case where p D 0 and ' is unramified,
the nonexistence of such curves was proved by Kaji [5] in 1986 (see also [1, 6]). The
problem of Terracini is still open in general if p D 0.

In the case of positive characteristic, many examples of tangentially degenerate
curves have been given (see [4, 5, 7]). In most known cases, the Gauss map 
 W X Ü
G.1; PN /; P 7! TPX is not separable, where G.1; PN / is the Grassmann variety
parameterising lines of PN . In 1994, Esteves and Homma presented the first example
of a tangentially degenerate curve in P3 with p � 5 whose order-sequence (at a
general point) is classical; in particular, the Gauss map is birational onto its image
[2, p. 39]. Recently, the present author described a method of constructing tangentially
degenerate curves admitting a birational Gauss map, focusing on the non-classicality
of automorphisms of the curves [3].

Automorphisms � 2 Aut.C / appearing in Esteves–Homma’s example and being
considered mainly in the previous paper [3] are additive; that is, there exist a point
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P 2 C and a local parameter x of P such that ��x � x 2 k n ¹0º. This paper considers
multiplicative automorphisms and proves the following proposition.

Proposition 1. Let p � 5, and let � W P1 ! P1 be an automorphism defined by
.1 W t / 7! .1 W .�2/t/. We consider a morphism

' W P1 ! P3I .1 W t / 7! .1 W t W t3 W t3p�1/;

which is birational onto its image. Then, the following hold:

(a) For any point P 2 P1 n ¹.0 W 1/º,

'
�
�.P /

�
2 T'.P /'.P

1/I

namely, '.P1/ is tangentially degenerate.

(b) It follows that

¹ordP'�H j H � P3 W hyperplaneº

D

8̂̂<̂
:̂
¹0; 1; 2; 3º; if P ¤ .1 W 0/; .0 W 1/I
¹0; 1; 3; 3p � 1º; if P D .1 W 0/I
¹0; 3p � 4; 3p � 2; 3p � 1º; if P D .0 W 1/:

In particular, for any point P 2 P1 and any hyperplaneH � P3 withH 3 '.P /,
ordP'�H is not divisible by p.

This proposition indicates that the following conjecture presented by Kaji [6, Con-
jecture 4.1] in 2014 does not hold true.

Conjecture 1. For a non-degenerate projective curve X � PN in arbitrary charac-
teristic p, if N � 3 and for any point P of the normalisation of X , there exist distinct
i; j; k > 0 such that none of the orders bi .P /, bj .P /, nor bk.P / ofX at P is divisible
by p; then X is not tangentially degenerate.

Some people might expect that the tangential degeneration is caused by the divisib-
ility of orders of curves by the characteristic p; however, such an expectation is negated
by virtue of Proposition 1. It turns out that whether a space curve (in the case p > 0)
is tangentially degenerate cannot be understood only from the order sequences.

2. Proof and remarks

The linear system ƒ induced by the morphism ' W C ! PN can be considered the set
of all divisors given by the intersection X \H of X and a hyperplane H � PN . If a
divisor

P
P2C nPP 2 ƒ corresponds to a hyperplane-section X \H , then for any



tangentially degenerate monomial curves 345

P 2 C , nP D ordP'�H . For any point P 2 C , the set²
nP

ˇ̌̌ X
Q2C

nQQ 2 ƒ

³
consists of exactly N C 1 values (see, for example, [8]). Such values are denoted by

b0.P / < b1.P / < � � � < bN .P /:

Proof of Proposition 1. Since .�2/3p�1D ..�2/p�1/3 � .�2/2D 4 in k, it follows
that

' ı � D .1 W �2t W �8t3 W 4t3p�1/:

On the other hand, it follows that

.��t � t /
d'

dt
D .�3t/

�
0; 1; 3t2; .3p � 1/t3p�2

�
D .0;�3t;�9t3; 3t3p�1/:

Therefore,

' C .��t � t /
d'

dt
D .1;�2t;�8t3; 4t3p�1/ D ' ı �:

Assertion (a) follows.
We consider assertion (b). It follows that if P D .1 W 0/, then

¹ordP'�H j H � P3 W hyperplaneº D ¹0; 1; 3; 3p � 1º:

For a point P D .0 W 1/, ' D .s3p�1 W s3p�2 W s3p�4 W 1/, where s D 1=t . This implies
that

¹ordP'�H j H � P3 W hyperplaneº D ¹0; 3p � 4; 3p � 2; 3p � 1º:

We consider the case where P D .1 W ˛/, where ˛ 2 k n ¹0º. Let u D t � ˛. Then,
for a system .x0 W x1 W x2 W x3/ of coordinates of P3, the power series expansions are
expressed as follows:

'�x0 D 1;

'�x1 D ˛ C u;

'�x2 D ˛
3
C 3˛2uC 3˛u2 C u3;

'�x3 D ˛
3p�1
C.3p�1/˛3p�2uC

�
3p�1

2

�
˛3p�3u2C

�
3p � 1

3

�
˛3p�4u3C � � � :

Note that �
3p � 1

2

�
D
.3p � 1/.3p � 2/

2
D 1;
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3p � 1

3

�
D
.3p � 1/.3p � 2/.3p � 3/

6
D �1

as elements in k. It follows that the rank of the matrix0BBB@
1 0 0 0

˛ 1 0 0

˛3 3˛2 3˛ 1

˛3p�1 �˛3p�2 ˛3p�3 �˛3p�4

1CCCA
is equal to four, where the .i; j / entry is the coefficient of degree j � 1 of the function
'�xi�1 for i; j D 1; 2; 3; 4. This implies that

¹ordP'�H j H � P3 W hyperplaneº D ¹0; 1; 2; 3º:

Assertion (b) follows.

Remark 1. A counter-example of a smooth space curve exists, as follows. Let p � 5,
N � 5, and n D N � 4. A morphism

' W P1! PN I .1 W t / 7! .1 W t W t3 W t3p�1 W tp.p�1/ W � � � W tp
n.pn�1/

W tp
n.pn�1/C1/

is an embedding, '.P1/ is tangentially degenerate, and orders b1.P /, b2.P /, b3.P /
are not divisible by p for any point P 2 P1.

Remark 2. For any N � 3, there exists a counter-example. When N D 3 or N � 5,
we constructed it in Proposition 1 and Remark 1. For N D 4, the birational embedding

' W P1 ! P4I .1 W t / 7! .1 W t W t3 W t3p�1 W tp.p�1//

gives a counter-example.

Remark 3. The method of constructing the example in Proposition 1 is related to that
in the previous paper [3]. The automorphism � with �.t/ D �2t as in Proposition 1 is
non-classical with respect to the morphism ', in the sense of Levcovitz [7]. It follows
that

t3; t3p�1; tp
n.pn�1/; tp

n.pn�1/C1
2 V�;t WD

²
g 2 k.t/ j ��g � g D .��t � t /

dg

dt

³
for any integer n � 1; the vector space V�;t was introduced in [3]. For an automorphism
� of P1 defined by �.t/ D at with a 2 k n ¹0; 1º and a monomial tm, the condition
tm 2 V�;t is satisfied if and only if

am � 1 D m.a � 1/

holds. The condition am � 1 D m.a � 1/ appeared in several papers [1, p. 962],
[5, p. 439], [6, p. 749], [7, p. 146], and [9, p. 123].
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