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ABSTRACT. — We present a constructive procedure, based on the notion of Apéry set, to obtain
the value semigroup of a plane curve singularity from the value semigroup of its blow-up and
vice-versa. In particular, we give a blow-down process that allows us to reconstruct a plane
algebroid curve form its blow-up, even if it is not local. Then, we characterize numerically all
the possible multiplicity trees of plane curve singularities, obtaining in this way a constructive
description of all their value semigroups.
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MATHEMATICS SUBJECT CLASSIFICATION 2020. — 14H20 (primary); 14H50, 13H15,
20M14 (secondary).

1. INTRODUCTION

An algebroid branch is a ring of the form @ = K[Xy,..., X,]/P, where K is an
algebraically closed field and P is a height n — 1 prime ideal. Algebroid branches
naturally appear in the study of curve singularities, as completions of the local rings
associated with a singular point of an algebraic curve, with one branch in that point.
Since Zariski [19], a classical tool to study and classify singularities is given by the
value semigroup associated with an algebroid branch: in fact, the integral closure O of
O in its quotient field is a DVR isomorphic to K [¢]. Hence, every non-zero element
g € O has avalue v(g) := ord;(g) € N and the set of values of its elements constitute
a numerical semigroup v(0@) = S, i.e., a submonoid of N with finite complement
in it. The knowledge of the value semigroup gives much information on the ring @;
for example, its smallest non-zero value is the multiplicity e() of the singularity,
and from the value semigroup one can easily compute the degree of singularity (i.e.
the length /g © /0)), or one can check the Gorenstein and the complete intersection
properties.

Another classical invariant to classify a branch singularity is given by the sequence
of multiplicities of the successive blow-ups of @, (e(0), e(OM), e(O@), .. .) (see
e.g. [19]). Two algebroid branches are said formally equivalent it they share the
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same sequence of multiplicities; in general, the value semigroups and the multiplicity
sequence are independent criteria of equisingularity.

If we want to consider a curve singularity with d branches, we have to deal with
algebroid curves, i.e. rings of the form @ = K[X1,..., X,]/P1 N--- N Py, where
the P; are pairwise distinct prime ideals of height n — 1 and determine the branches.
In this case, the integral closure of (@ in its total ring of fractions is a product of DVRs,
O = K[t;] x -+ x K[t4], where K[t;] is the integral closure €; of the i-th branch
€; := K[X1....,X,]/P; and the set of values S = v(©) is a submonoid of N¢ (here
v(g) = (V1(g), ..., vqa(g)) € N, where v; is the valuation of the i-th branch). The
projections S; of S on the coordinate axes are the value semigroups of each branch.

Again, as for the one-branch case, the value semigroup gives much information on
the singularity. However, while any numerical semigroup is the value semigroup of
a one-branch singularity, there is no characterization of the semigroups appearing as
value semigroups of algebroid curves with d > 1 branches.

In this article, we consider the case of plane curve singularities. When we have only
one branch, there are classical characterizations for the possible numerical semigroups
that are value semigroups of an algebroid plane branch (that now is a ring of the
form @ = K [[X , Y]] /(F), with F irreducible). Moreover, it is well known that the
value semigroup and the multiplicity sequence of an algebroid branch become two
equivalent criteria of equisingularity (see [19]), and in fact it is possible to reconstruct
the multiplicity sequence from the value semigroup and vice-versa. More precisely,
in [1], Apéry considered a particular generating set of v((9), called the Apéry set, and
showed that one can compute the Apéry set of the value semigroup v(8B(0)) of the
blow-up of @ from that of v((@), and vice-versa. This is the reason why, for plane
branches, the value semigroup and the multiplicity sequence are two equivalent sets
of invariants. In [4], it has been shown how to use Apery’s result to easily obtain the
value semigroup from the multiplicity sequence and vice-versa. It is worth noticing
that, if we instead consider plane analytic branches, these invariants (value semigroup
or multiplicity sequence) determine the topological class of the branch (see again [19]).

If we want to study a plane curve singularity with d > 1 branches, we have to
deal with plane algebroid curves, i.e. rings of the form @ = K[X,Y]/(H;--- Hy),
where the H; are irreducible and pairwise coprime. In this case, two plane algebroid
curves O = K[X,Y]/(Hy---Hg)and @ = K[X,Y]/(Gy - -- G4) are formally equiv-
alent if (after a renumbering of the branches) the branches €; = K[X, Y]/(H;) and
D; = K[X,Y]/(G;) have the same multiplicity sequence for i = 1,...,d and if
the intersection multiplicities [€;, €;] := lo(K[X, Y]/(H;. H;)) and [D;, D] :=
lo(K[X,Y]/(Gi,Gj)) (where I denotes the length of a module over a ring) are the
same for all pairs (7, j), i # j. Waldi has shown in [18] that two plane algebroid curves
are formally equivalent if and only if they have the same value semigroup.
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Hence, it is natural to ask whether it is possible to characterize the value semigroup
of a plane singularity with more than one branch and to investigate how to reconstruct
it by the multiplicity sequences and the intersection multiplicities of its branches and
vice-versa.

The problem of the computation of the semigroup of values for d > 1 (and as a
consequence of its characterization in some terms) from the semigroups of each branch
together with the intersection multiplicities between a pair of branches was resolved in
[13] following the next inductive way. Assume that one knows the semigroups of less
than d branches, i.e. the semigroups S of the proper subset of branches corresponding
toJ C{l,...,d},#J < d. Then, one can compute S from the subsemigroups {Sy |
#J = d — 1} and a finite set of elements B = {B!,..., B™} C S (the generalization
of maximal contact values, i.e. of the minimal set of generators of the case d = 1).
The set B can be computed explicitly from the semigroups S;,i = 1,...,d, and the
intersection multiplicities of pairs of branches. It must be noticed that this way was
made for the case d = 2 by Garcia in [15] and Bayer in [6].

However, the above description is not easy, as it among other things demands
inductively the computation of the projections Sy; moreover, it is not established in
terms of the resolution process, which is a very natural way to understand the plane
curve singularities.

This different approach to the problem was addressed and solved in [5] for the
two-branches case and for characteristic 0. In that paper, the authors use two main
tools: firstly, they show how to encode the data that determine formal equivalence
in a tree, which they call multiplicity tree; secondly, they define the Apéry set of the
value semigroup (which is now an infinite set) and make a partition of it in “levels”,
describing them as value sets of particular elements of the algebroid curve. Then, they
show that, in case () and its blow-up B(O) are both local, the levels of the Apéry
sets of their value semigroups can be obtained one from the other. Using these tools
and a result of Garcia [15] (that holds only in the two-branch case), they show how
to obtain the value semigroup from the multiplicity tree and vice-versa; this fact,
together with a numerical description of the admissible multiplicity trees, gives a
constructive characterization of the value semigroups of a plane singularity with two
branches.

The aim of this paper is to generalize this approach to any number of branches,
without restrictions on the characteristic. There are two main problems that arise. The
first one is the fact that the definition of the partition of the Apéry set given in [5] does
not work in more than two branches and in the non-local case. This problem has been
addressed and solved in [11, 16, 17], where a new definition of the levels of the Apéry
set, which works well in general, has been given; moreover, in [17], the authors show
that this new definition agrees with the old one in the two-branch local case.
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The second problem derives from the fact that when blowing up the algebroid curve,
at some point (i.e. when at least two branches have different tangents) the blow-up is
no more local. Our aim is to obtain a procedure to obtain the Apéry set of v(@) from
the Apéry set of the value semigroup v(B(0)) of its blow-up and vice-versa; to do
this, we can make use of the new definition of levels of the Apéry set that holds also in
the non-local case. Moreover, we also need to show, for any number of branches, that
the levels of the Apéry set can be obtained as value sets of particular sets of elements
of B8(0), also in the non-local case. And since B () is not local, we cannot anymore
present it as a quotient of K[ X, Y], as it was done in [5].

Hence, our main task is to prove Theorems 4.3 and 4.4, where we show in the general
case (i.e. for any number of branches, in the semilocal case and with no restrictions
on the characteristic) how to describe the levels of the Apéry set. After doing that, we
can give the searched procedure (see Theorem 4.15). In order to obtain it, we prove at
ring level a procedure that, starting by a product 'V of local rings of plane algebroid
curves, produces a local ring U of a plane algebroid curve, such that 8(U) =V
(Proposition 4.12). So, we have a sort of blow-down process that reverses the blow-up:
in fact, if we start by a plane algebroid curve @, we blow it up and then blow B(0)
down; we get again O (Proposition 4.14).

Now, in order to obtain a constructive characterization of the value semigroup
of a plane curve singularity, it remains to characterize numerically the admissible
multiplicity trees of a curve singularity with any number of branches; this is classically
known for the one-branch case, it was done for the two-branches case and characteristic
0 in [5], and here it is generalized for any number of branches without restriction on
the characteristic (see Proposition 5.14). Using this last result, we can summarize in
Theorem 5.15 the equivalence of the following sets of data:

(1) the semigroup of values S of O;
(2) the multiplicity tree 7 (R) of R;

(3) the set E = {gi = (e(i), e’i, ...); i =1,...,d} of the multiplicity sequences of
the branches {€; | 1 <i < d} plus the splitting numbers {k; ;} between pairs of
branches C;, C;; 1 <i < j <d.

We now briefly describe the structure of the paper. Section 2 is devoted to the
basic definitions about good semigroups; in particular, in Definition 2.1, we recall the
partition of the Apéry set in levels, fixing the notation in a more convenient way with
respect to previous papers. Then, we show that this partition works well when both @
and B(0O) are both local, generalizing the arguments of [5] (see Propositions 2.2, 2.4
and Theorem 2.5).

Section 3 is very technical and contains some new results on the Apéry set, when
the semigroup is not local. These results will allow us to find particular elements in
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the Apéry set, keeping the control on the levels (see e.g. Remark 3.4 and Lemmas 3.7
and 3.8).

In Section 4, we extend [5, Theorem 4.1] to the case where the blow-up of the
coordinate ring of a plane curve is not local. In the first part of the section, we describe
the levels of the Apéry set of the value semigroup of a semilocal ring R as sets of
values of specific subsets of R (see Theorems 4.3 and 4.4). In the second part, we
describe the blow-down process (Proposition 4.12) and how the levels of the Apéry
set of the value semigroup behave when passing from the ring of a plane curve to its
blow-up and vice-versa (Theorem 4.15).

Finally, in Section 5, we give a characterization of the admissible multiplicity
trees of a plane singularity for any number of branches and independently of the
characteristic. To this aim we have to recall the Hamburger—Noether expansion in
the one-branch case and, using it, we can generalize the results for the two-branches
case proved in [5] for characteristic zero. With an inductive argument, we can give
the requested characterization for any number of branches (Proposition 5.14), which
leads to Theorem 5.15 and to a constructive characterization of the admissible value
semigroups of a plane curve singularity.

2. PRELIMINARIES ON ALGEBROID CURVES

To work with value semigroups of algebroid curves, we will use the more general concept
of good semigroup, introduced in [3]. Let < denote the standard component-wise partial
ordering in N9 Given two elements o = (a1,002,...,0q), 8 =(B1.B2,...,B8a) € N4,
the element § such that §; = min(w;, ;) foreveryi = 1,...,d is called the infimum
of the set {&, B} and will be denoted by & A B.

Let S be a submonoid of (N9, 4). We say that S is a good semigroup if

(G1) foreverya,B e S,anpelS;

(G2) giventwo elements e, B € S suchthate # B and o; = B; forsomei € {1,...,d},
then there exists € € S such that ¢; > «; = f; and ¢; > min{«;, B;} for each
J # i (andif ; # B;, the equality holds);

(G3) there exists an element ¢ € S such that ¢ + N4 C §.

A good semigroup is said to be local if 0 = (0, ..., 0) is its only element with a
zero component.

By (G1), it is always possible to define the element ¢ := min{a € Z¢ | + N C §};
this element is called a conductor of S. Wesety := ¢ — 1.

