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ABsTRACT. — The aim of this paper is to give a new proof that any very weak s-harmonic function
u in the unit ball B is smooth. As a first step, we improve the local summability properties of u.
Then, we exploit a suitable version of the difference quotient method tailored to get rid of the
singularity of the integral kernel and gain Sobolev regularity and local linear estimates of the HJ
norm of u. Finally, by applying more standard methods, such as elliptic regularity and Schauder
estimates, we reach the real analyticity of u. Up to the authors’ knowledge, the difference quotient
techniques are new.
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1. INTRODUCTION

This paper comes from our attempt to generalize the by now classical difference quotient
method due to L. Nirenberg to nonlocal operators. It has been introduced in [38] and is
now presented in all the textbooks dealing with the regularity properties of solutions
of elliptic equations. After the introduction of weak, or even distributional, solutions
of partial differential equations, the problem of their regularity has been tackled by
various techniques. Probably the first result in this direction has been the proof of
regularity of weakly harmonic functions, obtained in the fifties by Hermann Weyl in
[46] and by Renato Caccioppoli, see [36, p. 122]. Subsequently, much more general
operators have been considered and one of the most fruitful and flexible techniques
has proved to be that of difference quotients, which — as it is — appears to be strictly
depending on the local character of differential operators. We refer e.g. to [34,47] and
the references therein for recent regularity results relying on Nirenberg method.

On the other hand, the notion of distributional solution is well established also for
equations coming from nonlocal operators and the question on the regularity of such
solutions is in turn quite natural. One of the first examples of nonlocal operators, and
probably the simplest one, is the fractional power of the Laplacian, and the solutions of
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the equation (—A)’u = 0, s € (0, 1), are called s-harmonic. The class of s-harmonic
functions has been broadly studied in the last years. Though they have many features
relating them with harmonic functions, see for instance [23,25], s-harmonic functions
exhibit a different behaviour in other aspects, due to the nonlocal nature of the fractional
Laplacian. Among these facts we mention the local density of s-harmonic functions
among smooth functions [24], a purely nonlocal phenomenon that has some interesting
consequences, such as the failure of the classical Harnack inequality and a quantitative
version of an inverse mean value formula in the fractional case. See [15, 30] for more
precise statements, [ 1 8] for more general density results and [2, 16] for other applications.

There are several equivalent ways of defining (—A)*, see [33], and the first proof of
the local regularity of s-harmonic distributions has been obtained via pseudodifferential
techniques by R. T. Seeley [40]. See [41,42] for more general operators. The Dirichlet
problem for the fractional Laplacian

{(—A)Sw =f inQ,

w=20 in Q¢

(1.1

has been studied in [35,39] providing basic summability estimates according to the
summability of the source f and boundary regularity, respectively. We notice that
when € is the whole of RY more than H°(R"), regularity is available for the weak
solution of (—A)*w = f, see [32].

It seemed to us that a natural question about the regularity of very weak solutions
of nonlocal equations, see (2.4) for the precise definition in the case of the fractional
Laplacian, is if it is possible to extend the difference quotient method to such solutions.
As a first check, we have considered the operator (—A)*, where the difficulty of getting
rid of the singularity of the kernel in its definition, see (2.2) below, already appears.

Very weak solutions of (1.1) have been treated in [4], where the authors observe
that such solutions, when € is a bounded smooth domain and f € L!(), are actually
pointwise solutions; that is, they are given in terms of the Green operator applied to
the source f. See [14], where explicit representation formulae when 2 is a ball are
given. We also mention that in the fractional setting, maximal regularity estimates for
the weak solutions of (1.1) are also available: in [27] the author proves that the solution
of (1.1) with f € L?(£2) belongs to the fractional Sobolev space W27 (), or to the
Besov space B;fz,loc(Q) according to the values of s and p, and this regularity is sharp
since it does not hold true up to the boundary. See also [7, 8]. Anyway, our arguments
do not rely on the estimates proved there.

We consider very weak solutions of the following problem:

12 {(—A) w=0 inB,

w=g inB°,
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where B is the unit ball in RY and the outer datum g belongs to the weighted Lebesgue
space L! (RY) that is defined in (2.1). See formula (2.4) for the precise definition.
Notice that our assumptions allow us to deal with s-harmonic functions that blow up at
the boundary of B, see [1, 10]. If the external datum is assumed to be bounded, one
can also exploit the explicit representation of the solution in terms of the fractional
Poisson kernel, see [9, 14,26].

Our main result is the following theorem.

MAaIN THEOREM. Let u be a very weak solution of (1.2). Then,

(1) (Sobolev regularity) u € HE (B) and the estimate

loc
lullzs By < C(B/)HU”L_é(RN)
holds for every B’ € B.

(2) (Classical regularity) u is real analytic in B and the estimate
1D Ul Loo(B,y) < IC(R, ro, N, s) (1l Loor) + Il 1 @vy)
holds for any € N(I)V and0 <rg < R< 1.

We prove our Main Theorem in several steps. In Theorem 3.1, we prove that the

solution u, which is by definition in L!(B), is actually in L2 _(B). This local improve-

loc
ment of summability is done by suitable localisation methods joint with regularity
results for the fractional Poisson equation with homogeneous external condition proved
in [3,39]. The second step is done in Theorem 4.1, where we prove that the L2 (B)
~3(B), see Section 2 for the
relevant definitions. The main point in the proof of this result consists in showing
the H; (B) regularity, as the final step from H; (B) to H25(B) follows from L2
estimates on the operator Iy which is the carré du champ of the fractional Laplacian

solution u belongs to the fractional Sobolev space H?

that arises using the relevant fractional Leibniz rule. This kind of estimates, which
we also prove for every p > 1, is different with respect to the one proved in [31]. We
exploit a suitable variant of the classical Nirenberg difference quotient method: we
introduce a cut-off function that vanishes near the origin and allows us to get rid of
the singularity of the kernel and to obtain the fractional Sobolev regularity H;} (B).
Difference quotient methods have been used in [6, 12,17, 19] in a different fashion to
improve the regularity of solutions to more general nonlocal equations. We point out
once more that the core of the paper is the linear estimates and the new techniques
introduced to prove claim (1) in the Main Theorem.

