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Abstract. – Measuring the degree of inequality expressed by a multivariate statistical distribu-
tion is a challenging problem in many fields of science and engineering. In this paper, we propose
to extend the well-known univariate Gini coefficient to multivariate distributions by maintaining
most of its properties. Our extension is based on applying whitening processes that possess the
property of scale stability.
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1. Introduction

The Lorenz curve [22] and the Gini index [13, 14] are still the most important tools
to measure the inequality (mutual variability) expressed by a statistical distribution,
such as the distribution of income or wealth in a country [8, 11, 12, 27]. However,
they are univariate instruments, so that, for a given random n-dimensional vector X
of scalar components Xi , i D 1; 2; : : : ; n, they are suitable to analyze the variables
Xi individually, ignoring the dependence structure they have as components of X. In
reason of their importance in economical applications, there had been several efforts
to extend the notions of Lorenz curve and Gini index to the multivariate case. The
earliest approach, by means of methods of differential geometry, is due to Taguchi
[25, 26]. Further suggestions came by Arnold [2], Arnold and Sarabia [3], Gajdos
and Weymark [10], Grothe, Kächele, and Schmid [16], Koshevoy and Mosler [19, 20],
and Sarabia and Jorda [24]. Unfortunately, as outlined in [3], all these multivariate
extensions are essentially determined by elegant mathematical considerations but often
lack applicability and interpretability. In addition, these proposals do not possess some
of the fundamental properties which are required to inequality measures, properties
satisfied by the univariate Gini index.

In a recent paper [15], the possibility of measuring the inequality of multidimensional
statistical distributions by resorting to Fourier transform [4,5,27] has been investigated.
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There, one of the key properties that a multivariate Gini index should possess has been
identified in the scaling invariance property on components [17], which is essential
when trying to recover the value of the inequality index in a multivariate phenomenon
composed by different quantities, possibly measured in a different unit of measurement.

By resorting to the Mahalanobis distance [23], in place of the Euclidean distance, in
[15], a new version of the multivariate Gini coefficient satisfying the scaling invariance
property was proposed and studied. Furthermore, it was shown that, for multivariate
Gaussian distributions, the value of the proposed multivariate Gini index is related
to the coefficient of variation introduced by Voinov and Nikulin [28], as it does for
the univariate case. Owing to the fact that Mahalanobis distance is closely related to
the process of whitening of a random vector, we will here extend the methods in [15],
leading to some generalizations of the Mahalanobis distance. Among them, we will
extract one which is particularly well suited to define a new multivariate Gini index,
which appears to be easy to handle and interpret.

Whitening is a linear transformation which, given a random n-dimensional vector
X D .X1; : : : ; Xn/T , of mean value m D .m1; : : : ; mn/T and covariance matrix †,
returns a new random vector X� whose entries are orthonormal; that is, the variance
of each X�i is 1 and the covariance of any X�i and X�j is null, whenever i ¤ j . Con-
sidering that orthonormality among random variables greatly simplifies multivariate
data analysis, both from a computational and a statistical standpoint, whitening is a
critically important tool, most often employed in pre-processing. In essence, whitening
is a generalization of standardization, a transformation that is carried out by

(1.1) X� D V �1=2X;

where the diagonal matrix V D diag.var.X1/; var.X2/; : : : ; var.Xn// contains the
variances of Xi , i D 1; 2; : : : ; n. This results in a new random vector, namely, X�,
whose components have unitary variance, that is, var.X�i /D 1, for every i D 1;2; : : : ; n.
Notice, however, that this transformation does not remove any correlation that the
original entries of the vector X possess. As we shall see, most whitening processes
lack the scale stable property, which ensures that the whitened random vector remains
unchanged if the components of the original random vector X are scaled by a positive
quantity. This property is essential to obtain a multivariate inequality index that is scale
invariant.