A subset E C N9 is a relative ideal of S if E + S C E and there exists & € S
such that e + E € S. A relative ideal E contained in S is simply called an ideal. An
ideal E satisfying properties (G1), (G2) is called a good ideal (notice that all ideals
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satisfy (G3) by definition). The minimal element ¢ g such that cg + N4 C E is called
the conductor of E. As for S, wesetyg :=cg — 1.

We denote by e = (e1, ez, ..., eq) the minimal element of S such that e; > 0 for all
ie{l,...,d}. Thesete + S is a good ideal of S and its conductor is ¢ + e. Similarly,
for every @ € S, the principal good ideal £ = w + S has conductor cg = ¢ + w.

Let O be an algebroid curve with d branches. The value semigroup S = v(0) is a
local good semigroup contained in N4 [3]. In this case, the sum of the coordinates of
the element e is the multiplicity of the curve. Non-local good semigroups may appear
as value semigroups of semilocal rings obtained from algebroid curves after blow-ups.
General results on good semigroups and value semigroups of curve singularities appear
in many papers, e.g. [3,8-18].

Given a non-zero divisor x € @, setw = (w1, . ..,wgz) = v(x) and consider the good
ideal E =@ + S.Theset Ap(S,®) = S \ E is called the Apéry set of S with respect to
®. Often we will consider the case @ = e, and then we simply write Ap(S) = Ap(S,e).
This set has useful applications in the study of the quotient ring (0 /(x). In the case of
algebroid branches, @ € N and Ap(S, @) is a finite set of cardinality w. Apéry sets
of numerical semigroups and their properties are very well known. For an extensive
treatment of numerical semigroups and semigroup rings, the reader may consult the
monography [2]. In the case d > 2, Ap(S, w) is infinite, but it can be canonically
partitioned in N = wq + - -+ 4+ wy sets, as proved in [16, Theorem 4.4].

We recall the definition of this partition, which can be defined analogously for any
set A € § that is the complement of some proper good ideal. For this we need to
recall several technical definitions that allow us to work combinatorially on a good
semigroup.

Givenaset U C {l,...,d} and an element & € N9, we define the following sets:

Ag(«):{ﬂeSLB,- =o;fori e Uand B; > ajfor j ¢ U},
Zf](a)z{ﬂeS | Bi =«a;fori e U and B; >« for j ¢ U} \ {a},
AS(@)={BeS|pi=c;andB; >afor j # i},

d
AS() = | AY ().
i=1
In particular, for § = N9, we set Ay (a) 1= Agd (o) and ZU(a) = ZEM (). In
general, we denote by U the set{1,....d)} \U.

Given any subset A C S, we say that an element & € A is a complete infimum in A
if there exist ﬂ(l), e, ﬂ(’) € A, with r > 2, satisfying the following properties:

(1) Y e Af,j (o) for some non-empty set F; & {1,...,d}.
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(2) For every distinct j,k € {1,...,r}, e = B A P,
3) Ni=1 Fx = 0.
In this case, we writta = BV A @ ... X g,

Furthermore, given & = (a1, a2, ..., aq) and B = (B1, B2.....Baq) in N¥, we say
that « << @ if and only if either = B or o; < B; foreveryi € {1,...,d}. In the
second case, we say that B dominates o and use the notation & < f.

The partition of Ap(S, @) is defined in the following way.

DEerinITION 2.1. Let A = Ap(S, w). Set

BW .= {a € A : @ is maximal with respect to <<},
CO:={aecBY:a=p0VX...ABD forl <r <dand B® ¢ BDV},
pW .— g \C(l).

For i > 1, assume that DM ..., D@D have been defined and set inductively

B® .— {oc €A\ (U D(j)) : o is maximal with respect to << }
j<i

CO:={aeBD:qa=BVX... A for1 <r <dand B® e B},
D@ .— p® \ c®.

By construction, D% N DY) = @, forany i # j and, sincetheset S\ 4 = w + S
has a conductor, there exists N € N such that 4 = U1N=1 D@, Asin [16], we prefer
to enumerate the sets in this partition in increasing order setting A; := D@~ Hence,
A =UN" A;. We call the sets A; the levels of A.

Notice that in the previous works [16, 17], the levels are enumerated from 1 to N.
In this paper, we prefer to shift them and start from O in order to adapt our notation to
the one in [5].

In [16, Theorem 4.4], it is proved that the number of levels of the Apéry set Ap(S, ®)
is equal to Zle w;.

Werecall thatifo, B € A, < B,anda € A;, then B € A; forsome j > i. Moreover,
the last level of the partitionis Ay—1 = A(yg) = AS(yE) (here, E =w + S§).If S
is local, then A9 = {0}.

Other basic properties of the Apéry set and its partition in levels are listed in
[16, Lemma 2.3].

In [5], a slightly different partition in levels is defined for the Apéry set, only
in the case of plane algebroid curves with two branches. However, it is proved in
[17, Proposition 5.1] that in the case of Apéry sets of plane algebroid curves, the
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partition in [5] coincides with the one given in Definition 2.1. For this reason, since in
this article we deal with plane curves, the results in [5] can be used as starting point of
the inductive arguments in our work, even if we work with a partition in levels defined
in a different way.

In the introduction of [5], it is mentioned that all the results in that paper until
Theorem 4.1 can be proved analogously for arbitrary d > 2. We discuss this fact
more specifically, showing first a way to present a plane algebroid curve as a finite
module over a power series ring in one variable. The following extends the content of
[5, Discussion, page 6] and is independent of the characteristic of the base field.

ProposiTION 2.2. Let O = K[X,Y]/I be an algebroid plane curve with d branches.
Then, we can always write

O = K[x] + K[x]y + K[x]y* +---+ K[x]y*""
where v(x) = (e1,...,eg) = min(v(@) \ {(0,...,0)}),e1 + - +eq =e.

Proor. We can assume [/ = (H;y --- Hy) with Hy, ..., H; irreducible elements and
pairwise coprime. Let us denote @ alsoby K[x, y], where x = X + Tandy =Y + 1.
If the d branches defined by Hj, ..., H; have all the same tangent, we can assume
itis ¥ = 0 and, according to Weierstrass’ Preparation Theorem, we can assume that
Hi =Y¢% + Zf’: Bl a; (X)Y' where e; is the minimal power such that H; contains
a pure power aY ¢ , witha € K \ {0}, and a; (X) are all non-invertible power series
in K[X]. Thus, Hy---Hg = Y° 4+ Y $_gci(X)Y? where e = e; + -+ + ey is the
multiplicity of the curve and c; (X) are all non-invertible.

If instead the tangents of the d -branches are not all the same, we can assume that at
least one is ¥ = 0 and, as above, H; = Y% + Zf’:_ol a;(X)Y' for each branch H;
with tangent ¥ = 0. Then, for each branch Hj with a tangent different from ¥ = 0,
if we write it as Hy (X + Y,Y), we get a term Y °¢ where ey is the minimal degree
of the non-zero terms of H. Hence, after applying the substitution X = X + Y and
Weierstrass’ Preparation Theorem, we get again Hy --- Hy = Y ¢ + Zf;(l) c(X)Y!
where e = e + - - - + ey is the multiplicity of the curve and c; (X) are all non-invertible.

It is clear that, in both cases, we can express @ as a K[x]-module minimally
generated by 1, y, y2,...,y*" 1, withv(x) = (e1,....eq)ande; + - +eg =e. m

Remark 2.3. Let us keep the same notations of the previous proposition. Let F,G € @
be two elements such that @ is a K[ F]-module minimally generated by the elements
1,G,G2,....,GN! withN =ny +---+ngandv(F) = (n1,...,ng). Hence, O =
K[X,Y]/(®), where ®(X,Y) = YN + vaz_ol bi(X)Y* comes from the relation of
dependence of G over K[[F] in degree N.Indeed, there is a surjective homomorphism
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¢: K[X,Y] — O, mapping X to F and Y to G, whose kernel contains (). Now, since
K[X,Y] is a 2-dimensional UFD, ker ¢ has to be the intersection of d principal prime
ideals Py, ..., Pg;hence, P; = (H;) and kerp = (H; --- Hy). Moreover, Hy --- Hy
divides ®, so it has to be of the form Y/ + (X, Y), with j < N, and since O
is minimally generated by 1, G, G2,...,GN~! as K[F]-module, then j = N and
(Hi---Hg) = ().

Notice that the classes x = X + I,y =Y + I € O always satisfy the condi-
tion requested for F' and G. Hence, by Proposition 2.2, we can always assume that
O = K[x] + K[x]y + K[x]y* +--- + K[x]y®"!, where v(x) = (e1,...,eq) =
min(v(O \ {(0,...,0)}),e; + -+ + e4 = e. Moreover, up to replacing y with y + ax
(with @ € K), we can choose y in such a way that v(y) = (rq,...,rg) with r; > ¢; for
those indices i such that H; has tangent Y = 0 and r; > e; for the remaining indexes.

As consequences of Proposition 2.2, we can state the two following results (with
the same identical proofs) [5, Proposition 3.8 and Theorem 4.1].

Let O = K[x] + K[x]y + K[x]y*+--- + K[x]y®~" be aplane curve expressed
as in Proposition 2.2. The element e = (e, ..., e4) is as usual the minimal element of
v(0O) having all components distinct from zero. Set Ry = K andfori =1,...,e — 1,

R; = K[x] + K[x]y +--- + K[x]y".
Similarly, set To = K,andfori =1,...,e — 1,
Ti={y+¢|¢eR_1andv(y’ +¢) ¢ v(Ri—1)}.

ProposITION 2.4. Let A; denote the levels of Ap(v(O)). Then, fori =0,...,e — 1,
Ai = v(Ty).

THEOREM 2.5. Let B(O) denote the blow-up of O and suppose B(0O) to be also
local. Let A} denote the levels of Ap(v(B(0)), e). Then, fori =0,...,e — 1, one has
A, = A —ie.

The aim of the next sections is to extend Theorem 2.5 to the case where the blow-up
of O is not local. In this case it is no more true that 8(©) can be presented as a
quotient of K[X, Y], so we cannot apply Proposition 2.2 and Remark 2.3. To proceed
in this direction, we will need to consider the levels of the Apéry set of non-local good
semigroups.

3. PRELIMINARY RESULTS ON GOOD SEMIGROUPS

In this section, we prove several technical results on good semigroups that will be
needed in Section 4. The proofs often require the combinatorial methods developed in
the previous works [16, 17]. We start by recalling the main result of [17, Section 4],
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restated with the new notation, renumbering the levels of the Apéry set (or more in
general of the complement of a good ideal) starting from O rather than from 1.

Along the section S € N¢ will denote an arbitrary good semigroup (not necessarily
local) and A = S\ E = U?]:—Ol A; the complement of a good ideal E, partitioned in
levels as in Definition 2.1. If S is numerical, A = {wy, ..., wy—1} is finite and we set
Ai = {wi}.

We define a level function A : S — {0, ..., N} in the following way:

Ifa e A;, Ma) = 1.

- Ifad A, A(e) =1+ max{i such that @ > 0 for some 6 € A;}.

Taeorem 3.1 ([17, Theorem 4.5]). Let S = S1 x Sz be a direct product of two
arbitrary good semigroups. Let E C S be a good ideal and set A := S \ E. Then,
givena = (@, a®) e 4 (@@ €S8, fori = 1,2), the level of o in A is equal to

Aa®) + 1 (a®@).

We recall that two elements &, B € S are consecutive if & < 8 and there are no
elements § € S such that « < § < B. The function A has the following property.

LemMma 3.2. Let S be any good semigroup and leta € S. Let E C S be a good ideal
and set A= S\ E. Then, for j < N, A(a) < j if and only if there exists B € Aj such
that o < B. In particular, if 0 € S and o < 0, then A(a) < A(0).

