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Abstract. – We present a constructive procedure, based on the notion of Apéry set, to obtain
the value semigroup of a plane curve singularity from the value semigroup of its blow-up and
vice-versa. In particular, we give a blow-down process that allows us to reconstruct a plane
algebroid curve form its blow-up, even if it is not local. Then, we characterize numerically all
the possible multiplicity trees of plane curve singularities, obtaining in this way a constructive
description of all their value semigroups.
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1. Introduction

An algebroid branch is a ring of the form O D KJX1; : : : ; XnK=P , where K is an
algebraically closed field and P is a height n � 1 prime ideal. Algebroid branches
naturally appear in the study of curve singularities, as completions of the local rings
associated with a singular point of an algebraic curve, with one branch in that point.
Since Zariski [19], a classical tool to study and classify singularities is given by the
value semigroup associated with an algebroid branch: in fact, the integral closure xO of
O in its quotient field is a DVR isomorphic to KJtK. Hence, every non-zero element
g 2 O has a value v.g/ WD ordt .g/ 2 N and the set of values of its elements constitute
a numerical semigroup v.O/ D S , i.e., a submonoid of N with finite complement
in it. The knowledge of the value semigroup gives much information on the ring O;
for example, its smallest non-zero value is the multiplicity e.O/ of the singularity,
and from the value semigroup one can easily compute the degree of singularity (i.e.
the length lO. xO=O/), or one can check the Gorenstein and the complete intersection
properties.

Another classical invariant to classify a branch singularity is given by the sequence
of multiplicities of the successive blow-ups of O, .e.O/; e.O.1//; e.O.2//; : : :/ (see
e.g. [19]). Two algebroid branches are said formally equivalent it they share the
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same sequence of multiplicities; in general, the value semigroups and the multiplicity
sequence are independent criteria of equisingularity.

If we want to consider a curve singularity with d branches, we have to deal with
algebroid curves, i.e. rings of the form O D KJX1; : : : ; XnK=P1 \ � � � \ Pd , where
the Pi are pairwise distinct prime ideals of height n � 1 and determine the branches.
In this case, the integral closure of O in its total ring of fractions is a product of DVRs,
xO Š KJt1K � � � � �KJtd K, where KJtiK is the integral closure xCi of the i-th branch
Ci WD KJX1; : : : ;XnK=Pi and the set of values S D v.O/ is a submonoid of Nd (here
v.g/ D .v1.g/; : : : ; vd .g// 2 Nd , where vi is the valuation of the i-th branch). The
projections Si of S on the coordinate axes are the value semigroups of each branch.

Again, as for the one-branch case, the value semigroup gives much information on
the singularity. However, while any numerical semigroup is the value semigroup of
a one-branch singularity, there is no characterization of the semigroups appearing as
value semigroups of algebroid curves with d > 1 branches.

In this article, we consider the case of plane curve singularities. When we have only
one branch, there are classical characterizations for the possible numerical semigroups
that are value semigroups of an algebroid plane branch (that now is a ring of the
form O D KJX; Y K=.F /, with F irreducible). Moreover, it is well known that the
value semigroup and the multiplicity sequence of an algebroid branch become two
equivalent criteria of equisingularity (see [19]), and in fact it is possible to reconstruct
the multiplicity sequence from the value semigroup and vice-versa. More precisely,
in [1], Apéry considered a particular generating set of v.O/, called the Apéry set, and
showed that one can compute the Apéry set of the value semigroup v.B.O// of the
blow-up of O from that of v.O/, and vice-versa. This is the reason why, for plane
branches, the value semigroup and the multiplicity sequence are two equivalent sets
of invariants. In [4], it has been shown how to use Apery’s result to easily obtain the
value semigroup from the multiplicity sequence and vice-versa. It is worth noticing
that, if we instead consider plane analytic branches, these invariants (value semigroup
or multiplicity sequence) determine the topological class of the branch (see again [19]).

If we want to study a plane curve singularity with d > 1 branches, we have to
deal with plane algebroid curves, i.e. rings of the form O D KJX; Y K=.H1 � � �Hd /,
where the Hi are irreducible and pairwise coprime. In this case, two plane algebroid
curves O DKJX;Y K=.H1 � � �Hd / and QDKJX;Y K=.G1 � � �Gd / are formally equiv-
alent if (after a renumbering of the branches) the branches Ci D KJX; Y K=.Hi / and
Di D KJX; Y K=.Gi / have the same multiplicity sequence for i D 1; : : : ; d and if
the intersection multiplicities ŒCi ;Cj � WD lO.KJX; Y K=.Hi ; Hj // and ŒDi ;Dj � WD

lQ.KJX; Y K=.Gi ; Gj // (where l denotes the length of a module over a ring) are the
same for all pairs .i; j /, i ¤ j . Waldi has shown in [18] that two plane algebroid curves
are formally equivalent if and only if they have the same value semigroup.
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Hence, it is natural to ask whether it is possible to characterize the value semigroup
of a plane singularity with more than one branch and to investigate how to reconstruct
it by the multiplicity sequences and the intersection multiplicities of its branches and
vice-versa.

The problem of the computation of the semigroup of values for d > 1 (and as a
consequence of its characterization in some terms) from the semigroups of each branch
together with the intersection multiplicities between a pair of branches was resolved in
[13] following the next inductive way. Assume that one knows the semigroups of less
than d branches, i.e. the semigroups SJ of the proper subset of branches corresponding
to J � ¹1; : : : ; dº, #J < d . Then, one can compute S from the subsemigroups ¹SJ j
#J D d � 1º and a finite set of elements B D ¹ˇ1; : : : ; ˇmº � S (the generalization
of maximal contact values, i.e. of the minimal set of generators of the case d D 1).
The set B can be computed explicitly from the semigroups Si , i D 1; : : : ; d , and the
intersection multiplicities of pairs of branches. It must be noticed that this way was
made for the case d D 2 by García in [15] and Bayer in [6].

However, the above description is not easy, as it among other things demands
inductively the computation of the projections SJ ; moreover, it is not established in
terms of the resolution process, which is a very natural way to understand the plane
curve singularities.

This different approach to the problem was addressed and solved in [5] for the
two-branches case and for characteristic 0. In that paper, the authors use two main
tools: firstly, they show how to encode the data that determine formal equivalence
in a tree, which they call multiplicity tree; secondly, they define the Apéry set of the
value semigroup (which is now an infinite set) and make a partition of it in “levels”,
describing them as value sets of particular elements of the algebroid curve. Then, they
show that, in case O and its blow-up B.O/ are both local, the levels of the Apéry
sets of their value semigroups can be obtained one from the other. Using these tools
and a result of Garcia [15] (that holds only in the two-branch case), they show how
to obtain the value semigroup from the multiplicity tree and vice-versa; this fact,
together with a numerical description of the admissible multiplicity trees, gives a
constructive characterization of the value semigroups of a plane singularity with two
branches.

The aim of this paper is to generalize this approach to any number of branches,
without restrictions on the characteristic. There are two main problems that arise. The
first one is the fact that the definition of the partition of the Apéry set given in [5] does
not work in more than two branches and in the non-local case. This problem has been
addressed and solved in [11, 16, 17], where a new definition of the levels of the Apéry
set, which works well in general, has been given; moreover, in [17], the authors show
that this new definition agrees with the old one in the two-branch local case.
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The second problem derives from the fact that when blowing up the algebroid curve,
at some point (i.e. when at least two branches have different tangents) the blow-up is
no more local. Our aim is to obtain a procedure to obtain the Apéry set of v.O/ from
the Apéry set of the value semigroup v.B.O// of its blow-up and vice-versa; to do
this, we can make use of the new definition of levels of the Apéry set that holds also in
the non-local case. Moreover, we also need to show, for any number of branches, that
the levels of the Apéry set can be obtained as value sets of particular sets of elements
of B.O/, also in the non-local case. And since B.O/ is not local, we cannot anymore
present it as a quotient of KJX; Y K, as it was done in [5].

Hence, our main task is to prove Theorems 4.3 and 4.4, where we show in the general
case (i.e. for any number of branches, in the semilocal case and with no restrictions
on the characteristic) how to describe the levels of the Apéry set. After doing that, we
can give the searched procedure (see Theorem 4.15). In order to obtain it, we prove at
ring level a procedure that, starting by a product V of local rings of plane algebroid
curves, produces a local ring U of a plane algebroid curve, such that B.U/ D V

(Proposition 4.12). So, we have a sort of blow-down process that reverses the blow-up:
in fact, if we start by a plane algebroid curve O, we blow it up and then blow B.O/

down; we get again O (Proposition 4.14).
Now, in order to obtain a constructive characterization of the value semigroup

of a plane curve singularity, it remains to characterize numerically the admissible
multiplicity trees of a curve singularity with any number of branches; this is classically
known for the one-branch case, it was done for the two-branches case and characteristic
0 in [5], and here it is generalized for any number of branches without restriction on
the characteristic (see Proposition 5.14). Using this last result, we can summarize in
Theorem 5.15 the equivalence of the following sets of data:

(1) the semigroup of values S of O;

(2) the multiplicity tree T .R/ of R;

(3) the set E D ¹ei D .ei0; e
i
1; : : :/I i D 1; : : : ; dº of the multiplicity sequences of

the branches ¹Ci j 1 � i � dº plus the splitting numbers ¹ki;j º between pairs of
branches Ci , Cj ; 1 � i < j � d .

We now briefly describe the structure of the paper. Section 2 is devoted to the
basic definitions about good semigroups; in particular, in Definition 2.1, we recall the
partition of the Apéry set in levels, fixing the notation in a more convenient way with
respect to previous papers. Then, we show that this partition works well when both O

and B.O/ are both local, generalizing the arguments of [5] (see Propositions 2.2, 2.4
and Theorem 2.5).

Section 3 is very technical and contains some new results on the Apéry set, when
the semigroup is not local. These results will allow us to find particular elements in
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the Apéry set, keeping the control on the levels (see e.g. Remark 3.4 and Lemmas 3.7
and 3.8).

In Section 4, we extend [5, Theorem 4.1] to the case where the blow-up of the
coordinate ring of a plane curve is not local. In the first part of the section, we describe
the levels of the Apéry set of the value semigroup of a semilocal ring R as sets of
values of specific subsets of R (see Theorems 4.3 and 4.4). In the second part, we
describe the blow-down process (Proposition 4.12) and how the levels of the Apéry
set of the value semigroup behave when passing from the ring of a plane curve to its
blow-up and vice-versa (Theorem 4.15).

Finally, in Section 5, we give a characterization of the admissible multiplicity
trees of a plane singularity for any number of branches and independently of the
characteristic. To this aim we have to recall the Hamburger–Noether expansion in
the one-branch case and, using it, we can generalize the results for the two-branches
case proved in [5] for characteristic zero. With an inductive argument, we can give
the requested characterization for any number of branches (Proposition 5.14), which
leads to Theorem 5.15 and to a constructive characterization of the admissible value
semigroups of a plane curve singularity.

2. Preliminaries on algebroid curves

To work with value semigroups of algebroid curves, we will use the more general concept
of good semigroup, introduced in [3]. Let� denote the standard component-wise partial
ordering in Nd . Given two elements˛D .˛1;˛2; : : : ;˛d /,ˇD .ˇ1;ˇ2; : : : ;ˇd / 2Nd ,
the element ı such that ıi D min.˛i ; ˇi / for every i D 1; : : : ; d is called the infimum
of the set ¹˛;ˇº and will be denoted by ˛ ^ ˇ.

Let S be a submonoid of .Nd ;C/. We say that S is a good semigroup if

(G1) for every ˛;ˇ 2 S , ˛ ^ ˇ 2 S ;

(G2) given two elements˛;ˇ 2 S such that˛¤ ˇ and ˛i D ˇi for some i 2 ¹1; : : : ; dº,
then there exists " 2 S such that "i > ˛i D ˇi and "j � min¹ j̨ ; ǰ º for each
j ¤ i (and if j̨ ¤ ǰ , the equality holds);

(G3) there exists an element c 2 S such that c CNd � S .

A good semigroup is said to be local if 0 D .0; : : : ; 0/ is its only element with a
zero component.

By (G1), it is always possible to define the element c WDmin¹˛2Zd j˛CNd �Sº;
this element is called a conductor of S . We set 
 WD c � 1.

A subset E � Nd is a relative ideal of S if E C S � E and there exists ˛ 2 S
such that ˛CE � S . A relative ideal E contained in S is simply called an ideal. An
ideal E satisfying properties (G1), (G2) is called a good ideal (notice that all ideals
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satisfy (G3) by definition). The minimal element cE such that cE CNd � E is called
the conductor of E. As for S , we set 
E WD cE � 1.

We denote by e D .e1; e2; : : : ; ed / the minimal element of S such that ei > 0 for all
i 2 ¹1; : : : ; dº. The set e C S is a good ideal of S and its conductor is c C e. Similarly,
for every ! 2 S , the principal good ideal E D !C S has conductor cE D c C!.

Let O be an algebroid curve with d branches. The value semigroup S D v.O/ is a
local good semigroup contained in Nd [3]. In this case, the sum of the coordinates of
the element e is the multiplicity of the curve. Non-local good semigroups may appear
as value semigroups of semilocal rings obtained from algebroid curves after blow-ups.
General results on good semigroups and value semigroups of curve singularities appear
in many papers, e.g. [3, 8–18].

