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Abstract. – A seed class of exact solutions of the Euler system of two-dimensional relativistic
gasdynamics is derived with an underlying Chaplygin–Kármán–Tsien type constitutive law.
The invariance of the nonlinear relativistic system under multi-parameter reciprocal Bäcklund
transformations is applied to generate a wide class of novel associated solutions with a barotropic
relation. The latter reduces to the standard Chaplygin–Kármán–Tsien gas law in the non-relativistic
limit. An additional invariance of the general relativistic gasdynamics system is established under
a substitution principle. The latter represents an extension of a classical result in non-relativistic
gasdynamics.
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1. Introduction

The relativistic Euler system describes the dynamics of fluid when relativistic effects
become significant. This system consists of partial differential equations derived from
the conservation laws of particle number, momentum, and energy within the framework
of special or general relativity.

To close the system, a constitutive equation of state is required, relating energy to
pressure and particle number. However, unlike in the classical case, determining the
equation of state in relativity is challenging. As a result, the equations of state used are
often only valid in the classical regime where simplified relations apply. As observed
in [34], this is one of the weak points of the theory.

In particular, relativistic gasdynamics systems with classical Chaplygin-type consti-
tutive laws and their generalizations have been the subject of an extensive literature, in
particular, related to Riemann problems (see [7,9,40,41] and works cited therein). Here,
a novel relativistic version of the Chaplygin laws is introduced in the context of a classi-
cal two-dimensional relativistic system due to Taub [37]. In [27], this nonlinear system
of conservation laws has been shown to be invariant under a multi-parameter class of
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reciprocal transformations. The invariance of the 1+1-dimensional Taub relativistic
gas dynamics system under analogous reciprocal transformations had previously been
established in [26]. This represented an extension of invariance under multi-parameter
reciprocal transformations originally derived in 1+1-dimensional non-relativistic gas-
dynamics in [20,21]. In terms of application, this kind of invariant transformations has
been used in [6] in the analysis of the motion of a gas between a driven piston and a
non-uniform shock.

Reciprocal transformations were introduced in [2] in connection with lift and
drag phenomena in two-dimensional isentropic gasdynamics. They were subsequently
shown by Bateman in [3] to constitute a particular class of Bäcklund transformations
[28, 32]. In two-dimensional subsonic gasdynamics, these have a key application in
the reduction of the governing hodograph system with a Chaplygin–Kármán–Tsien
constitutive law to the tractable Cauchy–Riemann system of classical hydrodynamics
[38]. Loewner [13,14] subsequently undertook the systematic construction via Bäcklund
transformations of model constitutive laws in gasdynamics which allow the reduction of
the hodograph system to viable canonical forms in subsonic, transonic, and supersonic
régimes, respectively. In [11, 12], a re-interpretation and extension of the class of
infinitesimal Bäcklund transformations applied in a gasdynamics context in [14] proved
key to the construction of a novel master 2+1-dimensional solitonic system.

Reciprocal transformations associated with admitted conservation laws were intro-
duced in soliton theory in [10] and conjugated with a nonlinear superposition principle
associated with the classical Bianchi permutability theorem which allows the iter-
ative generation of multi-soliton solutions. Such reciprocal transformations were
subsequently applied in [33] in the linkage of the canonical AKNS and WKI inverse
scattering schemes of [1] and [39], respectively. They likewise connect certain classes
of 1+1-dimensional solitonic hierarchies [5, 23, 25]. Reciprocal transformations in
2+1-dimensions were introduced in [22]. Later, the triad of 2+1-dimensional inte-
grable hierarchies of Kadomtsev–Petviashvilli, modified Kadomtsev–Petviashvilli, and
extended 2+1-dimensional Dym type were shown to be linked by conjugation of gauge
and reciprocal transformations.

In magnetogasdynamics, invariance under multi-parameter reciprocal transforma-
tions has been established in [24]. In addition, in [30], a Bäcklund transformation
was coupled with the action on seed vortex motions of a multi-parameter class of
reciprocal transformations to construct periodic solutions of breather-type in super
Alfénic magnetogasdynamics. The constitutive law adopted there was of generalized
Chaplygin–Kármán–Tsien type.

Here, a novel seed class of exact solutions of the Taub system of steady relativistic
gasdynamics is constructed. This seed class is then extended via the action upon it of
multi-parameter reciprocal transformations. In addition, the invariance of the relativistic
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gas dynamic system under an extension of the classical Prim substitution principle is
established.

2. A class of seed solutions in relativistic gasdynamics. Admittance of a
generalized Chaplygin–Kármán–Tsien law

Here, a two-dimensional steady relativistic gasdynamic system with origin in the work
of Taub is considered, which reduces to the system of conservation laws [27]
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In the above, p denotes the pressure, � D nm0 is the mass density, n is the particle
number, and m0 is the mass in the rest frame, while e is the energy density composed
of the internal energy denoted by �" and the rest energy density according to

e D �."C c2/;

where c is the speed of light. In addition,

� D
1p

1 � q2=c2

is the Lorentz factor, where q2 D u2 C v2 is the square modulus of the relativistic gas
velocity qD uiC vj, where i and j are the unit vectors in the x;y direction, respectively.