Proor. If a € A, this is straightforward. Suppose & € E and set A(ot) = h.Let@ € A
be a maximal element such that # < a. By the definition of A, @ € A;_;. Now, if there
exists B € A; such that & < B, it follows that j > h — 1. If j > h, we are done. If
j =h—1,by[17, Lemma 2.8], we get « € A,_; and this is a contradiction.
Conversely, if A(e) = h = N, then clearly § € Ax_; and there are no elements
of A larger than or equal to . Thus, we suppose i < N and prove that we can find
B € Ay such that @ < B. Clearly, no elements of Aj are smaller than . Let 8 € Ay, be
such that the element § = & A B is the maximal possible. If § = «, we are done; hence,
suppose by way of contradiction that § < a. By the assumption A () = &, we also have
§ < B. We can fix coordinates saying that & € Af](S) and B € AIS,(S) with V 2 U.
We need to produce an element @ € Ay, such that @ A « > §. We can do it proceeding
exactly as in Cases 1 and 2 of the proof of [17, Proposition 2.10], noticing that o € E
and therefore if § and B are consecutive, we cannot have § € A by [17, Theorem 2.7]
(for the convenience of the reader, we are adopting here the same notation of that proof,
except for the fact that the index of the level of B is shifted by one). Since in this way
we find a contradiction, we must have @« A § = & and 8 > «. ]

The next lemma proves the existence of ascending sequences of elements, one for
each level, satisfying some extra condition on their respective positions.
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LemmA 3.3. Let S be an arbitrary good semigroup. Let E C S be a good ideal and
set A:= S\ E. Then, foreveryi > j > 0and a € A;, there exists B € A; such that
B <o andifoe € AS(B), then AS(,B) C A.

Proor. Observe that if there exists § € A; such that & >> B, the thesis is satisfied
since U = @ and Zg(ﬂ) = {B} C A. First, let us consider the case j = i — 1. This
case will also provide a base for an induction on i. By [17, Proposition 2.10], there
exists B € A;_ such that f < a. We can assume that there are no other elements in
Aj—1 between & and . Let @ € S be an element consecutive to 8 such that § < 0 < «.
Hence, 6 € Aff (B) with H D U and AS (B) < AS, (ﬂ) If by way of contradiction
AS (ﬂ) Z A, by [16, Theorem 2.8], the element (S A, 1. In particular, 6 < o, and
thls contradicts the fact that no elements between a and § are in 4;_1.

By induction, after finding 8 € A;_; satisfying the thesis, taking j <i — 1, we
can find § € A; suchthat B € AIS,(S) and 5‘57(8) C A. It follows that & € Afl (8) with
H C U NYV.Since H D vguv D 17 we get Z%(&) C Z*;(S) C A. This concludes
the proof. |

REMARK 3.4. The proof of Lemma 3.3 shows that, starting from an element oc” D e
Apn_1, we can find a chain of elements

0=a@® <a® <. <a@ <... <a¥W2 <™=
suchthatforevery j =0,...,N —1,a® € 4;,andforevery k < j,ifa() e Ag(a(k))
for some U # @, then Zg(a(j)) C A.

All the results from now until the end of the section are very technical and use the
notion of subspaces of a good semigroup introduced in [16]. The only result needed in
the next sections is the statement of Lemma 3.8.

Let S € N4 be an arbitrary good semigroup and let A = U?]:_ol be its Apéry set
with respect to a non-zero element @ = (w1, ...,®y). Setasusual E = S \ 4 and
denote the conductor of £ by cg = (¢1,...,¢4) =y +® + 1.

The following definition and properties are taken from [16, Section 3].

We recall the next useful fact which describes the behavior of the levels of the Apéry
set for large elements.

ProposiTion 3.5 ([16, Proposition 2.9]). Let ¢ be the conductor of E = @ + S, let
8 >c,andletoa € N¢ be suchthatoe ¢ § and @ = a A 8. Let U = {i : o; < 8;}. Then,
the following conditions are equivalent:

(1) o € Aj,'
2) Ay(e) Ufa} C Aj;
(3) Ay(B)U {8} C A,.
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Ficure 1. In the figure on the left is represented the plane «({3}) which is a subspace of dimen-
sion 2. In the figure on the right, the dashed line o ({1, 3}) represents a subspace of dimension 1.

In particular, as a consequence, if § = c, the Apéry set A = Ap(S, w) and its levels
Aj depend only on the finite subset {a € A : a < c}.

DEFINITION 3.6. Pick a non-empty set U € {1,...,d}. Fora € N¢ such that aj =c¢j
forall j € U, define
a(U) = Ay (a) U {a}.

We say that e(U) is a U-subspace (or simply a subspace) of N¢ (see Figure 1). We
have the following:

« Ifa € E,thena(U) C E, and in this case we say that it is a U -subspace of E, or
thate(U) € E(U).
Ifa € A, then a(U) C A, and in this case we say that it is a U-subspace of A. In
particular, if @ € A;, the subspace «(U) C A;, and we write shortly that «(U) €
A; (U).

Observe that if §(V) is a subspace, U D V and & € Ay (8), then a(U) < §(V).

The dimension of a subspace is defined according to its intuitive geometric rep-
resentation. We say that e(U) has a dimension equal to the cardinality of U. Indeed,
the subspaces of dimension zero are points, those of dimension one are lines, those of
dimension two are planes, and so on.

The proof of the following lemma is based on the part of the argument used to prove
[16, Theorem 4.4].

LemmMmA 3.7. Fixanindexi € {1,...,d}. Let V be a non-empty set of indexes not
containing i and set W := V U {i}. Choose a subspace of the form 0 (V') contained in
A such that 0 is a minimal element for which a subspace of A of such form exists. Then,
there exist w; distinct subspaces of the form O (W), ..., @i~ D(w) c Ur<ae) 41
such that the coordinates B Z(O), B gw" ! form a complete system of residues mod-

ulo w;.
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To help the reader, we add separately the proof in the case d = 2, and then the
proof of the general case.

Proor orF LEMMA 3.7 IN THE case d = 2. First, seti = 1. Clearly, by the definition of
the conductor cg = (c1, c2) of the good ideal E, there are infinitely many elements & €
E such that ap = ¢,. Thus, forevery j =0, ...,®; — 1, we can find a unique minimal
element &) € E such that ai’ ) = J mod w; and aéj ) = ¢2. Hence, for every j, there
exists n; > 1 such thata) —n;@ € A.Fory € S, set Hi(y) = {8 € S|§; = y1}. If
Hi(aY) —n jw) N E # @, we can continue subtracting multiples of @ to some element
in Hy(«“/)) N E until we find an element 8 € 4 such thatﬂgj) = agj) = j mod w;
and H;(BY)) C A. Without loss of generality, we can assume BY) to be the minimal
element of Hy(BY”). Now let # € A be the minimal element of S such that #; = ¢; and
A, (0) C A. We show that A(BY)) < A(8) for every ] Indeed, by the minimality of
BY in H;(BY)), using property (G1), we must have ,3 < 6,, and by the construction
of BY), we must have ,31 < ¢1 = 61. Using that As(ﬁ(f)) C Hi(BY)) C A, we get
the inequality A(B)) < () by [11, Lemma 2 (3)] together with the definition of
levels. ]

Proor or LEMMA 3.7 FOR ARBITRARY d. Relabeling the indexes, we can assume that
W={1,...,i}and V ={1,...,i — 1}.Denotingby [ = A(0), we have that @ (V') C A;;
hence, it is clear that there exist infinitely many W -subspaces contained in level 4; (a
space of dimension j contains infinitely many spaces of dimension j — 1). Among
them, for every j = 1,..., w;, there exist subspaces 0/ (W) € A;(W) minimal with
respect to the property of having 6 l’ = j mod w;.

For each j, we show that Zf(Oj(W)) # @. Indeed, after fixing 87 (W), using
the fact that there are infinitely many W -subspaces contained in 6 (V'), we can find
0'(W) € A;(W) such that 6/ > 9’ (observe that since they are in the same level
necessarily 0, = 9’ for some h < i). Now, if we assume AE(W (W)) = 0, applying
[16, Theorem 3.7] to @/ (W) and 8’ (W), we can write

0/ W)y=0'Wyxal(W)X---Aa" (W),

where ™ (W) € Zf (87 (W)) € A(W) and we may assume a” (W) to be consecutive
to @/ (W) forallm e 1,...,r.By[l16, Theorem 3.9.1], for every m, ™ (W) € Aj(W)
implies that @/ (W) has to be in a lower level. This is a contradiction (for a graphical
representation, see Figure 2 (a)).

Hence, we can set 7/ (W) to be a minimal element in ZlE (607 (W)). We define
® such that g = wy if k € W and @ = ci otherwise, and, starting from =/ (W)
and subtracting multiples of @ (W), we find a unique m; > 1 such that 7/ (W) —
mjw(W) =: B/ (W) € A(W) (see Figure 2 (B)).
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FIGURE 2. () We have d = 3, U = {1,2}; 8/ (W), 8’ (W), a™ (W) are lines. (8) This is a
perspective from “above” of the case d = 3, U = {1,2}, V = {1}. In this case, 87/ (V') is a plane
contained in A; 07 (W), t/ (W), B/ (W) are lines.

Consider now the set H;(a/ (W)) = {B(U) C S|Bi = ozij}. In the case this set
contains some subspace of E, starting by one of these subspaces and subtracting
multiples of @ (U), we can repeat the process and, after changing names, we can finally
assume to have a collection of subspaces B1 (W), ..., Bk (W) € A(W) such that for
every j, ﬂlj = Qij = j mod w; and H; (B’ (W)) € A(W). We can further replace
B (W) by another subspace, and assume that 87 (W) is the minimal W -subspace in
the set H; (8’ (W)) (this minimal subspace is well defined by property (G1); see the
results in [16, Sections 3 and 4]).

To conclude, notice that for every j, the level of B/ (W) has to be strictly lower
than / since 87 (U) has been chosen to be the minimal in A; having k-th component
congruent to j modulo w;. |

LemMA 3.8. Let S and A be defined as above. Then, it is possible to find a sufficiently
large element §n > y + @ such that, given any index i and any element & € A such
that a; > n;, there exists § € AlE(oc) such that§ = mw + B, withm > 1, € A, and

A(B) < Aa).

Proor. Fixing a coordinate i, we want to find an element (i) > ¥ + @ such that if
a; > n(i);, then there exists § € AIE (oe) of the required form. Then, we can simply
define 5 as the minimal element of S that is larger than or equal to all the elements
n(1),...,n(d) with respect to the partial ordering <.
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Let V be a non-empty set of indexes not containing i and set W := V U {i}. Given
the minimal subspace of the form 6 (V') contained in 4, by Lemma 3.7, we can find
w; distinct subspaces of the form @ (W), ..., @i~V (w) c U <a8) A1 such that
the coordinates 8 EO), B Ew" Y form a complete system of residues modulo ;. For
every j =0,...,w; — 1, define t) := g) 4 mjw where m; is the minimal positive
integer such that W 4 m j@ > y + w. Then, set n(V) equal to the element )
which has the largest i-coordinate. Finally, set (i) to be the minimal element of S
larger than or equal to all the elements #(1") for every V' not containing i.

Now we can pick & € A and suppose that «; > n(i);. Since o has at least one
coordinate larger than the conductor, it belongs to an infinite subspace of A of the
form @'(V) withi ¢ V. In particular, V is non-empty and oy < yx + wy forallk € V.
Fixing this set IV, we can take the elements ,B(j ) and ) defined previously. Clearly,
o = ,Bi(j ) modulo w; for some j. Hence, there exists m > 1 such that

o0 =B +moy = ()i = 7 = B +mjo;.

Set § := BY) + & + mw where ¢ is an element of N such that e = 0 for k €
V U {i}, and e > o for the other coordinates. Notice that with these assumptions,
ﬁ(j )tee ﬂ(j )(W) C Aand § € S since it is larger than the conductor (notice that
m > m;). Observe that 8; = a; and, since a subspace is all contained in the same level,
observe also that A(BY) + &) = A(BY)) < 1(8) < A(8") = A(a). Furthermore, for
k € V,wehave 8; > yr + wi > ag, and for k & W, we have 8; > oy by the definition
of . In conclusion, we obtain § € AZE (o). [

4. SEMILOCAL RINGS ASSOCIATED WITH PLANE CURVES

In this section, we extend [5, Theorem 4.1] to the case where the blow-up of the
coordinate ring of a plane curve is not local. In the first part of the section, we describe
the level of the Apéry set of the value semigroup of a semilocal ring R as sets of values
of specific subsets of R. In the second part, we describe how the levels of the Apéry
set of the value semigroup behave when passing from the ring of a plane curve to its
blow-up and vice-versa.