Given a non-zero divisor x 2O, set!D .!1; : : : ;!d /D v.x/ and consider the good
idealE D!C S . The set Ap.S;!/D S nE is called the Apéry set ofS with respect to
!. Often we will consider the case!D e, and then we simply write Ap.S/DAp.S;e/.
This set has useful applications in the study of the quotient ring O=.x/. In the case of
algebroid branches, ! 2 N and Ap.S;!/ is a finite set of cardinality !. Apéry sets
of numerical semigroups and their properties are very well known. For an extensive
treatment of numerical semigroups and semigroup rings, the reader may consult the
monography [2]. In the case d � 2, Ap.S;!/ is infinite, but it can be canonically
partitioned in N D !1 C � � � C !d sets, as proved in [16, Theorem 4.4].

We recall the definition of this partition, which can be defined analogously for any
set A � S that is the complement of some proper good ideal. For this we need to
recall several technical definitions that allow us to work combinatorially on a good
semigroup.

Given a set U � ¹1; : : : ; dº and an element ˛ 2 Nd , we define the following sets:

�SU .˛/ D ¹ˇ 2 S j ˇi D ˛i for i 2 U and ǰ > j̨ for j … U º;

z�SU .˛/ D ¹ˇ 2 S j ˇi D ˛i for i 2 U and ǰ � j̨ for j … U º n ¹˛º;

�Si .˛/ D ¹ˇ 2 S j ˇi D ˛i and ǰ > j̨ for j ¤ iº;

�S .˛/ D

d[
iD1

�Si .˛/:

In particular, for S D Nd , we set �U .˛/ WD �Nd

U .˛/ and z�U .˛/ WD z�Nd

U .˛/. In
general, we denote by yU the set ¹1; : : : ; dº n U .

Given any subset A � S , we say that an element ˛ 2 A is a complete infimum in A
if there exist ˇ.1/; : : : ;ˇ.r/ 2 A, with r � 2, satisfying the following properties:

(1) ˇ.j / 2 �SFj
.˛/ for some non-empty set Fj ¨ ¹1; : : : ; dº.
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(2) For every distinct j; k 2 ¹1; : : : ; rº, ˛ D ˇ.j / ^ ˇ.k/.

(3)
Tr
kD1 Fk D ;.

In this case, we write ˛ D ˇ.1/ ẑ ˇ.2/ � � � ẑ ˇ.r/.
Furthermore, given ˛ D .˛1; ˛2; : : : ; ˛d / and ˇ D .ˇ1; ˇ2; : : : ; ˇd / in Nd , we say

that ˛ �� ˇ if and only if either ˛ D ˇ or ˛i < ˇi for every i 2 ¹1; : : : ; dº. In the
second case, we say that ˇ dominates ˛ and use the notation ˛� ˇ.

The partition of Ap.S;!/ is defined in the following way.

Definition 2.1. Let A D Ap.S;!/. Set

B.1/ WD ¹˛ 2 A W ˛ is maximal with respect to ��º;

C .1/ WD ¹˛ 2 B.1/ W ˛ D ˇ.1/ ẑ � � � ẑ ˇ.r/ for 1 < r � d and ˇ.k/ 2 B.1/º;

D.1/
WD B.1/ n C .1/:

For i > 1, assume that D.1/; : : : ;D.i�1/ have been defined and set inductively

B.i/ WD
°
˛ 2 A n

�[
j<i

D.j /
�
W ˛ is maximal with respect to ��

±
;

C .i/ WD ¹˛ 2 B.i/ W ˛ D ˇ.1/ ẑ � � � ẑ ˇ.r/ for 1 < r � d and ˇ.k/ 2 B.i/º;

D.i/
WD B.i/ n C .i/:

By construction, D.i/ \D.j / D ;, for any i ¤ j and, since the set S n A D !C S
has a conductor, there exists N 2 NC such that A D

SN
iD1D

.i/. As in [16], we prefer
to enumerate the sets in this partition in increasing order setting Ai WDD.N�i/. Hence,
A D

SN�1
iD0 Ai . We call the sets Ai the levels of A.

Notice that in the previous works [16,17], the levels are enumerated from 1 to N .
In this paper, we prefer to shift them and start from 0 in order to adapt our notation to
the one in [5].

In [16, Theorem 4.4], it is proved that the number of levels of the Apéry set Ap.S;!/
is equal to

Pd
iD1 !i .

We recall that if˛;ˇ 2A,˛�ˇ, and˛2Ai , thenˇ 2Aj for some j > i . Moreover,
the last level of the partition is AN�1 D �.
E / D �S .
E / (here, E D !C S ). If S
is local, then A0 D ¹0º.

Other basic properties of the Apéry set and its partition in levels are listed in
[16, Lemma 2.3].

In [5], a slightly different partition in levels is defined for the Apéry set, only
in the case of plane algebroid curves with two branches. However, it is proved in
[17, Proposition 5.1] that in the case of Apéry sets of plane algebroid curves, the



m. d’anna, f. delgado de la mata, l. guerrieri, n. maugeri and v. micale 466

partition in [5] coincides with the one given in Definition 2.1. For this reason, since in
this article we deal with plane curves, the results in [5] can be used as starting point of
the inductive arguments in our work, even if we work with a partition in levels defined
in a different way.

In the introduction of [5], it is mentioned that all the results in that paper until
Theorem 4.1 can be proved analogously for arbitrary d � 2. We discuss this fact
more specifically, showing first a way to present a plane algebroid curve as a finite
module over a power series ring in one variable. The following extends the content of
[5, Discussion, page 6] and is independent of the characteristic of the base field.

Proposition 2.2. Let O D KJX; Y K=I be an algebroid plane curve with d branches.
Then, we can always write

O D KJxKCKJxKy CKJxKy2 C � � � CKJxKye�1;

where v.x/ D .e1; : : : ; ed / D min.v.O/ n ¹.0; : : : ; 0/º/, e1 C � � � C ed D e.

Proof. We can assume I D .H1 � � �Hd / with H1; : : : ;Hd irreducible elements and
pairwise coprime. Let us denote O also byKJx;yK, where x DX C I and y D Y C I .
If the d branches defined by H1; : : : ; Hd have all the same tangent, we can assume
it is Y D 0 and, according to Weierstrass’ Preparation Theorem, we can assume that
Hj D Y

ej C
Pej�1

iD0 ai .X/Y
i where ej is the minimal power such that Hj contains

a pure power aY ej , with a 2 K n ¹0º, and ai .X/ are all non-invertible power series
in KJXK. Thus, H1 � � �Hd D Y e C

Pe�1
iD0 ci .X/Y

i where e D e1 C � � � C ed is the
multiplicity of the curve and ci .X/ are all non-invertible.

If instead the tangents of the d -branches are not all the same, we can assume that at
least one is Y D 0 and, as above, Hj D Y ej C

Pej�1

iD0 ai .X/Y
i for each branch Hj

with tangent Y D 0. Then, for each branch Hk with a tangent different from Y D 0,
if we write it as Hk.X C Y; Y /, we get a term Y ek where ek is the minimal degree
of the non-zero terms of Hk . Hence, after applying the substitution X D X C Y and
Weierstrass’ Preparation Theorem, we get again H1 � � �Hd D Y e C

Pe�1
iD0 ci .X/Y

i

where eD e1C � � � C ed is the multiplicity of the curve and ci .X/ are all non-invertible.
It is clear that, in both cases, we can express O as a KJxK-module minimally

generated by 1; y; y2; : : : ; ye�1, with v.x/ D .e1; : : : ; ed / and e1 C � � � C ed D e.

Remark 2.3. Let us keep the same notations of the previous proposition. Let F;G 2O

be two elements such that O is a KJF K-module minimally generated by the elements
1;G;G2; : : : ;GN�1, withN D n1C � � � C nd and v.F /D .n1; : : : ; nd /. Hence, O Š

KJX; Y K=.ˆ/, where ˆ.X; Y / D Y N C
PN�1
iD0 bi .X/Y

i comes from the relation of
dependence ofG overKJF K in degreeN . Indeed, there is a surjective homomorphism
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' WKJX;Y K!O, mappingX toF and Y toG, whose kernel contains .ˆ/. Now, since
KJX;Y K is a 2-dimensional UFD, ker' has to be the intersection of d principal prime
ideals P1; : : : ; Pd ; hence, Pi D .Hi / and ker ' D .H1 � � �Hd /. Moreover, H1 � � �Hd
divides ˆ, so it has to be of the form Y j C  .X; Y /, with j � N , and since O

is minimally generated by 1; G; G2; : : : ; GN�1 as KJF K-module, then j D N and
.H1 � � �Hd / D .ˆ/.

Notice that the classes x D X C I; y D Y C I 2 O always satisfy the condi-
tion requested for F and G. Hence, by Proposition 2.2, we can always assume that
O D KJxKCKJxKy CKJxKy2 C � � � CKJxKye�1, where v.x/ D .e1; : : : ; ed / D
min.v.O n ¹.0; : : : ; 0/º/, e1C � � � C ed D e. Moreover, up to replacing y with y C ˛x
(with ˛ 2 K), we can choose y in such a way that v.y/ D .r1; : : : ; rd / with ri > ei for
those indices i such that Hi has tangent Y D 0 and rj � ej for the remaining indexes.

As consequences of Proposition 2.2, we can state the two following results (with
the same identical proofs) [5, Proposition 3.8 and Theorem 4.1].

Let ODKJxKCKJxKyCKJxKy2C � � � CKJxKye�1 be a plane curve expressed
as in Proposition 2.2. The element e D .e1; : : : ; ed / is as usual the minimal element of
v.O/ having all components distinct from zero. Set R0 D K and for i D 1; : : : ; e � 1,

Ri D KJxKCKJxKy C � � � CKJxKyi :

Similarly, set T0 D K, and for i D 1; : : : ; e � 1,

Ti D
®
yi C � j � 2 Ri�1 and v.yi C �/ 62 v.Ri�1/

¯
:

Proposition 2.4. Let Ai denote the levels of Ap.v.O//. Then, for i D 0; : : : ; e � 1,
Ai D v.Ti /.

Theorem 2.5. Let B.O/ denote the blow-up of O and suppose B.O/ to be also
local. Let A0i denote the levels of Ap.v.B.O//; e/. Then, for i D 0; : : : ; e � 1, one has
A0i D Ai � ie.

The aim of the next sections is to extend Theorem 2.5 to the case where the blow-up
of O is not local. In this case it is no more true that B.O/ can be presented as a
quotient of KJX; Y K, so we cannot apply Proposition 2.2 and Remark 2.3. To proceed
in this direction, we will need to consider the levels of the Apéry set of non-local good
semigroups.

3. Preliminary results on good semigroups

In this section, we prove several technical results on good semigroups that will be
needed in Section 4. The proofs often require the combinatorial methods developed in
the previous works [16, 17]. We start by recalling the main result of [17, Section 4],
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restated with the new notation, renumbering the levels of the Apéry set (or more in
general of the complement of a good ideal) starting from 0 rather than from 1.

Along the section S �Nd will denote an arbitrary good semigroup (not necessarily
local) and A D S nE D

SN�1
iD0 Ai the complement of a good ideal E, partitioned in

levels as in Definition 2.1. If S is numerical, A D ¹w0; : : : ; wN�1º is finite and we set
Ai D ¹wiº.

We define a level function � W S ! ¹0; : : : ; N º in the following way:
• If ˛ 2 Ai , �.˛/ D i .
• If ˛ 62 A, �.˛/ D 1Cmax¹i such that ˛ > � for some � 2 Aiº.

Theorem 3.1 ([17, Theorem 4.5]). Let S D S1 � S2 be a direct product of two
arbitrary good semigroups. Let E ¨ S be a good ideal and set A WD S n E. Then,
given ˛ D .˛.1/;˛.2// 2 A .˛.i/ 2 Si , for i D 1; 2), the level of ˛ in A is equal to

�.˛.1//C �.˛.2//:

We recall that two elements ˛;ˇ 2 S are consecutive if ˛ < ˇ and there are no
elements ı 2 S such that ˛ < ı < ˇ. The function � has the following property.

Lemma 3.2. Let S be any good semigroup and let ˛ 2 S . Let E ¨ S be a good ideal
and set A WD S nE. Then, for j < N , �.˛/ � j if and only if there exists ˇ 2 Aj such
that ˛ � ˇ. In particular, if � 2 S and ˛ � � , then �.˛/ � �.�/.

Proof. If ˛ 2 A, this is straightforward. Suppose ˛ 2 E and set �.˛/ D h. Let � 2 A
be a maximal element such that � < ˛. By the definition of �, � 2 Ah�1. Now, if there
exists ˇ 2 Aj such that ˛ � ˇ, it follows that j � h � 1. If j � h, we are done. If
j D h � 1, by [17, Lemma 2.8], we get ˛ 2 Ah�1 and this is a contradiction.

Conversely, if �.˛/ D h D N , then clearly � 2 AN�1 and there are no elements
of A larger than or equal to ˛. Thus, we suppose h < N and prove that we can find
ˇ 2 Ah such that ˛ � ˇ. Clearly, no elements of Ah are smaller than ˛. Let ˇ 2 Ah be
such that the element ı D ˛^ ˇ is the maximal possible. If ı D ˛, we are done; hence,
suppose by way of contradiction that ı < ˛. By the assumption �.˛/D h, we also have
ı < ˇ. We can fix coordinates saying that ˛ 2 �SU .ı/ and ˇ 2 �SV .ı/ with V � yU .
We need to produce an element � 2 Ah such that � ^ ˛ > ı. We can do it proceeding
exactly as in Cases 1 and 2 of the proof of [17, Proposition 2.10], noticing that ˛ 2 E
and therefore if ı and ˇ are consecutive, we cannot have ı 2 A by [17, Theorem 2.7]
(for the convenience of the reader, we are adopting here the same notation of that proof,
except for the fact that the index of the level of ˇ is shifted by one). Since in this way
we find a contradiction, we must have ˛ ^ ˇ D ˛ and ˇ > ˛.