The content of this paper is as follows. In Section 2, we describe in detail the
whitening process. Furthermore, we discuss the properties which are important in
connection with a good definition of a multivariate inequality index. Then, in view
of applications, in Section 3, we introduce the new multivariate Gini-type index, by
discussing its main properties. Section 4 presents an application of the multivariate
index to the study of market economic inequality.
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2. The whitening process

In what follows, we denote with P .Rn/ the set of n-dimensional probability measures.
Since every random vector is identified by its associated probability distribution, with
a slight abuse of notation, we use the random vector X and its associated probability
measure � interchangeably. Moreover, we denote with PId.Rn/ the subset of P .Rn/

containing the probability measures whose covariance matrix is the identity matrix.
In its most generic form, a whitening process is a map that, given an n-dimensional
random vector X, returns a new n-dimensional random vector whose covariance matrix
is the identity, that is, � W P .Rn/! PId.Rn/. We say that a whitening process � is
linear if, for any given X 2 P .Rn/, there exists an n � n square matrix that depends
on X through its distribution, namely, W�, such that

(2.1) X� D �.X/ D W�X:

The matrix W� is also known as whitening matrix (associated with �) [18]. If the
covariance matrix of X, namely, †, is invertible, then the whitening matrix in (2.1)
must satisfy the identity W�†W T

� D I and thus W�.†W T
� W�/ D W�, which boils

down to

(2.2) W T
� W� D †

�1:

We remark that, given an n-dimensional random vector X whose covariance matrix is
†, condition (2.2) does not determine uniquely the linear application that sends X to a
whitened vector. Indeed, the identity (2.2) does not fully identify W� but allows for
rotational freedom. For example, given a whitening matrix W�, any zW� of the form

zW� D ZW�

is a whitening matrix as long as Z is an orthogonal matrix, i.e., ZTZ D I , since

. zW�/
T zW� D W

T
� Z

TZW� D W
T
� W� D †

�1
I

hence, zW� satisfies (2.2) regardless of the choice of Z. Consequentially, there are
multiple ways to whiten a random vector, even if we restrict our attention to linear
whitening processes [21].

The Zero-phase Components Analysis whitening transformation, also known as
Mahalanobis whitening [23], is characterized by the matrix

(2.3) W Maha
� D †�1=2;

where †�1=2 is defined as follows. Since † is symmetric and positive-definite, we can
decompose it as

† D Z‚ZT ;
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where Z is the eigenmatrix associated with †, and ‚ is the diagonal matrix whose
diagonal contains the positive eigenvalues of †. Moreover, ‚ is diagonal and its
diagonal contains only positive values; we then have that † D .‚1=2Z/T .‚1=2Z/,
and thus we set

(2.4) †�1=2 D ZT‚�1=2Z:

Example 1. Let X be an n-dimensional Gaussian random vector, of mean m and
positive-definiten� n covariance matrix†, with associated probability density function

fX.x/ D
1

.2�/n=2.det†�1/1=2
exp

²
�
1

2
.x �m/T†�1.x �m/

³
:

Since the whitening process returns a new n-dimensional Gaussian random vector X�
of the same dimension n and with unit diagonal white covariance, the components of
X� are uncorrelated. In the Gaussian case, this is equivalent to independence since
we can express the joint probability density function as a product of the marginals.
Hence, X� is an n-dimensional Gaussian random vector, of mean m� DW�m and unit
diagonal covariance, with independent components. Indeed,

fX�.x/ D
1

.2�/n=2
exp

²
�
1

2
.x �m�/T .x �m�/

³
D

nY
iD1

1

.2�/1=2
exp

²
�
1

2
.xi �m

�
i /
2

³
:

When it comes to measure the inequality of a probability distribution, not all
whitening processes are, however, equal. For example, only a few of the known whitening
processes are Scale Stable, i.e. such that the random vector X� obtained via the whitening
process does not change if we multiply one or more entries of the pre-whitening vector
X by a positive constant.

Definition 1 (Scale Stability). A whitening process � is said to be Scale Stable if

�.X/ D �.QX/;

for every random vector X and for any diagonal matrixQD diag.q1; q2; : : : ; qn/whose
diagonal elements are positive constants.

Scale Stability is an essential property for any sparsity index whose definition relies
on whitened data, as it is connected to the scale invariance of the index itself. For this
reason, we now show that linear Scale Stable whitening processes always exist and
identify two of them.
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The Choleski whitening

Choleski whitening is a process based on the Choleski factorization of a positive-definite
matrix. In this case, the whitening matrix is

(2.5) W Chol
� D LT ;

where L is the unique lower triangular matrix with positive diagonal values which
satisfies (2.2). Owing to the triangular structure of W Chol

� , the whitening process it
induces is Scale Stable, as the following result shows.