4.1. The Apéry set of the value semigroup of a semilocal ring

Let R = O x -+ x O, be a direct product of local rings ); associated with plane
algebroid curves defined over an infinite field K. Forevery j = 1,...,c,let §; C N4
denote the value semigroup of ;. For every j, S; is a local good semigroup (or a
numerical semigroup). The value semigroup of Ris S = Sy x --- x S, € N¢ where
d=dy+- - +d..
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Letw = (w1,...,ws) be an element of S such that w; > 0 foreveryi = 1,...,d.
Let A be the Apéry set of S with respect to @ and set N := wy + -+ + wg. The set A
can be partitioned as U?]:_ol A;.Let F' € R be an element of value .

Lemma 4.1. Let hy,...,h; € Rwitht < N — 1 be such that for every jJ,
« v(hj)=aj € A,

o < &j+1,

ifay € A[‘S}(aj)forsomek > jand U # O, then Zsﬁ(otj) C A

Then, the images of hy, . .., h; modulo (F) are linearly independent over K =~ %

Proor. Call /2 the image of 1; modulo (F). Suppose Z;Zl ajhj = 0forsomeay € K
not all equal to zero. Then, H := Zj'=1 ajh; € (F)R and therefore v(H) ¢ A. It
follows that at least two coefficients a; are non-zero, and without loss of generality,
we can assume ap,a, 7 0. Clearly, &y &« o5; otherwise, we would have v(H) =
v(aihy) = a; € A. Thus, a; € Ag(al) for some U # @. Since oy < & for j > 2,
it follows that v(H) € Z% (1) € A. This is a contradiction. ]

SETTING 4.2. Let R, A, and F be defined as above. For an element G € R not divisible
by F,set R = K,andfori =1,...,N — 1,

4.1) R; = K[F] + K[F]G +---+ K[F]G".
Similarly, set Tp = K, and fori =1,...,N — 1,
4.2) Ty ={G'+¢ | ¢ Ri—1 and v(G' + ¢) ¢ v(Ri—1)}.

We want to prove that we can find G in such a way that R = Ry _; and the equality
v(T;) = A; holds for every i . More precisely, we will prove the two following theorems.

THEOREM 4.3. Adopt the notation of Setting 4.2. Then, there exists G € R such that
(4.3) R = K[F] + K[F]G +---+ K[F]GN~.

THEOREM 4.4. Adopt the notation of Setting 4.2 and define G as in Theorem 4.3. Then,
foreveryi =0,...,N —1,
Ai = v(Ty).

REMARK 4.5. In the case where R = (91 is local, these results follow by Proposition 2.2,
Remark 2.3, and Proposition 2.4.

By Remark 4.5, the results of the two theorems hold in particular in the case d = 1.
Hence, to prove Theorems 4.3 and 4.4, we can work by induction on d, assuming
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that R is not local. It is sufficient then, slightly changing the notation, to assume that
R =~ 9 x O, with O not necessarily local and @, local. The value semigroup of R
will be denoted by S = S1 x S, with §; C N9 and d = dy + ds.

We can thus write F = (Fj, F5) and @ = (01, 0®@). Also A® will denote the
Apéry set of S; with respect to @@ € S; (the projection of @ with respect to the
coordinates in S;). The number of levels of A is equal to N;, where N; is the sum of
the coordinates of  ®.

For h = (hy,hs) € R, weletv(h) = (v (hy), v® (h,)) denote the value of / in
the semigroup S.

The next proposition explains how to construct the power series G in the ring R.

ProposiTION 4.6. Adopt the notation of Setting 4.2. Then, there exists G € R such that,
foreveryj =0,...,N —landea € A;, wecanfind¢ € Rj_y suchthatv(G’ + ¢) = a.

Proor. We divide the proof in three parts. First, we prove the result for elements
of the form o = (", 0) with &) € AD then we consider elements of the form
o = (™, 0) with ™ & 4D and by analogy we obtain the same results also for all
the elements of the form & = (0, «®) with «® € S, (our proof is independent of
whether S; is local or not). Finally, we will deal with the case & = (", «®) with
a® a®@ £ 0.

As mentioned in the above paragraph, by induction on d, we can assume that
Theorems 4.3 and 4.4 hold for S; and S, with respect to the elements F; and F5.
Hence, fori = 1, 2, there exists G; € O; such that

O;i = K[F] + K[F]Gi + -+ K[F]G .
Before we treat each one of the described cases, we prove the next statement.

LeMMA 4.7. Let L be a finite set of elements of the form e = (™, 0), V) € 4
j < Ny — 1. Then, for all but finitely many choices of B € K, we have

(1)
]‘ ’

v(G/ + ¢(F.G)) =«
for some ¢ € Rj_1 and G = (G1, p + G2).

ProoF oF THE LEMMa. Let a = (P, 0) with a(V € Aj(-l). Using the fact that both
Theorems 4.3 and 4.4 hold for S, we can find ¢ (Fy, G1) € O of degree at most j — 1
in G, such that & = v (G + ¢(Fy, Gy)). Clearly, since K is infinite, for all but
finitely many elements 8 € K, the value v® of (B + G,)7 + ¢(F, B + G») isequal to
the zero element of S,. For all these choices of B, we have = v(G’ + ¢(F,G)). Hence,
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fixing any finite set L, consisting of elements of the form (e?, 0) with & € AD,
we can choose the element 8 € K in such a way that all the elements in L satisfy the
thesis of this lemma. ]

Moditying G as (8 + G1, G2), we can clearly obtain the analogous result, for
infinitely many choices of the same B, for a finite set L’ consisting of elements of the
form (0, «®) with @® € A,

Let us now prove the proposition, considering the different described cases for
acsS.

Casel. o = (@™, 0) witha® € AJ(.I) (or analogously & = (0,®) witha® ¢ A;z)).

For j = 0, the result is clear since we must have &« = 0 = v(1). By induction, we
can assume that &) € Aj(.l) for j > 0, and the thesis holds for any B ¢ A,(cl) with
k<j.

Choosing the element 7 for the semigroup S; according to Lemma 3.8, by Lemma 4.7,
we can assume also that the thesis holds for all the elements (a(), 0) with « € 4
and (eM,0) < (5, 0) (these elements form obviously a finite set).

Thus, we can assume that the element « is such that a( ) > n; for some i. Let

0 =MD ApU={i:«a i() >npit,andV ={i 1« i() < n;} = I; \ U. Then, one has
(see Proposition 3.5) a(V) € Z§dl 9) C Aj(-l) and also

AN @) < BN (8) A4V,
Note that every element of Z§d1 (0) U {8} (in particular 1) satisfies the assumptions
of Lemma 3.8 choosing any index i € U.
Now, let us prove the next lemma.

LemMMA 4.8. Lete € AN 0) c A(l) Then, there exists (§, mw®) € AE (€, 0) with
m > 1, such that (S,mw(z)) = v(w)for some Y € Rj_q.

Proor oF THE LEMMmA. Let i € U. By Lemma 3.8, there exists an element 8§D ¢

AE' (¢) such that 8 = m;0® + B9 withm; > 1 and B© € A(l) with k; < j. By

the inductive hypothesis on j, we know that (,B(’) 0) =v(d;) Wlth CI> € R;_;. Since
® > 0, we get

mio + (BD,0) = D, mi0?®) = v(F™ ;) € v(R;_1) N AE ((e.,0)).
Setting m = min;ey {m;}, we consider the infimum

A GO mo®) = 6, me®) e AE((.0).
ieU
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For some choice of elements z; € K, we know that (8§, mw(z)) =v(Q) ey zi F™ ®;).
Set ¥ := Yoy zi F™ ®; € Rj_1. Note thatif j € V, then 8\ > ¢; foralli € U and
therefore 6; > ¢;; on the other hand, if j € U, then §; = ¢;. m

Now, let us apply Lemma 4.8 to the element & = 6. Since § < 7, we know that
(0,0) = v(G’ + ¢g) for some pg € R;_;. Letus fix an index k € U. Since 8 = 6,
we can choose 7 € K such that v(G7 + ¢g + txy) = (0”,0) > (6,0) with 6, > 6.
Note that if j € V, then 9]’. = 6;; hence, 0’ € ZE‘“ ).

Iterating this process, replacing each time by 6’ and possibly using the other
indices k € U, we can find an element ' € Z?}dl (@) with arbitrarily large coordinates
with respect to the indices in U such that (8’,0) = v(G’ + ¢g) for some ¢g € R;_;.

Going back to the element (V) € Z§d1 (), in particular, we can find g > a("
such that 8 € Z§d1 (0) and (B,0) = v(G’ + ¢g) with pg € R;_;. Explicitly, we can
say that B € Af,},‘ a®) with W D V.

Furthermore, by Lemma 4.8 applied to the element ¢ = a‘"), we can construct
an element (§',7) € AE (@, 0)) such that (§', 7) = v(y’) with ¥’ € R;_; (and
T > 0). Itis easy to observe that (¢, 0) = (B8, 0) A (8', 7). Thus, we can choose
z € K such that v(G/ + ¢g + zy') = (D), 0). This shows that (!, 0) is the value
of some element of the form G/ +¢ with ¢ € R;j_; and completes the proof of Case 1.

Cask 2. (@V,0) € 4; with «V ¢ AW (or analogously @ = (0,a®) € 4; with
a® ¢ AJ(.Z)).

Suppose a1 to be non-zero. By Theorem 3.1 also in this case, we have A (V) =
j > 0. By the definition of A, we can write « ") = mw ™ + 0 form > 1and 0 € A(l)
with k < j.If j < Ny, then by Lemma 3.2, there exists § € A(l) such that ¢V < 8.
As a consequence of Case 1, we know that (§,0) = v(G/ + d)) with ¢ € Rj_; and
(0,0) = v(G* + ¥) with ¥ € Rg_;. Since K is infinite, we can find a non-zero
constant z € K such that (&1, 0) = v(G’ + ¢ + zF™(G* + v)). The result now
follows since by construction ¢ + zF(G* + ) € R;_,.If instead j = Ny, we use
the fact that we can express val = ZNI Yhi(F 1)G' and the choice of the element
B € K can be made in such a way that

Ni—1

OB+ 6™ = X (B + 6o ) =
i=0
Thus, writing again (8, 0) = v(G¥ + ) with ¥ € Ri_;, we obtain
Ni—1

a=(b,0) = v(GNl - Z hi(F)G' + F™(G* + 1/f))‘
i=0

As before, ZN‘ Yhi(F)G' + F™(GK + ) € Rj_;.
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In both Cases 1 and 2, we get the same results for the elements of the form o =
(0, «®). Indeed, we can proceed in the same way working over the components
corresponding to S, and replacing G by G — (8, B) in all the formulas (again the
choice of B at the beginning of the proof can be made generic enough to satisfy all the
needed conditions). We finally consider the general case.

Case3. a = (M, a®) e Aj with a®, a@ £ 0.

We can say that A(e«", 0) = k, 1(0,«®) = [ with k,! > 1. By Theorem 3.1,
k + 1 = j. By what was proved in the previous cases, (¢, 0) = v(G*¥ + ®) and
0, a®) = v(G' + W) for opportune choices of ® € Ry_; and ¥ € R;_;. It follows
that ¢ = v((G* + ®)(G! + W) = v(G/ + &) with & € Rj_;.

This concludes the proof of the proposition. ]
We prove now Theorem 4.3.

PROOF OF THEOREM 4.3. We know that R is a K[ F]—module and, since the quotient
ring ﬁ is a K-vector space of dimension Nj 4+ N, the ring R is minimally generated
as module over K[F] by N = Ny + N, elements. For H € R, denote by H the image
of H in the quotient ﬁ.