In the third step, we prove that for a cut-off function 7, the function n%u solves the
equation (—A)*w = f in the whole space, with f € L2(R%), and as a consequence,
u belongs to H25(B).

loc
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The fourth step relies on fractional De Giorgi estimates proved in [13] that allow us
to gain local boundedness of u in B and also local Holder regularity. The usefulness
of those estimates with respect to the previous literature (see e.g. [28,29]) leans on the
fact that the Holder continuity exponent is quantified. Namely, the authors prove that
ue Clg’cy (By) for every y € (0, min{2s, 1}).

In the fifth step, we use again that n%u solves the equation (—A)*w = f in R¥ but
C y+2s

loe _(B) and is s-harmonic

with £ € C%”(R¥) and as a consequence, u belongs to
in the classical sense in B. To do this, we also exploit suitable Holder continuity
properties of the operator /.

In the last step, we use the explicit Poisson representation formula to give a pointwise
expression for u in a small ball. By well-known estimates on the derivatives of the
Poisson kernel, we conclude our proof by proving the real analyticity of u.

Finally, we notice that all our results are stated and proved using the unit ball as
reference domain in order to avoid technical issues and to focus on the core of our
strategy though the same results also hold true for every bounded and sufficiently

smooth domain.

2. NOTATIONS AND PRELIMINARY RESULTS

In the whole paper, we always assume that N > 2.
The space L} (RY) is the weighted Lebesgue space defined as

2.1 LyRY) = {u € MRY); [[ull 1 @ny < 00},
where M (R™) denotes the space of Lebesgue measurable functions on RY and

ux
Wlsm = [, ol ar
5 RN 1+ |x|V+2s

It is very easy to check that
LPRN) < LIRY) € LL (RY) forevery p > 1.

The space L! (R™) is a natural setting for very weak s-harmonic functions. Indeed,
it encodes local integrability and a growth condition at infinity. This is equivalent to
requiring that the nonlocal tail of u

[u ()]

Tail(u; x9, R) := st/ _—
(u; x0, R) |x — xo[V+2s

B%(x0)

is finite for every xo € RY and R > 0. See [20,21] for more precise references.
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Foru € CZ1(B) N LL(RY), y € (0, 1), the s-Laplacian (—A)*u is pointwise

loc
defined for every x € B and the following representation formula holds:

u(x) —u(y)
2.2 —ANu(x)=C = Mg
Q2 (=AY u) MﬁéNu_ywﬂsy
G [ )Gy —uroy),
2 RN | y |N +2s Y,
$225T (& +s)

where Cy 5 := W and I" denotes the Euler Gamma function. This choice of
the normalisation constant makes the fractional Laplacian a Fourier multiplier with
symbol | - |?¢ whenever for u € L'(R") the Fourier transform ¥ is defined as

Fu) = /]RN u(x)e 27 E gy,

Notice that if u only belongs to L!(RY), formula (2.2) still holds true by taking
the integrals in the Cauchy principal value sense.
Fors € (0,1),1 < p < oo and 2 € R¥, we define the fractional Sobolev space
W5:P(QQ) as
Ws’p(Q) = {u S LP(Q) : [M]Ws.p(g) < OO},

_ 4 1/p
e (o L)

endowed with the norm || - [lws.(2) := (Il 7o) + [iysn @) '?
When p = oo, any f € W5°°(Q) has a representative f € CS(Q)
As usual, when p = 2, we use the notation H*(2) to indicate the Hilbert space

where

W$2(R2). See [22] for a gentle introduction to the fractional Sobolev spaces.

Let us also define higher-order fractional Sobolev spaces, confining to the non-
integer case: foro € (1,00),0 =k + 5,k € N,5 € (0,1)and 1 < p < o0, the fractional
Sobolev space WP (2) is defined as follows:

WoP(Q) = {u e WFP(Q) : Du € WSP(Q), Yo € N, || < k}.
Set @4 := (A x A) U (A x A°) U (A€ x A) for every open set A. We define

(2.3) H*(B) = {u € L*(B) : [u]msp) < o0},

u(x) —u(y) 1/2
ulms gy = (f/@B ||x— |N+2s| dx dy) .

where
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We say that u € H*(B) is a weak solution for (1.2) if for every ¢ € Hy(B) = H§(B) =
c=B) 1" it holds that

/ dx/ (u(x) —u()(p(x) — 9(»)) dy =0,
RN RN

|x_y|N+2s

u =g in B

Notice that for u € H*(B) and ¢ € H{(B), the definition is well posed. Indeed, let
AEB,ADsuppy

/ I / () — )0 —¢)
RN RN

|X — y|N+2s
—u(y)||e(x) —
= //czA = IZ f)J|’||g;f2)s v0) dxdy < [u]ms a)l@]ms a)-

We notice that if g € C(RV) N L®°@RY) and u € H*(B) N L®(RY) is a weak
solution of (1.2), then u is also a solution in the viscosity sense for (1.2), as proved in
[43, Theorem 1] in the inhomogeneous case for continuous sources.

For s € (0, 1), we also introduce the space

L®[RY) = {u € L2RN); sup (14 x|V ) |u(x)| < oo},

xeRN

equipped with the norm

[ullpoomny := sup (1 + |x|N+2S)|u(x)|.
xeRN

We say that u € L1(R¥) is a very weak solution of (1.2) if, for every ¢ compactly
supported in B such that (—A)*¢ € L (RY), it holds that

/ u(—=A)’pdx =0,
RN

u =g in B

(2.4)

Notice that the chosen class of test functions is not empty. Indeed, let ¢ € cxtr (B)
for some y > 0. We have

/]RN u(—=A)Y’pdx

< /32 \u(—A)S(p|dx + /Bg |”(_A)S(p|dx

|u(x)| / 1+ |x|V+2s
dx d
T4 VT |x_y|N+2s‘¢(y)| y

< ullir oy 0 sy + [B
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Ju(x)| T\
< ||z 25+v(gy + —dx/(l+— d
s alielerm + [ et [ (14155]) el
< ullprayllellc2s+v sy + 3N+25||“||L;(]RN)||<P||L1(B)
< Cwnsllelczs+rylull i@y

and then ¢ is a test function.
We notice that a weak solution is a very weak solution. Indeed, using the symmetry
of the double integral in x and y,

1 () —u()(e(x)—e() _ () —0(y)
Z/RN/RN abca’y—/]RNM()c)a’x/]R dy

|x_y|N+25 N |x_y|N+25

for every ¢ € CX°(B).