Theorem 1. The Choleski whitening process is Scale Stable.

Proof. Let Q D diag.q1; q2; : : : ; qn/ be a diagonal matrix such that qi > 0. Given a
random vector X, let us denote with † its covariance matrix. We then have that the
covariance matrix of Y D QX is Q†Q.

Let L be the Choleski factorization of †�1, i.e. †�1 D LTL. It is easy to see that
the inverse matrix of Q†Q is Q�1†�1Q�1. Hence, we have

(2.6) .Q†Q/�1 D .LQ�1/T .LQ�1/:

Since L is lower triangular, LQ�1 is lower triangular as well since the i -th column of
LQ�1 is equal to the i-th column of L multiplied by q�1i . Owing to the uniqueness
of the Choleski factorization, we conclude that LQ�1 is the Choleski factorization
associated with .Q†Q/�1. Finally, notice that

LQ�1.QX/ D LX;

which concludes the proof.

The correlation whitening

The correlation whitening, also known as Zero-Components Analysis (ZCA-cor), em-
ploys a whitening matrix which derives from the correlation matrix. In this case, given
a random vector X, the whitening matrix is defined as

(2.7) W ZCA
� D P�1=2V �1=2;

where P is the correlation matrix of X, and V is the diagonal matrix introduced in
(1.1). Again, notice that P� 1

2 in (2.7) is not defined uniquely; thus, there are multiple
ZCA-cor matrices associated with the same X 2 P .Rn/. Since the correlation matrix
P is scale invariant, it is easy to prove that the ZCA-cor whitening process is Scale
Stable.
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Theorem 2. The ZCA-cor whitening process is Scale Stable, regardless of how the
square root of P�1 is selected.

Proof. Without loss of generality, we show this result for a specific square root ofP�1

as our proof can be generalized to any square root ofP�1. LetQD diag.q1; q2; : : : ; qn/
be a diagonal matrix such that qi > 0. Given a random vector X, let us denote with †
its covariance matrix; then, we have that the covariance matrix of Y D QX is Q†Q.

Let P be the correlation matrix associated with X. Since P is positive-definite and
symmetric, we decompose P as P DOTƒO , whereƒ is a diagonal matrix containing
the eigenvalues of P andO is the matrix containing the eigenvectors associated with P .
Notice that†DV 1

2PV
1
2 , whereV D diag.var.X1/;var.X2/; : : : ;var.Xn//. Moreover,

the correlation matrix P is scale invariant; thus, the correlation matrix induced byQX
is still P . Let us now consider ƒ� 1

2OT V �
1
2 and define X� D ƒ� 1

2OT V �
1
2 X. It is

easy to see that the covariance matrix induced by X� is the identity matrix. Let us now
consider YDQX. The variance of each Yi is equal to q2i times the variance ofXi , that
is, var.Yi /D q2i var.Xi /. Since the correlation matrix of Y is the same as the correlation
matrix of X, and since we have that the ZCA-cor whitening matrix induced by Y is
ƒ�

1
2OT V

� 1
2

Q , where VQ D diag.q21var.X1/; q22var.X2/; : : : ; q2nvar.Xn//DQVQ, we
infer that

ƒ�
1
2OT V

� 1
2

Q Y D ƒ�
1
2OT V �

1
2Q�1Y D ƒ�

1
2OT V �

1
2 X;

which concludes the proof for the ZCA-cor whitening.

Counter example
We remark that not all the whitening processes are Scale Stable. Consider for example
the Principal Components Analysis (PCA) whitening, a well-known statistical pre-
processing method, whose whitening matrix is defined as

(2.8) W PCA
D ‚�1=2ZT ;

where ‚ is the diagonal matrix containing the eigenvalues of the covariance matrix
†, and Z is the corresponding (orthogonal) eigenvector matrix (e.g. [9]). The PCA
transformation first rotates the variables using the eigenvector matrix of†. This results
in orthogonal components, but with different variances. To obtain whitened components,
the rotated variables are then scaled by the square root of the eigenvalues via the matrix
‚�1=2. Note that, due to the sign ambiguity of the eigenvectors Z, the PCA whitening
matrix given by (2.8) is not unique. However, adjusting the column signs inZ such that
the elements on the diagonal of ‚ are positive, all diagonal elements positive, results
in a unique PCA whitening transformation with positive diagonal cross-covariance and
cross-correlation.
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Notice that this procedure is different from the one defining the ZCA-cor whitening
process since the ZCA-cor first scales the entries, then rotates the variables, and then
scales the variables according to the eigenvalues of the correlation matrix. Despite
its similarities with the ZCA-cor, the PCA whitening is not Scale Stable, as the next
example shows.

