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Abstract. – In this paper, we study plus-one generated arrangements of conics and lines in the
complex projective plane with simple singularities. We provide several degree-wise classification
results that allow us to construct explicit examples of such arrangements.
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1. Introduction

Recently introduced by Abe in [1], the class of plus-one generated arrangements of
hyperplanes proved to be strongly connected to the class of free hyperplane arrange-
ments, a connection that we will explain shortly.

Let us recall that an arrangement of hyperplanes is called free if its associated
module of derivations is a free module over the coordinate ring (see [18] for a compre-
hensive survey on the freeness for hyperplane arrangements). For a plus-one generated
arrangement, the associated module of derivations is no longer free, but it admits a very
simple minimal free resolution, so it is, in a way, a natural step away from the freeness
property. These definitions are easily rephrased for curves, via associated modules of
derivations; see Definitions 2.1 and 2.3 in Section 2 for details.

In the case of projective line arrangements, the plus-one generated property appears
in close relation to freeness. More precisely, if one deletes a line from a free arrangement,
then the resulting arrangement is either free or plus-one generated, and the same goes
for the addition of a line; see Theorem 2.7. When passing to higher dimensions, i.e.,
for arrangements of hyperplanes, the result of the deletion from a free arrangement is
still either free or plus-one generated. On the other hand, the addition of a hyperplane
to a free arrangement does not produce only free or plus-one generated arrangements;
see [1]. However, in [2], a ‘dual’ notion of plus-one generated is introduced, based
on the algebra of logarithmic differential forms on a hyperplane arrangement, and the
addition behaves well with respect to this dual notion.

https://creativecommons.org/licenses/by/4.0/
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One can wonder whether the same kind of behavior occurs for reduced plane curves,
or at least for certain types of reduced curves, such as conic-line arrangements. Recently
proven results from [4,13] show that the deletion or addition of a line from/to a free
conic-line arrangement produces a free or a plus-one generated conic-line arrangement.
Our examples so far seem to support the hypothesis that deleting a conic from a conic-
line arrangement results in either a free or a plus-one generated conic-line arrangement.
The addition of a conic does not follow the same pattern, as illustrated by Example 2.9.

In Section 2, we make an inventory of notions and results in the field that we rely on
and present a set of examples relevant to the relation between being free and plus-one
generated for conic-line arrangements.

In Section 3, we present classification results for plus-one generated conic-line
arrangements, under some restrictions on the types of singularities and value of the
defect (see Section 2 for the definition). One finds that such restrictions limit severely
the number of irreducible components of such arrangements and we can compare
these results with similar ones on free and nearly-free arrangements from [6,16]. In
Theorem 3.1, we consider the case of plus-one generated arrangements of conics with
some simple singularities and the defect equal to 2, which is the smallest possible
value for a defect that does not produce a nearly-free curve, and we prove that such an
arrangement can contain at most 4 conics. In Theorem 3.4, we work with conic-line
arrangements having at least one line and one conic with simple singularities and
defect 2, to reach the conclusion that the number of irreducible components of such an
arrangement can be at most 9. The added value of our work is the number of examples
of plus-one generated conic-line arrangements that appear in our proofs.

2. Preliminaries

Let us start with a general introduction. Denote by f 2 S D CŒx; y; z� the defining
polynomial of a reduced plane curve C W f D 0 in P2C such that f D f1 � � � fk and
GCD.fi ; fj / D 1 for i ¤ j . It means that C consists of k irreducible components
C D ¹C1; : : : ;Ckºwith Ci W fi D 0. Let Der.S/D S � @x ˚ S � @y ˚ S � @z . We define
D.C/ to be the derivation module associated with C ; namely,

D.C/ D
®
� 2 Der.S/ W �.f / 2 hf i

¯
:

Since for every element � 2 Der.S/, we have

�.f1 � � � fk/ D f1�.f2 � � � fk/C f2 � � � fk�.f1/;

then by the inductive application of the above identity, we obtain also

(2.1) D.C/ D
®
� 2 Der.S/ W �.fi / 2 hfi i; i D 1; : : : ; k

¯
:
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It is well known that
D.C/ D S � ıE ˚D0.C/;

where ıE denotes the Euler derivation, i.e., ıE WD x@x C y@y C z@z , and D0.C/ is
the submodule of D.C/ defined by

D0.C/ WD
®
� 2 Der.S/ W �.f / D 0

¯
:

Definition 2.1. We say that a reduced plane curve C W f D 0 with f 2 Sd for d � 1
is free if D0.C/ D S.�d1/˚ S.�d2/ with d1 � d2. The pair exp.C/ D .d1; d2/ is
called the exponents of C .

In order to introduce the second most important class of reduced curves in our
investigations, we need the following general definition. Before that, let us define by
M.f / D S=Jf the Milnor algebra, where Jf is the Jacobian ideal generated by all the
partial derivatives of f .

Definition 2.2. We say that a reduced plane curve C is an m-syzygy curve when the
associated Milnor algebra M.f / has the following minimal graded free resolution:

0!

m�2M
iD1

S.�ei /!

mM
iD1

S.1 � d � di /! S3.1 � d/! S !M.f /! 0

with e1 � e2 � � � � � em�2 and 1 � d1 � � � � � dm. Them-tuple .d1; : : : ; dm/ is called
the exponents of C .

Definition 2.3. A reduced curve C in P2C is called plus-one generated with the
exponents .d1; d2/, d1 � d2, and level d3 ifD0.C/ admits a minimal resolution of the
form:

0! S.�d3 � 1/! S.�d3/˚ S.�d2/˚ S.�d1/! D0.C/! 0:

Remark 2.4. (1) A 3-syzygy reduced curve C in P2C of degree d and exponents
.d1; d2; d3/ such that d1 C d2 D d is precisely a plus-one generated curve with expo-
nents .d1; d2/ and level d3.

(2) If C is a plus-one generated curve with d2 D d3, then C is called nearly-free.

We will need the following characterization of plus-one generated reduced plane
curves which comes from [9]. Here, by �.C/ we denote the total Tjurina number of a
given reduced curve C � P2C; namely,

deg.Jf / D �.C/ D
X

p2Sing.C/

�p

with �p being a local Tjurina number of a singular point p 2 C .
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Proposition 2.5 (Dimca–Sticlaru). Let C W f D0 be a reduced 3-syzygy curve of degree
d � 3 with the exponents .d1; d2; d3/. Then, C is plus-one generated if and only if

�.C/ D .d � 1/2 � d1.d � d1 � 1/ � .d3 � d2 C 1/:

Definition 2.6. The number �.C/ WD .d3 � d2 C 1/ is called the defect of C .

It is clear from the definitions of free and nearly-free curves that if C is plus-one
generated with d3 > d2, then �.C/ � 2. From now on, we will focus on the case when
�.C/ D 2.

Assume from now that C is a conic-line arrangement consisting of k smooth conics
and d lines. Moreover, we will work with the case where all singularities of C are
quasi-homogeneous; i.e., for every singular point p 2 Sing.C/, one has �p D �p , where
�p denotes the local Milnor number and �p is the local Tjurina number.

In the theory of line arrangements, we have some natural techniques that allow us to
construct new examples of either free or plus-one generated arrangements, namely,
addition-deletion techniques. More precisely, we have the following result proved by Abe.

Theorem 2.7 ([1, Theorem 1.11]). Let A be a free arrangement of lines in P2C . Then:

(1) For L 2 A, the subarrangement A n ¹Lº is either free or plus-one generated.

(2) Let L be a line in P2C . Then, the arrangement A [ ¹Lº is either free or plus-one
generated.

In fact, a deletion type result as above holds in arbitrary dimension for hyperplane
arrangements; see [1, Theorem 1.4]. However, this is no longer the case for addition;
see for instance [1, Example 7.4].