The next lemma proves the existence of ascending sequences of elements, one for
each level, satisfying some extra condition on their respective positions.
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Lemma 3.3. Let S be an arbitrary good semigroup. Let E ¨ S be a good ideal and
set A WD S nE. Then, for every i > j � 0 and ˛ 2 Ai , there exists ˇ 2 Aj such that
ˇ < ˛, and if ˛ 2 �SU .ˇ/, then z�S

yU
.ˇ/ � A.

Proof. Observe that if there exists ˇ 2 Aj such that ˛� ˇ, the thesis is satisfied
since U D ; and z�S

yU
.ˇ/ D ¹ˇº � A. First, let us consider the case j D i � 1. This

case will also provide a base for an induction on i . By [17, Proposition 2.10], there
exists ˇ 2 Ai�1 such that ˇ < ˛. We can assume that there are no other elements in
Ai�1 between ˛ and ˇ. Let � 2 S be an element consecutive to ˇ such that ˇ < � � ˛.
Hence, � 2 �SH .ˇ/ with H � U and z�S

yU
.ˇ/ � z�S

yH
.ˇ/. If by way of contradiction

z�S
yU
.ˇ/ ª A, by [16, Theorem 2.8], the element � 2 Ai�1. In particular, � < ˛, and

this contradicts the fact that no elements between ˛ and ˇ are in Ai�1.
By induction, after finding ˇ 2 Ai�1 satisfying the thesis, taking j < i � 1, we

can find ı 2 Aj such that ˇ 2 �SV .ı/ and z�S
yV
.ı/ � A. It follows that ˛ 2 �SH .ı/ with

H � U \ V . Since yH � yU [ yV � yV , we get z�S
yH
.ı/ � z�S

yV
.ı/ � A. This concludes

the proof.

Remark 3.4. The proof of Lemma 3.3 shows that, starting from an element ˛.N�1/ 2
AN�1, we can find a chain of elements

0 D ˛.0/ < ˛.1/ < � � � < ˛.j / < � � � < ˛.N�2/ < ˛.N�1/

such that for every j D 0; : : : ;N � 1,˛.i/ 2Ai , and for every k < j , if˛.j / 2�SU .˛
.k//

for some U ¤ ;, then z�S
yU
.˛.j // � A.

All the results from now until the end of the section are very technical and use the
notion of subspaces of a good semigroup introduced in [16]. The only result needed in
the next sections is the statement of Lemma 3.8.

Let S � Nd be an arbitrary good semigroup and let A D
SN�1
iD0 be its Apéry set

with respect to a non-zero element ! D .!1; : : : ; !d /. Set as usual E D S n A and
denote the conductor of E by cE D .c1; : : : ; cd / D 
 C!C 1.

The following definition and properties are taken from [16, Section 3].
We recall the next useful fact which describes the behavior of the levels of the Apéry

set for large elements.

Proposition 3.5 ([16, Proposition 2.9]). Let c be the conductor of E D !C S , let
ı � c, and let ˛ 2Nd be such that ˛ 6< ı and � D ˛^ ı. Let U D ¹i W ˛i < ıiº. Then,
the following conditions are equivalent:

(1) ˛ 2 Aj ;

(2) z�U .˛/ [ ¹˛º � Aj ;

(3) z�U .�/ [ ¹�º � Aj .
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1

2

3

˛

˛.¹3º/

1

2

3

˛
˛.¹1; 3º/

Figure 1. In the figure on the left is represented the plane ˛.¹3º/ which is a subspace of dimen-
sion 2. In the figure on the right, the dashed line ˛.¹1; 3º/ represents a subspace of dimension 1.

In particular, as a consequence, if ı D c, the Apéry set A D Ap.S;!/ and its levels
Aj depend only on the finite subset ¹˛ 2 A W ˛ � cº.

Definition 3.6. Pick a non-empty set U � ¹1; : : : ; dº. For ˛ 2 Nd such that j̨ D cj

for all j 2 yU , define
˛.U / D z�U .˛/ [ ¹˛º:

We say that ˛.U / is a U -subspace (or simply a subspace) of Nd (see Figure 1). We
have the following:
• If ˛ 2 E, then ˛.U / � E, and in this case we say that it is a U -subspace of E, or

that ˛.U / 2 E.U /.
• If ˛ 2 A, then ˛.U / � A, and in this case we say that it is a U -subspace of A. In

particular, if ˛ 2 Ai , the subspace ˛.U / � Ai , and we write shortly that ˛.U / 2
Ai .U /.

Observe that if ı.V / is a subspace, U � V and ˛ 2 z�V .ı/, then ˛.U / � ı.V /.
The dimension of a subspace is defined according to its intuitive geometric rep-

resentation. We say that ˛.U / has a dimension equal to the cardinality of yU . Indeed,
the subspaces of dimension zero are points, those of dimension one are lines, those of
dimension two are planes, and so on.

The proof of the following lemma is based on the part of the argument used to prove
[16, Theorem 4.4].

Lemma 3.7. Fix an index i 2 ¹1; : : : ; dº. Let V be a non-empty set of indexes not
containing i and setW WD V [ ¹iº. Choose a subspace of the form �.V / contained in
A such that � is a minimal element for which a subspace of A of such form exists. Then,
there exist !i distinct subspaces of the form ˇ.0/.W /; : : : ;ˇ.!i�1/.W / �

S
l<�.�/Al

such that the coordinates ˇ.0/i ; : : : ;ˇ
.!i�1/
i form a complete system of residues mod-

ulo !i .
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To help the reader, we add separately the proof in the case d D 2, and then the
proof of the general case.

Proof of Lemma 3.7 in the case d D 2. First, set i D 1. Clearly, by the definition of
the conductor cE D .c1; c2/ of the good idealE, there are infinitely many elements ˛ 2
E such that ˛2 D c2. Thus, for every j D 0; : : : ; !1 � 1, we can find a unique minimal
element ˛.j / 2 E such that ˛.j /1 � j mod !1 and ˛.j /2 D c2. Hence, for every j , there
exists nj � 1 such that ˛.j / � nj! 2 A. For 
 2 S , setH1.
/ D ¹ı 2 S jı1 D 
1º. If
H1.˛

.j / � nj!/\E ¤ ;, we can continue subtracting multiples of! to some element
inH1.˛.j //\E until we find an element ˇ.j / 2 A such that ˇ.j /1 � ˛

.j /
1 � j mod !1

and H1.ˇ.j // � A. Without loss of generality, we can assume ˇ.j / to be the minimal
element ofH1.ˇ.j //. Now let � 2A be the minimal element of S such that �1 D c1 and
�2.�/ � A. We show that �.ˇ.j // < �.�/ for every j . Indeed, by the minimality of
ˇ.j / inH1.ˇ.j //, using property (G1), we must have ˇ.j /2 � �2, and by the construction
of ˇ.j /, we must have ˇ.j /1 < c1 D �1. Using that �S1 .ˇ

.j // � H1.ˇ
.j // � A, we get

the inequality �.ˇ.j // < �.�/ by [11, Lemma 2 (3)] together with the definition of
levels.

Proof of Lemma 3.7 for arbitrary d . Relabeling the indexes, we can assume that
W D¹1; : : : ; iº andV D¹1; : : : ; i � 1º. Denoting by l D �.�/, we have that�.V /�Al ;
hence, it is clear that there exist infinitely many W -subspaces contained in level Al (a
space of dimension j contains infinitely many spaces of dimension j � 1). Among
them, for every j D 1; : : : ; wi , there exist subspaces �j .W / 2 Al.W / minimal with
respect to the property of having �ji � j mod wi .

For each j , we show that z�Ei .�
j .W // ¤ ;. Indeed, after fixing �j .W /, using

the fact that there are infinitely many W -subspaces contained in �.V /, we can find
� 0.W / 2 Al.W / such that � 0i > �

j
i (observe that since they are in the same level

necessarily � 0
h
D �

j

h
for some h < i ). Now, if we assume z�Ei .�

j .W // D ;, applying
[16, Theorem 3.7] to �j .W / and � 0.W /, we can write

�j .W / D � 0.W / ẑ ˛1.W / ẑ � � � ẑ ˛r.W /;

where ˛m.W / 2 z�Si .�
j .W // � A.W / and we may assume ˛m.W / to be consecutive

to �j .W / for allm 2 1; : : : ; r . By [16, Theorem 3.9.1], for everym, ˛m.W / 2 Aj .W /
implies that �j .W / has to be in a lower level. This is a contradiction (for a graphical
representation, see Figure 2 (a)).

Hence, we can set �j .W / to be a minimal element in z�Ei .�
j .W //. We define

x! such that !k D !k if k 2 W and !k D ck otherwise, and, starting from �j .W /

and subtracting multiples of x!.W /, we find a unique mj � 1 such that �j .W / �
mj x!.W / DW ˇ

j .W / 2 A.W / (see Figure 2 (b)).
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1

2

3

� 0.W /

�j .W /

˛m.W /

(a)

1

2

�j .V /

�j .W / �j .W /

ˇj .W / H2

�
ˇj .W /

�

(b)

Figure 2. (a) We have d D 3, U D ¹1; 2º; �j .W /; � 0.W /; ˛m.W / are lines. (b) This is a
perspective from “above” of the case d D 3, U D ¹1; 2º, V D ¹1º. In this case, �j .V / is a plane
contained in A; �j .W /;�j .W /;ˇj .W / are lines.

Consider now the set Hi .˛j .W // D ¹ˇ.U / � S jˇi D ˛ji º. In the case this set
contains some subspace of E, starting by one of these subspaces and subtracting
multiples of x!.U /, we can repeat the process and, after changing names, we can finally
assume to have a collection of subspaces ˇ1.W /; : : : ;ˇwk .W / 2 A.W / such that for
every j , ˇji � �

j
i � j mod wi and Hi .ˇj .W // � A.W /. We can further replace

ˇj .W / by another subspace, and assume that ˇj .W / is the minimal W -subspace in
the set Hi .ˇj .W // (this minimal subspace is well defined by property (G1); see the
results in [16, Sections 3 and 4]).

To conclude, notice that for every j , the level of ˇj .W / has to be strictly lower
than l since �j .U / has been chosen to be the minimal in Al having k-th component
congruent to j modulo wj .

Lemma 3.8. Let S and A be defined as above. Then, it is possible to find a sufficiently
large element �� 
 C! such that, given any index i and any element ˛ 2 A such
that ˛i � �i , there exists ı 2 �Ei .˛/ such that ı D m!C ˇ, withm � 1, ˇ 2 A, and
�.ˇ/ < �.˛/.

Proof. Fixing a coordinate i , we want to find an element �.i/� 
 C! such that if
˛i � �.i/i , then there exists ı 2 �Ei .˛/ of the required form. Then, we can simply
define � as the minimal element of S that is larger than or equal to all the elements
�.1/; : : : ;�.d/ with respect to the partial ordering �.
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Let V be a non-empty set of indexes not containing i and setW WD V [ ¹iº. Given
the minimal subspace of the form �.V / contained in A, by Lemma 3.7, we can find
!i distinct subspaces of the form ˇ.0/.W /; : : : ;ˇ.!i�1/.W / �

S
l<�.�/Al such that

the coordinates ˇ.0/i ; : : : ;ˇ
.!i�1/
i form a complete system of residues modulo !i . For

every j D 0; : : : ; !i � 1, define �.j / WD ˇ.j /Cmj!wheremj is the minimal positive
integer such that ˇ.j / C mj!� 
 C !. Then, set �.V / equal to the element �.j /

which has the largest i-coordinate. Finally, set �.i/ to be the minimal element of S
larger than or equal to all the elements �.V / for every V not containing i .

Now we can pick ˛ 2 A and suppose that ˛i � �.i/i . Since ˛ has at least one
coordinate larger than the conductor, it belongs to an infinite subspace of A of the
form � 0.V / with i 62 V . In particular, V is non-empty and ˛k � 
k C !k for all k 2 V .
Fixing this set V , we can take the elements ˇ.j / and �.j / defined previously. Clearly,
˛i � ˇ

.j /
i modulo !i for some j . Hence, there exists m � 1 such that

˛i D ˇ
.j /
i Cm!i � �.i/i � �

.j /
i D ˇ

.j /
i Cmj!i :

Set ı WD ˇ.j / C "Cm! where " is an element of Nd such that "k D 0 for k 2
V [ ¹iº, and "k > ˛k for the other coordinates. Notice that with these assumptions,
ˇ.j / C " 2 ˇ.j /.W / � A and ı 2 S since it is larger than the conductor (notice that
m � mj ). Observe that ıi D ˛i and, since a subspace is all contained in the same level,
observe also that �.ˇ.j / C "/ D �.ˇ.j // < �.�/ � �.� 0/ D �.˛/. Furthermore, for
k 2 V , we have ık > 
k C !k � ˛k , and for k 62W , we have ık > ˛k by the definition
of ". In conclusion, we obtain ı 2 �Ei .˛/.