Let us consider a Gaussian random vector X, and let us set � its probability measure.
Its mean is mX D .1; 1/ and covariance matrix is

†� D

 
4 �2

�2 3

!
:

Since the eigenvalues of†� are �1 D 5:56 and �2 D 1:44 and their associated eigenvec-
tors are v1 D .0:78; 0:61/ and v2 D .�0:61; 0:78/, respectively, from (2.8), we infer
that

W PCA
� D

 
1p
5:56

0

0 1p
1:44

! 
0:78 �0:61

0:61 0:78

!
D

 
0:33 �0:26

0:51 0:66

!
:

Therefore, the random vector W PCA
� X is a Gaussian vector whose covariance is the

identity matrix and its mean is W PCA
� mX D .0:07; 1:17/.

Let us now consider the Gaussian random vector Y D .2X1; X2/, that is, the
random vector obtained by multiplying the first entry of X by two. Let us denote by z�
its probability measure. It is easy to see that Y is still a Gaussian random vector, whose
mean is mY D .2; 1/ and whose covariance matrix is

†z� D

 
16 �4

�4 3

!
:

In this case, the eigenvalues of †z� are �1 D 17:13 and �2 D 1:87 and their associated
eigenvectors arew1 D .0:96; 0:27/ andw2 D .�0:27; 0:96/, respectively. In particular,
the PCA whitening matrix associated with Y is

W PCA
z� D

 
0:23 �0:06

0:20 0:71

!
:

Therefore, the random vectorW PCA
z�

Y follows a Gaussian distribution whose covariance
matrix is the identity and whose mean is W PCA

z�
mY D .0:40; 1:11/. We then conclude

that W PCA
� X ¤ W PCA

z�
Y so that the PCA whitening is not Scale Stable.

The p-Mahalanobis metrics

Given an n-dimensional random vector X, we denote with m D .m1; m2; : : : ; mn/T
its mean and with †� its positive-definite n � n covariance matrix. The Mahalanobis
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metric is then defined as

(2.9) m2.X/ D
q

mT†�1� m D
q
.W�m/T .W�m/ D kW�mk2;

where W� is any whitening matrix. Since for any whitening matrix W� we have that

mTW T
� W�m D mT†�1� m;

the Euclidean norm of W�m does not depend on W�. This property, however, is lost if
we consider other norms of the vector W�m. In this case, the choice of the whitening
matrixW� affects the value of the norm, and it may not be scale invariant. To overcome
this issue, it suffices to consider a Scale Stable whitening.

Definition 2 (The lp Mahalanobis norm). Let � be a Scale Stable whitening process
and let X be a random vector. For any p � 1, we define the lp-Mahalanobis norm
induced by � of X as follows:

(2.10) Mp.X/ D
E
�
�.X/

�
p
;

where EŒ�.X/� is the vector containing the mean of �.X/.

Remark 1. From a constructive viewpoint, note that, owing to Theorems 1 and 2,
both Choleski and correlation whitening processes allow us to define a generalized
Mahalanobis norm that is scale invariant, i.e.

Mp.X/ DMp.QX/;

for every diagonal matrix Q whose diagonal contains strictly positive values.

3. A new multivariate Gini-type index

In this section, we show how to define a scaling invariant Gini index for multivariate
distributions using the lp-Mahalanobis norm introduced in Definition 2. For the sake
of simplicity, from now on we consider only the ZCA-cor whitening.