Now, we recall some useful results. From now on, for r > 1, we denote with r’ :=
ﬁ the Holder conjugate of 7, and for t >0 such that 7t < N, we denote with r} := NIZ ’r =
the Sobolev conjugate of r with respect to 7. First, we state the Sobolev embedding
theorem.

Proposition 2.1 ([5, Theorem 7.63]). Let Q@ € RY an open and smooth set and
letk,h >0, p>1.1Ifu e Wer(Q), k > hand N > (k — h)p, then the following
continuity estimate holds:

lullwna@y < Clullwr.ng)

« foreveryl < g < % if Q has finite measure

forevery p <q < #’ih)p if Q2 has infinite measure.

We notice that if Kk = h € Ny and if 2 has finite measure, then the statement of
Proposition 2.1 still holds true, but if k = h € (0, 00) \ N, then the embedding may
fail in general even if €2 is a ball, see [37].

The following results give the regularity properties of the weak solutions of (1.1)
under suitable assumptions on f.

THaeOREM 2.2 ([3, Corollary 1.7]). Let N > 2, Q C RY a bounded C? domain,
s € (0, 1) and let u be the unique solution of

{(—A)sw =f inQ,

w=0 inQ°

with € L™(S).



A. CARBOTTI, S. CITO, D. A. LA MANNA AND D. PALLARA 372

i Ifl<m< %, then forall 1 < p < mj, there exists C > 0 such that
lullws.r@ny < ClILf lLmg)-
) Ifm> %, then for all 1 < p < oo, there exists C > 0 such that
lullws.r@yy < CllLfllLm(g)-
THEOREM 2.3 ([39, Proposition 1.4]). Lets € (0,1), N > 2s, Q C RY a bounded
CY! domain, f € C(Q) and let u be the weak solution of
{(—A)Sw =f inQ,

w=0 inQ°.
(i) Foreachl <r < (év—s)’, there exists C = C(n,r,s,|R2|) > 0 such that

lullLr@) < Cllf L)

.. N
(i) Lerl <p<g3;

that for any 1 < q < pJ.,

and p3; = NY—SSP. Then, there exists C = C(n, s, p) > 0 such
lullLa@) < CllfllLr@)-
(iii) Let % < p < <. Then, there exists C = C(n, s, p, 2) > 0 such that

lullcsmny < CILf lLr (@)

where B := min{s, 25 — %}.

3. IMPROVEMENT OF SUMMABILITY

Now we are ready to state and prove the following theorem.

Tueorem 3.1. Letu € LY (RYN) a very weak solution of (1.2). Then, u € L2, (B).

loc

Proor. To ease the presentation, we divide the proof in three steps.

Step 1: first summability improvement. In this first step, we prove

N
3.1 uelLj (B) forallr < .
N —s

Let p > % and ¥ € C®(B) N C(B). Now, let v be the unique solution of the Dirichlet
problem

32) {(—A)Sw =1 in B3,

— : c
w=0 1inB]_;
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for some § > 0 sufficiently small to be conveniently chosen in the sequel. Now let
n € CX°(B) be such that n = 1in By_45,n = 0in B{_,s and [Vy| < % Notice that
by Theorem 2.3, we have that v € C*(R¥), and this easily implies that

(=AY (n*v) € LE®RY) and  suppn’v C By_ss.
Indeed, for |x| > 2, it holds that

() (y) ’ 3l s

2
Ay P < | | T s e

while the boundedness of (—A)*(n?v) in B, is an immediate consequence of The-
orem 2.3.

Therefore, we can use ¢ = n?v as a test function in the definition of very weak
solution (2.4). Then,

0 =/ n*uyrdx —{—2[ uvn(—A)* ndx
RN RN

- / unls(n, v)dx — / uly(n, nu)dx,
RN RN
where for any fi, f> measurable, we have set

(33)  L(fi, f2)(x) 1= Ch.s /1; ) (fi(x) — {;(i);gzgs) — /() .

and the constant Cy ¢ is that one in the definition of (—A)*.
Then,

3.4 '/ n*uydx
RN

5/ }uls(n,nv)|dx +2/ }uvn(—A)sn{dx +/ |u171s(77, v){dx
RN RN RN
=: A1 + A2 + A3.

We start by estimating the term A;. Then,

|, et

RN
= ||u||L§(RN)||Is(77v nv)“LgO(RN) = C(S)||u||L}(]RN)||TIU||CS(]RN)
= CONulli@myllvlicsyy = CONull r@myll¥ e ).

where the last inequality exploits item (iii) in Theorem 2.3, which holds true since
p > % For the second inequality, we notice that for any x € RY and y € B;_,5, we
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have
(3.5 (1+ x[¥*) [n(x) —n(»)]
=< C(O)xB,_s ()IVnllLeo@nylx — ¥l
n 2N+2s_1XBf_8(x)(1 T L)

= CO)xBi_s VNl Lo @nylx = y[ + C(N,5,8) xpe_(X)|x =y

while for any x e RV and y € B 5.

(1+ [x|¥+2) [n(x) = n()| < CE)xB,_s(x).
Therefore, for any x € RN,
(3.6) (14 x|V )| Is(n. nv)(x)]
<+ |x|N+2S)/ !n(X)—n(y)Hn(X)v(X)—n(y)v(y)|

|x_y|N+25

Bi_3s

+(1+|X|N+2s)/ [n(x) = n()|[n()v(x) —n(y)v (y)|

BIC s |x_ |N+2s

< (1 4+ x|V +29) / @) = 1[0 =]

Bi_os |x_y|N+2s
n(x) —ny)
+ (1 + x|V )| v(x)|/ fl\wzs)dy
dy
< XBI_S(X)HUUHCS(]RN)/B Xy Nt
1—28

374

|N+2s

, dy dy
+ XBy 5 (X)C'(8) |v(x) (/ —+/ —_)
1—28 ‘ | ¢ )lx_y|N+2s By 35(x) |x_y|N+2s 2

+ C(N, 5. 8)[nvlpeownyxBs_;(x)
< C(N.s,8)|vlicswny < C(N, s,V ILr(B).

where in the third inequality, we have used (3.5), the equality

In(x) — 1|1 (x) = 1G] = [v)|[n(x) = ()|

that holds for any x € By_s and y € Bf_, and also that the integral term in the fourth
line of (3.6) is nonzero if and only if x € B{_5,g and it can be split in the sum of two

integrals over Bf s and By_s \ Bi_»;s.
For A,, we have

/RN (=AY nldx < CllullLis,_op IvlzeeB) o5 < ClullLi s, ¥ llLr ).