4. Semilocal rings associated with plane curves

In this section, we extend [5, Theorem 4.1] to the case where the blow-up of the
coordinate ring of a plane curve is not local. In the first part of the section, we describe
the level of the Apéry set of the value semigroup of a semilocal ring R as sets of values
of specific subsets of R. In the second part, we describe how the levels of the Apéry
set of the value semigroup behave when passing from the ring of a plane curve to its
blow-up and vice-versa.

4.1. The Apéry set of the value semigroup of a semilocal ring

Let R Š O1 � � � � � Oc be a direct product of local rings Oj associated with plane
algebroid curves defined over an infinite fieldK. For every j D 1; : : : ; c, let Sj � Ndj

denote the value semigroup of Oj . For every j , Sj is a local good semigroup (or a
numerical semigroup). The value semigroup of R is S D S1 � � � � � Sc � Nd where
d D d1 C � � � C dc .
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Let ! D .!1; : : : ; !d / be an element of S such that !i > 0 for every i D 1; : : : ; d .
Let A be the Apéry set of S with respect to ! and set N WD !1 C � � � C !d . The set A
can be partitioned as

SN�1
iD0 Ai . Let F 2 R be an element of value !.

Lemma 4.1. Let h1; : : : ; ht 2 R with t � N � 1 be such that for every j ,
• v.hj / D j̨ 2 A,
• j̨ < j̨C1,
• if ˛k 2 �SU . j̨ / for some k > j and U ¤ ;, then z�S

yU
. j̨ / � A.

Then, the images of h1; : : : ; ht modulo .F / are linearly independent over KŠ KJF K
.F /

.

Proof. Callhj the image ofhj modulo .F /. Suppose
Pt
jD1 ajhj D 0 for some ak 2K

not all equal to zero. Then, H WD
Pt
jD1 ajhj 2 .F /R and therefore v.H/ 62 A. It

follows that at least two coefficients aj are non-zero, and without loss of generality,
we can assume a1; a2 ¤ 0. Clearly, ˛1 6� ˛2; otherwise, we would have v.H/ D
v.a1h1/ D ˛1 2 A. Thus, ˛2 2 �SU .˛1/ for some U ¤ ;. Since ˛2 � j̨ for j > 2,
it follows that v.H/ 2 z�S

yU
.˛1/ � A. This is a contradiction.

Setting 4.2. LetR,A, and F be defined as above. For an elementG 2 R not divisible
by F , set R0 D K, and for i D 1; : : : ; N � 1,

(4.1) Ri D KJF KCKJF KG C � � � CKJF KGi :

Similarly, set T0 D K, and for i D 1; : : : ; N � 1,

(4.2) Ti D
®
Gi C � j � 2 Ri�1 and v.Gi C �/ 62 v.Ri�1/

¯
:

We want to prove that we can find G in such a way that R D RN�1 and the equality
v.Ti /D Ai holds for every i . More precisely, we will prove the two following theorems.

Theorem 4.3. Adopt the notation of Setting 4.2. Then, there exists G 2 R such that

(4.3) R D KJF KCKJF KG C � � � CKJF KGN�1:

Theorem 4.4. Adopt the notation of Setting 4.2 and define G as in Theorem 4.3. Then,
for every i D 0; : : : ; N � 1,

Ai D v.Ti /:

Remark 4.5. In the case whereRDO1 is local, these results follow by Proposition 2.2,
Remark 2.3, and Proposition 2.4.

By Remark 4.5, the results of the two theorems hold in particular in the case d D 1.
Hence, to prove Theorems 4.3 and 4.4, we can work by induction on d , assuming
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that R is not local. It is sufficient then, slightly changing the notation, to assume that
R Š O1 �O2 with O1 not necessarily local and O2 local. The value semigroup of R
will be denoted by S D S1 � S2 with Si � Ndi and d D d1 C d2.

We can thus write F D .F1; F2/ and ! D .!.1/;!.2//. Also A.i/ will denote the
Apéry set of Si with respect to !.i/ 2 Si (the projection of ! with respect to the
coordinates in Si ). The number of levels of A.i/ is equal to Ni , where Ni is the sum of
the coordinates of !.i/.

For h D .h1; h2/ 2 R, we let v.h/ D .v.1/.h1/; v.2/.h2// denote the value of h in
the semigroup S .

The next proposition explains how to construct the power series G in the ring R.

Proposition 4.6. Adopt the notation of Setting 4.2. Then, there existsG 2 R such that,
for every j D 0; : : : ;N � 1 and˛2Aj , we can find� 2Rj�1 such that v.Gj C �/D˛.

Proof. We divide the proof in three parts. First, we prove the result for elements
of the form ˛ D .˛.1/; 0/ with ˛.1/ 2 A.1/, then we consider elements of the form
˛ D .˛.1/; 0/ with ˛.1/ 62 A.1/, and by analogy we obtain the same results also for all
the elements of the form ˛ D .0;˛.2// with ˛.2/ 2 S2 (our proof is independent of
whether Si is local or not). Finally, we will deal with the case ˛ D .˛.1/;˛.2// with
˛.1/;˛.2/ ¤ 0.

As mentioned in the above paragraph, by induction on d , we can assume that
Theorems 4.3 and 4.4 hold for S1 and S2 with respect to the elements F1 and F2.
Hence, for i D 1; 2, there exists Gi 2 Oi such that

Oi D KJFiKCKJFiKGi C � � � CKJFiKG
Ni�1
i :

Before we treat each one of the described cases, we prove the next statement.

Lemma 4.7. Let L be a finite set of elements of the form ˛ D .˛.1/; 0/, ˛.1/ 2 A.1/j ,
j � N1 � 1. Then, for all but finitely many choices of ˇ 2 K, we have

v
�
Gj C �.F;G/

�
D ˛

for some � 2 Rj�1 and G D .G1; ˇ CG2/.

Proof of the Lemma. Let ˛ D .˛.1/; 0/ with ˛.1/ 2 A.1/j . Using the fact that both
Theorems 4.3 and 4.4 hold for S1, we can find �.F1;G1/ 2 O1 of degree at most j � 1
in G1 such that ˛.1/ D v.1/.Gj1 C �.F1; G1//. Clearly, since K is infinite, for all but
finitely many elementsˇ 2K, the value v.2/ of .ˇCG2/j C �.F2;ˇCG2/ is equal to
the zero element ofS2. For all these choices ofˇ, we have˛D v.Gj C�.F;G//. Hence,
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fixing any finite set L, consisting of elements of the form .˛.1/; 0/ with ˛.1/ 2 A.1/,
we can choose the element ˇ 2 K in such a way that all the elements in L satisfy the
thesis of this lemma.

Modifying G as .ˇ C G1; G2/, we can clearly obtain the analogous result, for
infinitely many choices of the same ˇ, for a finite set L0 consisting of elements of the
form .0;˛.2// with ˛.2/ 2 A.2/.

Let us now prove the proposition, considering the different described cases for
˛ 2 S .

Case 1. ˛D .˛.1/;0/with˛.1/ 2A.1/j (or analogously˛D .0;˛.2//with˛.2/ 2A.2/j ).
For j D 0, the result is clear since we must have ˛ D 0 D v.1/. By induction, we

can assume that ˛.1/ 2 A.1/j for j > 0, and the thesis holds for any ˇ.1/ 2 A.1/
k

with
k < j .

Choosing the element� for the semigroupS1 according to Lemma 3.8, by Lemma 4.7,
we can assume also that the thesis holds for all the elements .˛.1/; 0/ with ˛.1/ 2 A.1/

and .˛.1/; 0/ � .�; 0/ (these elements form obviously a finite set).
Thus, we can assume that the element ˛ is such that ˛.1/i > �i for some i . Let

� D ˛.1/ ^ �, U D ¹i W ˛.1/i � �iº, and V D ¹i W ˛.1/i < �iº D I1 n U . Then, one has
(see Proposition 3.5) ˛.1/ 2 z�Nd1

V .�/ � A
.1/
j and also

z�Nd1

V .˛.1// � z�Nd1

V .�/ � A
.1/
j :

Note that every element of z�Nd1

V .�/[ ¹�º (in particular ˛.1/) satisfies the assumptions
of Lemma 3.8 choosing any index i 2 U .

Now, let us prove the next lemma.

Lemma 4.8. Let " 2 z�Nd1

V .�/ � A
.1/
j . Then, there exists .ı;m!.2// 2 �EU ."; 0/ with

m � 1, such that .ı; m!.2// D v. / for some  2 Rj�1.

Proof of the Lemma. Let i 2 U . By Lemma 3.8, there exists an element ı.i/ 2
�
E1

i ."/ such that ı.i/ D mi!.1/ C ˇ.i/, withmi � 1 and ˇ.i/ 2 A.1/
ki

with ki < j . By
the inductive hypothesis on j , we know that .ˇ.i/; 0/ D v.ˆi / with ˆi 2 Rj�1. Since
!� 0, we get

mi!C .ˇ
.i/; 0/ D .ı.i/; mi!

.2// D v.Fmiˆi / 2 v.Rj�1/ \�
E
i

�
."; 0/

�
:

Setting m D mini2U ¹miº, we consider the infimum^
i2U

.ı.i/; mi!
.2// D .ı; m!.2// 2 �EU

�
."; 0/

�
:
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For some choice of elements zi 2 K, we know that .ı; m!.2// D v.
P
i2U ziF

miˆi /.
Set  WD

P
i2U ziF

miˆi 2 Rj�1. Note that if j 2 V , then ı.i/j > "j for all i 2 U and
therefore ıj > "j ; on the other hand, if j 2 U , then ıj D "j .

Now, let us apply Lemma 4.8 to the element " D � . Since � � �, we know that
.�; 0/ D v.Gj C ��/ for some �� 2 Rj�1. Let us fix an index k 2 U . Since ık D �k ,
we can choose tk 2 K such that v.Gj C �� C tk / D .� 0; 0/ > .�; 0/ with � 0

k
> �k .

Note that if j 2 V , then � 0j D �j ; hence, � 0 2 z�Nd1

V .�/.
Iterating this process, replacing each time � by � 0 and possibly using the other

indices k 2 U , we can find an element � 0 2 z�Nd1

V .�/ with arbitrarily large coordinates
with respect to the indices in U such that .� 0; 0/ D v.Gj C �ˇ/ for some �ˇ 2 Rj�1.

Going back to the element ˛.1/ 2 z�Nd1

V .�/, in particular, we can find ˇ � ˛.1/

such that ˇ 2 z�Nd1

V .�/ and .ˇ; 0/ D v.Gj C �ˇ/ with �ˇ 2 Rj�1. Explicitly, we can
say that ˇ 2 �S1

W .˛
.1// with W � V .

Furthermore, by Lemma 4.8 applied to the element " D ˛.1/, we can construct
an element .ı0; �/ 2 �EU ..˛

.1/; 0// such that .ı0; �/ D v. 0/ with  0 2 Rj�1 (and
� � 0). It is easy to observe that .˛.1/; 0/ D .ˇ; 0/ ^ .ı0; �/. Thus, we can choose
z 2 K such that v.Gj C �ˇ C z 0/ D .˛.1/; 0/. This shows that .˛.1/; 0/ is the value
of some element of the form GjC� with �2Rj�1 and completes the proof of Case 1.

Case 2. .˛.1/; 0/ 2 Aj with ˛.1/ 62 A.1/ (or analogously ˛ D .0; ˛.2// 2 Aj with
˛.2/ 62 A

.2/
j ).

Suppose ˛.1/ to be non-zero. By Theorem 3.1 also in this case, we have �.˛.1// D
j > 0. By the definition of �, we can write ˛.1/ D m!.1/ C � form � 1 and � 2 A.1/

k

with k < j . If j < N1, then by Lemma 3.2, there exists ı 2 A.1/j such that ˛.1/ < ı.
As a consequence of Case 1, we know that .ı; 0/ D v.Gj C �/ with � 2 Rj�1 and
.�; 0/ D v.Gk C  / with  2 Rk�1. Since K is infinite, we can find a non-zero
constant z 2 K such that .˛.1/; 0/ D v.Gj C � C zFm.Gk C  //. The result now
follows since by construction � C zFm.Gk C  / 2 Rj�1. If instead j D N1, we use
the fact that we can express GN1

1 D
PN1�1
iD0 hi .F1/G

i
1 and the choice of the element

ˇ 2 K can be made in such a way that

v.2/
�
.ˇ CG2/

N1 �

N1�1X
iD0

hi .F2/.ˇ CG2/
i

�
D 0:

Thus, writing again .�; 0/ D v.Gk C  / with  2 Rk�1, we obtain

˛ D .˛.1/; 0/ D v

�
GN1 �

N1�1X
iD0

hi .F /G
i
C Fm.Gk C  /

�
:

As before,
PN1�1
iD0 hi .F /G

i C Fm.Gk C  / 2 Rj�1.
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In both Cases 1 and 2, we get the same results for the elements of the form ˛ D

.0; ˛.2//. Indeed, we can proceed in the same way working over the components
corresponding to S2 and replacing G by G � .ˇ; ˇ/ in all the formulas (again the
choice of ˇ at the beginning of the proof can be made generic enough to satisfy all the
needed conditions). We finally consider the general case.