Definition 3. For any X random vector, let W ZCA
� be the ZCA-cor whitening process

associated with X. Then, we define

(3.1) Gp.X/ D
1

2Mp.X/

Z
Rn�Rn

W ZCA
� .x � y/


p
�.dx/�.dy/;

where, for every p � 1, Mp.X/ is the Mahalanobis metric (see Definition 2).
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Depending on the whitening process, i.e. on the function X! W ZCA
� that maps a

random vector into its whitening matrix, the index Gp satisfies the defining properties
of an inequality index. For example, if the components of X are non-negative, the
whitened vector W ZCA

� X might not be non-negative. Consequentially, the multivariate
Gini indices preserve the well-known properties that the one-dimensional Gini index
possesses for positive quantities if and only if there exists a whitening matrix whose
entries are positive, as it maps non-negative vectors into non-negative vectors.

Lemma 1. Given X a non-negative random vector whose correlation matrix P is
invertible, let P�1 denote the inverse of P . Moreover, let us decompose P�1 as P�1 D
OƒOT where O is an orthogonal matrix and ƒ is the diagonal matrix containing the
eigenvalues of P�1. Finally, let V be the diagonal matrix containing the variances of
X and R an orthogonal matrix. Then, the random vector

(3.2) X� WD W ZCA
� X WD ROƒ�

1
2OT V �

1
2 X

is non-negative wheneverR is such that .ROƒ� 1
2OT /i;j � 0 for every i; j D 1; : : : ; n.

Proof. It follows from the fact that W ZCA
� has only positive entries; thus, W ZCA

� X is
non-negative whenever X is non-negative.

For the sake of simplicity, given a random vector X, from now on we consider the
ZCA correlation whitening process induced by R D Id, thus, P� 1

2 D Oƒ�
1
2OT , and

set

(3.3) W ZCA
� D Oƒ�

1
2OT V �

1
2 ;

so that if X is a random vector whose covariance matrix is the identity, thenW ZCA
� D Id.

We will then consider the family of multidimensional Gini indices induced by W ZCA
� ,

so that
Gp.X/ D

1

2Mp.X/

Z
Rn�Rn

W ZCA
� .x � y/


p
�.dx/�.dy/:

When p D 1, the latter identity becomes particularly interesting as, in this case, we
can express G1 as a convex combination of the one-dimensional Gini indices, which
we denote with G, of the components of the vector X� D W ZCA

� X.

Definition 4 (l1 Gini index, ZCA). Let X be a random vector whose mean vector is
m D .m1;m2; : : : ;mn/T and whose covariance matrix† is positive-definite. Denoted
with � the probability measure associated with X, we define

G1.X/ D
1

2
Pn
iD1

ˇ̌
.W ZCA

� m/i
ˇ̌ Z

Rn�Rn

nX
iD1

ˇ̌�
W ZCA
� .x � y/

�
i

ˇ̌
�.dx/�.dy/:
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Theorem 3. Let X be a random vector of mean mD .m1;m2; : : : ;mn/T and positive-
definite n � n covariance matrix †. Then, we have

(3.4) G1.X/ D
nX
iD1

jm�i jPn
iD1 jm

�
i j
G
�
.W ZCA

� X/i
�
;

wherem�i D .W
ZCA
� m/i andG.X�i / is the one-dimensional Gini index of the i -th com-

ponent of X�. Furthermore, if the components of X are non-negative and .W ZCA
� /i;j � 0

for every i; j D 1; : : : ; n, we have that

0 � G1.X/ � 1:

Equation (3.4) is the most important result of this paper and establishes that the
higher-dimensional Gini index induced by the l1 Mahalanobis norm is a convex combi-
nation of the 1-dimensional Gini indices of the random variable X� D W ZCA

� X.

Proof. First, notice that the mean vector of X� is, by definition, m� WD W ZCA
� m, so

that
nX
iD1

jm�i j D

nX
iD1

ˇ̌
.W ZCA

� m/i
ˇ̌
:

By definition of the one-dimensional Gini index G, we have that

G.X�i / D
1

2jm�i j

Z
Rn�Rn

jx�i � y
�
i j.Ni /#�.dx�/.Ni /#�.dy�/;

where � is the probability measure associated with X and Ni W Rn ! Rn defined as
Ni W x! .W ZCA

� x/i . By a change of variables, we have that

G.X�i / D
1

2jm�i j

Z
Rn�Rn

ˇ̌�
W ZCA
� .x � y/

�
i

ˇ̌
�.dx/�.dy/:

By plugging the value of every G.X�i / in the right-hand side of (3.4), we conclude the
first part of the thesis.