where we used again Theorem 2.3.
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To estimate A3, we notice that
/ |u’71s(77’ v)|dx = / |u’71s(77» U)|dX = ”u”Ll(BlfLS)”IS(n’U)HLOO(BI_ZS)’
RN Bi_2s

and for almost any x € Bj_»s, if we split A3 into the sum of the integrals over B;_g
and By_;, we have

dy dy
L v)@)] < Clvllesan (/ et [ —)
| s | @RYN) By 25(x) |x _y|N+s 1 BS () |x_y|N+2s

< Cl¥llLr ().

where we have used again Theorem 2.3 (iii), which holds true for p > % with 8 = s.
Now we have

(3.7) / unPydx
]RN

< C||u||L§(RN)(||U||Ws~p(RN) + lvllcs®ny)

< Cllull 1 wmyl¥ e

=S . N . SN
forall y € C*°(B) N C(B), with p > <-. By the density of C*°(B) N C(B/’) in L?(B),
we have that (3.7) holds for all v € L?(B), which implies that n?u € L?"(B); hence,

n*u € L™(B) forall r < % The arbitrariness of § gives the claim.

Step 2: higher summability. Our next goal is to show

N N
(3.8) uell (B) forre (N—S’N—2s)'
In order to improve the summability of the solution u, we still use a duality argument,
but in a bit different way. Let ¥ € C®°(B) N C(B), take m € (ﬁ, %) for some
a € (0,1) and let v, i) as before, where now 4 is the double of the previous one. Since we
know thatu € L]

loc

(B) forall r < % let p’ € (%, %). It is very easy to check
that the function vn? is admissible as test function in definition (2.4). We estimate again
the three terms appearing in (3.4), but this time we can use the higher summability of
u proved in Step 1 to estimate

(39 A = Cllullr g ) I0ILr @2 < Cltll g, ol Iwsas,

< Cllullyr g, o) I¥ IlLm ),

Np _ N
N+sp — 2s
and the third inequality exploits Theorem 2.2 and it holds for all ¢ € (1, my) (recall

* _ _Nm N
thatmyi = 5=~ -

where the second inequality exploits the Sobolev embedding theorem for g >

) whenever 1 <m <
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Now we estimate again the term A; in (3.4):

(3.10) Alf/B |u(x)|dx/C In(x) — n(y)Hn(X)v(X)—n(y)v(y)|

¢ s |x_y|N+2s
In(x) = n()|[n(x)v(x) — n(y)v(y)i
+ d /
o el f, =y
In(x) — n(y)Hn(X)v(X)—n(y)v(y)|
+/1_8 \u(x)|dx /I;N |x — y[N+2s
=: B; + B> + Bs.
To bound By, we first observe that since n(y) = 0 for y € B]_,s, we have
dy
(3.11) B, = /31_2 |u(x)||v(x)|r] (x)dx /Bl ; w

n(x) —n(»)*
[ bl [ G

1-26

dy
=/ oo / e

(n(x) — n(»)*
@l [ R

< C<5>(||u||Lp/(Bl_28)||v||Lp<Bl_26)

1
o lbelds [ )

< CONullpr s,y 1V l2()-

Analogously for B3, we use that 7(x) = 0 for x € B{_; and that (1 + lx|NV+25) <
Cslx — y|VN*+25 for any x € B{_sand y € By_»; to find

3.12) B3§/BC de/l; (1+|X|N+2s)|| (J’)|T] (y) dy

1+ |x|N+2s |N+25
1-6
< Cslull g vy 0018, gy < Collull s 1Vl s)

and again the Sobolev embedding Theorem holds true for any g > év—s To bound B>,
we use the Holder inequality in the following way:

3.13) Bzf/B |u(x)|dx/ [n(x) — n(y)Hn(X)v(X)—n(y)v(y)|

|x_ |N+2s

n(x)v(x) — n(»)v(y) Ve
= ||u||LP/(Bl—8)(/Bls (/Bls ‘ |x — y|N+2s—1 | ) x)
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j [n(x)v(x) — n(y)v(y)|pd
< llullLr 3, _s) By_s JB._s |x — y|N+sp ’

d p—1 1/p
. (/ 4 ,) dx)
Bi_s |')C - y|N—(1—S)p

= C”“”LP/(Bl_,g)||77U||WS-I)(RN)

=< C”””LP’(BI_8)||1//||Lm(B),

Nﬁ”, we get p < E’ hence, ||[v|lws.»(B) <
1 llm sy it m > e Inequalmes (3.11), (3.12), (3.13) give
(3.14) |[A2| <= CONY IlLm@yllullLr (8, -

To estimate A3, we proceed as in the previous estimate:

As =[ |ur)]s(n, v)|dx
B 25

In(x) — n(y)||v(X)—v(y)|
< /B o) /IR i e e

We split the integral on RY in B;_s and B{_; and we use again the Holder inequality

and Theorem 2.2 to infer

(3.15)/3 |,7(x)u(x)}/3 [n(x) — n(y)ilv(x)—v(y)|

| |N+2s
L\ @ —v0 N\
<(fwra)" ([ (] _d)dx)
(/l;“’l Bi_s B_ 3|x_ |N+2s_1 Y
o) —v|” )””
< Cllnully» / d
I ”L”B)( PR N P L

=C ”’7””Ll’/(3)||U||Ws,p(]RN)
= Clinullp o gy IV llLm B)-

Concerning the second integral, since v(y) = n(y) = 0 for y € B{_;, we have

(3.16) /B|,7(x)u(x)|dx/30 |n(x) |’7(J’)Hv(x)—v(y)|

y|N+2s

1-8

= /;?1_28 ‘n(x)u(x)v(x)’dx /B"

s |

dy
y|N+2s

= C(8)||77”||Lp’(3)”U”LP(B)
< COlnullLe gl llm sy
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provided that m > Inequalities (3.15) and (3.16) give

(H—ot)s
|A3| = CO)InullLo gy ll¥ lLm(B).-

Hence, using the latter and inequalities (3.10), (3.14), we deduce

‘ / un?y dx
B

for all Y € C*°(B) N L*°(B). By density, the inequality holds for ¥ € L™(B) and
hence n?u € L™ (B) withm’ € (%, #m). Since this is true for any o € (0, 1),
we get our claim.