Let G be defined as in Proposition 4.6. To prove the theorem, we need to show that

1,G,G?,...,GNtNd

are linearly independent over K. We use now Remark 3.4 to construct a sequence of
elements of S

0=a@ <o <« .. «c W) «i < V-2 o OL(N_I),
such that «® € A; and, for every k < J, ifa) e A[S](a(k)) for some U # @, then

&g(a“)) C A.

By Proposition 4.6, a/) is the value of an element of the form /; := G/ + ¢ with
¢ € Rj_;. Theelements hy, ..., hy_ satisfy the hypothesis of Lemma 4.1. Thus, their
images modulo (F') are linearly independent over K. By the definition of the subsets R,
it follows that also 1, G, G2, ..., GN1+N271 are linearly independent over K. This
proves the theorem. |

Before proving Theorem 4.4, we need to prove several lemmas.

LeMMA 4.9. Take the notation of Setting 4.2. Letae, B € v(T;) for somei =0,...,N — 1.
If oo # B, then a and B are incomparable with respect to the partial order relation <<.
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Proor. Write @ = v(G' + ¢) and B = v(G' + V) for ¢, ¥ € R;_,. If by way of
contradiction & < 8, we would have & = v(G* + ¢ — G' — ) = v(¢ — V) and this
would contradict the definition of 7;. [ ]

LemMma 4.10. Let R be the local ring of a plane curve and let S be its value semigroup.
Let the elements F, G and the subsets R;, T; be defined as in Setting 4.2 and Remark 4.5.
Forj <N —1,let¢p = Zi:o ar(F)G* € R be a power series not divisible by F.
Then, A(v($)) =< J.

Proor. Inthecase j = 0, ¢ is a power series in K [ F] not divisible by F and v(¢) = 0.
It follows that A(v(¢)) = 0. Thus, we can argue by induction and assume the thesis
true for all the power series having degree in G strictly smaller than j. Since ¢ is
not divisible by F, at least one of the series ax(F) has a non-zero constant term.
Thanks to the fact that the ring R is local, we can use Weierstrass’ Preparation Theorem
to write ¢ = u(F, G)(G" + ) with h < j, ¥ € Rj_y, and v(u(F, G)) = 0. If
h < j, we can conclude by the inductive hypothesis. From this we can reduce to
the case where ¢ = G/ + ¥ with ¥ € R;_;. Now set « = v(G/ + V). By way
of contradiction, suppose A(a) > j. Hence, by the definition of A and by Lemma
3.3, we can find B € A; such that @ > B. Since R is local, by Remark 4.5, we know
that Theorem 4.4 holds for R and we get A; = v(7;). Hence, we can find £ € R;_;
such that G/ + & € T; and v(G’ + &) = B. Set § = v(¥ — &) and observe that
o = v(G’/ + & + ¥ — &). By the definition of T}, B # §. For any component i such
that §; # B;, we get min(§;, B;) = o; > B; and thus o; = ;. This implies that § < §.
Now if B < §, we get the contradiction « = . Therefore, there exists a non-empty set
of indices U such thate € A}, (B) and § € Zg(ﬁ). Now if € E, clearly Zg(ﬂ) cA
by property (G1)sinced Ao = & E. Ifa € A, thena € A; with/ > j and we can use
Lemma 3.3 to choose B in such a way that Z[‘%(ﬂ) C A.Inanycase,d € v(R;_1)N A4
and therefore F does not divide ¥ — &. By the inductive hypothesis, A(§) < j — 1
implying that § € A with k < j. This is a contradiction since § > . [

LemMma 4.11. Adopt the notation of Setting 4.2 and let G be defined as in the proof
of Theorem 4.3. Let G/ + ¢ € T;. Suppose that v(G’ + ¢) € A; and there exists
u =u(F,G) € R of degree k in G such that v(u) = (0,0) and v(uG’ + u¢) € Ap.
Then, h < j + k.

ProorF. Let Y and Y, be the components of uG/ + u¢ with respect to the direct
product @1 x O,. We recall that, from what is written right after Remark 4.5, we can
assume 9, to be local. By Theorem 3.1, & = A(v™(Y})) + A(v®(Y,)). Similarly,
write j = j; + j» where j; and j, are the values of the function A applied to the
two components of G’/ + ¢. Since the first component of u has value zero, we get
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A (Y1) = j;. We need to prove that A(v® (Y2)) < k + j,. Applying Lemma 4.10
to the second component of u in the local ring @5, we get A(0) < k. Thus, it is sufficient
to prove that if o, B € S, A(e) =i, and A(B) = k, then A(e + B) < i + k. Since
the maximal value of A(8) for § € S, is N, we can reduce to assume i + k < N,.
By Lemma 3.2, we can replace a, B by &’ € 4; and B’ € Ay such that « < &’ and
B < B’ (in particular, A(a + B) < A(a’ + B’)). Hence, let us assume that & € A; and
B € Ai. By assumption on R,, we can find G} + ;_; and G§ ~+ Y¥x—1 having values
respectively equal to o and 8. Then, e + 8 = v(G£+k + ) for some v having degree
atmost i + k — 1 in G5,. To conclude, we can now apply Lemma 4.10 at the element
Gt 4y e R,. n

We are now ready to prove Theorem 4.4.

PROOF OF THEOREM 4.4. Starting from the fact that A9 = {(0,0)} = v(K) = v(Typ),
we prove that 4; = v(7;) forevery j = 0,..., N — 1 by induction. Fixing j > 0,
assume that Ay = v(Ty) for all k < j. Thanks to Proposition 4.6, we know that for
every & € Aj, there exists ¢ € R;_; such thate = v(G’ + ¢). Thus, we only need to
prove that, given ¢ € R;_1, the following conditions are equivalent:
i)  v(G’ +¢) € 4.
(i) G/ +¢eTj.
Let us prove (i)=>(ii). Assume by way of contradiction G/ + ¢ ¢ T; and set & =
v(G’ + ¢). Hence, there exists H € R;_y suchthatv(H) = . Write H = H(F,G) =

',’C:h ar(F)G*. Since v(H) € A, H is not divisible by F and thus at least one of
the power series ai(F') has a non-zero constant term. We can apply Weierstrass’
Preparation Theorem on the power series Z/JC;}) ar (x)y¥ in the local formal power
seriesring K [x, y]. This gives H(x, y) = u(x, y)(ZZ;}, br(x)y* +y"forh<j—1
and u(x, y) with a non-zero constant term. Mapping to the ring R, we obtain H =
u(F, G)(ZZ;E bi(F)G* + G"), where still u := u(F, G) has a non-zero constant
term but is not necessarily a unit. In particular, by the definition of F' and G, we know
that v(u) = (0,a) for some a € S,. Set G + ¢ = Zz;}) br(F)G* + G". Clearly,
since (0,a) + v(G" + ) € A, then also B := v(G" + ) € A. Possibly iterating the
same process finitely many times, replacing G/ + ¢ by G” + v, we can reduce to
the case where G” + Y € Ty, (eventually, Ry = Tp). By the inductive hypothesis, we
get B € Ay. The division argument of Weierstrass’ Preparation Theorem implies that
u = (u1,uz) is a polynomial in G of degree j — 1 — h. By Lemma 4.11, we obtain
o =v(H)=vuG" +uy) e A; withi < (j —1—h) + h = j — 1. This contradicts
the assumption of having & = v(G’/ + ¢) € A;.

We prove now (ii)=>(i). Leta = v(G’ + ¢) and suppose first that o ¢ A. Hence, we
can writew = me + § with§ € Ay andm > 1.If h < j, by the inductive hypothesis, we
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can find G* + v € Tj, such that § = v(G” + V). It follows that @ = v(F™(G" + 1)),
and this contradicts the definition of 7;. If instead & > j, there exists B € A; such
that § < §. Hence, & > B and Proposition 4.6 together with the implication (i)=>(ii)
allows us to find G/ + v € T; such that B = v(G’ + V). This yields a contradiction
by Lemma 4.9.

Suppose then « € Ay, for some h. By the inductive hypothesis, since the sets v(7;)
are disjoint by definition, we must have 4 > j.If 4 > j, by Lemma 3.3, we can find
B € A; suchthat B < a. As before, we can find G/ + v € T; such that B = v(G/ + ).
If « > B, we conclude as previously using Lemma 4.9. Otherwise, we have & € A‘; B)
and we can use Lemma 3.3 to assume also that Z% (B) € A. From this we get

s:=v(Gf+¢—Gf—¢)erE(ﬂ)gA.

In particular, § € v(Rj—1) N A. To conclude, we prove that v(R;_1) N A C U;;& Aj.
This will show that § € A; with [ < j in contradiction with the fact that § > B.
For § € v(Rj_1) N A, arguing as in the proof of implication (i)=(ii), we write § =
U(Z};lo ar(F)G*) and use Weierstrass’ Preparation Theorem to get

j-1

> ar(F)G* = u(F.G)(G* +¢)
k=0

such that s < j, v(u(F, G)) = (0,a), and G* + £ € T;. The same argument used
previously shows that 8 € A; with] < j — 1. [

4.2. Apéry’s theorem for semilocal blow-ups of plane algebroid curves

Let K be an infinite field and let 'V be a product of local rings of plane algebroid curves
defined over K. Then, it is well known that

VeV x-xV, CV e~ K[t1] x --- x K[tg] with (V;, m;) local rings, and vV
a finite 'V-module.

V is reduced.
. ”Vi /m,- ~ K.

We can always assume that V =~ V; x V, with V] not necessarily local and V,
local. By Theorems 4.3 and 4.4, we can write

V = K[F] + K[F]G +---+ K[F]GV !,

where F is any element of V of value ® = (0", @) with @@ > 0, and G defined
according to the proof of Proposition 4.6.
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ProposiTioN 4.12. The ring U = K[F] + K[F|H +---+ K[F]HN ' with H =
G - F is the local ring of a plane algebroid curve and its blow-up, B(W), is equal to V.

Proor. We first show that U is local with maximal ideal (F, H). The element GV € 'V
satisfies a relation GV = ao(F) 4+ a(F)G + --- + ay_1(F)GY~1. Hence,

(%) HY = ao(F)FN +ay(F)FN'H +---+ay_(F)FHN L.

Let ¢ : K[x][y] — U be the surjective homomorphism defined by ¢(x) = F and
@(y) = H. Since 'V is minimally generated as K [ F]-module by {1, G, ...,GN~1},
then necessarily N is the minimal integer such that the powers 1, H, H2, ..., HN are

linearly dependent over K [ F]. Hence,

=Y —ao()xN —ar()xN Ty - —ay - ()N
is an irreducible element of K[x][y] and therefore ker ¢ = (f), and U = IQ[(xT]])[y]
Let m be a maximal ideal of K[x][y] containing (). Then, m N K[x] = (x) and

m 2 (x). Hence,
Kx]ly] _ KIx]yl/(x) _ K[y]
m wm/(x) m/(x)

and % D (f), where f denotes the image of f in %ﬂ)[y] But now it is easy to observe

that / = V. From this we get & = (7); hence, m = (x, y). By the isomorphism

© —
K[x][y]
)

we conclude that the only maximal ideal of U is (F, H).

Let us now prove that U and 'V have the same field of fractions; that is, Q(U) =
Q (V). One inclusion is trivial as U € V. Given g € V, we observe that F"g € U.
Thus, given g/h € Q(V), we get g/h = (FNg)/(FNh) € Q(U).

We note then also that U = V. Indeed, we have the following chains of inclusions:

U =~

K[F]CcUCVCK[u]x--xK[ta],

where the second and the third inclusions are integral as 'V is a finite K [F]-module
and K[t;] x --- x K[t4] = V. Hence, U = V and U is a finite U-module.