To conclude the proof, notice that sinceW ZCA
� X is a non-negative random vector, we

have thatG.X�i / 2 Œ0; 1� and thusG1.X/ 2 Œ0; 1� sinceG1.X/ is a convex combination
of values in Œ0; 1�.

It is insightful to interpret the result presented in Theorem 3 in the context of what
a whitening process does to the multivariate data. When analyzing a multidimensional
statistical distribution derived from a set of data, the measured quantities are typically
interdependent. Consequently, the inequality expressed by the distribution, which
measures how far apart are the individual multidimensional observations from each
other, cannot be assessed as a function of the one-dimensional Gini indices obtained by
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considering each one-dimensional component of the distribution at the time. However,
by whitening the data, we can express the same inequality as a function of the standard
one-dimensional Gini indices, applied to the whitened one-dimensional components.

Indeed, Theorem 3 indicates a natural method to combine the one-dimensional
Gini indices by means of a convex combination. Specifically, the weight assigned to
the Gini index of the i -th component of X� is proportional to the absolute value of its
mean, normalized by the sum of all mean values. We formalize the properties of the
G1 inequality measure in the following corollary.

Corollary 1. Let X be a random vector of mean m D .m1; m2; : : : ; mn/
T and

positive-definite n � n covariance matrix †�. Then, the following properties hold:

(1) For any " > 0, there exists a random variable X" such that .W ZCA
�"

/i;j � 0 for
every i; j D 1; : : : ; n and G1.X"/ � ".

(2) For any " > 0, there exists a random variable X" such that .W ZCA
�"

/i;j � 0 for
every i; j D 1; : : : ; n and G1.X"/ � 1 � ".

(3) The G1 is Scale Invariant, that is, G1.X/ D G1.XQ/ for any diagonal matrix
Q D diag.q1; q2; : : : ; qn/ with qj > 0. Moreover, if .W ZCA

� /i;j � 0 for every
i; j D 1; : : : ; n and X is non-negative, then the Rising Tide property, that is,

G1.XC c/ � G1.X/;

holds for any positive vector c 2 RnC.

(4) Let us assume that jm�1j is much larger than
Pn
iD2 jm

�
i j. Then,

lim
j.m1/�j!1

G1.X/ D G.X�1 /

that is, G1.X/ � G.X�1 /.
This property tells us that if one of the uncorrelated components of X� dominates
the others meanwise, then the overall inequality is mostly determined by how
unequal the dominant component is.

Proof. We divide the proof into four parts.

Proof of point (1). Let " > 0 be fixed. Let X D .X1; X2; : : : ; Xn/ be a random vector
whose components are independent and identically distributed. Moreover, assume that
each Xi is distributed as follows:

Xi D

´
0 with probability p D 1

2
;

2 with probability p D 1
2
:

It is easy to check that EŒXi �D 1, Var.Xi /D 1 for every i D 1; : : : ; n, and, by construc-
tion, Cor.Xi ; Xj / D 0 if i ¤ j ; therefore, X� D W ZCA

� X D X. Since components X�
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are identically distributed, formula (3.4) boils down to

G1.X/ D G.X1/ D
1

2EŒXi �
D
1

2
:

Given M > 0, let us define XM D .X1 CM;X2 CM; : : : ; Xn CM/. By the same
argument used above, we have that X�M D XM and that

G1.XM / D G.X1 CM/ D
1

2.1CM/
:

It is then easy to see that if M > 1
2"

, then G1.XM / � ".

Proof of point (2). Let " > 0 be fixed. Consider XD .X1;X2; : : : ;Xn/ to be a random
vector whose components are independent and identically distributed. Moreover, assume
that each Xi is distributed as follows:

Xi D

´
0 with probability 1 � p;

1p
p.1�p/

with probability p;

where p 2 .0; 1/. It is easy to see that, for every p 2 .0; 1/, the covariance matrix of X is
the identity matrix, thus, X� D W ZCA

� X D X. Moreover, we have that EŒXi � D
q

p
1�p

and thus

G1.X/ D G.X1/ D
p
1 � p

2
p
p

2p.1 � p/p
p.1 � p/

D 1 � p:

In particular, if p � ", we have G1.X/ � 1 � ".