In the world of conic-line arrangements in the plane, it is very natural to wonder
whether we can use similar addition-deletion techniques to construct new examples
of free or plus-one generated arrangements. The main difference is based on the fact
that we can add/delete either a conic or a line. By [4, 13], if we have a free conic-line
arrangement and we add or delete a line, then the resulting arrangement is either free
or plus-one generated. On the other hand, with the addition of either a conic or a line,
we can get the whole spectrum of possibilities. Let us illustrate this slogan with the
following two examples.

Example 2.8. Let us consider the conic-line arrangement XR � P2C given by the
following defining polynomial:

Q.x; y; z/ D .x2 C 2xy C y2 � xz/.x2 C xy C 2yz � z2/.x2 C xz C yz/

� .x2 C xy C z2/.x2 C 2xy � xz C yz/.x2 � y2 C xz C 2yz/

� y.x C z/.x C y � z/.x C y C z/.x � z/
�
x C

1

2
y
�
:
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This arrangement has 9 ordinary sixfold and 12 double intersection points. It is also
worth noticing that all singularities are quasi-homogeneous. Using SINGULAR, we can
check that the arrangement XR is free with exponents .d1; d2/ D .4; 13/. Now we
perform the addition technique. If we add to XR the line ` W xC 2y C 4z D 0, then the
arrangement is plus-one generated with exponents .d1; d2; d3/ D .5; 14; 17/. Looking
more precisely, by adding the line `, we introduce 18 additional double points to the
resulting arrangement.

However, using the same addition trick, we can obtain a free arrangement of conics
and lines, and this can be achieved by adding to XR, for instance, the line `0 W z D 0.

Example 2.9. Let us consider a conic-line arrangement CL � P2C given by the
following defining polynomial:

Q.x; y; z/ D .x2 C y2 � z2/.y � z/.x2 � z2/:

This arrangement is known to be free [7, Example 4.14]. Observe that it has 3 nodes
(A1 singularities) and 3 tacnodes (A3 singularities), and this gives us �.CL/ D 12. If
we add the conic C W y2 � xz D 0 to CL, then, using SINGULAR, we can check that
the resulting arrangement is only 4-syzygy.

As we will see in next section, the addition-deletion techniques are not always
sufficient in our classification considerations, mainly due to the fact that there are not
that many known examples of free conic-line arrangements with simple singularities.
For example, there are no free conic arrangements with only nodes and tacnodes as
singularities [6, Proposition 1.5], but there are plus-one generated conic arrangements
with nodes and tacnodes. This is the main reason why we are forced to use different
techniques to obtain our results. On the other hand, our combinatorial techniques can
be applied more generally, so we hope that they will be useful in further research.

3. Plus-one generated arrangements with certain ADE singularities

Our aim here is to provide a degree-wise characterization of plus-one generated with
some prescribed ADE singularities. We start with arrangements of conics in the plane.
Our result is inspired by a recent paper due to Dimca, Janasz, and the second author
devoted to conic arrangements in the plane admitting nodes and tacnodes [6].

Theorem 3.1. Let C � P2C be an arrangement of k � 2 smooth conics such that they
admit n2 nodes, t2 tacnodes, and n3 ordinary triple points. Assume that C is plus-one
generated with the defect �.C/ D 2; then, k 2 ¹2; 3; 4º.

Proof. Using Proposition 2.5, if C is plus-one generated of degree d D 2k with k � 2
and �.C/ D 2, then we have

d21 � d1.2k � 1/C .2k � 1/
2
D �.C/C �.C/ D n2 C 3t2 C 4n3 C 2:
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Recall that we have the following combinatorial count:

(3.1) 4 �

�
k

2

�
D n2 C 2t2 C 3n3:

Combining these two equations, we get

d21 � d1.2k � 1/C .2k � 1/
2
D t2 C n3 C 2.k

2
� k C 1/:

Simple manipulations lead us to

(3.2) d21 � d1.2k � 1/C 2k
2
� 2k � 1 � .t2 C n3/ D 0:

If C is plus-one generated, then the discriminant4d1 of (3.2) satisfies

4d1 D .2k � 1/
2
� 4

�
2k2 � 2k � 1 � .t2 C n3/

�
� 0:

This gives us

t2 C n3 � k
2
� k �

5

4
:

Observe that

4 �

�
k

2

�
D 2.k2 � k/ D n2 C n3 C 2.t2 C n3/ � n2 C n3 C 2.k

2
� k/ �

5

2
;

and we finally get
0 � n2 C n3 � 2:

On the other hand,

4 �

�
k

2

�
D n2 C 2t2 C 3n3 � 2t2 C 3.n2 C n3/ � 2t2 C 6;

so we have

(3.3) t2 � k.k � 1/ � 3:

Using these combinatorial constraints, we see that for k D 2, one has t2 � 0 and
n2 C n3 � 2, and we will return to this case in a moment. Now suppose that k � 3.
Using the same argument as in [15, Remark 3.3] (including the data on the triple
intersections), we can observe that

(3.4) t2 �
4

9
k2 C

4

3
k;

and we arrive at the following chain of inequalities:

k.k � 1/ � 3 � t2 �
4

9
k2 C

4

3
k:
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This gives us that k � 5. Let us consider the case k D 5. Using our bound on the
number of tacnodes, we obtain

t2 � k.k � 1/ � 3 D 17:

By (3.4), we see that for k D 5, we have t2 � 17, so from now on we will assume that
C is plus-one generated such that t2 D 17. Note that the following weak combinatorics
can only occur:

.n2; t2; n3/ 2
®
.6; 17; 0/; .3; 17; 1/; .0; 17; 2/

¯
;

so in order to get a plus-one generated example, one needs to decide whether there
exists an arrangement of k D 5 conics with t2 D 17 and n3 D 2. By [15, Theorem B],
the following Hirzebruch-type inequality holds (when k � 3):

(3.5) 8k C n2 C
3

4
n3 �

5

2
t2:

However, if we plug .kIn2; t2; n3/D .5I0; 17; 2/ into (3.5), then we get a contradiction,
which means that such an arrangement cannot exist.

To complete our proof, we need to show that for each k 2 ¹2; 3; 4º, we have an
example of a plus-one generated arrangement.

.k D 2/ In this case, we should have n2C n3 � 2 and t2 � 0. If we assume that t2 D 2,
then the arrangement is nearly-free by [6], so we can exclude this case. The next
possible case is t2 D 1 and n2 D 2, and in this situation, we have �.C/ D 5. We
show that such a weak combinatorics leads to a plus-one generated example. Let
us take

Q.x; y; z/ D .x2 C y2 � z2/ �

�
x2 �

13

10
xz C

36

10
y2 �

23

10
z2
�

as the defining equation of our arrangement. We can check using SINGULAR that
.d1; d2; d3/ D .2; 2; 3/, and this implies that C is plus-one generated.

.k D 3/ Using [14, Proposition 5], if we have an arrangement of 3 conics with 5
tacnodes, then these three conics are projectively equivalent to the three conics
given by the equations:

x2 C y2 � z2 D 0;

`2x2 C .`2 C 1/y2 � 2`yz D 0;

m2x2 C .m2 C 1/y2 � 2myz D 0;

where `; m 2 C n ¹0;˙1º, ` ¤ m, `m ¤ 1. Let us take ` D 2, m D �2, and
denote byQ.x;y; z/ the defining equations of these three conics. Then, �.C/D 17
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since t2 D 5, n2 D 2, and .d1; d2; d3/ D .3; 3; 4/, which means that C is plus-one
generated.