Case 3. ˛ D .˛.1/;˛.2// 2 Aj with ˛.1/;˛.2/ ¤ 0.
We can say that �.˛.1/; 0/ D k, �.0; ˛.2// D l with k; l � 1. By Theorem 3.1,

k C l D j . By what was proved in the previous cases, .˛.1/; 0/ D v.Gk C ˆ/ and
.0;˛.2// D v.Gl C‰/ for opportune choices of ˆ 2 Rk�1 and ‰ 2 Rl�1. It follows
that ˛ D v..Gk Cˆ/.Gl C‰// D v.Gj C �/ with � 2 Rj�1.

This concludes the proof of the proposition.

We prove now Theorem 4.3.

proof of Theorem 4.3. We know that R is a KJF K�module and, since the quotient
ring R

.F /R
is aK-vector space of dimensionN1CN2, the ringR is minimally generated

as module overKJF K byN D N1CN2 elements. ForH 2 R, denote by xH the image
of H in the quotient R

.F /R
.

Let G be defined as in Proposition 4.6. To prove the theorem, we need to show that

N1; xG; xG2; : : : ; xGN1CN2�1

are linearly independent over K. We use now Remark 3.4 to construct a sequence of
elements of S

0 D ˛.0/ < ˛.1/ < � � � < ˛.j / < � � � < ˛.N�2/ < ˛.N�1/;

such that ˛.i/ 2 Ai and, for every k < j , if ˛.j / 2 �SU .˛
.k// for some U ¤ ;, then

z�S
yU
.˛.k// � A:

By Proposition 4.6, ˛.j / is the value of an element of the form hj WD G
j C � with

� 2Rj�1. The elements h0; : : : ; hN�1 satisfy the hypothesis of Lemma 4.1. Thus, their
images modulo .F / are linearly independent overK. By the definition of the subsetsRj ,
it follows that also N1; xG; xG2; : : : ; xGN1CN2�1 are linearly independent over K. This
proves the theorem.

Before proving Theorem 4.4, we need to prove several lemmas.

Lemma 4.9. Take the notation of Setting 4.2. Let˛;ˇ 2 v.Ti / for some i D 0; : : : ;N � 1.
If ˛¤ ˇ, then ˛ and ˇ are incomparable with respect to the partial order relation��.
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Proof. Write ˛ D v.Gi C �/ and ˇ D v.Gi C  / for �;  2 Ri�1. If by way of
contradiction ˛� ˇ, we would have ˛ D v.Gi C � �Gi �  / D v.� �  / and this
would contradict the definition of Ti .

Lemma 4.10. LetR be the local ring of a plane curve and let S be its value semigroup.
Let the elementsF;G and the subsetsRi ; Ti be defined as in Setting 4.2 and Remark 4.5.
For j � N � 1, let � D

Pj

kD0
ak.F /G

k 2 R be a power series not divisible by F .
Then, �.v.�// � j .

Proof. In the case j D 0, � is a power series inKJF K not divisible byF and v.�/D 0.
It follows that �.v.�// D 0. Thus, we can argue by induction and assume the thesis
true for all the power series having degree in G strictly smaller than j . Since � is
not divisible by F , at least one of the series ak.F / has a non-zero constant term.
Thanks to the fact that the ringR is local, we can use Weierstrass’ Preparation Theorem
to write � D u.F; G/.Gh C  / with h � j ,  2 Rj�1, and v.u.F; G// D 0. If
h < j , we can conclude by the inductive hypothesis. From this we can reduce to
the case where � D Gj C  with  2 Rj�1. Now set ˛ D v.Gj C  /. By way
of contradiction, suppose �.˛/ > j . Hence, by the definition of � and by Lemma
3.3, we can find ˇ 2 Aj such that ˛ > ˇ. Since R is local, by Remark 4.5, we know
that Theorem 4.4 holds for R and we get Aj D v.Tj /. Hence, we can find � 2 Rj�1
such that Gj C � 2 Tj and v.Gj C �/ D ˇ. Set ı D v. � �/ and observe that
˛ D v.Gj C � C  � �/. By the definition of Tj , ˇ ¤ ı. For any component i such
that ıi ¤ ˇi , we get min.ıi ; ˇi / D ˛i � ˇi and thus ˛i D ˇi . This implies that ˇ < ı.
Now if ˇ� ı, we get the contradiction ˛D ˇ. Therefore, there exists a non-empty set
of indicesU such that ˛ 2�SU .ˇ/ and ı 2 z�S

yU
.ˇ/. Now if ˛ 2 E, clearly z�S

yU
.ˇ/ � A

by property (G1) since ı ^˛D ˇ 62E. If˛ 2A, then˛ 2Al with l > j and we can use
Lemma 3.3 to choose ˇ in such a way that z�S

yU
.ˇ/ � A. In any case, ı 2 v.Rj�1/\A

and therefore F does not divide  � �. By the inductive hypothesis, �.ı/ � j � 1
implying that ı 2 Ak with k < j . This is a contradiction since ı > ˇ.

Lemma 4.11. Adopt the notation of Setting 4.2 and let G be defined as in the proof
of Theorem 4.3. Let Gj C � 2 Tj . Suppose that v.Gj C �/ 2 Aj and there exists
u D u.F;G/ 2 R of degree k in G such that v.u/ D .0;�/ and v.uGj C u�/ 2 Ah.
Then, h � j C k.

Proof. Let Y1 and Y2 be the components of uGj C u� with respect to the direct
product O1 �O2. We recall that, from what is written right after Remark 4.5, we can
assume O2 to be local. By Theorem 3.1, h D �.v.1/.Y1//C �.v.2/.Y2//. Similarly,
write j D j1 C j2 where j1 and j2 are the values of the function � applied to the
two components of Gj C �. Since the first component of u has value zero, we get
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�.v.1/.Y1//D j1. We need to prove that �.v.2/.Y2// � kC j2. Applying Lemma 4.10
to the second component of u in the local ring O2, we get �.�/� k. Thus, it is sufficient
to prove that if ˛;ˇ 2 S2, �.˛/ D i , and �.ˇ/ D k, then �.˛C ˇ/ � i C k. Since
the maximal value of �.ı/ for ı 2 S2 is N2, we can reduce to assume i C k < N2.
By Lemma 3.2, we can replace ˛, ˇ by ˛0 2 Ai and ˇ0 2 Ak such that ˛ � ˛0 and
ˇ � ˇ0 (in particular, �.˛C ˇ/ � �.˛0 C ˇ0/). Hence, let us assume that ˛ 2 Ai and
ˇ 2 Ak . By assumption on R2, we can find Gi2 C i�1 and Gk2 C k�1 having values
respectively equal to ˛ and ˇ. Then, ˛C ˇ D v.GiCk2 C / for some having degree
at most i C k � 1 in G2. To conclude, we can now apply Lemma 4.10 at the element
GiCk2 C  2 R2.

We are now ready to prove Theorem 4.4.

proof of Theorem 4.4. Starting from the fact that A0 D ¹.0; 0/º D v.K/ D v.T0/,
we prove that Aj D v.Tj / for every j D 0; : : : ; N � 1 by induction. Fixing j > 0,
assume that Ak D v.Tk/ for all k < j . Thanks to Proposition 4.6, we know that for
every ˛ 2 Aj , there exists � 2 Rj�1 such that ˛ D v.Gj C �/. Thus, we only need to
prove that, given � 2 Rj�1, the following conditions are equivalent:

(i) v.Gj C �/ 2 Aj .

(ii) Gj C � 2 Tj .

Let us prove (i))(ii). Assume by way of contradiction Gj C � 62 Tj and set ˛ D
v.Gj C �/. Hence, there existsH 2Rj�1 such that v.H/D˛. WriteH DH.F;G/DPj�1

kD0
ak.F /G

k . Since v.H/ 2 A, H is not divisible by F and thus at least one of
the power series ak.F / has a non-zero constant term. We can apply Weierstrass’
Preparation Theorem on the power series

Pj�1

kD0
ak.x/y

k in the local formal power
series ringKJx;yK. This givesH.x;y/D u.x;y/.

Ph�1
kD0 bk.x/y

k C yh/ forh� j � 1
and u.x; y/ with a non-zero constant term. Mapping to the ring R, we obtain H D
u.F;G/.

Ph�1
kD0 bk.F /G

k CGh/, where still u WD u.F;G/ has a non-zero constant
term but is not necessarily a unit. In particular, by the definition of F and G, we know
that v.u/ D .0; a/ for some a 2 S2. Set Gh C  D

Ph�1
kD0 bk.F /G

k CGh. Clearly,
since .0; a/C v.Gh C / 2 A, then also ˇ WD v.Gh C / 2 A. Possibly iterating the
same process finitely many times, replacing Gj C � by Gh C  , we can reduce to
the case where Gh C  2 Th (eventually, R0 D T0). By the inductive hypothesis, we
get ˇ 2 Ah. The division argument of Weierstrass’ Preparation Theorem implies that
u D .u1; u2/ is a polynomial in G of degree j � 1 � h. By Lemma 4.11, we obtain
˛D v.H/D v.uGhC u / 2 Ai with i � .j � 1� h/C hD j � 1. This contradicts
the assumption of having ˛ D v.Gj C �/ 2 Aj .

We prove now (ii))(i). Let˛D v.Gj C �/ and suppose first that˛ 62A. Hence, we
can write˛Dm!C ı with ı 2Ah andm� 1. If h< j , by the inductive hypothesis, we
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can findGhC 2 Th such that ı D v.GhC /. It follows that ˛D v.Fm.GhC //,
and this contradicts the definition of Tj . If instead h � j , there exists ˇ 2 Aj such
that ˇ � ı. Hence, ˛� ˇ and Proposition 4.6 together with the implication (i))(ii)
allows us to find Gj C  2 Tj such that ˇ D v.Gj C  /. This yields a contradiction
by Lemma 4.9.

Suppose then ˛ 2 Ah for some h. By the inductive hypothesis, since the sets v.Ti /
are disjoint by definition, we must have h � j . If h > j , by Lemma 3.3, we can find
ˇ 2Aj such thatˇ < ˛. As before, we can findGj C 2 Tj such thatˇD v.Gj C /.
If ˛� ˇ, we conclude as previously using Lemma 4.9. Otherwise, we have ˛ 2�SF .ˇ/
and we can use Lemma 3.3 to assume also that z�S

yF
.ˇ/ � A. From this we get

ı WD v.Gj C � �Gj �  / 2 z�S
yF
.ˇ/ � A:

In particular, ı 2 v.Rj�1/\ A. To conclude, we prove that v.Rj�1/\ A �
Sj�1

lD0
Al .

This will show that ı 2 Al with l < j in contradiction with the fact that ı � ˇ.
For ı 2 v.Rj�1/ \ A, arguing as in the proof of implication (i))(ii), we write ı D
v.
Pi�1
kD0 ak.F /G

k/ and use Weierstrass’ Preparation Theorem to get

j�1X
kD0

ak.F /G
k
D u.F;G/.Gs C �/

such that s < j , v.u.F; G// D .0; a/, and Gs C � 2 Ts . The same argument used
previously shows that ˇ 2 Al with l � j � 1.

4.2. Apéry’s theorem for semilocal blow-ups of plane algebroid curves

LetK be an infinite field and let V be a product of local rings of plane algebroid curves
defined over K. Then, it is well known that
• V Š V1 � � � � � Vc � xV Š KJt1K � � � � �KJtd K with .Vi ;mi / local rings, and xV

a finite V -module.
• V is reduced.
• Vi=mi Š K.

We can always assume that V Š V1 � V2 with V1 not necessarily local and V2

local. By Theorems 4.3 and 4.4, we can write

V D KJF KCKJF KG C � � � CKJF KGN�1;

where F is any element of V of value ! D .!.1/;!.2// with !.i/� 0, and G defined
according to the proof of Proposition 4.6.
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Proposition 4.12. The ring UD KJF KCKJF KH C � � � CKJF KHN�1 withH D
G � F is the local ring of a plane algebroid curve and its blow-up, B.U/, is equal to V .

Proof. We first show that U is local with maximal ideal .F;H/. The elementGN 2 V

satisfies a relation GN D a0.F /C a1.F /G C � � � C aN�1.F /GN�1. Hence,

(*) HN
D a0.F /F

N
C a1.F /F

N�1H C � � � C aN�1.F /FH
N�1:

Let ' W KJxKŒy�! U be the surjective homomorphism defined by '.x/ D F and
'.y/ D H . Since V is minimally generated as KJF K-module by ¹1;G; : : : ; GN�1º,
then necessarily N is the minimal integer such that the powers 1;H;H 2; : : : ;HN are
linearly dependent over KJF K. Hence,

f D yN � a0.x/x
N
� a1.x/x

N�1y � � � � � aN�1.x/xy
N�1

is an irreducible element of KJxKŒy� and therefore ker ' D .f /, and U Š
KJxKŒy�
.f /

.
Let m be a maximal ideal of KJxKŒy� containing .f /. Then, m \KJxK D .x/ and
m � .x/. Hence,

KJxKŒy�
m

Š
KJxKŒy�=.x/

m=.x/
Š

KŒy�

m=.x/

and m
.x/
� . Nf /, where Nf denotes the image of f in KJxKŒy�

.x/
. But now it is easy to observe

that Nf D NyN . From this we get m
.x/
D . Ny/; hence, m D .x; y/. By the isomorphism

U Š
KJxKŒy�
.f /

;

we conclude that the only maximal ideal of U is .F;H/.
Let us now prove that U and V have the same field of fractions; that is, Q.U/ D

Q.V/. One inclusion is trivial as U � V . Given g 2 V , we observe that F ng 2 U.
Thus, given g=h 2 Q.V/, we get g=h D .FNg/=.FNh/ 2 Q.U/.