Proof of point (3). The scale invariance follows directly from Theorem 2. Let us now
consider the rising tide property. Let c be a vector whose components are positive,
that is, c D .c1; c2; : : : ; cn/, with ci � 0. Since X and XC c have the same covariance
matrix, it follows that W ZCA

� D W ZCA
XCc and that EŒXC c� D EŒX�C c. In particular,

we have that

W ZCA
XCc

�
EŒXC c�

�
D W ZCA

�

�
EŒX�C c

�
D m� CW ZCA

� c

and thus

G1.XC c/

D
1

2
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iD1

ˇ̌
.m�CW ZCA

� c/i
ˇ̌ Z

Rn�Rn

nX
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ˇ̌�
W ZCA
�

�
xC c� .yC c/

��
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ˇ̌
�.dx/�.dy/

D
1

2
Pn
iD1

ˇ̌
.m�CW ZCA

� c/i
ˇ̌ Z

Rn�Rn

nX
iD1

ˇ̌�
W ZCA
� .x � y/

�
i

ˇ̌
�.dx/�.dy/

�
1

2
Pn
iD1 jm�i j

Z
Rn�Rn

nX
iD1

ˇ̌�
W ZCA
� .x � y/

�
i

ˇ̌
�.dx/�.dy/ D G1.X/;
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where the last inequality follows from the fact thatW ZCA
� maps ¹x 2Rn s.t. xi � 0º into

itself, thus, j.m� CW ZCA
� c/i j D jm�i j C j.W ZCA

� c/i j � jm�i j for every i D 1; : : : ; n.

Proof of point (4). It follows from the following identity:

lim
j.m1/�j!1

jm�i jPn
jD1 jm

�
j j
D

´
1 if i D 1;
0 otherwise:

Finally, since any affine transformation of a Gaussian random vector is a Gaussian
random vector, we can explicitly express G1 as a function of the parameters of the
Gaussian distribution.

Theorem 4. If X is a Gaussian random vector whose mean is non-null, that is, m ¤ 0,
then also X� is a Gaussian random vector with non-null mean. Moreover, we have that

G1.X/ D
n

p
�
Pn
iD1

ˇ̌
.W ZCA

� m/i
ˇ̌ :

Proof. It follows from the fact that any whitened multivariate Gaussian distribution
is a Gaussian distribution with independent components and whose covariance matrix
is the identity.

This shows that theG1 index of a Gaussian distribution is proportional to the inverse
of the km�k1. However, the result in Corollary 1 does not hold, as Gaussian vectors
take value on Rn. In this case, Theorem 4 is to be interpreted as giving the explicit
expression of a multidimensional coefficient of variation, which exhibits the same
properties of that of Voinov and Nikulin [1, 28], which is obtained by evaluating the
multivariate Gini index of a Gaussian random vector with respect to the 2-Mahalanobis
Metric [15], and it is related to the G2 Gini index [6].

Finally, notice that Theorem 4 can be generalized to any case in which the multi-
variate probability distribution allows an explicit computation of the one-dimensional
Gini index for its components.

4. Application

In this section, we show the practical importance of our proposed multivariate index of
inequality, by means of the example introduced in [15], which concerns the study of
market economic inequality.

A country market is unequal, from an economic viewpoint, when it is concentrated,
that is, when it presents a high inequality: few companies have a large size and many
have a small size. To measure market inequality, we need to specify how we measure
the size of a company, using publicly available data. For publicly listed companies,
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we can consider, for example, the daily market capitalization, the current number of
employees, and the yearly revenues. This information is publicly downloadable from the
website companiesmarketcap.com, which contains, at the moment, the 8; 081 largest
companies in the world (by capitalization). Table 1 reports the summary statistics for all
companies, in terms of Market Capitalization, Number of Employees, and Revenues.

Mean Standard deviation
MarketCap 1:22 � 1010 7:15 � 1010

Revenues 6:86 � 109 2:49 � 1010

Employees 1:50 � 104 5:26 � 104

Table 1. Summary statistics.

Table 1 shows that, as expected, both the mean and standard deviation of Market
Capitalization and Revenues are much larger than those of the Number of Employees.
In addition, the variability from the mean of the Market Capitalization is about three
times higher than that of the Revenues. The three variables are not much correlated
with each other, as their correlation matrix in Table 2 shows.