.k D 4/ Using [14, Proposition 7 (b)], if we have an arrangement of 4 conics with 11
tacnodes, then these four conics are projectively equivalent to the conics given by
the following equations:

x2 C y2 � z2 D 0; x2 C r2y2 � r2z2 D 0; x2 C .r2 C 1/y2 ˙ 2ryz;

where r 2C n ¹0;˙1;˙�º. Let us take r D 2 and denote byQ.x;y; z/ the defining
equation of our arrangement C . We have �.C/ D 35 since t2 D 11 and n2 D 2.
Using SINGULAR, we can check that .d1; d2; d3/ D .4; 4; 5/, which tells us that C

is plus-one generated.

This completes the proof.

If we allow having arrangements of conics and lines, then we can find more examples
of plus-one generated arrangements. Let us start with the case when we have only
double intersection points.

Proposition 3.2. Let CL � P2C be an arrangement consisting of k � 1 conics and
d � 1 lines. Assume that CL has only n2 double intersection points and is plus-one
generated with d3 > d2. Then, .k; d In2/ D .1; 2I 5/. In other words, we have exactly
one weak combinatorics for conic-line arrangements with only double intersection
points which leads to a plus-one generated arrangement.

Proof. Denote by m D 2k C d the degree of the arrangement. Since CL is plus-one
generated with the exponents .d1; d2; d3/ such that d1 � d2 < d3, and d1 C d2 D m,
then by [8, Theorem 2.1], one has

m

2
� d1 � m � 2;

and this follows from the fact that the log-canonical threshold for nodes is equal to 1.
This implies that 3 � m � 4. If m D 3, then we have k D 1 and d D 1, and an easy
inspection shows us that the only possible case is to have n2 D 2. However, such an
arrangement is nearly-free, i.e., d3 D d2, so we exclude this case. Let us pass to the
case when m D 4. It means that we have k D 1 and d D 2. Using the Bézout theorem,
we must have exactly five nodes. Now we are going to give a geometric realization of
the weak combinatorics .k; d In2/ D .1; 2I 5/. Let us consider arrangement C defined
by the following polynomial:

Q.x; y; z/ D xy.x2 C y2 � z2/:
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We have exactly n2 D 5 nodes, and using SINGULAR, we can check that

.d1; d2; d3/ D .2; 2; 3/;

so C is plus-one generated.

Now we pass to the arrangements of k � 1 conics and d � 1 lines such that these
admit n2 nodes, t2 tacnodes, and n3 ordinary triple points. We will need the following
general result.

Proposition 3.3. Let C W f D 0 be a plus-one generated curve of degreem admitting
only nodes, tacnodes, and ordinary triple points as singularities. Then,

m

2
� d1 �

2

3
m � 2:

In particular, we have that m � 12.

Proof. It follows from [7, Proposition 4.7].

Using this result, we can provide a degree-wise classification of a certain class of
plus-one generated conic-line arrangements.

Theorem 3.4. Let CL� P2C be an arrangement of k � 1 conics and d � 1 lines admit-
ting only n2 nodes, t2 tacnodes, and n3 ordinary triple points. Assume furthermore that
CL is plus-one generated with �.CL/ D 2. Then,m WD 2k C d 2 ¹4; 5; 6; 7; 8; 9; 10º,
possibly except the cases m D 9 or m D 10.

Proof. Using Propositions 3.3 and 3.2, we see that m 2 ¹4; : : : ; 12º. We start with a
degree-wise characterization. For m D 4, we have a plus-one generated arrangement
described in Proposition 3.2, so we are going to present constructions of plus-one
generated conic-line arrangements in degreesm 2 ¹5; 6; 7; 8ºwith types of singularities
prescribed above.

.m D 5/ Let CL5 be defined by the following polynomial:

Q.x; y; z/ D x.x � y/.x C y/.x2 C y2 � z2/:

Here, we have n3 D 1 and n2 D 6, so �.CL5/ D 10. Then, we can check directly,
using SINGULAR, that .d1; d2; d3/ D .2; 3; 4/, so CL5 is plus-one generated.