= C(S)”r’u”LP/(B)”wan(B)

Step 3. We finally show that u € L?,
We first prove recursively that

N
(B) for p < <.

loc

uelL{ (B) forr< N ]i/ks
for all k € N such that k < T We notice that we already proved the claim for k = 1, 2.
Hence, let us assume that u € Lf(’)c
Fix 6 > 0 to be chosen again as the double of the one selected in the previous step,
lety € C*®°(B) N L*°(B), takem € ((kJrf’—_a)s, %) and let v be the unique solution
of (1.1). For a cut-off function 1 supported in B;_,s, we use n?v as a test function in
(2.4) to find again

(B) for p’ € (% %) for some a € (0, 1).

< A1 + Az + As,

n*uyrdx
B

with A1, A,, A3 defined as in (3.4). As before, to estimate A1, we split it in three terms:

(3.17) A15/ |u(x)|dxfc n(x) — n(y)||n(x)v(x)—n(y)v(y)|

- 1—25 |x — y[VH2
|n(x) — n(y)Hn(X)v(X) - n(y)v(y)}
+/Bl—8 \u(x)|dx /31_25 Xy
n(x) —n||nx)v(x) —n(y)v(y)
+/C \u(x)|dx[l‘w | |)|c|—y|N+2S |
= Bl + Bz + B3.

The same argument used to bound B; and B3 in Step 2 provides

|B1l = CONullr s, o5 llvlws.r @ny

|Bs| = CO)[ull L1 myllvllws.»®w).
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where at this stage, p € (IICV—S, ﬁ) For B,, we use the Holder inequality to have

IBZIS[B |u(x)|dx/B [26) = [ [n@vC) =G|,

|x |N+2s

n(x)v(x) = n(y)v(y) 1/p
S”M”Lp/(Bl_‘s)(/31_5(/31_6| |x — y|N+2s—1 | ) x)

n(x)v(x) — n(v()|”
= ||u||Lp/(Bl—8)(/Bls /315 } |x — y|N+sp ‘ dy

d p—1 1/p
([, ) )
Bi_s |x _y|N+(s—1)p

= Clull o g, _plnvliws.rwny-

Since p > 1, we have
|A2| = COullLr g,_pllvIws.r @)y
and using Theorem 2.2, we get
[vllws.»@ny < CllY|Lm )

whenever

Nm . Np
ie., m> .
N —sm N +sp

Since p < ﬁ, we get
|[A2| = CONull Lo g, _p IV IlLm(B)
ifm > ﬁ The estimate for A3 follows from the same argument and gives
|43 < CONll Lo s,y IV lms).

Thus, we arrive at

‘ / nuy dx
B

Using again a duality argument and since the latter is true for

< CO Il g,y IV lLma)

N
for any m > G¥i=a)s"
all @ > 0, we get

u € Ll”;C(B)

1 N
for any m < N=Gk+Ds"
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Hence, we now run this argument k¢ times, where k¢ := max{d € N; d < lg} and
k:=2% —1tofind
u € Lio.(B)

N N o . . 2 N . . .
forall r < Nekos = 5 Since in particular 2 < £ < - by our assumptions in Section 2,
the proof is complete. u

REMaRrk 3.2. In each step k of the proof of Theorem 3.1, we choose 6 > 0 such that

Ok < % and 8 = 28,1 < 1, fork € {1,...,ko}, and these conditions imply that in
Step 1, we have to fix §; := 8 < 2,(0%.

REMARK 3.3. We notice that from estimates (3.11), (3.12), (3.13) and (3.15), we
deduce that forany w € L1 (RV) N WP (B) for some 1 < p < oo, by definition, nw €
WP (RN) forany 5 € CX(B) cut-off function and, if suppn = B1_5 € B1_s € B,
there exists C, which depends only on 8, s, N, p but independent of w, such that

(3.18) |15 nw) | Ly @y = Clnwllws.r @y
Moreover, for any x € RY, we have

(319 |n(x)Is(n, w)(x)|
In(X)—n(y)||w(X)—w(y)ldy

=< n(x) . =y
n(x) —n(y)|jwx) —w(y)
+77(x)/BC | |x—|y||N+2S |dy
= come [ OOy g [ D00,

lw)—w)|”  \V? dy v
sc(&)nm(/B P dy) (/B 1_8—|x—y|N—P’“—S>)

dy |w(J’)|
+ 2n(x)( w(x) A / —dy).
’ | Bi'_(g(x) |x_y|N+2s RN 1+|y|N+2s

From (3.19), we deduce that there exists a positive constant C = C(N, s, 8, p) such
that

(3.20) ||771s(77’ w)HLp(RN) = C(N’S’5»P)(||w||W~Y”’(Blﬂg) + ||w||L_1(RN))-

The estimates in the cases p = 1 and p = oo also hold true with analogous computations.
In the case p = 0o, we recall that for any € open and smooth set W (Q) = C%5(Q),
see e.g. [22, p. 59].
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4. FRACTIONAL SOBOLEV REGULARITY

In this section, we prove the local H® regularity of very weak solutions, which we

72
know to be in Lj; .

Nirenberg difference quotients method, but in the nonlocal case, this method does not

In the classical case, Sobolev regularity is usually obtained via the

work directly because of the presence of a divergent kernel. Therefore, we have devised
a different approach, which consists in using another cut-off function (the n, below)
that eliminates the singularity and makes the relevant integrals convergent.

THEOREM 4.1. Let u be a very weak solution of (1.2) in L2 _(B). Then, u € H2S(B).

loc loc

Proor. Letu be given asin the statement. Let T € (0,1/2) and let 1, : [0, +00) — [0, 1]
be the cut-off function defined as
if0<t<rt/2,

ne(t) := t—1 ift/2<t<r,

— Ay O

ift <t.
For § € (0, %), let us consider another cut-off function n : RY — [0, 1] such that
. . e 1
n:11n31—483 77=01n31_257 |Vr]|§g

For any x € RY, let us define the function

@n D= [ el = y) PG g,

In order to prove the required regularity, as a test function in (2.4), we choose
p(x) == n(x)v(x),

where v is the solution of the problem

“2) {(_A)sw =Dy g inBis,

J— s c
w=0 in B{_;.