We note then also that xU D xV . Indeed, we have the following chains of inclusions:

KJF K � U � V � KJt1K � � � � �KJtd K;

where the second and the third inclusions are integral as V is a finite KJF K-module
and KJt1K � � � � �KJtd K Š xV . Hence, xU D xV and xU is a finite U-module.

Finally, since F is an element of minimal value in .F; H/, we have B.U/ D

UŒH
F
� D UŒG� D V .

Remark 4.13. Let O be the ring of a plane algebroid curve. Then, by Proposition 2.2,
O D kJxK C kJxKy C kJxKy2 C � � � C kJxKyN�1, where v.x/ D .e1; : : : ; ed / D

min.v.O n ¹0º/ and N D e1 C � � � C ed D e is the multiplicity of O. Let B.O/ be
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the blow-up ring of O and suppose B.O/ to be semilocal. By Theorems 4.3 and 4.4,
choosing ! D .e1; : : : ; ed /, we can write

B.O/ D KJF KCKJF KG C � � � CKJF KGN�1

for opportune choices of F and G. Since F can be any element of B.O/ of value !,
we can choose F D x and get

B.O/ D KJxKCKJxKG C � � � CKJxKGN�1:

Finally, by Proposition 4.12, we have that the local ring

U D KJxKCKJxKxG C � � � CKJxKxN�1GN�1

is the ring an algebroid curve and B.U/ D B.O/.

Proposition 4.14. The rings O and U considered in Remark 4.13 are equal.

Proof. We need to prove that y 2 U and xG 2 O. We know that y=x 2 OŒy=x� D

B.O/ D B.U/ and v.y=x/ is in the Apéry set of v.B.O// with respect to !. Hence,
by Theorem 4.4, y=x D Gj C �.x;G/ for some �.x;G/ of degree at most j � 1 inG.
We claim that j D 1; that is, v.y=x/ is in the first level of Ap.v.B.O//;!/.

Indeed, as recalled before Proposition 4.12, B.O/ � KJt1K � � � � �KJtd K and we
can write B.O/DC1 �C2 whereC1 andC2 are the natural projection of B.O/ over the
sets of indexes I1D¹i 2 ¹1; : : : ;dº j v.y/i D eiº and I2D¹i 2 ¹1; : : : ;dº j v.y/i >eiº,
respectively. Both sets I1 and I2 are non-empty since we assumed B.O/ to be not local.

Thus, observe that v.y=x/ D .0; ˇ/ 2 v.C1/ � v.C2/. Observe that C2 is local
and generated as module by the powers of the image of y=x. By Proposition 2.4, this
implies that ˇ is in the first level of the Apéry set of v.C2/. Theorem 3.1 yields j D
�.v.y=x//D 1 and therefore y=xDGC �.x;G/. It follows that y D xGC x�.x;G/
and O D U as �.x;G/ 2 KJF K � O \U.

Theorem 4.15. Let O be the ring of a plane algebroid curve and suppose its blow-up
ring B.O/ to be not local. Let ! be the minimal non-zero element of O. Let Ai and
A0i denote the i-th levels of the Apéry sets with respect to ! of v.O/ and of v.B.O//,
respectively. Then, Ai D A0i C i!.

Proof. We can describe O and U according to the notation used in Remark 4.13.
Furthermore, denote by Oi theKJxK-submodule of O generated by 1;y;y2; : : : ; yi and,
similarly, denote by Ui theKJxK-submodule of U generated by 1;xG;x2G2 : : : ; xiGi .
For the ring B.O/, we adopt the notation of Theorems 4.3 and 4.4 setting R D B.O/

and defining the subsets Ri as for those theorems.
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Figure 3. The Apéry set of the semigroup v.O0
2/.

Thus, by [5, Proposition 3.8] and Proposition 4.14, we have

Ai D
®
v.yi C �i�1/ j �i�1 2 Oi�1 and v.yi C �i�1/ … v.Oi�1/

¯
D
®
v.xiGi C  i�1/ j  i�1 2 Ui�1 and v.xiGi C  i�1/ … v.Ui�1/

¯
:

By Theorem 4.4, we have

A0i D
®
v.Gi C 'i�1/ j 'i�1 2 Ri�1 and v.Gi C 'i�1/ … v.Ri�1/

¯
:

Hence, in order to prove the theorem, we can use exactly the same proof of [5, Theo-
rem 4.1].

Example 4.16. Let us consider the ring

O D
KJX; Y K

.X5 � Y 2/ \ .X7 CX5 C 3X4Y � Y 3/ \ .X5 �X2 C 2XY � Y 2/

of a plane algebroid curve, which is parametrized by

O D KJ.t2; u3; v2/; .t5; u5 C u7; v2 C v5/K:

If we compute the blow-up, we obtain

O0 WD B.O/ D KJ.t2; u3; v2/; .t5; u2 C u4; 1C v3/K
D KJ.t2; u3/; .t3; u2 C u4/K �KJ.v2; v3/K:

If we denote O01 WD KJ.t2; u3/; .t3; u2 C u4/K and O02 WD KJ.v2; v3/K, we have that
the Apéry set of the semigroup v.O01// with respect to the element 2 is the set ¹0; 3º
and �.0/ D 0, �.2/ D 1, �.3/ D 1, �.4/ D 2. The Apéry set of O02 with respect to
the element (2,3) is depicted in Figure 3.
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Using the method described in [17, Theorem 4.5], we can determine the levels of
the Apéry set A0 of the ring O0 with respect to the element ! D .2; 3; 2/. In this case,

 D .5; 5; 1/ and we have that

A00 D
®
.0; 0; 0/

¯
;

A01 D
®
.0; 0; 2/; .0; 0; 3/; .2; 2; 0/; .3; 2; 0/

¯
;

A02 D
®
.0; 0;1/; .2; 2; 2/; .2; 2; 3/; .3; 2; 2/; .3; 2; 3/; .4; 4; 0/;

.2; 3; 0/; .5; 4; 0/; .6; 4; 0/; .7; 4; 0/; .1; 4; 0/
¯
;

A03 D
®
.2; 2;1/; .3; 2;1/; .2; 3; 3/; .4; 4; 2/; .4; 4; 3/; .5; 4; 2/; .5; 4; 3/; .6; 4; 2/;

.6; 4; 3/; .7; 4; 2/; .7; 4; 3/; .1; 4; 2/; .1; 4; 3/; .4; 5; 0/; .5; 5; 0/; .4; 6; 0/;

.4; 7; 0/; .4; 8; 0/; .4;1; 0/; .6; 6; 0/; .7; 6; 0/; .1; 6; 0/
¯
;

A04 D
®
.4; 4;1/; .5; 4;1/; .6; 4;1/; .7; 4;1/; .1; 4;1/; .4; 5; 3/; .5; 5; 3/;

.4; 6; 3/; .4; 7; 2/; .4; 7; 3/; .4; 8; 2/; .4; 8; 3/; .4;1; 2/; .4;1; 3/; .6; 6; 2/;

.6; 6; 3/; .7; 6; 2/; .7; 6; 3/; .1; 6; 2/; .1; 6; 3/; .1; 8; 0/; .7;1; 0/
¯
;

A05 D
®
.4; 7;1/; .4; 8;1/; .4;1;1/; .6; 6;1/; .7; 6;1/; .1; 6;1/; .6; 7; 3/;

.7; 7; 3/; .1; 7; 3/; .6; 8; 3/; .7; 8; 3/; .6;1; 3/; .1; 8; 2/; .1; 8; 3/;

.7;1; 2/; .7;1; 3/; .1;1; 0/
¯
;

A06 D
®
.1; 8;1/; .7;1;1/; .1;1; 3/

¯
;

where, by convention, we say that an element of the form ˛D .˛1; ˛2; ˛3/with ˛i D1
belongs to the set A0

k
if all the elements ˇ with ˇi > 
i C !i and ˇj D j̨ , j ¤ i ,

belong to the set A0
k
.

Hence, using Theorem 4.15, we can compute the levels of the Apéry set of the
semigroup v.O/ with respect to the multiplicity .2; 3; 2/ using the formula Ai D
A0i C i.2; 3; 2/, for i 2 ¹0; : : : ; 6º.

5. Multiplicity trees of plane curve singularities

Let R Š O1 � � � � � Oc be a direct product of local rings Oj (1 � j � c) each one
associated with a reduced plane algebroid curve defined over an algebraically closed
field K. Let us denote by C1; : : : ;Cd (resp. �1; : : : ; �d ) the branches of R (resp. its
valuations). For j D 1; : : : ; c, let Sj � Ndj denote the value semigroup of Oj . For
every j , Sj is a local good semigroup (a numerical semigroup if dj D 1). The value
semigroup of R is S D S1 � � � � � Sc � Nd where d D d1 C � � � C dc . In this section,
it will be useful to identify each semigroup Sj � Ndj as a the subsemigroup of S :
Sj D ¹0º � � � � � ¹0º � Sj � ¹0º � � � � � ¹0º.
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The fine multiplicity of Oj is the minimal value �.x/ 2 S for x 2 Oj not unit.
Notice that the identification of Sj inside S implies that �i .x/ ¤ 0 if and only if �i is
a valuation of Oj .

The local rings O1; : : : ;Oc will be called the rings (or the points following a more
classical terminology) in the 0-neighborhood ofR. LetR.1/ŠO

.1/
1 � � � � �O

.1/
c denote

the ring in the first neighborhood of R, i.e. the ring produced after the blowing-up
of R. Notice that each ring O

.1/
i is the product of a finite number of local rings: the

local rings (points) of the first-neighborhood of Oi . All the local rings of the ring R.1/

constitute the rings (or points) of the first-neighborhood of R.
Recursively, for j � 2, let R.j / Š O

.j /
1 � � � � � O

.j /
c denote the ring in the j -th

neighborhood of R, i.e. the ring produced after j blowing-ups of R or equivalently
the ring in the first neighborhood of R.j�1/. As in the case j D 1, the ring R.j / is
the product of a finite number of local rings: the local rings (or the points) of the
j -neighborhood ofR. Notice that for j big enough,R.j / ' xR 'KJt1K� � � � �KJtd K.

The whole set of local rings of the successive neighborhoods is encoded as the set of
vertices N of (infinite) graph T in such a way that two vertices corresponding to local
rings O and O0 are connected by an edge if one of them is in the first neighborhood
of the other. Thus, T is the disjoint union of c graphs T1; : : : ; Tc , Ti being the graph
corresponding to the local ring Oi . Each Ti is a tree with root in the vertex corresponding
to Oi and such that the j -th level of Ti consists of the vertices corresponding to the
rings of the j -neighborhood of Oi .

The multiplicity graph of R is the graph T with the additional information of the
fine multiplicity of each local ring attached as a weight of the corresponding vertex.
Although it is a tree only if c D 1, we will refer to it as the multiplicity tree of R and
we denote it by T .R/ or simply T .

The purpose of this section is the characterization of the admissible multiplicity trees
of a plane curve singularity (not necessarily local) over an algebraically closed field of
arbitrary characteristic and to prove the equivalence between the multiplicity tree, the
semigroup of values, and the suitable sequences of multiplicities of each branch, together
with the splitting numbers (equivalent to the intersection multiplicities) between a pair
of branches.

The cased � 2with characteristic zero has been treated in [5]; however, the extension
to any algebraically closed field is made convenient to be included here for the sake of
completeness. All the proofs of the results for d D 2 (and characteristic zero) can be
found in the above reference.

As is well known, in positive characteristic, the Newton–Puiseux theorem is not
valid. Therefore, in this section, we will systematically use the Hamburger–Noether
expansions which are valid in arbitrary characteristic. We have chosen to include them
in an almost self-contained way from Campillo’s book [7, Chapter II], where the reader
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KJ.t2; u3; v2/; .t7; u8 C u10; v4 C v7/K

KJ.t2; u3; v2/; .t5; u5 C u7; v2 C v5/K

KJ.v2; v3/K

KJvK

KJ.t2; u3/; .t3; u2 C u4/K

KJuKKJtK

.2; 3; 2/

.2; 3; 2/

.0; 0; 2/

.0; 0; 1/

.2; 2; 0/

.0; 1; 0/.1; 0; 0/

Figure 4. On the left is represented the blow-up tree of R and on the right the multiplicity tree
of the semigroup S .

can find the precise proofs of the results we will use here. In some cases, we use some
of the classical terminology of the treatment of singularities of complex plane curves
since from the point of view of the resolution and the combinatorial invariants of the
curves there is no substantial difference.