.m D 6/ Let CL6 be defined by the following polynomial:

Q.x; y; z/ D x.y � x/.y C x/.x2 C y2 � z2/

�
y �

p
2

2
z

�
:
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Here, we have n3 D 3 and n2 D 5, so �.CL6/ D 17. Then, we can check directly,
using SINGULAR, that .d1; d2; d3/ D .3; 3; 4/, so CL6 is plus-one generated.

.m D 7/ Let CL7 be defined by the following polynomial:

Q.x; y; z/ D x.y � x/.y C x/.x2 C y2 � z2/

�
y �

p
2

2
z

��
y C

p
2

2
z

�
:

Here, we have n3 D 5 and n2 D 5, so �.CL6/ D 25. Then, we can check directly,
using SINGULAR, that .d1; d2; d3/ D .3; 4; 5/, so CL7 is plus-one generated.

.m D 8/ Let us consider the arrangement CL8 that is given by the following defining
polynomial:

Q.x; y; z/ D .x � y/.x C y/.x � z/.x C z/.y � z/.y C z/.x2 C y2 � z2/:

It is easy to see that we haven2D 7, t2D 4 andn3D 4, which gives us �.CL8/D 35.
Using SINGULAR, we can check that .d1; d2; d3/ D .4; 4; 5/, so CL8 is plus-one
generated.

Now we are going to exclude the existence of arrangements with m 2 ¹11; 12º.

.m D 11/ Using Proposition 3.3, we see that

11

2
� d1 �

22

3
� 2;

and since d1 2 Z�0, we arrive at a contradiction.

.m D 12/ We are going to use two important combinatorial constraints. First of all,
we have the naive combinatorial count:

(3.6)
�
12

2

�
� k D

�
m

2

�
� k D n2 C 2t2 C 3n3:

Next, we will use the following Hirzebruch-type inequality [11, Proposition 4.4]:

(3.7) 8k C n2 C n3 � 8k C n2 C
3

4
n3 � d C

5

2
t2:

By our assumption, considered arrangements are plus-one generated, so using
Proposition 3.3, we see that

6 D
m

2
� d1 �

2

3
� 12 � 2 D 6;

so we arrive at the case d1 D d2 D 6 and d3 > 6. By Proposition 2.5, we get

(3.8) 89 D d21 � d1.m � 1/C .m � 1/
2
� �.CL/ D n2 C 3t2 C 4n3:
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Combining (3.8) with the (naive) combinatorial count, we arrive at

t2 C n3 D 23C k; n2 C n3 D 20 � 3k:

From Hirzebruch-type inequality, we get

5k C 20 D 8k C n2 C n3 � d C
5

2
t2;

so we have found the following upper-bound on the number of tacnodes:

t2 �
2

5

�
5k C 20

�
�
2

5
d D 2k C 8 �

2

5
d:

Using the above constraints, we have the following possibilities:

k d n3 � t2 � n3 C t2 �

1 10 17 6 23
2 8 14 8 22
3 6 11 11 22
4 4 8 14 22
5 2 5 17 22

Since t2 C n3 D 23C k � 24, we get a contradiction.

Now we would like to give an interpretation of the sequence of inclusions

CL5 � CL6 � CL7

of the examples constructed in Theorem 3.4. This phenomenon can be explained
by the next addition type result for plus-one generated conic-line arrangements. Let
us formulate our result in a broader setting, namely, for curves C that have quasi-
homogeneous singularities (i.e., for all singular points p 2 Sing.C/, we have �p D �p),
as it may be applied in further research.

Proposition 3.5. Let C 0 be a plus-one generated curve having defect �.C 0/ D 2 and
the exponents .d 01; d

0
2/ with level d 03, and let L be a line that is not an irreducible

component of C 0 such that the curve C WD C 0 [ L is again plus-one generated with
defect �.C/ D 2. Suppose that both C 0 and C have quasi-homogeneous singularities.
Then, jC 0 \ Lj 2 ¹d 01 C 1; d

0
2º.