Finally, since F' is an element of minimal value in (F, H), we have 8(U) =
UIE] = UIG] = V. "

Remark 4.13. Let O be the ring of a plane algebroid curve. Then, by Proposition 2.2,
O = k[x] + k[x]y + k[x]y? + --- + k[x]yN ™!, where v(x) = (e1,...,eq) =
min(v(O \ {0}) and N = e; + --- + e4 = e is the multiplicity of 0. Let B8(O) be
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the blow-up ring of @ and suppose B() to be semilocal. By Theorems 4.3 and 4.4,
choosing @ = (ey, ..., eq), we can write

B(O) = K[[F]]+K[[F]]G+...+K[[FI|GN—1

for opportune choices of F and G. Since F can be any element of 8(0) of value o,
we can choose F' = x and get

B(0) = K[x] + K[x]G + --- + K[x]GN 1.
Finally, by Proposition 4.12, we have that the local ring
U = K[x] + K[x]xG + - + K[x]x¥1GN !
is the ring an algebroid curve and 8(U) = B(0O).

ProposiTioN 4.14. The rings O and U considered in Remark 4.13 are equal.

Proor. We need to prove that y € U and xG € @. We know that y/x € O[y/x] =
B(OY) = B(U) and v(y/x) is in the Apéry set of v(B(O)) with respect to w. Hence,
by Theorem 4.4, y/x = G’ 4+ ¢(x, G) for some ¢ (x, G) of degree at most j — 1in G.
We claim that j = 1; that is, v(y/x) is in the first level of Ap(v(8B(0)), ®).

Indeed, as recalled before Proposition 4.12, B(9) € K[t1] x --- x K[t4] and we
can write 8(Q) = C; x C, where C; and C; are the natural projection of B () over the
setsofindexes Iy ={i €{1,...,d}|v(y)i=ei}and [, ={i € {1,...,d} | v(y); > e;},
respectively. Both sets /; and I, are non-empty since we assumed B () to be not local.

Thus, observe that v(y/x) = (0, ) € v(Cy) X v(C,). Observe that C, is local
and generated as module by the powers of the image of y/x. By Proposition 2.4, this
implies that 8 is in the first level of the Apéry set of v(C,). Theorem 3.1 yields j =
A(v(y/x)) = 1 and therefore y/x = G + ¢ (x, G).Itfollows that y = xG + x¢(x, G)
and @ = Uas¢p(x,G) € K[F]CONU. n

THEOREM 4.15. Let O be the ring of a plane algebroid curve and suppose its blow-up
ring B(0) to be not local. Let @ be the minimal non-zero element of O. Let A; and
A] denote the i-th levels of the Apéry sets with respect to @ of v(0Q) and of v(B(0)),
respectively. Then, A; = A} + i®.

Proor. We can describe @ and U according to the notation used in Remark 4.13.
Furthermore, denote by (9; the K [x]-submodule of @ generated by 1, y, y2,..., y! and,
similarly, denote by U; the K [x]-submodule of U generated by 1, xG,x2G2...,x'G".
For the ring 8(0), we adopt the notation of Theorems 4.3 and 4.4 setting R = B(0O)
and defining the subsets R; as for those theorems.



M. D’ANNA, F. DELGADO DE LA MATA, L. GUERRIERI, N. MAUGERI AND V. MICALE 484

12 = =

1L H H H

10 |~

9 3 o« 4

8 |- 3 . .

7 3 . - )
6 ] C SRR SR N S A >
5 . |
4l R S S S S S N
3 3 —
2 - 1 1 -
1 -

\ | | | | | | | | |

o

FiGure 3. The Apéry set of the semigroup v(O’3).

Thus, by [5, Proposition 3.8] and Proposition 4.14, we have

A = {v(yi + ¢i—1) | pi—1 € O;—1 and v(yi + i) ¢ U((gi—l)}
= {0('G" + Y1) | Yio1 € Uimy and v(x'G' + Yim1) & v(Ui1)}.

By Theorem 4.4, we have
A = {v(G' + ¢i—1) | gi—1 € Ri—y and v(G' + ¢;—1) ¢ v(Ri—1)).

Hence, in order to prove the theorem, we can use exactly the same proof of [5, Theo-
rem 4.1]. ]

ExampLE 4.16. Let us consider the ring

K[X.Y]

O =
(X5—Y)N (X7 + X5 +3X4Y —Y3)N(X5—X2+2XY — Y?)

of a plane algebroid curve, which is parametrized by
0 = K[t u?,v?), (%, u® +u”,v? +v°)].
If we compute the blow-up, we obtain
O = B8(0) = K[(*, v, v?), (*,u* + u*, 1+ v?)]
= K[(t% u?), 3, u? + uhH] x K[(v*, v?)].
If we denote O’ := K[(t2,u?), (t3,u* + u*)] and O’y := K[(v%, v3)], we have that
the Apéry set of the semigroup v((9’1)) with respect to the element 2 is the set {0, 3}

and A(0) = 0, A(2) = 1, A(3) = 1, A(4) = 2. The Apéry set of @', with respect to
the element (2,3) is depicted in Figure 3.
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Using the method described in [17, Theorem 4.5], we can determine the levels of
the Apéry set A’ of the ring (9’ with respect to the element @ = (2, 3, 2). In this case,
y = (5,5, 1) and we have that

Ay ={(0,0,0)},

A} =1{(0,0,2),(0,0,3),(2.2,0),(3,2,0)},

Ay ={(0,0,00),(2.2,2),(2,2,3),(3,2.2).(3,2.3), (4.4,0),

(2,3,0),(5.4,0), (6,4,0),(7.4,0), (00, 4,0)},

Ay ={(2,2,00).(3,2,00),(2,3,3),(4,4,2),(4.4,3),(5.4,2),(5.4,3).(6,4,2),
(6,4,3),(7,4,2),(7,4,3), (00, 4,2), (00,4, 3),(4,5,0), (5.5,0), (4,6,0),
(4,7,0). (4,8,0), (4,00,0),(6,6,0), (7,6,0), (00, 6,0)},

Ay = {(4.4,00),(5.4,00), (6,4,00), (7. 4,00), (00,4,0), (4,5,3),(5,5.3),
(4,6,3),(4,7,2),(4,7,3),(4.8,2), (4,8,3),(4,00,2), (4,0, 3), (6, 6,2),
(6,6,3),(7,6.,2).(7.6,3),(c0,6,2), (00,6,3), (00, 8,0), (7,00,0)},

A5 ={(4,7,00), (4,8,00), (4,00,00), (6, 6,0), (7,6, 0), (00, 6,00), (6,7, 3),
(7,7.3). (00, 7.3),(6,8,3), (7.8, 3), (6,00, 3), (0, 8,2), (00, 8, 3),
(7,00,2), (7,00, 3), (c0,00,0)},

Ag = {(00,8,00), (7,00, 00), (00, 00, 3) },

where, by convention, we say that an element of the form & = (1, o2, @3) with o; = 00
belongs to the set A4} if all the elements g with 8; > y; + w; and B; = oy, j # i,
belong to the set A4} .

Hence, using Theorem 4.15, we can compute the levels of the Apéry set of the
semigroup v((@) with respect to the multiplicity (2, 3, 2) using the formula 4; =
A} +1i(2,3,2),fori €{0,...,6}.

5. MULTIPLICITY TREES OF PLANE CURVE SINGULARITIES

Let R = O x --- x O, be a direct product of local rings @; (1 < j < c¢) each one
associated with a reduced plane algebroid curve defined over an algebraically closed
field K. Let us denote by €y, ..., €, (resp. vy, ..., Vg) the branches of R (resp. its
valuations). For j = 1,...,c,let §; C N4 denote the value semigroup of ¢;. For
every j, S; is a local good semigroup (a numerical semigroup if d; = 1). The value
semigroupof Ris § = §; x---x S, C N4 where d = dj + --- + d.. In this section,
it will be useful to identify each semigroup S; C N% as a the subsemigroup of S:
Sj = {0} x -+ x {0} x S x {0} x -+ x {0).
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The fine multiplicity of ; is the minimal value v(x) € S for x € O; not unit.
Notice that the identification of S; inside S implies that v; (x) # 0 if and only if v; is
a valuation of O;.

The local rings Oy, ..., O, will be called the rings (or the points following a more
classical terminology) in the 0-neighborhood of R. Let RV =~ (9%1) X oo X (99) denote
the ring in the first neighborhood of R, i.e. the ring produced after the blowing-up
of R. Notice that each ring (91.(1) is the product of a finite number of local rings: the
local rings (points) of the first-neighborhood of @;. All the local rings of the ring RM
constitute the rings (or points) of the first-neighborhood of R.

Recursively, for j > 2, let RV) =~ (99 ) X e x (9§j ) denote the ring in the j-th
neighborhood of R, i.e. the ring produced after j blowing-ups of R or equivalently
the ring in the first neighborhood of RU~D. As in the case j = 1, the ring R is
the product of a finite number of local rings: the local rings (or the points) of the
j-neighborhood of R. Notice that for j big enough, RV ~ R ~ K[t;] x --- x K[t4].

The whole set of local rings of the successive neighborhoods is encoded as the set of
vertices N of (infinite) graph 7 in such a way that two vertices corresponding to local
rings O and (' are connected by an edge if one of them is in the first neighborhood
of the other. Thus, 7 is the disjoint union of ¢ graphs 771, ..., 7;, 7; being the graph
corresponding to the local ring (9; . Each 7; is a tree with root in the vertex corresponding
to ; and such that the j-th level of 7; consists of the vertices corresponding to the
rings of the j-neighborhood of ;.

The multiplicity graph of R is the graph 7 with the additional information of the
fine multiplicity of each local ring attached as a weight of the corresponding vertex.
Although it is a tree only if ¢ = 1, we will refer to it as the multiplicity tree of R and
we denote it by 7 (R) or simply T .

The purpose of this section is the characterization of the admissible multiplicity trees
of a plane curve singularity (not necessarily local) over an algebraically closed field of
arbitrary characteristic and to prove the equivalence between the multiplicity tree, the
semigroup of values, and the suitable sequences of multiplicities of each branch, together
with the splitting numbers (equivalent to the intersection multiplicities) between a pair
of branches.

The case d < 2 with characteristic zero has been treated in [5]; however, the extension
to any algebraically closed field is made convenient to be included here for the sake of
completeness. All the proofs of the results for d = 2 (and characteristic zero) can be
found in the above reference.

As is well known, in positive characteristic, the Newton—Puiseux theorem is not
valid. Therefore, in this section, we will systematically use the Hamburger—Noether
expansions which are valid in arbitrary characteristic. We have chosen to include them
in an almost self-contained way from Campillo’s book [7, Chapter II], where the reader
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K[(z2,u3,v2), (¢, u® + u”,v? +v9)]

K[(t2,u3,v2), (7, ud +u'® v* +07)] @

FiGure 4. On the left is represented the blow-up tree of R and on the right the multiplicity tree
of the semigroup S.

can find the precise proofs of the results we will use here. In some cases, we use some
of the classical terminology of the treatment of singularities of complex plane curves
since from the point of view of the resolution and the combinatorial invariants of the
curves there is no substantial difference.

ExampLE 5.1. Let
9 — K[X,Y]

PN PyN P;

be a plane algebroid curve, parametrized by
O = K[t* u?,v?), 7, u® +u'® v* +07)],

with a semigroup of values S := v(R) and multiplicity v = (2, 3, 2). We can compute
the blow-up and multiplicity sequence:

O = B8(0) = K[(t*u>,v?), (°, u° +u’,v* + v°)]
with a semigroup of value S’ and multiplicity w; = (2, 3, 2);
0" = B(O') = 0} x 0 = K[(t*.u?), (3, u® + u™)] x K[(v%,v?)]

with semigroups of values S} x S5 := v(07) x v(05) and multiplicities w1 = (2,2)
and w3 = 2;

0" = BO") = O x 0 x 0 = K[i] x K[u] x K[v]

with semigroups of values S7”x S5’ xS3" :=v(0]")xv(05") xv(0%’). In Figure 4 are
represented the blow-up tree 7 (R) and the multiplicity tree of semigroup S.
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We want to show how to determine the semigroups of the tree, using the multi-
plicity tree of the semigroup S represented in Figure 4. We have that Ap(S]”,2) =
Ap(Sy’,2) = {0, 1}; hence, we can determine the levels of Apéry set 2 := Ap(S]” x
S, w2.1), which are

Ao ={(0,0)}, Ay ={(0,1),(1,0)},
%12 = {(0’ OO)’ (17 1)’ (009 O)}’ ;‘)13 = {(OO’ 1)’ (1’ OO)}

Using Theorem 4.15, we have that
Ap(S{,(2,2));i =A; +i(2,2) foralli € {1,...,4}.