In the sequel, new variables R and S are introduced according to
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S D �2
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;

(2.5)

whence the system of conservation laws (2.1)–(2.4) becomes

.Ru/x C .Rv/y D 0;(2.6)

.p C Su2/x C .Suv/y D 0;(2.7)
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2/y D 0;(2.8)

.Su/x C .Sv/y D 0:(2.9)
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The seed ansätze
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are now introduced wherein the insertion of (2.10a) and (2.10b) into (2.9) shows that
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with � D ıx � ˇy. The relation (2.10c) then yields
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whence the conservation law (2.7) requires that

.p C Su2/x C .Suv/y D .S
0=S2/Œ��ı � ˛2ı C ˛ˇ� D 0:

Thus, with S 0 ¤ 0,

(2.11) � D ˛.ˇ � ˛ı/=ı;

where the parameters ˛, ˇ and ˇ � ˛ı are taken as non-zero. In a similar manner,
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and the conservation law (2.8), in turn, yields
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so that

(2.12) � D .˛ı � ˇ/=ˇ;

where ˇ,  and ˛ı � ˇ are assumed non-zero. The compatibility of the relations
(2.11) and (2.12) now requires that
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whence
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so that
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Companion relations to (2.10a) and (2.10b) are now introduced in terms of R
according to
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Thus,

� D ˛�;

�.ı � �/ D �.ˇ � �/;

while the conservation law (2.6) requires that
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where R D R.�/ so that
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The relation (2.5) on the use of (2.13) now yields
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The latter pair of relations together show then the seed class of exact solutions (2.10)
of the relativistic gas dynamic system (2.1)–(2.4) is compatible with a barotropic
p.�/-relation.

Therein, the parametric constraints (2.11) and (2.13) combine to show that � D
�.˛2 C 2/ < 0, whence
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;

where S � S.�; c/ is determined by the relation (2.15).
Consider now the particular case ˇ D �. In this case, (2.14) require ı D � . The
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Thus, (2.16) with (2.17) is a generalized Chaplygin–Kármán–Tsien type law result as
when c become large, (2.16) reduce the classical Chaplygin–Kármán–Tsien equation:

p D b �
a2

�
; b D � > 0; a2 D .˛2 C 2/

ˇ̌̌̌
�

˛

ˇ̌̌̌
> 0:

We remark that from (2.16) and (2.17), the derivative of p with respect to � is positive
according to the hyperbolicity condition of the Euler system.

3. Reciprocal invariance

In [27], it was established that the relativistic gasdynamic system (2.6)–(2.9) is invariant
under the 4-parameter class of reciprocal transformations:
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The reciprocal S 0 relation, in turn, gives
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where p0 is the reciprocal pressure.

The action of the above reciprocal transformations on the seed class of solutions
(2.10) of the Taub relativistic gasdynamic system, in view of the relations

S D �=.� � p/; q2 D
˛2 C 2

S2
C ˇ2 C ı2;

results in a barotropic relation p0 D p0.�0/ for the associated multi-parameter class.
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In the non-relativistic reduction c !1, the multi-parameter class of reciprocal
transformations (3.1) reduces to that originally obtained by Bateman in [2]. These
have applications in the linkage of subsonic two-dimensional motions of a Chaplygin–
Kármán–Tsien gas to associated incompressible motions determined by the classical
Cauchy–Riemann system. In that context, the reciprocal variables x and y are related
to the lift and drag functions [2].

In the case of the present relativistic seed class (2.10) integrals of the reciprocal
coordinates dx0 and dy0 in (3.1) in turn yield
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4. A Substitution principle in relativistic gasdynamics

The invariance of non-relativistic gasdynamics under what are termed substitution
principles was originally established in the work by Munk and Prim [15, 19]. In
steady magnetogasdynamics in which the Maxwellian and constant total pressure
surfaces coincide, invariance under a substitution principle was subsequently estab-
lished in [29]. This correspondence to an invariance was admitted by a constrained
solitonic Pohlmeyer–Lund–Regge system. The invariance under a substitution principle
in non-steady magnetogasdynamics was established in [18]. Lie group connections
with invariance under substitution principles in both non-relativistic gasdynamics and
magnetogasdynamics have an extensive literature (see e.g. [16, 17] and works cited
therein).

Here, the relativistic gasdynamic system (2.6)–(2.9) is seen to be under a substitution
principle wherein

u� D u=ƒ1=2; v� D v=ƒ1=2; p� D p;

together with
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The invariance of the Taub relativistic gasdynamic system (2.1)–(2.4) as derived
under the multi-parameter reciprocal transformations may accordingly be extended
via conjugation with the above substitution principle to boost known classes of seed
solutions.

The connection between the Lie group invariance of the relativistic gasdynamic
Taub system (2.1)–(2.4) and the above novel substitution principle remains to be
investigated in analogy with the procedures adopted in [16] and [17] in gasdynamics
and magnetogasdynamics, respectively. Likewise, a study of the Lie group invariance
of the Taub system under appropriate constitutive laws has yet to be undertaken. In
the latter regard, properties of generalized Chaplygin gas laws such as introduced by
Boillat in [4] in connection with the propagation of relativistic gasdynamic exceptional
waves, namely,

p D b �
a2

�C bc�2
; a; b 2 R;

would be of potential research interest.

5. Conclusion

There has been extensive application of admitted invariance principles to the general-
ization of solutions of Einstein’s equations (see e.g. [36] and literature cited therein).
Here, the concern has been with the two-dimensional relativistic gasdynamic sys-
tem (2.1)–(2.4) and its admitted invariance under multi-parameter reciprocal relations
augmented by a novel extension of the Prim substitution principle of classical gasdy-
namics. The application in relativity of analytic methods of the modern soliton theory
such as invariance under Laplace–Darboux and Bäcklund transformations along with
concomitant nonlinear superposition principles for the iterative generation of exact
solutions is well established. This has notably involved the celebrated Ernst equation
[8] and its integrable variants [35]. In the most recent work [31], binary Darboux-type
transformations with origin in soliton theory have been applied to seed solutions of the
relativistic gasdynamic system to generate wide classes of novel solutions.

Acknowledgments. – The work of T. Ruggeri was carried out in the framework of
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