We notice that ¢ is an admissible test function since (—A)*¢ € L¥([RY) c L2(RY).
Since 7 is supported in B;_,5, we have

0= /]RN u(=A)’epdx = /l;N u(—=A) (nv)dx

=/ uv(—A)sr]dx—l—/ un(—A)svdx—/ uls(n,v)dx,
Bi—s B2 RN
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where [ is defined in (3.3). It follows

4.3) / unDy ,udx
Bi—2s

A

/ uv(—A)’ndx
Bi—s

+ '/RN uls(n,v)dx

=:|C1| + |C2|.

First of all, rewrite the left-hand side of (4.3) as
(4.4) / unDy_udx
RN

=/ M(X)n(x)dx/R ,71(|x_y|)’7(x)“(x)—?7(y)u(y) dy

|x_y|N+2s
n(x)u(x) —n(u())?
= 2G7Ir n(”)

Let us estimate the term C,. We write C, = C3 + Cy4, where

c, ::/B W) dx /RN (v(X)—v(y))(n(X)—n(y))dy’

|x — y|N+2s
() —v(»)(n(x) - n(y))
Cy = /;;]C 3M(X)dx/RN X — y|[Nr2s dy
We have
B (@) —vm) (1) — 1) |
45) |G| = '/Bl—a u(x)dx /]RN Ix — y|N+2s y‘

< ”””szl_s)( /R ) ( /R ) (v(x) —|v(y)})}fNEiC2)s—n(y)) ) dx)l/z
(/RN %dy)dx)l/z
<comia( [, [, S r wa)

= CullL2s,_g) [V]as®n)-
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Now, in order to estimate the right-hand side in (4.5), we use that v is a weak solution
of (4.2); by testing against v itself, we obtain

(v(x) —v(y)
(46) [v]iIS(RN) Z/l; AN |X— |N+23 dy

=2/ v(=A)’vdx =2/ vDy udx
RN i

- 2/ vx)dx RN (U(X)T(X) _|135r);)su(y)) ne(lx — yl)dy

/RN /RN( v(x)_fi(fi) m(lx—yl))

.(“’“”““"2&{3““” (i =oD)e
lx — y|

(x)—v(y) 1/2
(/]RN /I;N Txx_ |11:IJ,J-)25) 77r(|x—y|)dy)
- 1/2
. ( fR d /R ) (U(X)IL(CX_) y@(fz)f(y)) (i — dey)

< las®ny /Gy, .y (W),

where in the first estimate we applied the Holder inequality with exponent 2 and in the

second one we took into account that ||9¢||zo0((0,00)) = 1. Summarising,

4.7) ]gs@yy = 4/Gy, W),

and thus by (4.5), we get

(4.8) 1C3l = ClullL2(B,_y5) 1/ Gy .y 0)-

Let us estimate Cy. Since n(x) = n(y) = 0forx € B{_;and y € B{_,;, we have
(V@) =2 () (1) =)
Cq| = d
ICal '/Blc_awx) o ey

Ry L LR Gl
Bi_s Bi-2s

|x _y|N+2s
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and then

(4.9) |Cal =

u(x) / (1 + |x|N+zs)
— 5o dx ———= |Jv()n(y)dy
/st 1+ |x|V+2s By_os \|x — y|N+2s

Ju(x)] / ( 1+ |y|)N+2S
< —————dx 1+ —— v(y)|dy
/BT—S 1 + |x|N+25 Bi_»s |x - y| | |

< CONullLr@nyvlas @y

< CONulr@nyy/ Gy @)-

In the third inequality, we exploited (4.7), and the second one follows from the Holder
inequality and the fractional Sobolev inequality, see [22, Theorem 6.5]; taking into
account that v has compact support in B;_g, we have

2*—1
IvllL1s) s = [Bi-2sl > V]l 25 gavy = €O, N, $)[v]gs ®n).-
Now, let us estimate the term C;:
(4.10) |Cy| = ‘/ uv(—A)’ndx
B

= ”u”L(Z?)’(BI_S)”v”LZ;k(RN)H(_A)sn”Loo(RN)
= CO]gsmny = C6),/Gy, ,w),

where C(8) > 0 can be explicitly computed, and in the second and third inequalities,
we exploited again the fractional Sobolev inequality and (4.7), respectively.
By putting together (4.5), (4.9) and (4.10) in (4.3) and using equality (4.4), we have

(4.11) Gy ) = C(lull Ly IullL2(s,_s) 8. 1)

Now, we recall that 7, depends on the parameter t € (0, 1/2), but the estimate (4.11)
is uniform with respect to T because the right-hand side is independent of t. Therefore,
estimate (4.11) finally yields

4.12) [nu]iIS(RN) < sup G, ,u) <o,

1€(0,1/2)
where the first inequality holds true in view of Fatou’s lemma. Thus, nu € HS(RY)
and thenu € H{ (B).

In order to complete the proof, let us show that n?u is a compactly supported weak
solution of (—A)*w = f, with f € L2(R¥). This implies that n?u € H?>S(R").



LOCAL REGULARITY OF VERY WEAK S-HARMONIC FUNCTIONS 385

For any ¢ € C°(RY), we have

1/ dx/ (nz(X)u(X)—nz(y)u(y))(<p(X)—w(y))dy
RN RN

|)C _y|N+2s
7 ()u(x) (p(x) — @(»))
/I;N [l‘%N |x_ |N+2s dy

/ u()e(y) (" (y) — n*(x))
]RN

|x _y|N+25

= cy! [R U (—AY (729) (x)dx + [R

u(y) n*(x) — 1*(»))
:/R plx)dx / — N2 dy,

where in the last equality we used that n?¢ € C°(B) and that u is a very weak solution
of (1.2). To conclude, we show that the function f defined a.e. by

2 _ 2
e R

belongs to L2(RY). We point out that

dy

£ = Cy / UG + 1M =) , dy

|x — y|V+2s

_c / [2u(x)n(x)+u(y)n(y)—u(x)n(X)+n(X)(u(y)—u(x))](n(X)—n(y))d
NS Jp |x — y|V+2s g

=2n(x)u(x)(=A)’ n(x) — Is(n, nu)(x) — n(x)Ls(n, u) (x).

The last equality shows that f € L2(RY), as I(n, nu) and n1s(n, u) belong to L (R™Y)
in view of Remark 3.3 and nu(—A)*n, supported in B;_,s, belongs to LZ(R") since
u € L? (B).