Proof. Let us denote by ˛L a homogeneous linear form that defines the line L. By
[17, Theorem 1.6, Remark 1.8], we have the following exact sequence of vector bundles

(3.9) 0! EC 0.�1/
˛L
��! EC ! OL

�
1 � jC 0 \ Lj

�
! 0;
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where EC denotes the locally free sheaf (i.e. vector bundle) obtained by the sheafification
of the graded moduleD0.C/ (see, for instance, [3] for general considerations and results
on this bundle of logarithmic vector fields associated to a reduced plane curve). We will
compute jC 0 \ Lj via Chern numbers associated with the vector bundles in sequence
(3.9). For a complex vector bundle E , we denote by ci .E/ the i -th Chern number of E .
The exact sequence (3.9) implies the equality

c2.EC / D c2
�
EC 0.�1/

�
C c1

�
EC 0.�1/

�
c1
�
OL
�
1 � jC 0 \ Lj

��
C c2

�
OL
�
1 � jC 0 \ Lj

��
I

(3.10)

see, for instance, [10, Section 3] for details.
If C is plus-one generated with exponents .d1; d2/ and level d3, then we get, directly

from Definition 2.3, formulas for the Chern numbers of the associated vector bundle EC ,
in terms of the exponents and level. We will leave the details of this easy computation
to the interested reader (check [10] for the general theory and computations on Chern
numbers). We have

c1.EC / D 1 � d1 � d2;(3.11)

c2.EC / D d1.d2 � 1/C d3 � d2 C 1:(3.12)

Since �.C 0/ D �.C/ D 2 in our hypothesis, we have d 03 � d
0
2 D d3 � d2 D 1. Now

we will substitute the formulas for Chern numbers (3.11) and (3.12) in the equality
(3.10), taking into account also the formula for the Chern polynomial of EC 0.�1/ D

EC 0 ˝OP2
OP2.�1/ in terms of the Chern polynomial of EC 0 ; see again [10, Section 3].

We obtain the equality

c2.EC / D
�
c2.EC 0/ � c1.EC 0/C 1

�
C
�
� 2C c1.EC 0/

�
C c2

�
OL
�
1 � jC 0 \ Lj

��
;

or explicitly

d1.d2 � 1/C 2 D
�
d 01.d

0
2 � 1/C 2 � .1 � d

0
1 � d

0
2/C 1

�
C
�
� 2C .1 � d 01 � d

0
2/
�
C jC 0 \ Lj:

(3.13)

Observe that by [5, Proposition 3.1] we have d1 2 ¹d 01; d
0
1 C 1º. To complete our proof,

let us first consider the case d1 D d 01. Then, d2 D d 02 C 1 and (3.13) becomes

jC 0 \ Lj D d 01 C 1:

Secondly, if d1 D d 01 C 1, then d2 D d 02, and (3.13) becomes

jC 0 \ Lj D d 02:
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In conclusion, we necessarily get

jC 0 \ Lj 2 ¹d 01 C 1; d
0
2º;

which completes the proof.

Remark 3.6. Proposition 3.5 states, in particular, that one can obtain from a plus-one
generated conic-line arrangement C 0 with defect 2, by adding a line L, a new plus-one
generated conic-line arrangement C 0 [ ¹Lºwith defect 2 only if the lineL intersects C 0

in a certain number of points, depending on the exponents of C 0. We use this geometric
obstruction when we searched for lines to obtain CL6 from CL5, respectively, CL7

from CL6, in the proof of Theorem 3.4.
Proposition 3.5 also elucidates why the conic-line arrangement CL7 from Theo-

rem 3.4 cannot be extended by adding a line to a plus-one generated arrangement with
the same restrictions on the types of multiple points and defect 2. In this case, it is easy
to see that one cannot add to the conic-line arrangement CL7 a new line L with the
property that such a line intersects CL7 in 4 points, while preserving the restrictions
on the type of singularities for a new conic-line arrangement CL7 [ ¹Lº.