MarketCap Employees Revenues
MarketCap 1.000 0.010 0.102
Employees 0.010 1.000 0.036
Revenues 0.102 0.036 1.000

Table 2. Correlation matrix.

It is usually of interest to compare market inequality in different countries. This
can be done comparing the value of the Gini one-dimensional indices. For the sake of
illustration, and without loss of generality, here we will measure market inequality at
the overall level as well as for nine of the largest economies: Canada, China, France,
Germany, Italy, France, India, Japan, the United Kingdom, and the United States. Table 3
shows the calculation of the one-dimensional Gini indices, using Market Capitalization,
Number of Employees, and Revenues as the metrics with which to measure the size of
the company.

From Table 3, we infer that, when all countries are considered, the three Gini
one-dimensional indices are very similar to each other. Differently, when individual
countries are considered, there are remarkable differences. For example, if we consider
market capitalization, the United States is the most concentrated country, followed by
Canada, Germany, and France. However, if we measure size in terms of number of
employees, the United States is followed by Canada, Germany, and India. In terms of
revenues, the most concentrated country appears Canada, followed by India, the United
States, and Italy.
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Countries Number of companies Gini MarketCap Gini Employees Gini Revenues G1

United States 3652 0.886 0.845 0.851 0.856
Canada 395 0.794 0.840 0.879 0.829
France 119 0.767 0.794 0.805 0.789
Germany 220 0.777 0.838 0.777 0.793
Italy 86 0.638 0.783 0.829 0.737
United Kingdom 258 0.754 0.813 0.828 0.794
China 314 0.761 0.782 0.785 0.776
India 564 0.747 0.816 0.860 0.801
Japan 350 0.667 0.771 0.714 0.715
All 8081 0.830 0.833 0.835 0.832

Table 3. Unidimensional Gini coefficients (referred as MarketCap, Employee, and Revenue)
and multidimensional G1 coefficient.

We notice that we do not have a unique ranking of the countries, in terms of
market inequality: it depends on how we define the size of a company: using market
capitalization, number of employees, or revenues. The intuition suggests that we should
take all three scales into account, to attain a reliable ranking of the countries, in terms
of market inequality. Hence, a multidimensional measure of inequality is necessary.
The multidimensional G1 index fills this gap. Table 3 reports, in the first right column,
the values of the G1 index, obtained applying equation (3.4) to the whitening process
defined as in (3.3). The values of G1 show that, considering all world countries, the
multidimensional Gini index is equal to 0:82, in line with the individual values.

More importantly, the multidimensional index gives a ranking of country inequality
that take all three size measurements into account. The most unequal country (most
concentrated market) is the United States, followed by Canada, in line with the results
of the individual Gini indices for Market Capitalization and Employees. The third most
concentrated market is India, owing to its high concentration of revenues. The United
Kingdom, Germany, China, and France follow, close to each other. The least unequal
countries are Italy and Japan, characterized by many small and medium enterprises.

For completeness, we remark that the weights attributed to the individual indices, in
equation (3.4), are equal to .0:335; 0:301; 0:363/, respectively, for Market Capitaliza-
tion, Employees, and Revenues. This means that the whitening process gives a slightly
higher weight to the inequality in Revenues, followed by that in Market Capitalization
and, last, by that in Number of Employees.

5. Conclusions

In this note, we introduced and discussed a rigorous way to extend the well-known
univariate Gini index to multivariate distributions by maintaining most of its one-
dimensional properties. At variance with other existing proposals, our extension is
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based on applying to a given random n-dimensional vector a whitening process that
possesses the property of scale stability, a property which is naturally satisfied by the
one-dimensional Gini index.

We tested our proposed multivariate index of inequality on a relevant example
concerned with the study of market economic inequalities. However, our proposal can
be fruitfully applied to all situations in which inequality has to be measured through
multidimensional data.

Among others, a very important issue would be the comparison of well-being
inequality across the world countries (more than 200). Traditional comparisons measure
inequality in well-being measuring only income. To achieve a better result, inequality
in well-being should be measured also taking other aspects into consideration, like
education and health levels.

Future research involves extending the multidimensional Gini as an evaluation
measurement of SAFE machine learning and artificial intelligence, see e.g. [7] and the
references therein.
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