We thus obtain that n?u € H2S(R"), and sou € HZ5(B). [

5. FULL REGULARITY

In this section, we prove that a very weak s-harmonic function u is actually a classical
s-harmonic function hence locally smooth. To do this, we use the fact that u is locally
bounded and by fractional De Giorgi estimates proved in [13, Theorem 1.4] also
belongs to C]OC (B) for every y € (0, min{2s, 1}). Then, in Propositions 5.2 and 5.3,
we prove that the operator /5 enjoys useful Holder continuity properties that allow us
to exploit that the function n?u solves the equation (—A)*w = f € C%¥(R¥), and
thenu € /">

PTEB)N L] (RN). Therefore, u is s-harmonic in B in the classical sense

and, by Theorem 5.6, is real analytic in B.
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THEOREM 5.1. Letu € H2(B) N L} (RN) a very weak s-harmonic function in B.
Then, u € C2*(B) for every o = a(s) € (0, min{2s, 1}).

loc

Proor. Sinceu € H2(B)N L} (RY), then u is a local weak solution of (1.2), and

by [13, Theorem 3.2, Remark 3.3], one has that u € L7 (B). Then, the claim plainly
follows from [13, Theorem 1.4]. [ ]

ProposITION 5.2. Let s € (0, 1) and o € (s, min{2s, 1}). Forany f € C%*(R") and
g € COL(RN), we have that
200 — 28 ifo<s <

1
E’
a—2s+1 ifi<s<l1

I(f. g) € COY@NRNY  ywhere y(a, s) = {

and
[ (/. g)]cO.y(a.s)(RN) < C[flcoemn)lglco.1@mny-

Proor. Let x,x’ € RV, x # x/, and let R := |x — x'|. We estimate

G Is(f,9)(x) = I (f, 8)(x)

_/ (fG)=fx=)(gx)—g(x=») = (&)= f&'=»)(g(x)—g(x'~))
~ RN |y|V+2s

dy.

By adding and subtracting ( f(x) — f(x — y))(g(x") — g(x’ — y)) in the numerator
of the integrand in (5.1), we can equivalently write

Li(f.9)x)—I(f.e)(x)=J1 + Ja + J3 + Ja,

where
Jy e /BR (f(x) = f(x =) [(gx) _|yﬁ§VX+;sy)) +(g(x' —y) - g(x’))]dy’
I e /B% (f(x) = fx = )[(gx) _|yg|1(vxi)z)s+ (g(x' —y) —g(x — y))]dy,
Jy e /B R () =g = M)[(f ) —|yj|25)i - M+ =n =S,
Joim /B ; (g(x) — g =) [(/ &) —|y}|f1(viz) (&= =S =],

Now if s < %, we have

dy
|1l = Clflcewmylglcor®yy | Nt
Bpr |y|

= C[flca®m)lglcor@nlx —x'[* 7>+

s
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dy
|2] = Clflce@mlglcor@mylx =1 | —x5a
B, |yl

= Clflce@m)lglcor @nylx —x'[*72F .

The estimate of J3 is analogous to the one of J;, while for J4 we have
dy

|Ja| = C[f]cemmylglcemnylx —X/|a/ Wi e

BS, |Vl

= C[flce@mglca@mylx —x'17*72°.

Since 2o — 25 < o — 25 + 1, we get the thesis.
Ifs > %, the estimates of Ji, J, J3 are analogous to the previous case, while for
J4 we can write

dy
194l = €L lcommlelcorgmbs = ' [ =t
BG 1Y

= C[f]Ca(RN)[g]CO.l(RN)|x — x/|ot—25+1.

Hence, I;( f,g) € C4 2TI(RN), n

ProposiTiON 5.3. Let s € (0,1), « € (s, min{2s, 1}) and B = B(a) := 5y < 55-If
[ € Gol(B) N Ly(RN) and n € CZ°(B), then nl(n, f) € C® (RN) where y :=

loc

(¢ —2s + 1)B and
251, )o@y < C(1f lcom, +1F Ligm)-
where 1’ € (0, 1) is such that B,» = supp 1.
Proor. Let B, € B with0 < r’ < r. Then, f € C%%*(B,). Since
[n2s(n. ) cow @y = Inllcor @my [ s, )| oo
+ Il oo @y | Zs (1. f)Hco.y(Br,)’

we reduce to prove that I;(n, )€ C%7 (B,/). By (3.20), we already know that I (7, f) €
L*®(B,).

Now, let x, x" € B,r, x # x’. We set R := |x — x'|. We assume that R < (%)ﬁ;
otherwise the proof is done. We observe that thanks to the required upper bound on R,
the following inclusions of sets

Brs(x') C B%Rﬁ(x) and B;B(x') C B;Tﬁ(x)
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hold true. We write

(62 L, /)~ Is(n, £H(x)]
(fx) = fO) (n(x) — n(»)) dy—/ (f(x/)—f(J’))(ﬂ(X/)—ﬂ(J’))
RN

‘ RN |x — y|N+2s

|x/ _ y|N+2?
|/ ) = fO)|ln(x) — n(y)l
= / 1B () |x — y|N+2s
SN = fOD)|[nGx) - n(y)l
+/R5(x’) |x/ — y| N +2s
(f@) = FG) () =0 () — %(ﬂx’)—ﬂy»(nm—n(y))
‘/ N+2s dy
By () Ix =l
|f ) = fO)||n(x) — n(y)l
S/B3Rﬁ<x> |x — y|N+2s
|f&) = fFO)[n(x) = n(y)l
+[R5(x/) |x/ — y|N+2s
(/)= £ ) (1) =0 (7)) - %(ﬂx')—ﬂy»(n(m—n(y))
‘/B ) e —y V¥R g '
RB
< C[f]COOt(B )R(a 25+1)B8
(F)= ) () —n () = B2 (F 6D = FO)) (1) =)
| @/
B4 (x) |x—y[N+2s

= C[f]cO.a(Br)R(a 2Y+1)B + |B|

By adding and subtracting </ If: (yy)?("(x )=10)) (4 the integrand defining B, we have

|B| <

[ (f)=F)((x)=n() = (f&) = () (n(x)— n(y)) ‘
B¢, 5 (X))

|x y|N+2s
/c ’
BR (x)

</ If(x)n(X)—f(x/)n(x/)}
- PIE))

1 1
|x — y|N+2s |5/ — y|N+2s

| ()= FO)||n(x") —n(»)|dy

[x — y|V+2s

+[ ||| (x) — n(x")] y+/ [ fx)— f(X’)I
BCB(X/) B‘ﬂ(’c/)

¢ |x — y|N+2s Ix — y|N+2s
+ [ L @) — FO) G — 1) ld
B;ﬁ(x/) |x—y|N+2S |x /_y|N+2s yIm nw)ay
| F)n(x) — f(x/)n(X’)l
S/ 'B(X) |x_y|N+23

2
|f(Y)||7/(x)—77(x’)| }n(y)||f(X)—f(X’)|
+/;BCRH (x) |x — y|V+2s +/1;?‘ﬁ(x) lx — y|N+2s
2
* A;B(X/)

=: By + B> + B3 + By.