Likewise, it is easy to see that one cannot add to the conic-line arrangement CL8 a
new line L such that L intersects CL8 in 4 or 5 points while preserving the restrictions
on the type of singularities for a new plus-one generated conic-line arrangement
CL8 [ ¹Lº with defect 2.

Remark 3.7. The necessary geometric condition on the line L from Proposition 3.5
is not a sufficient condition, as we can see in the next example. Take L W 2y � �z D 0
with �2 D 2. Consider the conic-line arrangement CL WD CL8 [ ¹Lº. Recall from
the proof of Theorem 3.4 that CL8 is plus-one generated with exponents .4; 4; 5/ and
defect 2. Although jCL8 \ Lj D 5, the arrangement CL is not plus-one generated, as
we can check by SINGULAR computations.

Concluding our investigations, let us point out here that in the case of m 2 ¹9; 10º,
our methods are not sufficient to decide on the existence/non-existence of such plus-one
generated conic-line arrangements since, as usually, such boundary cases are very diffi-
cult to handle. For instance, if we assume that kD1 and dD7, then one has to decide
whether the following weak combinatorics are realizable over the complex numbers:

.k; d In2; t2; n3/ 2
®
.1; 7I 3; 1; 10/; .1; 7I 4; 2; 9/; .1; 7I 5; 3; 8/;

.1; 7I 6; 4; 7/; .1; 7I 7; 5; 6/
¯
:

Here, we show how to exclude the existence of the weak combinatorics

.k; d In2; t2; n3/ D .1; 7I 7; 5; 6/:

In order to do so, we need the following general result.
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Theorem 3.8. Let C � P2C be a reduced curve of degree m � 9 admitting n2 nodes,
t2 tacnodes, and n3 ordinary triple points. Then, for a real number ˛ 2 Œ1=3; 2=3�, one
has

.6˛ � 3˛2/ � n2 C

�
� 6˛2 C 15˛ �

3

8

�
� t2 C

�
�
27

4
˛2 C 18˛

�
� n3

� .3˛ � ˛2/m2 � 3˛m:

(3.14)

Proof. We are going to use directly an orbifold version of the Bogomolov–Miyaoka
inequality. We will work with the pair .P2C; ˛D/ which is going to be log-canonical
and effective. In order to be effective, one requires that ˛ � 3

deg.C/ D
3
m

, and in order
to be log-canonical, ˛ should be less than or equal to the minimum of log-canonical
thresholds of our singular points, which means that ˛ � min¹1; 3

4
; 2
3
º. Summing up,

based on the first part of our discussion, let ˛ 2 Œ3=m; 2=3�. Now we are in a position
that allows us to use the following Langer’s inequality proved in [12]; namely,

(3.15)
X

p2Sing.C/

3
�
˛.�p � 1/C 1 � eorb.p;P

2
C; ˛D/

�
� .3˛ � ˛2/m2 � 3˛m;

where �p is the local Milnor number of p 2 Sing.C / and eorb.p;P2C; ˛D/ denotes
the local orbifold Euler number of p 2 Sing.C /. In our setting, we have the following
values:

Type eorb.p;P2C; ˛D/ ˛

A1 .1 � ˛/2 0 < ˛ � 1

A3
.3�4˛/2

8
1=4 � ˛ � 3=4

D4
.2�3˛/2

4
0 < ˛ � 2=3

Table 1. Local orbifold Euler numbers.

Assume that˛ 2 Œ1=3;2=3�. Then, our inequality follows from plugging the collected
data above into (3.15).

Corollary 3.9. There does not exist a conic-line arrangement CL in P2C having the
weak combinatorics .k; d In2; t2; n3/ D .1; 7I 7; 5; 6/.

Proof. It follows from Theorem 3.8; namely, we can take ˛ D 4
10

and then we can
check that (3.14) does not hold for .k; d In2; t2; n3/ D .1; 7I 7; 5; 6/.
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