Example 5.1. Let
O D

KJX; Y K
P1 \ P2 \ P3

be a plane algebroid curve, parametrized by

O D KJ.t2; u3; v2/; .t7; u8 C u10; v4 C v7/K;

with a semigroup of values S WD v.R/ and multiplicity ! D .2; 3; 2/. We can compute
the blow-up and multiplicity sequence:

O0 WD B.O/ D KJ.t2; u3; v2/; .t5; u5 C u7; v2 C v5/K

with a semigroup of value S 0 and multiplicity !1 D .2; 3; 2/;

O00 WD B.O0/ D O 001 �O
00
2 D KJ.t2; u3/; .t3; u2 C u4/K �KJ.v2; v3/K

with semigroups of values S 001 � S
00
2 WD v.O

00
1 /� v.O

00
2 / and multiplicities!2;1 D .2; 2/

and !2;3 D 2;

O000 D B.O00/ D O 0001 �O
000
2 �O

000
3 D KJtK �KJuK �KJvK

with semigroups of values S 0001 �S
000
2 �S

000
3 WDv.O

000
1 /�v.O

000
2 /�v.O

000
3 /. In Figure 4 are

represented the blow-up tree T .R/ and the multiplicity tree of semigroup S .
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We want to show how to determine the semigroups of the tree, using the multi-
plicity tree of the semigroup S represented in Figure 4. We have that Ap.S 0001 ; 2/ D
Ap.S 0002 ; 2/ D ¹0; 1º; hence, we can determine the levels of Apéry set A WD Ap.S 0001 �
S 0002 ; !2;1/, which are

A0 D ¹.0; 0/º; A1 D ¹.0; 1/; .1; 0/º;

A2 D ¹.0;1/; .1; 1/; .1; 0/º; A3 D ¹.1; 1/; .1;1/º:

Using Theorem 4.15, we have that

Ap.S 001 ; .2; 2//i D Ai C i.2; 2/ for all i 2 ¹1; : : : ; 4º:

Hence, we can determine S 001 D Ap.S 00; .2; 2//C k.2; 2/ with k 2 N. Considering
Ap.S 0002 ; 2/, using Theorem 4.15, we obtain Ap.S 002 ; 2/1 D ¹0º and Ap.S 002 ; 2/2 D ¹3º,
determining the semigroup S 002 . In Example 4.16, we showed how to compute the levels
of Ap.S 0; .2; 3; 2// knowing the levels of Ap.S 00; .2; 2// and Ap.S 00; 2/; this Apéry
set determines the semigroup S 0. Using again Theorem 4.15, we can determine the
levels of Ap.S; .2; 3; 2// and the semigroup S .

5.1. Case R irreducible (i.e. c D 1 and d1 D 1)

Let C.D O/ be a plane irreducible algebroid curve (a branch) over an algebraically
closed field K and � its valuation. The multiplicity tree is just a bamboo, so it is
equivalent to the sequence of multiplicities e D .e0; e1; : : : ; en; : : :/ of C . It is well
known that the sequence of multiplicities e is equivalent data to the semigroup S D
�.C/�N. The sequence of multiplicities of a branch must be a (not strictly) decreasing
sequence satisfying also the following property.

(Proximity) If ei>eiC1, let eiDqieiC1Cri , ri <eiC1 be the Euclidean division. Then,
eiCj D eiC1 for j D 1; : : : ; qi , and if ri ¤ 0, then ri WD eiCqiC1 < eiC1.

We will say that a sequence of positive integers e D .e0; e1; : : :/ is a plane sequence
if it is a decreasing one and satisfies the Proximity relation above.

Note that, as a consequence, for each i � 0, one has that ei D
Ph.i/

kD1
eiCk for a

suitable h.i/ � 1. The restriction number, r.ej /, of an element ej of the sequence e is
defined as the number of sums ei D

Ph.i/

kD1
eiCk in which ej appears as a summand.

One has that 1 � r.ej / � 2 and, following the classical terminology of the infinitely
near points, if r.ej / D 1, we say that C .j / is a free point, and if r.ej / D 2, C .j / is a
satellite point.

5.1.1. Hamburger–Noether expansions
LetK be an algebraically closed field of arbitrary characteristic, and let �.g/D ordt .g/
be the valuation defined on the ring of power series KJtK.
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Definition 5.2. Let x; y 2 KJtK be such that �.y/ � �.x/ � 1. The Hamburger–
Noether (HN) expansion of ¹x; yº is the finite set of expressions

(5.1) zj�1 D

hjX
iD1

aj iz
i
j C z

hj

j zjC1I 0 � j � r;

where z�1 D y, z0 D x, aj i 2 K, hr D 1, and z1; : : : ; zr 2 KJtK are such that
�.z0/ > �.z1/ > � � � > �.zr/ � 1.

The HN expansion can be better understood from the recursive process of computa-
tion: When �.y/ � �.x/, there exists a unique a01 2 K such that �..y=x/� a01/ > 0
(note that a01 D 0 if and only if �.y/ > �.x/). Let y1 WD .y=x/� a01. If �.y1/� �.x/,
we repeat the same operation with ¹x; y1º.

In this way, it is clear that we have one (and only one) of the next possibilities:

(a) After a finite number of steps, h0, we have a0;1; : : : ; a0;h0
2 K and z1 2 KJtK

such that �.z1/ < �.x/ and y D a01x C a02x2 C � � � C a0h0
xh0 C xh0z1.

(b) We have an infinite series y D a01x C a02x2 C � � � and the HN expansion is just
this series.

Now, in case (a), the process continues with the system ¹z1; xº in a new row. After
a finite number, r , of steps (a), we reach the case (b) because �.zi / < �.zi�1/ for every
i and the valuation � is discrete.

Remark 5.3. It is useful to write the HN expansion in a more detailed way (called
reduced form). To do this, let s1 < s2 < � � � < sg D r be the ordered set of indices j
such that �.zj /j�.zj�1/, and for convenience, we put also s0 D 0. Then, in the row
j D si , there exists the minimum ki such that aj ki

¤ 0 (note that ki � 2 because also
�.zj / < �.zj�1/). In this way, the HN expansion (5.1) could be written as

(5.2)

z�1 D y D a01x C � � � C a0h0
xh0 C xh0z1

z0 D x D z
h1

1 z2

:::

zs1�1 D as1 k1
zk1
s1
C � � � C as1 hs1

z
hs1
s1 C z

hs1
s1 zs1C1

zs1 D z
hs1C1

s1C1
zs1C2

:::

zsg�1 D asg kg
z
kg
sg C � � � ;

where, for i D 1; : : : ; g, one has asi ki
¤ 0.
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5.1.2. Plane curves and HN expansions

Let C D KJx; yK D KJX; Y K=P be a plane algebroid branch over K and let m D
.x; y/ be its maximal ideal. Let xC ' KJtK be the integral closure of C in its field of
fractions, so the valuation � of C is given by �.g/ D ordt .g.x.t/; y.t///. We assume
that �.x/ � �.y/; i.e. x is a transversal parameter.

The Hamburger–Noether expansion of C (with respect to ¹x; yº) is the Hamburger–
Noether expansion of ¹x; yº 2 KJtK. Notice that in this case, it must be �.zr/ D 1.

Let e D .e0; e1; : : :/ be the multiplicity sequence of C ; one has e0 D �.x/. The
blow-up of C is the ring C .1/ D C Œy=x� � xC , m1 D .x; y1/ is its maximal ideal, and
C .1/ ' KJx; y1K. The coefficient a01 is the coordinate on the exceptional divisor of
the strict transform; i.e. y � a01x is just the tangent to C . The multiplicity of C .1/

is e1 D min¹�.x/; �.y1/º and so e1 D �.x/ D e0 if �.y1/ � �.x/ and e1 D �.y1/ if
�.y1/ < �.x/. In this way, it is clear that the process of formation of the HN expansion
exactly reproduces the process of resolution of the singularity. In fact, one has that (see
[7, Proposition 2.2.9]) the HN expansion of C .1/ with respect to ¹x; y1º is as follows:

(1) If h0 > 1,
y1 D a02x C � � � C a0h0

xh0�1 C xh0�1z1;

zj�1 D

hjX
iD1

aj iz
i
j C z

hj

j zjC1I 1 � j � r:

(2) If h0 D 1,

zj�1 D

hjX
iD1

aj iz
i
j C z

hj

j zjC1I 1 � j � r:

In particular, let ni D �.zi / be the values of the elements zi 2 KJtK, 0 � i � r .
Then, the multiplicity sequence e of C is

n D .n0; : : : ; n0; n1; : : : ; n1; : : : ; ni ; : : : ; ni ; : : : ; nr ; : : :/;

where ni appears hi times.

5.1.3. Multiplicity sequence and HN expansions

A set of formal expressions

(5.3) zj�1 D

hjX
iD1

aj iz
i
j C z

hj

j zjC1I 0 � j � r;

where h0; : : : ; hr�1 are positive integers, hr D1, and aj i 2 K are such that aj1 D 0
if j > 0, will be called a Hamburger–Noether type expansion.
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Let us fix r � 0, and if r � 1, let 1 � g � r . Let h0; : : : ; hr�1 be positive integers,
0 < s1 < � � �< sg D r , and for i D 1; : : : ;g, let ki be integers such that 2� ki � hsi . Let
H D .H0; : : : ;Hr/ be the sequence defined byHj D Œki ; hsi � if j D si andHj D hj
otherwise. The sequence H defines an HN type expansion such that its reduced form
is like (5.2) with arbitrary coefficients asi k 2 K, 0 � i � g, ki � k � hsi , asi ;ki

¤ 0.
We say that this is an HN expansion of type H .

Lemma 5.4. There is a bijective correspondence between plane sequences e and finite
sequences H as above.

Proof. Let e be a plane sequence. Let us write eD .n0; : : : ; n0; n1 : : : ; n1; : : : ; nr ; : : :/
in such a way that ni > niC1 and let hi be the number of repetitions of ni (hr D1). Let
s1 < s2 < � � �< sg be the indexes j , 1� j � r , such thatnj jnj�1 and ki D nj�1=nj � 2
for j D si . The proximity relation for nj�1 implies that ki � hsi . Thus, we have defined
a sequence H.e/.

Let H be a sequence defined as above. Then, H allows us to define a unique
sequence of positive integers .n0; : : : ; n0; n1; : : :/ starting with nj D 1 for j � r . Then,
if j < r , define nj�1 D hjnj C njC1 if j ¤ si for all i and nsi�1 D kinsi if j D si .
Obviously, this sequenceE.H/D n satisfies the proximity conditions and so is a plane
sequence. It is trivial that E.�/ and H.�/ are applications inverse to each other.

Proposition 5.5. A Hamburger–Noether type expansion defines a unique plane irre-
ducible curve C D KJx; yK with xC ' KJzrK and whose HN sequence is the prefixed
one.

Moreover, let e be a plane sequence and let H.e/ be a sequence defined as above
for e. Then, an HN expansion of type H.e/ defines a unique plane irreducible curve
over K such that its multiplicity sequence is e.

Proof. Let x D z0, y D z�1, t D zr . Performing the successive (inverse) substitu-
tions, we have a parametrization x D x.t/, y D y.t/, and so we have a morphism
' WKJX;Y K!KJtK defined by '.X/D x.t/, '.Y /D y.t/. The ring C DKJx;yKD
KJX; Y K= ker.'/ is the ring of an irreducible algebroid plane curve. Moreover, if
K..x;y// is the field of fractions of C , it is easy to see (recursively) that zi 2K..x;y//
for all i , in particular t D zr 2 K..x; y//, and so K..x; y// D K..t//, xC D KJtK.
Obviously, the HN expansion of C with respect to ¹x; yº is the one we started with.

The second assertion is a trivial consequence of the first one and of Lemma 5.4.

Remark 5.6. The relation between a plane sequence e and the sequenceH.e/ implies
that the free points (multiplicities) are exactly as follows:

(1) the first h0 points of multiplicity n0 and the first one of multiplicity n1;
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(2) for each t D 1; : : : ; g � 1, the last hst
� kt � 0 points of multiplicity nst

and the
first one of multiplicity nstC1; for t D g, all the points of multiplicity nsg D 1 but
the first kg .

As a consequence, the free points (except the first one) are in a one to one correspondence
with the coefficients ¹aj iº of the HN expansion which are not forced to be zero. So, for
any choice of

¹ast ;i 2 K j 0 � t � gI kt � i � hst
I ast ;kt

¤ 0º;

one has a curve with multiplicity sequence e.
Moreover, the Euclidean algorithm fornst

andnstC1 determines all the multiplicities
ni (st C 2 � i � stC1), the integers hi (st C 1 � i < stC1), and also kstC1

, that is, all
the satellite points after the free point nstC1 up to the next free point.

The rows ¹si W i D 0; : : : ; gº are called the free rows and the rest the satellite rows
because of the distribution of free and satellite points.

5.2. Case of two branches (i.e. d D 2)

Let us assume first that the ring R D O is a local one (i.e. c D 1) with two branches C

and C 0 (d D 2). Let p, p0 be the minimal prime ideals of O, and then the branch C is
C DR=p and the branch C 0 is C 0 DR=p0. Let eD .e0; e1; : : :/ (resp. e0 D .e00; e

0
1; : : :/)

be the sequence of multiplicities of the branch C (resp. C 0).
The splitting number of O is defined as the biggest positive integer k such that

O.k/ is local. Thus, one has that O.k/ is local and O.kC1/ ' C .kC1/ � C 0
.kC1/. The

multiplicity tree of O is the result of identifying the bamboos of both branches C and
C 0 up to level k, and the weights on the trunk are the fine multiplicities of O.j /, for
j � k, i.e. ¹.ej ; e0j /I j D 0; : : : ; kº. After the splitting level k, i.e. for j � k C 1, the
weights are the fine multiplicity of C .j /: .m.C .j //; 0/ D .ej ; 0/ and the one of C 0

.j /:
.0;m.C 0

.j /
// D .0; e0j /.

Notice that if R is not local (i.e. d D 2 and c D 2), then the splitting number is
defined as k D �1.