2
x — y1|N+2S T — yl|N+25 |F &) = D [nx") = n(»)|dy
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Now we estimate B; for any i € {1, 2, 3, 4}:

dy _
(53) B < C[nu]co,a(sz)R“/ , ———— < C[nu]coagny R,
B, () X =l
RP/2
(54) B, < CR(/ %dy +[ %dy)
By ,(INBr lx—y| B ,(NBS lx—y|

dy FA6R]
< CR (||f||Loo 5 f A ey [ L,
(Br) 323/2(” |x_y|N+2s B 1+|y|N+2s

< CR(C1|| f Il R+ Cror)| f 1wy
< Crr' . N.s)(IflLoosyy + I1f L1 @ny) R* T
< Crr' . N.s)(I|f lLoosyy + 11 1wy RO,

dy _
(5.5) B3 = C[f]co(s, ) R” /C Ty < C[f]co«(s,)R* 2bs
BRB/2(x)
For B4 we write
1 1
By = /B oo | s OOl )l
RB "
1
o e e 60l -y
RB r
= D1 + D2.

Using the Fundamental Theorem of Calculus, we write

1
|x — y|N+2s o |x/ — y|N+2s

< CN,slx _x/“x/ _y|—N—2S—1‘

Therefore,

(56) Di< C[f]co,a(Br,)R/ N2 g

Blp ()
= C[f]CO,a(B’_,)R1+’B(a_2s) < C[f]CO.a(Br/)R(a_2s+l)ﬂ,

To conclude for D5, we have

SO = fO[Ix" = pllx" =y 7V dy

¢ 5 (NNBS

dy | f(
sCR(nfnm, [ e [ e
(B,1) B o5 () |x/_y|N+2s Be |x/_y|N+2s

5.7) Dy < CR/
B
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) 70|
<CR(C o8, ) R72P5 + C(r.r' / | d
< CR(Cll e R+ conr) [ I

< COur' N (1 f oo,y + 1 Dl vy RV 268
< COur N (1 f oo,y + 1 Nl vy RE28.

Putting (5.3), (5.4), (5.5), (5.6) and (5.7) into (5.2) and taking into account that
(¢ —2s 4+ 1)B = a — 28s by the choice of 8, our claim is proved. ]

THEOREM 5.4. Letu € Clg;y (B) N LYRN) for some y € (0, 1) avery weak s-harmonic
functionin B. Then, u € C1y+2S (B) N LL(RN); hence, u is s-harmonic in the classical

oC
sense in B.

Proor. Let n € CX°(B). By Theorem 4.1, the function n?u is a weak solution of
(=A)w = f in RN with f := 2nu(—=A)*n — Is(n, nu) — nls(n, u). Moreover by
applying Theorem 5.1 with « € (s, min{2s, 1}) and Propositions 5.2 and 5.3, we
have that f € C%Y(R¥). Therefore, by using Schauder estimates for bounded weak
solutions to (—A)Sw = f (see [44, Proposition 2.8] or [45, Theorem 15]), it follows that
nueCOV2RN)if0 <y +2s <lorn?u e CWY+25IRN)ifl <y +25 <2
or nu € C>Y*+22(RN)if 2 < y + 25 < 3.If y + 25 € N, apply Propositions 5.2
and 5.3 replacing o with o1 such that ; + 25 ¢ N. By the arbitrariness of 1, we get
the thesis. ]

REMARK 5.5. Notice that when s € (0, %), Theorem 5.4 also follows from [11, The-
orem 3.5] applied with p = 2.

THEOREM 5.6. Let u € CV+ZS(B) N LYRN) for some y € (0, 1) a very weak s-

loc
harmonic function in B. Then, u is real analytic in B.

Proor. Let§ € (0,1)and R =R(8):=1-3,r=r@):=1-24,rg=ro(§):=1-6.
By Theorem 5.4, u is a classical solution of

5.8) (=A)*w =0 in B,,
' w=~h in B¢,
where
. u in B,
. g in B€.

Since h € C(Bg) N L(RY) if for p > 0 we set

pZ—IXIZ)S 1
yl2=p2) |x—yI¥

Py(x.y) = cN,s(
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the fractional Poisson kernel (see [14]) for B, for any x € B, and y € B¢, the function

(59) un)i= [ PG by
B
is well posed for every x € B;. Indeed

10 o] < [
BR\B

R

Po e y)|h()|dy + /B POy
+ / Py (. y)|h()|dy
BC
=/ Pr(x,y)lu(y)}dw[ Py y)|u ()| dy
BRr\B; B\Bp

L (x, d
+/BC Pr(x,y)|g(»)|dy

2s

(RZ—r2)s(R—r)N ”u”Ll(B)

< Il [ Preo)dy +
lu(y)|
C —
+ r,R,N,s /IRN 1+|y|N+2s y
< C(r, R N.s)(lullzoo sy + lull 1 govs)-
By [14, Theorem 2.10], the function uy, is a classical solution of (5.8). By the uniqueness

of solutions of (5.8) (see [16, Theorem 3.3.2]), we conclude that u;, = u in B,.
Moreover, for every y € B¢, the function

r2 —|x?)°
Br() 35X %
|x — ¥
is smooth, and it is easy to check that
(511) |(8;Pr)(x’ y)| E Cll‘l!c(ra ro, N,S)Pr(X, y)

for every x € By,, y € BS and 1 € N . Therefore, by differentiating under integral
sign formula (5.9) by estimates (5.10), (5.11), we have

ID*ul|Loo(B,,) < MIC(R, 7,10, N, s) (|1l Loo ) + lull L1 mvy)
forany (¢ € Név . From the arbitrariness of § € (0, 1), we get the thesis. n
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