Hence, we can determine S; = Ap(S”. (2,2)) + k(2. 2) with k € N. Considering
Ap(Sy’,2), using Theorem 4.15, we obtain Ap(S5,2); = {0} and Ap(S5,2), = {3},
determining the semigroup 7. In Example 4.16, we showed how to compute the levels
of Ap(S’, (2, 3,2)) knowing the levels of Ap(S”, (2,2)) and Ap(S”,2); this Apéry
set determines the semigroup S’. Using again Theorem 4.15, we can determine the
levels of Ap(S, (2, 3,2)) and the semigroup S.

5.1. Case R irreducible (i.e.c = 1 anddy = 1)

Let €(= O) be a plane irreducible algebroid curve (a branch) over an algebraically
closed field K and v its valuation. The multiplicity tree is just a bamboo, so it is
equivalent to the sequence of multiplicities ¢ = (eg, €1, ..., €y,...) of €. Itis well
known that the sequence of multiplicities e is equivalent data to the semigroup S =
v(€) C N. The sequence of multiplicities of a branch must be a (not strictly) decreasing
sequence satisfying also the following property.

(Proximity) Ife; >e;;1,lete; =qgjej+1+7ri,ri <ej41 bethe Euclidean division. Then,
eiyj=epr1forj=1,...,qg;,andifr; #0,thenr; :=e;14,+1 <e€it1.

We will say that a sequence of positive integers e = (e, €1, . ..) is a plane sequence
if it is a decreasing one and satisfies the Proximity relation above.

Note that, as a consequence, for each i > 0, one has that ¢; = ZZ(:i)l e+ for a
suitable (i) > 1. The restriction number, r (e;), of an element e¢; of the sequence e is
defined as the number of sums e; = Zz(zi)l e; +k in which e; appears as a summand.
One has that 1 < r(e;) < 2 and, following the classical terminology of the infinitely
near points, if r(ej) = 1, we say that €) is a free point, and if r(e;) =2, €W isa
satellite point.

5.1.1. Hamburger—Noether expansions
Let K be an algebraically closed field of arbitrary characteristic, and let v(g) = ord, (g)
be the valuation defined on the ring of power series K [¢].



THE VALUE SEMIGROUP OF A PLANE CURVE SINGULARITY WITH SEVERAL BRANCHES 489

DEerINITION 5.2. Let x, y € K[¢] be such that v(y) > v(x) > 1. The Hamburger—
Noether (HN) expansion of {x, y} is the finite set of expressions

hj
: Ly .
(5.1 Zia=) ajzi+zz0 0<j <,
i=1
where z_; = y, zg = x, aj; € K, hy = 00, and z1, ...,z € K[t] are such that

v(zo) > v(z1) > - >v(zy) > 1.

The HN expansion can be better understood from the recursive process of computa-
tion: When v(y) > v(x), there exists a unique ag; € K such that v((y/x) —ao1) >0
(note that ag; = Oifand only if v(y) > v(x)). Let y1 := (y/x) —ao1. If v(y1) > v(x),
we repeat the same operation with {x, y1}.

In this way, it is clear that we have one (and only one) of the next possibilities:

(a) After a finite number of steps, Ao, we have ag 1, ...,d04, € K and z; € K[[z]]
such that v(z1) < v(x) and y = ag1x + agax? +--- + aohoxh” + xhoz,.

(b) We have an infinite series y = ag;x + agax? + --- and the HN expansion is just
this series.

Now, in case (a), the process continues with the system {z, x} in a new row. After
a finite number, r, of steps (a), we reach the case (b) because v(z;) < v(z;—1) for every
i and the valuation v is discrete.

Remark 5.3. It is useful to write the HN expansion in a more detailed way (called
reduced form). To do this, let s; < s, < --- < §; = r be the ordered set of indices j
such that v(z;)|v(z;—1), and for convenience, we put also so = 0. Then, in the row
J = si, there exists the minimum k; such that a; x;, # 0 (note that k; > 2 because also
v(zj) < v(zj—1)). In this way, the HN expansion (5.1) could be written as

Z1 =y =aop1x +--- +a0h0xh° + xMoz,
hi
20 =X =2Zy 22
_ k h) hs,
(5.2) Zs1—1 = dgy klzsll totasyng Zs) T Zs Zsi+

_ s
Zs1 = Zg141 Zs1+2

kg
Zsg—1 = UsgkeZsy T 00,

where, fori = 1,..., g, one has ay, ; # 0.
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5.1.2. Plane curves and HN expansions

Let € = K[x,y] = K[X,Y]/P be a plane algebroid branch over K and let m =
(xx, y) be its maximal ideal. Let € ~ K [¢] be the integral closure of € in its field of
fractions, so the valuation v of € is given by v(g) = ord;(g(x(¢), y(¢))). We assume
that v(x) < v(y);i.e. x is a transversal parameter.
The Hamburger-Noether expansion of € (with respect to {x, y}) is the Hamburger—
Noether expansion of {x, y} € K[t]. Notice that in this case, it must be v(z,) = 1.
Let e = (eo, €1, ...) be the multiplicity sequence of €; one has eg = v(x). The
blow-up of € is the ring €M = €[y/x] C €, m; = (x, y;) is its maximal ideal, and
e ~ K [x, yl]]. The coefficient ag; is the coordinate on the exceptional divisor of
the strict transform; i.e. y — agx is just the tangent to €. The multiplicity of €
is ey = min{v(x),v(y1)} and so e; = v(x) = ¢g if v(y1) > v(x) and e; = v(y;) if
v(y1) < v(x). In this way, it is clear that the process of formation of the HN expansion
exactly reproduces the process of resolution of the singularity. In fact, one has that (see
[7, Proposition 2.2.9]) the HN expansion of €1 with respect to {x, y;} is as follows:
(1) If ho > 1,
Y1 =4ap2X + -+ Cl()hoxho_l + XhO_IZl,
hj
Zjo1 = ajiZJi' +Zj}-lij+1; l<j=r
i=1
(2) Ifthy =1,
hj
zjo1 =) _ajiz} +Zj}~lj2j+1; I=<j=r
i=1
In particular, let n; = v(z;) be the values of the elements z; € K [[t]], 0<i<r.
Then, the multiplicity sequence e of € is

n=(g,..., 00,01 ,..., A1 ... 0i,... 0j,... . 0p,...),
where n; appears h; times.

5.1.3. Multiplicity sequence and HN expansions

A set of formal expressions

hj
- i hj .
(5.3) Zia= ajzi+zz0: 0<j <,
i=1
where hy, ..., h,_; are positive integers, i, = 0o, and aj; € K are such that aj; =0

if j > 0, will be called a Hamburger—Noether type expansion.
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Letusfixr > 0,andif r > 1,let 1 < g <r.Lethy,...,h,—1 be positive integers,
0<sy<---<sg=r,andfori =1,...,g,letk; beintegers suchthat2 < k; < hy,.Let
H = (Hy,..., Hy) be the sequence defined by H; = [k;, hy,]if j = s; and H; = h;
otherwise. The sequence H defines an HN type expansion such that its reduced form
is like (5.2) with arbitrary coefficients a,, € K,0 <i < g, ki <k < hy;, a5 ; #0.
We say that this is an HN expansion of type H.

LemMa 5.4. There is a bijective correspondence between plane sequences e and finite
sequences H as above.

Proor. Let e be aplane sequence. Letus write e = (ng, ..., 70,11 ..., 1,...,0p,...)
in such a way that n; > n; 1 and let /; be the number of repetitions of n; (h, = 00). Let
51 <83 <---<Sgbetheindexes j,1 < j <r,suchthatn;|nj_yandk; =n;_/n; >2
for j = s;. The proximity relation for n;_; implies that k; < hy, . Thus, we have defined
a sequence H(e).

Let H be a sequence defined as above. Then, H allows us to define a unique
sequence of positive integers (1o, ...,no,n1,...) starting with n; = 1 for j > r. Then,
if j <r,definen; 1 =hjn; +njiif j #s; foralli and ng, 1 = king, if j = ;.
Obviously, this sequence E(H) = n satisfies the proximity conditions and so is a plane
sequence. It is trivial that £(—) and H(—) are applications inverse to each other. m

ProrosiTion 5.5. A Hamburger—Noether type expansion defines a unique plane irre-
ducible curve € = K[x, y] with € ~ K[z,] and whose HN sequence is the prefixed
one.

Moreover, let e be a plane sequence and let H(e) be a sequence defined as above
for e. Then, an HN expansion of type H (e) defines a unique plane irreducible curve
over K such that its multiplicity sequence is e.

Proor. Let x = zg, y = z_1,t = z,. Performing the successive (inverse) substitu-
tions, we have a parametrization x = x(¢), y = y(¢), and so we have a morphism
¢ :K[X,Y] — K[t] defined by p(X) = x(),9(Y) = y(¢). Thering € = K[x, y] =
K[X, Y]/ ker(p) is the ring of an irreducible algebroid plane curve. Moreover, if
K((x,y)) is the field of fractions of €, it is easy to see (recursively) that z; € K((x, y))
for all 7, in particular t = z, € K((x,y)), and so K((x,y)) = K((1)), € = K[t].
Obviously, the HN expansion of € with respect to {x, y} is the one we started with.
The second assertion is a trivial consequence of the first one and of Lemma 5.4. m

RemARK 5.6. The relation between a plane sequence e and the sequence H (e) implies
that the free points (multiplicities) are exactly as follows:

(1) the first hg points of multiplicity n¢ and the first one of multiplicity n1;
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(2) foreacht =1,...,g — 1, the last i;, — k; > O points of multiplicity n,, and the
first one of multiplicity ng, +1; for # = g, all the points of multiplicity ns, = 1 but
the first kg .

As aconsequence, the free points (except the first one) are in a one to one correspondence
with the coefficients {a;; } of the HN expansion which are not forced to be zero. So, for
any choice of

{as,i € K|0<t <g: k; <i <hg,; as, k, # 0},

one has a curve with multiplicity sequence e.
Moreover, the Euclidean algorithm for s, and g, 1 determines all the multiplicities

ni (st +2 <i < s¢41), theintegers h; (s; + 1 <i < s;41), and also ks, |, that is, all
the satellite points after the free point 5, +1 up to the next free point.
The rows {s; :i = 0,..., g} are called the free rows and the rest the satellite rows

because of the distribution of free and satellite points.

5.2. Case of two branches (i.e. d = 2)

Let us assume first that the ring R = @ is a local one (i.e. ¢ = 1) with two branches €
and €’ (d = 2). Let p, p’ be the minimal prime ideals of @, and then the branch € is
€ = R/pandthebranch € is € = R/p’.Lete = (eg.e1,...) (resp.e’ = (eg,e],...))
be the sequence of multiplicities of the branch € (resp. €').

The splitting number of O is defined as the biggest positive integer k such that
©® is local. Thus, one has that @®) is local and O*+D ~ ©k+D » ' *+D Tpe
multiplicity tree of @ is the result of identifying the bamboos of both branches € and
€’ up to level k, and the weights on the trunk are the fine multiplicities of @), for
Jj <k,ie. {(ej,e});j =0,...,k}. After the splitting level k, i.e. for j > k + 1, the
weights are the fine multiplicity of €): (m(€)),0) = (e;,0) and the one of €’ .
0.m(e')) = (0.¢)).

Notice that if R is not local (i.e. d = 2 and ¢ = 2), then the splitting number is
defined as k = —1.

The intersection multiplicity of € and €’ is given by the Noether formula [€, €] =
Z?:o ej e} (an easy consequence of the equality

['6, '6/] = e0e6 + [‘6(1)’ '6/(1)];

see [7, Remark 2.3.2 (iv)]). Thus, if one fixes both sequences of multiplicities ¢ and ¢’,
then the splitting number k is equivalent to the intersection multiplicity. As a conse-
quence, one has that the semigroup of values S is equivalent data to the multiplicity tree.