The intersection multiplicity of C and C 0 is given by the Noether formula ŒC ;C 0�DPk
jD0 ej e

0
j (an easy consequence of the equality

ŒC ;C 0� D e0e
0
0 C ŒC

.1/;C 0.1/�I

see [7, Remark 2.3.2 (iv)]). Thus, if one fixes both sequences of multiplicities e and e0,
then the splitting number k is equivalent to the intersection multiplicity. As a conse-
quence, one has that the semigroup of values S is equivalent data to the multiplicity tree.

The splitting number (for a fixed pair of plane sequences e and e0) is not an arbitrary
one.
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Definition 5.7. We will say that an integer k � �1 is admissible if k D �1 or k � 0
and it satisfies the following properties:

(1) ei�1 D ei if and only if e0i�1 D e
0
i for i D 1; : : : ; k � 1.

(2) r.ej / D r.e0j / for all j � k.

(3) If ek�1 > ek , then e0
k�1
D e0

k
.

(4) If r.ek/ D r.e0k/ D r.ekC1/ D r.e
0
kC1

/ D 2 and if ek�1 D ek , then e0
k�1

> e0
k
.

Notice that k D �1 is always admissible for any pair of plane sequences.

Proposition 5.8. Let k � 0 be an integer with the properties (1) and (2) of Defini-
tion 5.7. Then, k is admissible if and only if either k is maximal with the conditions (1)
and (2) or r.ekC1/ D r.e0kC1/ D 1.

Proof. Let us assume that k is admissible and that the conditions (1) and (2) are also
true for k C 1. In particular (see property (3)), ek�1 D ek and e0

k�1
D e0

k
. Moreover,

r.ekC1/D r.e
0
kC1

/ and (see property (4)) if it is equal to 2, one reaches a contradiction.
Thus, we have proved that if k is not maximal, then r.ekC1/ D r.e0kC1/ D 1.

Let us show the sufficient condition. Firstly, note that the condition ek�1 >ek implies
that r.ekC1/ D 2. So, if ek�1 > ek and also e0

k�1
> e0

k
, then r.ekC1/ D r.e0kC1/ D 2

and k is forced to be maximal. But obviously, this is not the case because (1) and (2)
are also true for k C 1. This proves property (3).

To prove property (4), the hypothesis r.ekC1/ D r.e0kC1/ D 2 implies that k must
be maximal with properties (1) and (2). So, if ek�1 D ek , then e0

k�1
> e0

k
and the proof

is finished.

As a consequence, the properties of the definition can be expressed in a somewhat
simpler form in the following way.

Definition 5.9. We will say that an integer k � �1 is admissible if k D �1 or k � 0
and it satisfies the following properties:

(1) ei�1 D ei if and only if e0i�1 D e
0
i for i D 1; : : : ; k � 1.

(2) r.ej / D r.e0j / for all j � k.

(3) Either k is maximal with the conditions 1 and 2 or r.ekC1/ D r.e0kC1/ D 1.

Remark 5.10. Notice that if ei�1 > ei , then r.eiC1/ D 2. As a consequence, if k is
admissible, then the following hold:

(1) If k is not maximal with properties (1) and (2), then r.ekC1/ D r.e0kC1/ D 1; i.e.
both are free points and then .ek�1; e0k�1/ D .ek; e

0
k
/. However, it is possible to

have .ek�1; e0k�1/ D .ek; e
0
k
/ and r.ekC1/ ¤ r.e0kC1/.
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(2) The situation ek�1 > ek and e0
k�1

> e0
k

is not possible. In particular, ek and e0
k

cannot be simultaneously terminal free points.

5.2.1. Intersection multiplicities with HN expansions

Let O ' KJx; yK be the local ring of a plane curve with two branches, C and C 0,
let e D .e0; e1; : : :/ and e0 D .e00; e

0
1; : : :/ be the multiplicity sequences of C and C 0.

Assume that x is a transversal parameter for C and C 0. Let z0D z00D x, z�1D z0�1D y,
and let

(5.4)

zj�1 D

hjX
iD1

aj iz
i
j C z

hj

j zjC1I 0 � j � r;

z0j�1 D

h0
jX

iD1

a0j i .z
0
j /
i
C .z0j /

h0
j z0jC1I 0 � j � r 0

be the HN expansions of C and C 0 with respect to x; y.
Let s be the largest integer such that hj D h0j for all j < s and aj i D a0j i for j < s

and i � hj . Let t � min¹hs C 1; h0s C 1º be the largest integer for which asi D a0si for
all i < t .

Note that if t < min¹hs C 1; h0s C 1º, then as t ¤ a0s t , in particular s D sq for some
0 � q � min¹g; g0º. Otherwise, t D min¹hs C 1; h0s C 1º and necessarily hs ¤ h0s .

Proposition 5.11. With the above notations, let S D
Ps�1
0 hjnjn

0
j . Then, one has

the following:

(1) The splitting number k between C and C 0 is equivalent data to the pair .s; t/; in
fact,

k D h0 C h1 C � � � C hs�1 C t � 1:

(2) The intersection multiplicity ŒC ;C 0� is as follows:

(a) If t < min¹hs C 1; h0s C 1º, then ŒC ;C 0� D S C tnsn0s .

(b) If t D h0s C 1 < hs C 1, then ŒC ;C 0� D S C h0snsn0s C n0sC1ns .

(c) If t D hs C 1 < h0s C 1, then ŒC ;C 0� D S C hsnsn0s C nsC1n0s .

Proof. One has that k D 0 if and only if a01 ¤ a001. Hence, this situation is equivalent
to .s; t/ D .0; 1/ and the equality follows. The case k > 0 is equivalent to a01 D a001
and the proof follows by induction using the expression of the HN expansion of the
strict transform of a branch in terms of the one of C .

The equality of the intersection multiplicity is a consequence of the expression
for the splitting number or can be proved also by induction using that ŒC ; C 0� D
n0n
0
0 C ŒC

.1/;C 0
.1/
� (see [7, Remark 2.3.2 and Proposition 2.3.3]).
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Proposition 5.12. Let e, e0 be two plane sequences and let k � �1 be an admissible
number for them. Let C be a branch with multiplicity sequence e. Then, there exists
a branch C 0 with multiplicity sequence e0 and such that k is the splitting number of
the curve with branches C and C 0. In particular, k is the splitting number of a pair of
branches with multiplicity sequences e and e0 if and only if k is admissible.

Proof. The case k D �1 is trivial. Let C be a branch with multiplicity sequence e
and HN expansion

zj�1 D

hjX
iD1

aj iz
i
j C z

hj

j zjC1; 0 � j � r;

and let k � 0 be an admissible number for e and e0. Let

z0j�1 D

h0
jX

iD1

A0j i .z
0
j /
i
C .z0j /

h0
j z0jC1; 0 � j � r 0;

be an HN type expansion for H.e0/ in which we see the symbols ¹A0ij º as parameters
to be determined. If k D 0, it suffices to fix A001 D a

0
01 2 K such that a001 ¤ a01. If

k > 0, then we fix A001 D a01. Now let ze D .e1; : : :/ and ze0 D .e01; : : :/ and let C .1/ be
the strict transform of C by one blowing-up. The multiplicity sequence of C .1/ is ze, ze0

is a plane sequence, and k � 1 is an admissible number for ze and ze0. By the induction
hypothesis, there exists a branch D with multiplicity sequence ze0 and splitting number
with C .1/ equal to k � 1. The HN expansion ofD completed with A001 D a01 provides
a branch C 0 with multilicity sequence e0 and such that its splitting number with C

is k.

5.3. General case

Let R Š O1 � � � � � Oc be a direct product of local rings Oj (1 � j � c), each one
associated with a reduced plane algebroid curve defined over an algebraically closed
field K. Let us denote by C1; : : : ;Cd the branches of R. Let T be the multiplicity tree
of R. Take the notations given at the beginning of the section. For each branch Ci ,
i D 1; : : : ; d , one has its corresponding branch T i of T (i.e. a maximal completely
ordered subtree of T ) and so the sequence ei D .e0; e1; : : :/ of multiplicities of Ci .
For i; j 2 ¹1; : : : ; dº, let ki;j C 1 be the length of the trunk of the subtree of T given
by Ci and Cj , so ki;j is just the splitting number of C1 [ C2. The fact that T is the
disjoint union of c trees implies some restrictions on the set of integers ¹ki;j º:

(5.5) Given i; j; t 2 ¹1; : : : ; dº; if one has that kj;t > kj;i ; then ki;t D ki;j :
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Note that the condition (5.5) above is enough to construct a graph T .¹eiº; ¹ki;j º/

by joining the d sequences of integers ¹ei I i D 1; : : : ; dº with the help of the splitting
vertices indicated by ¹ki;j º. (Pay attention that the graph is a tree if and only if ki;j � 0
for any i; j .)

Lemma 5.13. Let E D ¹ei D .ei0; e
i
1; : : :/I i D 1; : : : ; dº be a set of sequences of

positive integers and ¹ki;j � �1º, i; j 2 ¹1; : : : ; dº, i ¤ j , an indexed set of integers
with ki;j D kj;i and satisfying property (5.5). Then, there exists a weighted graph
T D T .¹eiº; ¹ki;j º/ such that the set of maximal completely ordered subgraphs of T ,
¹T 1; : : : ; T d º, coincides with E and for i; j 2 ¹1; : : : ; dº, the length of the trunk of
T i [ T j � T is ki;j C 1.

Proof. The proof is easy by induction on the number of branches d . Otherwise, we
can define directly the graph in the following way. For each integer t � 0, let i �t j if
and only if ki;j � t . If ki;j ; kj;s � t , then by (5.5), one has ki;s � min¹ki;j ; kj:sº � t .
Thus, the relation �t is an equivalence relation. For each equivalence class Jt , we can
take a vertex with weight m.Jt / D .m1; : : : ; md / 2 Nd defined as mi D eit if i 2 Jt
and mi D 0 otherwise. Notice that if t � ` and i �t j , then i �` j . Hence, the result
is the disjoint union of c trees, each one with root in one of the equivalence classes
of �0; in particular, it is a tree if and only if ki;j � 0 for all i; j 2 ¹1; : : : ; dº.

Adding to the lemma the conditions of plane sequences and the admissibility, one
has the following result.

Proposition 5.14. Let ¹ei D .ei0; e
i
1; : : :/I i D 1; : : : ; dº be a set of sequences of non-

negative integers and ¹ki;j � �1º, i; j 2 ¹1; : : : ; rº, i ¤ j , an indexed set of integers
satisfying property (5.5). Let T D T .¹eiº; ¹ki;j º/ be the weighted graph constructed
in Lemma 5.13. Then, there exists a plane curve with multiplicity tree T if and only if

(1) for i D 1; : : : ; r , ei is a plane sequence;

(2) for i; j 2 ¹1; : : : ; rº, i ¤ j , ki;j D kj;i is an admissible splitting number between
the sequences ei and ej .

Proof. We will proceed by induction on the number of branches d . Notice that the
case d � 2 is already known. Moreover, if there exists i; j such that ki;j D �1, then
the result is trivial because we can separate the set of branches ¹1; : : : ; dº in two parts
I; J such that #I; #J < d and ki;j D �1 for i 2 I and j 2 J . So, we can assume that
ki;j � 0 for any pair i; j ; i.e. the searched ring R must be a local one.

Let us fix a branch i D 1 and let I D ¹2; : : : ; dº. Let us assume that k1;2 � k1;i
for all i � 2. Let T 0 be the sub-graph of T defined by the sequences ¹ei W 2 � i � dº
and integers ¹ki;j j i; j � 2º. By the induction hypothesis, there exists a reduced curve
C 0 consisting of the branches C2; : : : ;Cd such that the multiplicity tree of C 0 is T 0.
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Without loss of generality, we can assume that Ci is given by an HN parametrization
'i W .X;Y / 7! .x.ti /;y.ti // in such a way that if '0 WKJX;Y K!KJt2K� � � � �KJtd K,
'0.f / D .'2.f /; : : : ; 'd .f //, then R0 D KJX; Y K= ker.'/ is the local ring of C 0.

Let '1 W .X; Y / 7! .x.t1/; y.t1// be an HN parametrization of a branch C1 such
that its multiplicity sequence coincides with e1 and the splitting number with C2 is
equal to k1;2 (see Proposition 5.12). Since k1;2 � k1;i for all i � 3, it is clear that the
splitting number of C1 and Ci is equal to k1;i . Now consider the map ' W KJX; Y K!
KJt1K�KJt2K� � � � �KJtd K given by'D .'1; : : : ;'d / and letRDKJX;Y K=ker.'/.
Then, the multiplicity tree of R coincides with T and the proof is finished.

As a consequence, one also has the following theorem.

Theorem 5.15. LetRŠO1 � � � � �Oc be a direct product of local rings Oj (1� j � c),
each one associated with a reduced plane algebroid curve defined over an algebraically
closed field K. Let C1; : : : ;Cd be the set of branches of R. The following elements are
equivalent:

(1) The semigroup of values S of R.

(2) The semigroups Si , 1 � i � d , of each branch and the set of intersection multi-
plicities ¹ŒCi ;Cj � j 1 � i < j � dº between pairs of branches.

(3) The multiplicity tree T .R/ of R.

(4) The set E D ¹ei D .ei0; e
i
1; : : :/I i D 1; : : : ; dº of the multiplicity sequences of

the branches ¹Ci j 1 � i � dº plus the splitting numbers ¹ki;j º between pairs of
branches Ci , Cj ; 1 � i < j � d .
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