The splitting number (for a fixed pair of plane sequences e and ¢’) is not an arbitrary
one.
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DeriNITION 5.7. We will say that an integer kK > —1 is admissible if k = —1ork >0
and it satisfies the following properties:

(1) e;_y =e;ifandonlyife; , =e;fori =1,....,k—1.
(2) r(e;) =r(e)) forall j <k.
(3) Ifex—1 > e, thene, |, = e¢;.

4) It r(ex) = r(ep) = r(ex+1) =r(ep,,) =2andif ey = e, theney_, > e;.
Notice that k = —1 is always admissible for any pair of plane sequences.

ProrosiTION 5.8. Let k > 0 be an integer with the properties (1) and (2) of Defini-
tion 5.7. Then, k is admissible if and only if either k is maximal with the conditions (1)

and (2) orr(ex+1) = r(ep,,) = 1.

Proor. Let us assume that k is admissible and that the conditions (1) and (2) are also
true for k + 1. In particular (see property (3)), ex—; = ex and e,/c_l = e,/c. Moreover,
r(eg+1) =r (e;c +1) and (see property (4)) if it is equal to 2, one reaches a contradiction.
Thus, we have proved that if & is not maximal, then r(ex+1) = r(e;, ;) = 1.

Let us show the sufficient condition. Firstly, note that the condition e;_; > ey implies
that 7 (ex+1) = 2. So, if ex—1 > ex and also e, _; > e}, then r(ex+1) =r(e ;) =2
and k is forced to be maximal. But obviously, this is not the case because (1) and (2)
are also true for k + 1. This proves property (3).

To prove property (4), the hypothesis r(ex+1) = r(ej ;) = 2 implies that k must
be maximal with properties (1) and (2). So, if ex_; = e, then e,’c_1 > e}c and the proof
is finished. ]

As a consequence, the properties of the definition can be expressed in a somewhat
simpler form in the following way.

DeriNtTION 5.9. We will say that an integer k > —1 is admissible if k = —1 ork > 0
and it satisfies the following properties:

(1) ej_1 =e¢;ifandonlyife; , =e)fori =1,... .k —1.

(2) r(ej) =r(e)) forall j <k.

(3) Either k is maximal with the conditions 1 and 2 or r(ex+1) = r(e;C +1) =1.
RemARKk 5.10. Notice that if e;_; > e;, then r(e;+1) = 2. As a consequence, if k is
admissible, then the following hold:

(1) If k is not maximal with properties (1) and (2), then r(eg41) = r(e;H_l) =1;ie.
both are free points and then (ex_1, e;_;) = (ex. e ). However, it is possible to
have (ex—1,e;_;) = (ex, ;) and r(ex+1) # r(ef, )
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(2) The situation ex_; > e; and e;_, > e; is not possible. In particular, e; and e;
cannot be simultaneously terminal free points.

5.2.1. Intersection multiplicities with HN expansions

Let @ >~ K[x, y] be the local ring of a plane curve with two branches, € and €,
lete = (e, e1,...) and e’ = (e, e}, ...) be the multiplicity sequences of € and €’.
Assume that x is a transversal parameter for € and €. Letzg = zy = x,z_; =2/, =y,
and let

h;

— i ) <<

Zj—1 = ajizj+zj ziv1; 0=<j<=r,

i=1

g |

/ _ / I\L NI . . /

o= @) + @)z 0= <r

i=1

5.4

be the HN expansions of € and €’ with respect to x, y.

Let s be the largest integer such that /1; = h‘; forall j <sanda;; = a‘;i forj <s
andi < hj.Lett < min{hs + 1,/ + 1} be the largest integer for which ay; = a;i for
alli <t.

Note that if ¢ < min{hg + 1, + 1}, then as; # aj,, in particular s = s, for some
0 < ¢ < min{g, g'}. Otherwise, t = min{hs; + 1, h} + 1} and necessarily hs # h}.

ProposiTiON 5.11. With the above notations, let S = ZS_I hjn;n;. Then, one has
the following:

(1) The splitting number k between € and €’ is equivalent data to the pair (s,t); in
fact,
k=ho+hy+-+hg_1+1—1

(2) The intersection multiplicity [€,€'] is as follows:
(a) Ift <min{hy + 1,k + 1}, then [€,€'] = S + tngn),.
(®) Ift =hiy+1<hg+1,then[€, €] =S + hingn, + n_ n;.
(©) Ift =hs+1<hl+ 1, then[€,€'] =S + hgnsn', + ngy1n}.

Proor. One has that k = 0 if and only if ag; # aj,,. Hence, this situation is equivalent
to (s,7) = (0, 1) and the equality follows. The case k > 0 is equivalent to ag; = ag,;
and the proof follows by induction using the expression of the HN expansion of the
strict transform of a branch in terms of the one of €.

The equality of the intersection multiplicity is a consequence of the expression
for the splitting number or can be proved also by induction using that [€, €'] =
nongy + [‘6(1), ‘6/(1)] (see [7, Remark 2.3.2 and Proposition 2.3.3]). [ ]
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PROPOSITION 5.12. Let e, ¢’ be two plane sequences and let k > —1 be an admissible
number for them. Let € be a branch with multiplicity sequence e. Then, there exists
a branch €’ with multiplicity sequence ¢’ and such that k is the splitting number of
the curve with branches € and €’. In particular, k is the splitting number of a pair of
branches with multiplicity sequences e and e’ if and only if k is admissible.

Proor. The case k = —1 is trivial. Let € be a branch with multiplicity sequence e
and HN expansion

h;
— 2: i R ;
Zj1 = ajizj +2;7 Zj+1, 0<j=r
i=1

and let k > 0 be an admissible number for ¢ and ¢’. Let

v
ZJ/~_1 = Z A}i(z})i + (Z]/.)h./izj/.ﬂ, 0<j<r,

i=1
be an HN type expansion for H(e’) in which we see the symbols {A] j} as parameters
to be determined. If k = 0, it suffices to fix Ay, = ag; € K such that ay, # ap1. If
k > 0, then we fix A, = ao1. Now let€ = (ey,...)and & = (e}, ...) and let €V be
the strict transform of € by one blowing-up. The multiplicity sequence of €V is 2, &’
is a plane sequence, and k — 1 is an admissible number for € and ¢’. By the induction
hypothesis, there exists a branch D with multiplicity sequence 2’ and splitting number
with €1 equal to k — 1. The HN expansion of D completed with Ap; = ao1 provides
a branch €’ with multilicity sequence e’ and such that its splitting number with €
isk. ]

5.3. General case

Let R = O x --- x O, be a direct product of local rings @; (1 < j < c), each one
associated with a reduced plane algebroid curve defined over an algebraically closed
field K. Let us denote by €y, . .., €4 the branches of R. Let 7 be the multiplicity tree
of R. Take the notations given at the beginning of the section. For each branch €;,
i =1,....,d, one has its corresponding branch 7 of 7 (i.e. a maximal completely
ordered subtree of 7) and so the sequence e! = (e, ey, ...) of multiplicities of €;.
Fori,j € {1,...,d},let k; ; + 1 be the length of the trunk of the subtree of 7 given
by €; and €}, so k; ; is just the splitting number of €; U €,. The fact that T is the
disjoint union of ¢ trees implies some restrictions on the set of integers {k; ;}:

(5.5) Giveni, j,t € {1,...,d}, ifone has thatk;; > k;;, thenk; ;, = k; ;.
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Note that the condition (5.5) above is enough to construct a graph 7 ({e'}, {k; ; })
by joining the d sequences of integers {e’;i = 1,...,d} with the help of the splitting
vertices indicated by {k; ;}. (Pay attention that the graph is a tree if and only if k; ; > 0
foranyi, j.)

LeEmMA 5.13. Let E = {e! = (eé, el,..); i =1,...,d)} be a set of sequences of
positive integers and {k; j > —1}, i, j € {1,...,d}, i # j, an indexed set of integers
with k; ; = kj; and satisfying property (5.5). Then, there exists a weighted graph
T = T({e'}, {ki j}) such that the set of maximal completely ordered subgraphs of T,
(TY,....T9), coincides with E and fori, j € {1,...,d}, the length of the trunk of
TIUTI C Tisk;j+1.

Proor. The proof is easy by induction on the number of branches d. Otherwise, we
can define directly the graph in the following way. For each integer t > 0, leti ~; j if
andonly if k; ; > t. It k; ;,kj s > t, then by (5.5), one has k; s > min{k; j, kjs} > 1.
Thus, the relation ~; is an equivalence relation. For each equivalence class J;, we can
take a vertex with weight m(J;) = (my,...,mg) € N defined as m; = elifi e J
and m; = 0 otherwise. Notice thatif ¢t > £ and i ~; j, theni ~; j. Hence, the result
is the disjoint union of ¢ trees, each one with root in one of the equivalence classes
of ~g; in particular, it is a tree if and only if k; ; > O foralli, j € {1,....d}. ]

Adding to the lemma the conditions of plane sequences and the admissibility, one
has the following result.

PROPOSITION 5.14. Let {¢! = (ef), e’i, ..., i =1,...,d} be a set of sequences of non-
negative integers and {k; ; > —1},i,j € {1,...,r}, i # j, an indexed set of integers
satisfying property (5.5). Let T = T ({¢'}, {ki ;}) be the weighted graph constructed
in Lemma 5.13. Then, there exists a plane curve with multiplicity tree T if and only if

(1) fori =1,...,r, e is a plane sequence;

() fori,j e{l,....r}, i # j, ki j = kj; is an admissible splitting number between
the sequences e' and e’ .

Proor. We will proceed by induction on the number of branches d. Notice that the
case d < 2 is already known. Moreover, if there exists i, j such that k; ; = —1, then
the result is trivial because we can separate the set of branches {1, ..., d} in two parts
I,J suchthat#I,#J <d andk; j = —1fori € [ and j € J. So, we can assume that
k; ; > 0 for any pair i, j; i.e. the searched ring R must be a local one.

Letus fixabranchi = 1andlet / = {2,...,d}. Letus assume that k; » > kq;
for alli > 2. Let 7' be the sub-graph of 7~ defined by the sequences {¢’ : 2 <i < d}
and integers {k; ; | i, j > 2}. By the induction hypothesis, there exists a reduced curve
€’ consisting of the branches €, ..., €; such that the multiplicity tree of € is 7.
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Without loss of generality, we can assume that €; is given by an HN parametrization
@i - (X,Y) > (x(#;), y(t;)) insuchaway thatif " : K[X,Y] — K[t2] x -+ x K[t4],
©'(f) = (@2(f)s-..,0a(f)), then R" = K[X, Y]/ ker(g) is the local ring of €’.
Let o1 : (X,Y) — (x(t1), y(¢1)) be an HN parametrization of a branch €; such
that its multiplicity sequence coincides with e! and the splitting number with €, is
equal to k1 » (see Proposition 5.12). Since k; o > k; foralli > 3, it is clear that the
splitting number of €; and €; is equal to k1 ;. Now consider the map ¢ : K[X, Y] —
K[t1] x K[[t2] x --- x K[t4] givenby ¢ = (¢1,...,¢4) andlet R = K[X, Y]/ ker(p).
Then, the multiplicity tree of R coincides with 7 and the proof is finished. |

As a consequence, one also has the following theorem.

THEOREM 5.15. Let R = @1 X -+ x O be adirect product of local rings O; (1 < j <c),
each one associated with a reduced plane algebroid curve defined over an algebraically
closed field K. Let €1, ..., €4 be the set of branches of R. The following elements are
equivalent:

(1) The semigroup of values S of R.

(2) The semigroups S;, 1 <i <d, of each branch and the set of intersection multi-
plicities {[€;,€;] | 1 <i < j < d} between pairs of branches.

(3) The multiplicity tree T (R) of R.

(4) The set E = {' = (e}, e},...); i = 1,...,d} of the multiplicity sequences of
the branches {€; | 1 <i < d} plus the splitting numbers {k; ;} between pairs of
branches €;, €;; 1 <i < j <d.
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